


Feb. 10, 1970

J. F. FLEMING

3,494,591

STAPLE REMOVER

Filed Nov. 24, 1967

INVENTOR
Jack Fairchild Fleming
BY *Albert C. Johnston*
ATTORNEY

1

3,494,591

STAPLE REMOVER

Jack Fairchild Fleming, Boonton, N.J., assignor to
Sterling Plastics Company, Mountainside, N.J., a
corporation of New Jersey

Filed Nov. 24, 1967, Ser. No. 691,672

Int. Cl. B25c 11/00

U.S. Cl. 254—28

12 Claims

ABSTRACT OF THE DISCLOSURE

A staple remover is constituted by a one-piece molding of elastomeric plastic material comprising a U-shaped body web having metal claws secured inside the ends of its legs, as by being slid into fast engagement with interfitting parts of the molding, and having its legs interconnected by molded web portions which normally hold the claws spaced apart at a desired distance, will flex and guide the claws into telescoped relation under finger pressure applied to the outer sides of the leg ends, and return the leg ends and claws to normal position when such pressure is released.

This invention relates to a staple remover, that is, to a device by which wire staples extending through paper or like sheets and having their ends bent backwardly upon the sheets can be conveniently removed without tearing the sheets.

It is an object of the invention to provide a serviceable staple remover constituted by a minimum number of parts which can be inexpensively fabricated and simply and easily assembled together.

According to the present invention, a staple remover is constituted by a one-piece molding of elastomeric plastic material comprising a resilient body web molded to a U-shape and having staple removing claw members secured in confronting coacting relation inside the ends of the legs of the body web, which legs are interconnected by integral elastic web means that hold them and the claws of the claw members in position to engage a staple, guide and yieldingly resist movement of the claws into telescoped relation for removal of a staple under finger pressure applied to the outer sides of the leg ends, and restore the legs and claws to normal open position when such pressure is released.

The said elastic web means are constituted advantageously not only by the base or bight portion of the U-shaped body web but also by integral arcuate web portions of the molding which define a resilient web connection having the form of a cusp bridging the space between the legs of the body web at a location between the curved base and the claw holding end portions thereof. This web connection resists spreading of the legs and claws beyond their normal open position suited for engagement of the claws with a staple to be removed, exerts a desired yielding resistance to convergence of the claws for removal of the staple under finger pressure applied to the leg ends, and returns the legs positively to their normal position when such pressure is released.

According to another feature of the invention, the claw members are each provided with a substantially flat base having an extended arm portion that can be slid into fast engagement with interfitting parts molded on the inner sides of end portions of the legs of the body web, so that the claw members and the molded body of the staple remover can be quickly and easily assembled together and yet will remain securely in the required working relationships under the stresses and strains of use.

According to another feature of the invention, the

2

claw members are made as metal stampings or the like which not only present mating sets of claws to be moved into telescoped relation for removal of a staple but also have backwardly extended base portions by which they are secured inside the legs of the molded elastomeric body web and from which mating guide elements, such as sets of fins or high flanges fitting slidably one upon another, project inwardly in telescoped relation. These elements guide the claws positively into telescoped relation so that they will not be displaced laterally out of proper working alignment by finger pressures applied incorrectly to the ends of the legs of the body web.

The above and other objects, features and advantages of the invention will be apparent from the following detailed description of an illustrative embodiment thereof which is to be read in connection with the accompanying drawing, wherein:

FIG. 1 is a perspective view of a staple remover in accordance with the invention;

FIG. 2 is a longitudinal sectional view taken along line 2—2 of FIG. 1;

FIG. 3 is an end elevational view of the staple remover as it appears when viewed in the direction of arrows 3—3 of FIG. 2;

FIG. 4 is a transverse sectional view taken along line 4—4 of FIG. 2;

FIG. 5 is a perspective view of one of the claw members; and

FIG. 6 is a side elevational view of the staple remover, illustrating a relative position of its parts in the course of operation for the removal of a staple.

As shown in the drawing, a staple remover 10 in accordance with this invention is constituted by a one-piece molding 11 which is composed of a suitable elastomeric plastic material, for example, a high density polyethylene, and carries metal claw members 12 and 13 in confronting, coacting relation.

The main body of the molding 11 is defined by a body web of the elastomeric material molded to a slightly open U-shaped configuration indicated in FIGURES 1, 2 and 3. The body web comprises legs 14 and 15 and an arcuate, nearly semi-cylindrical, base or bight portion 16 interconnecting the legs. The claw members 12 and 13 are assembled in secure engagement with interfitting molded parts on the inner sides of the legs 14 and 15. The body web is made sufficiently wide and rigid, though elastically bendable in the region of the base 16 by finger pressure applied to the free ends 17 of the two legs, that the leg ends and claws converging under such pressure will be constrained to stay in planes transverse to a plane bisecting the body web. The free ends 17 of the legs are laterally enlarged, as seen in FIGS. 1 and 3, and they may be formed with ridged or knurled outer surfaces 17a, to facilitate the grasping of them and application of pressure to them between fingers of the hand of a person using the staple remover, as indicated in FIG. 6.

A central flange 18 molded integrally with the inner side of the body web along the legs 14 and 15 and base 16 imparts longitudinal rigidity to the legs so that they will deliver bending forces produced by convergence of the end portions 17 predominantly to the curved base 16. This flange 18 has a cut-out area 19 near the middle of the base 16, to concentrate such bending forces at that location and enable a desired elastic bending or flexing of the molding under finger pressure applied to the leg ends 17.

The molding 11 is also made with a web section 21, desirably having the form of a cusp, which interconnects the legs at a location between the curved base and the parts mounting the claw members 12 and 13. This web section serves as a further means for normally holding the leg ends 17 and claw members spaced apart at a dis-

tance suitable for engagement of the claw members with a staple, but keeping them from spreading farther apart, and also as a further means for guiding their convergent movement under finger pressure, elastically resisting such movement, and restoring them to normal position when such pressure is released.

The web section 21 as shown consists of oppositely disposed arcuate web portions 22 which extend inwardly and forwardly from the inner sides of the legs 14 and 15 to a junction 23 midway between the legs, thus constituting an elastically compressible cusp-shaped connection bridging the space between the legs. Upon convergent movement of the legs by pressure applied to their outer sides, the arcuate web portions 22 are flexed toward one another and the junction 23 is displaced forwardly in the direction toward the free ends 17 of the legs, as indicated by the arrow 24 on FIG. 6.

As shown, the claw members 12 and 13 are mounted in confronting relation at the inner sides of the legs 14 and 15, with their respective sets of mating claws or teeth 25a and 25b disposed at the outer edges of the leg ends 17 so that they can be placed and moved together against a stapled sheet surface for engagement of a staple in conventional manner. Each claw member is formed of steel or another suitably hard metal, conveniently as a stamping thereof, and comprises a pair of laterally spaced claws struck up from a flat base portion 26a or 26b that includes an elongated arm 30a or 30b extending backwardly away from the claws (FIG. 5). The claws 25a of one claw member, say member 12, are spaced apart by a smaller distance than the claws 25b of the other claw member, so as to be telescoped slidingly inside the latter by converging movement of the leg ends 17 under finger pressure. Each of the claws has an arcuate front edge 27 and an arcuate back edge 29, which merge into a pointed tip engageable under a staple to be removed. The arcuate edges 27 and 29 serve, respectively, to guide the claws beneath the staple and to extract the staple, in well known manner. As indicated on FIG. 3, the tips 28a of the inside claws 25a are desirably curved slightly inwardly, i.e., toward one another, and the tips 28b of the outside claws 25b are desirably curved slightly outwardly, to aid in guiding the claws into properly telescoped working relation.

The two claw members, moreover, are formed along backward parts of their base portion 26a and 26b with integral mating guide elements, such as sets of laterally spaced fins or high flanges 40a and 40b aligned with the respective claws 25a and 25b, which project inwardly into constantly telescoped, sliding engagement one with another so as to hold the claws in proper working alignment at all times. These elements by sliding one upon another guide the claws positively into telescoped relation and prevent them from being displaced laterally out of working alignment by finger pressures applied incorrectly to the ends of the legs 14 and 15 of the body web.

The claw members 12 and 13 are mounted securely in place on the respective legs 14 and 15 by means of molded parts on the inside of each leg which interfit with parts of the base portion of the corresponding claw member and enable the staple remover to be assembled by simple sliding movement of the claw members into fast engagement with such molded parts. In the illustrated embodiment as seen in FIG. 5, the backwardly extended base portion 30a or 30b of each claw member is bifurcated to define therein a central longitudinal slot 31 which is open at the backward end thereof, and the central flange 18 on the body web of the molding 11 is formed near the leg ends 17 with forward extensions 18a capped by head strips 32, so as to provide on the inner side of each leg a molded structure of T-shaped cross-section (FIG. 4) which is slidably straddled by and overlies the forks of base portion 30a or 30b. The upright part 18a of this T-shaped structure fits into the slots 31 of a claw member slid thereupon, to hold the claw member against lat-

eral displacement, and the head strip 32 holds the claw member fast against the inner surface of the leg.

At a suitable location to be occupied by the base of each claw member, the inner side of each end portion 17 of the molding 11 is formed with an integrally molded inward protrusion 33 (FIG. 2) that will fit into a mating aperture 34 (FIG. 5) formed in the base 26a or 26b of the respective claw member 12 or 13. Each claw member thus is prevented from undergoing longitudinal displacement relative to the end of the leg 14 or 15 against which it is held by the elongated T-shaped flange means 18a, 32.

When assembling a claw member to a leg of the U-shaped body web, the claw member is moved rearwardly over the inside of the free end portion 17 of the leg so as to slide the slot 31 of forked extension 30a or 30b upon and along the flange 18a, with the fork straddling this flange and being held securely against the inner surface of the molding by means of the head strip 32. During such sliding movement of the claw member, the free end portion 17 of the leg 14 or 15 can flex outwardly sufficiently to enable the base portion of the claw member to be slid over the protrusion 33. However, when the closed end of slot 31 comes into engagement with the end of flange 18a to limit rearward displacement of the claw member, the protrusion 33 comes into register with aperture 34 and is forced into the aperture by the flexed end portion of the leg 14 or 15.

The staple remover according to this invention can be manufactured economically, being constituted only by a one-piece plastic molding and two metal claw members which can be rapidly assembled in working relation on the molding. Further, although the molding 11 can be composed of a relatively inexpensive elastomeric plastic material, the staple remover will operate reliably and will withstand rough usage without suffering impairment of its serviceability.

It is to be understood that the invention is not limited to details of the illustrated embodiment and that various modifications may be effected therein by one skilled in the art without departing from the fair scope of the invention, which is intended to be defined by the appended claims.

What is claimed is:

1. A staple remover consisting essentially of a one-piece molding of elastomeric plastic material comprising a resilient body web molded to a U-shape and staple removing claw members mounted in confronting, coacting relation on end portions of the legs of said body web, each of said end portions having on the inner side thereof integrally molded parts interfitting with parts of a base portion of one of said claw members for securing the claw member thereto, said molding including elastically bendable web means interconnecting said legs for normally holding them in position for the claws of said members to engage a staple, for guiding and resisting convergence of said legs by bending elastically under finger pressure applied to the outer sides of said end portions, whereby said claws will be telescoped so as to remove a staple, and for returning said legs to normal position upon release of such pressure.

2. A staple remover according to claim 1, said web means comprising resilient web portions molded to the form of a cusp bridging the space between said legs at a location between said end portions and the base of said U-shaped body web.

3. A staple remover according to claim 1, said web means comprising oppositely disposed arcuate web portions extending forwardly from respective junctions thereof with said legs, and joined together midway therebetween, at a location between said end portions and the base of said U-shaped body web.

4. A staple remover according to claim 1, said body web having an inwardly directed medial flange extending along the legs and the base thereof to stiffen said legs so

that they will deliver bending forces produced by such finger pressure predominantly to said base.

5. A staple remover according to claim 4, said flange having a cut-out area therein at the middle of said base to concentrate such bending forces thereat.

6. A staple remover according to claim 1, each of said claw members having a substantially flat rigid base portion having an aperture therein and including an arm extended away from the claws thereof, said molded parts on each said end portion including flange means for slidably receiving said arm so as to hold the claw member tight against said end portion, and including a protrusion fitting into said aperture to prevent displacement of the claw member longitudinally relative to said end portion.

7. A staple remover according to claim 6, said arm being bifurcated and said flange means comprising a molded structure of T-shaped cross-section slidably straddled by and overlying the forks of said arm.

8. A staple remover comprising a body member formed by a web of molded elastomeric material and a staple removing claw member mounted on an end portion of said web, said claw member having a substantially flat base portion having an aperture therein and including an arm extended away from the claws thereof, said end portion having integrally molded parts on a side thereof for holding said claw member fast thereagainst, said parts including elongated flange means for slidably receiving and preventing transverse displacement of said arm and including a protrusion fitting into said aperture to prevent longitudinal displacement of the claw member.

9. A staple remover according to claim 8, said arm being bifurcated and said flange means comprising a molded structure of T-shaped cross-section slidably straddled by and overlying the forks of said arm.

5 10. A staple remover according to claim 1, each of said claw members having a base portion extended backwardly from the claws thereof and having integral guide means projecting inwardly from said base portion in mating, slidable engagement with such guide means of the other claw member to prevent displacement of the claws of said members out of working alignment.

15 11. A staple remover according to claim 10, said guide means comprising mating sets of laterally spaced fins aligned longitudinally with the claws of the respective claw members and constantly fitting slidably one upon another in telescoped relation.

12. A staple remover according to claim 1, said claws being formed in pairs to be moved one inside the other by convergence of said legs, the tips of the inside pair of claws being bent slightly inward and the tips of the outside pair of claws being bent slightly outward to aid in guiding the claws into telescoped relation.

References Cited

UNITED STATES PATENTS

2,079,672	5/1937	Allen et al.	-----	254—28
2,624,545	1/1953	Pankonin	-----	254—28

30 ROBERT C. RIORDON, Primary Examiner