(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 103211143 B
(45) 授权公告日 2015.09.09

(21) 申请号 201310100997.3
(22) 申请日 2013.03.26
(73) 专利权人 胡文锋
 地址 510642 广东省广州市天河五山路 483 号
(72) 发明人 胡文锋 庞旭 韩毅 刘承杰
 杨益衡
(74) 专利代理机构 广州粤高专利商标代理有限公司 44102
 代理人 任重

(51) Int. Cl.
 A23L 1/09(2006.01)
 A23P 1/02(2006.01)

(54) 发明名称
 一种灭活乳酸菌泡腾片及其制备方法

(57) 摘要
 本发明公开了一种以灭活乳酸菌细胞为有效
成分的泡腾片及其制备方法。制备所述灭活乳酸菌
泡腾片的原料包括以下重量百分比的各组分：灭活
乳酸菌全粉 5～15%、低聚糖 20～30%、酸源
25～33%、碱源 25～35%、崩解剂 2～5% 以及溶
剂 2～5%。本发明通过热灭活方式对乳酸菌细
胞进行灭活，含有乳酸菌细胞，所得到的泡腾片具
有促进消化，维持肠道内微生态平衡，提高人体免
疫力的功效，同时含有低聚糖类双歧因子，能够
促进体内益生菌的生长，达到双重保健的效果，本
发明泡腾片携带，食用方便，溶于适量饮用水后就
可成为即食饮料，是适合各类人群的固体保健饮
料，本发明泡腾片制备工艺简单可行，具有重要
的实际应用推广价值。
1. 一种灭活乳酸菌泡腾片，其特征在于，由以下重量百分比的各组分组成：灭活乳酸菌粉 5～15%，低聚糖 20～30%，酸源 23～33%，碱源 25～35%，崩解剂 2～5%，润滑剂 2～5%。

所述灭活乳酸菌粉采用的乳酸菌为嗜酸乳杆菌、保加利亚乳杆菌、双歧杆菌、屎肠球菌或嗜热链球菌中的一种或多种；
所述的低聚糖为低聚异麦芽糖、低聚果糖、低聚半乳糖或低聚木糖中的一种或多种；
所述的酸源为柠檬酸、酒石酸、苹果酸或富马酸中的一种或多种；
所述的碱源为碳酸钠或碳酸氢钠中的一种或者两种；
所述的崩解剂为交联聚乙烯吡咯烷酮、微晶纤维素或羧甲基淀粉钠中的一种或者多种；
所述的润滑剂为聚乙二醇 6000 或微粉硅胶中的一种或者两种；
所述灭活乳酸菌粉通过以下步骤制备得到：
S01. 取乳酸菌发酵培养，使其菌数达到 10⁷ CFU/mL 以上，得到发酵液；
S02. 在 S01 所得发酵液中加入质量分数为 0.1～0.5% 的保护剂得混合体系；所述保护剂为甘油或海藻酸钠中的一种或者两种混合物；
S03. 将 S02 所得混合体系在 60～80℃ 热灭活 20～60 分钟，离心收集乳酸菌菌体；
S04. 将 S03 获得的菌体与可溶性淀粉或乳糖混合，进行真空干燥或喷雾干燥，制备成灭活乳酸菌粉。

2. 根据权利要求 1 所述的灭活乳酸菌泡腾片，其特征在于，包括以下重量百分比的各组分：灭活乳酸菌粉 10%，低聚糖 25%，酸源 27%，碱源 32%，崩解剂 3%，润滑剂 3%。

3. 根据权利要求 1 或 2 所述的灭活乳酸菌泡腾片，其特征在于，所述灭活乳酸菌粉的灭活细胞为 10¹⁰ 个 / 克。

4. 一种权利要求 1 或 2 所述的灭活乳酸菌泡腾片的制备方法，其特征在于，包括以下步骤：
S1. 将低聚糖、酸源、碱源、崩解剂、润滑剂充分烘干后分别粉碎，过筛得到原料粉备用；
S2. 将灭活乳酸菌粉和 S1 所得原料粉按比例称取后，充分混合均匀，压片即得。
一种灭活乳酸菌泡腾片及其制备方法

技术领域
[0001] 本发明涉及保健品饮料技术领域，具体地，涉及一种灭活乳酸菌泡腾片及其制备方法。

技术背景
[0002] 乳酸菌是人体肠道内常见的一类益生菌，它能够改善人体肠道内微生态平衡，抑制大肠杆菌、金黄色葡萄球菌、沙门氏菌等病原菌的生长，促进消化，提高人体免疫力等功效。近年来，其各种保健功能已被国内外专家学者所证实，以它开发出来的产品也是琳琅满目，如酸奶、乳酸菌饮料、奶酪等。其中以活性液体乳酸菌饮料尤为突出。液体饮料的优点是开启后可直接饮用，但是液体饮料在生产和使用过程中会耗费大量的易拉罐、包装瓶，并给环境造成一定的污染。卫生学指标较难控制，成品体积大，不适合随身携带，尤其不适合旅游、出差人士。与此同时，活性乳酸菌饮料需低温保存，且存在乳酸菌细胞容易失活、产品后发酵等问题。因此研究开发携带方便、性能稳定的乳酸菌固体保健饮料具有重要的意义。

发明内容
[0003] 本发明要解决的技术问题是针对现有活性乳酸菌在饮料技术领域的应用局限，提供一种乳酸菌泡腾片。
[0004] 基于本发明所述的乳酸菌泡腾片，本发明为提供乳酸菌固体饮料提供有效的解决方案，针对性解决液体乳酸菌饮料存在的技术缺陷。
[0005] 本发明要解决的另一个技术问题是提供所述乳酸菌泡腾片的制备方法。
[0006] 本发明的目的通过以下技术方案予以实现：
[0007] 提供一种灭活乳酸菌泡腾片，采用灭活的乳酸菌细胞和低聚糖作为主要的活性成分，其原料包括以下重量百分比的各组分：灭活乳酸菌粉：1 ～ 20%；低聚糖：20 ～ 40%；酸源：20 ～ 40%；碱源：20 ～ 40%；崩解剂：1 ～ 5%；润滑剂：1 ～ 5%。
[0008] 低聚糖双歧因子作为益生元对肠道有益微生物生长的调节作用，以及对机体免疫调节作用被人们认可，但是找到合理的结合机制，将其结合乳酸菌后发挥二者的共同作用，在本技术领域属于首次尝试。本发明不仅针对性解决液体乳酸菌饮料的缺陷，而且成功结合低聚糖的益生作用开发具有良好的保健作用的乳酸菌泡腾片。
[0009] 优选地，本发明所述灭活乳酸菌泡腾片优选包括以下重量百分比的各组分：灭活乳酸菌粉：5 ～ 15%，低聚糖：20 ～ 30%，酸源：23 ～ 33%，碱源：25 ～ 35%，崩解剂：2 ～ 5%，润滑剂：2 ～ 5%。
[0010] 更优选地，上述灭活乳酸菌泡腾片优选包括以下重量百分比的各组分：灭活乳酸菌粉：10%，低聚糖：25%，酸源：27%，碱源：32%，崩解剂：3%，润滑剂：3%。
[0011] 所述灭活乳酸菌粉的灭活细胞优选为 10^6 个/克。
[0012] 本发明所述灭活乳酸菌泡腾片也可以根据具体需要加入适量食用香料或者其他增加味道或者颜色的辅料。
[0013] 所述灭活乳酸菌粉采用的乳酸菌优选嗜酸乳杆菌、保加利亚乳杆菌、双歧杆菌、屎肠球菌或嗜热链球菌中的一种或多种，采取多种菌种时，混合的比例不做严格要求，参照本技术领域常规。

[0014] 所述的低聚糖优选低聚异麦芽糖、低聚果糖、低聚半乳糖或低聚木糖中的一种或多种，采用多种时，混合的比例不做严格限定。

[0015] 所述的酸源为柠檬酸、酒石酸、苹果酸或富马酸中的一种或多种，采取多种时，混合的比例不做严格要求。

[0016] 所述的碱源优选碳酸钠或碳酸氢钠中的一种或者两种，采取两种时，混合的比例不做严格要求。

[0017] 所述的崩解剂优选交联聚乙烯吡咯烷酮、微晶纤维素或羧甲基淀粉钠中的一种或者多种，采取多种时，混合的比例不做严格要求。

[0018] 所述润滑剂优选聚乙二醇 6000 或微粉硅胶的一种或两种。

[0019] 本发明所述的灭活乳酸菌粉通过以下方法制备得到：将乳酸菌发酵培养液在 60～80℃下灭活 20～60 分钟后离心收集菌体，将菌体与可溶性淀粉、乳糖或葡萄糖混合，进行真空干燥或喷雾干燥即得。

[0020] 优选地，所述灭活乳酸菌粉的制备方法包括以下步骤：

[0021] S01. 取乳酸菌发酵培养液，使用菌数达到 10^5 CFU/mL，以上，得到发酵液；

[0022] S02. 在 S01 所得发酵液中加入质量分数为 0.1～0.5% 的保护剂，得混合体系；所述保护剂为甘油或海藻酸钠中的一种或两种混合物；

[0023] S03. 将 S02 所得混合体系在 60～80℃下灭活 20～60 分钟，3000～5000rpm 离心 5～10 分钟收集乳酸菌体；

[0024] S04. 将 S03 获得的菌体与可溶性淀粉、乳糖或葡萄糖混合，进行真空干燥或喷雾干燥，制备成灭活乳酸菌粉，所述可溶性淀粉、乳糖或葡萄糖可以采用一种或多种，使用的量按照保证所述菌粉中的菌数达到 10^6 个/g 以上即可。

[0025] 优选地，S01 所述菌数达到 10^6/mL，得到发酵液。

[0026] 优选地，S03 所述热灭活的温度优选为 60℃，热灭活时间为 30 分钟。

[0027] 优选地，S03 所述离心处理的条件为 3000～5000rpm 离心 5～10 分钟。

[0028] 优选地，S04 所述真空干燥的条件为 60℃，0.04MPa。

[0029] 优选地，S04 所述喷雾干燥的条件为进口温度 150℃，出口温度 105℃。

[0030] 本发明同时提供了所述灭活乳酸菌粉制备方法，包括以下步骤：

[0031] S1. 将低聚糖、酸源、碱源、崩解剂、润滑剂充分烘干后分别粉碎，并过 40 目以上筛的原料粉备用；

[0032] S2. 将灭活乳酸菌粉和 S1 所得原料粉按比例称取后，充分混合均匀，压片即得；

[0033] 如果根据具体需要加入香料或者其他增加味道或颜色的辅料时，可以将灭活乳酸菌粉、S1 所得原料粉、香料或者其他增加味道或颜色的辅料按比例称取后，充分混合均匀，压片即得。

[0034] 上述制备方法中，所述灭活乳酸菌粉采用的乳酸菌优选嗜酸乳杆菌、保加利亚乳杆菌、双歧杆菌、屎肠球菌或嗜热链球菌中的一种或多种，采取多种时，混合的比例不做严格要求，参照本技术领域常规。
所述的低聚糖优选低聚异麦芽糖、低聚果糖、低聚半乳糖或低聚木糖中的一种或多种，采用多种时，混合的比例不做严格限定。
所述的酸源为柠檬酸、酒石酸、苹果酸或富马酸中的一种或多种，采用多种时，混合的比例不做严格要求。
所述的碱源优选碳酸钠或碳酸氢钠中的一种或者两种，采用两种时，混合的比例不做严格要求。
所述的崩解剂优选交联聚乙烯吡咯烷酮、微晶纤维素或羧甲基淀粉钠中的一种或者多种，采用多种时，混合的比例不做严格要求。
所述的润滑剂优选聚乙二醇 6000 或者微粉硅胶的一种或者两种的混合物，混合比例不做严格限定。
本发明的有益效果是：
本发明采用适宜的方法将乳酸菌灭活，进一步提供适宜的组成比例获得一种乳酸菌泡腾片。乳酸菌灭活的方法有冷冻灭活、化学灭活或者热灭活，不同的灭活方法对乳酸菌的活性影响和损伤程度显著不同，同样为热灭活，温度和时间条件的不同，对乳酸菌的活性影响也不同。本发明总结得到通过热灭活方式处理乳酸菌，提供了精确的工艺条件，在 60 ～ 80℃维持 20 ～ 60 分钟，本发明实验方案条件下，灭活后的乳酸菌很好地保持了完整的细胞形态，并同时保证了其发酵液中的乳酸菌素、抗菌肽、乳酸、生物酶等多种代谢产物的活性，使得本发明泡腾片中灭活的乳酸菌除了具有活菌同样的效果外，还具有不受抗生素影响、不产生耐药性等显著的优越性。
本发明进一步采用低聚糖与灭活的乳酸菌相配伍，共同促进和刺激肠道内乳酸菌、双歧杆菌等益生菌的生长，进一步达到保健的效果。
本发明的泡腾片与液体饮料相比较，含水量很低，其有效成分能够得到更好的保持，不容易变质，保质期可显著延长。而且，泡腾片携带起来更加地方便，很容易就可以获得营养保健的乳酸菌固态饮料，适合各类人群食用。
本发明泡腾片中，添加的酸源、碱源和崩解剂是为了控制崩解时间，更好更快（6 分钟内） 地溶解于水中，润滑剂是为了更好的压片，防止在压片过程中粘冲。而作为本泡腾片的有效成分是灭活乳酸菌和低聚糖，两者相互作用共同调节人体肠道微生态平衡，提高人体免疫力，达到保健的功能。
本发明泡腾片表面光洁，细腻，投入水中，立即有大量气泡放出，片剂迅速溶解，分散于水中，形成透明溶液，无聚集的颗粒残留。
本发明制备方法简单可行，具有重要的推广应用价值。

附图说明
图 1 实施例 1 灭活乳酸菌粉细胞形态图；
图 2 实施例 2 灭活乳酸菌粉细胞形态图；
图 3 实施例 3 灭活乳酸菌粉细胞形态图；
图 4 实施例 4 灭活乳酸菌粉细胞形态图。

具体实施方式
[0051] 下面结合具体实施例进一步详细说明本发明。下述实施例中所使用的试验方法如无特殊说明，均为常规方法，所使用的乳酸菌等原材料，试剂等，如无特殊说明，均为可从常规市购等商业途径得到的原料和试剂。

[0052] 实施例 1 灭活乳酸菌粉的制备

[0053] S01. 将嗜酸乳杆菌（购于中国工业微生物菌种保藏管理中心，本技术领域技术人员也可以采用其他来源的相关菌种）按照5～10％的接种量接种到常规的MRS液体培养基中37℃培养，当乳酸菌数达到10⁸/mL时停止培养，得到发酵液；

[0054] S02. 在S01所得发酵液中加入质量分数为0.1～0.5%的甘油或海藻酸钠得混合体系；

[0055] S03. 将S02所得混合体系在60℃热灭活30分钟，3000～5000rmp离心5～10分钟收集乳酸菌菌体；

[0056] S04. 将S03获得的菌体中添加等质量的可溶性淀粉，进行真空干燥（60℃、0.04MPa）制备成灭活乳酸菌粉，菌粉的菌数达到10⁶个/g以上。灭活乳酸菌粉细胞形态图见附图1所示。

[0057] 实施例 2 灭活乳酸菌粉的制备

[0058] S01. 将保加利亚乳杆菌和嗜热链球菌（购于中国工业微生物菌种保藏管理中心）分别按照5～10％的接种量接种到牛奶液体培养基中37℃培养，当乳酸菌数达到10⁸/mL时停止培养，得到发酵液。所述牛奶液体培养基的组成为：按照质量百分比计，8％脱脂奶粉，2％蔗糖，90％水。

[0059] S02. 在S01所得发酵液中加入质量分数为0.1～0.5%的甘油或海藻酸钠得混合体系；

[0060] S03. 将S02所得混合体系在80℃热灭活20分钟，3000～5000rmp离心5～10分钟收集乳酸菌菌体；

[0061] S04. 将S03获得的菌体中添加等质量的葡萄糖，进行常规的真空干燥（60℃、0.04MPa）制备成灭活乳酸菌粉，菌粉的菌数达到10⁶个/g以上。灭活乳酸菌粉细胞形态图见附图2所示。

[0062] 实施例 3 灭活乳酸菌粉的制备

[0063] S01. 将双歧杆菌（购于中国工业微生物菌种保藏管理中心）按照5～10％的接种量接种到常规的PYG液体培养基中37℃厌氧培养，当乳酸菌数达到10⁸/mL时停止培养，得到发酵液；

[0064] S02. 在S01所得发酵液中加入质量分数为0.1～0.5%的甘油和海藻酸钠得混合体系；

[0065] S03. 将S02所得混合体系在60～80℃热灭活30～60分钟，3000～5000rmp离心收集乳酸菌菌体；

[0066] S04. 将S03获得的菌体中添加等质量的葡萄糖，进行喷雾干燥（进口温度150℃，出口温度105℃）制备成灭活乳酸菌粉，菌粉的菌数达到10⁶个/g以上。灭活乳酸菌粉细胞形态图见附图3所示。

[0067] 实施例 4 灭活乳酸菌粉的制备

[0068] S01. 将嗜酸乳杆菌、保加利亚乳杆菌、双歧杆菌（均购自中国工业微生物菌种保
说明 书

藏管理中心）分别按照 2～3%、2～3% 和 2～3% 的接种量接种到豆浆培养基中 37℃ 培养，当三种菌总菌数达到 10^8/mL 时停止培养，得到发酵液；所述豆浆培养基的组成为：按照质量百分比计，10% 的黄豆豆浆，2% 蔗糖，88% 的水。

【0069】 S02. 在 S01 所得发酵液中加入质量分数为 0.1～0.5% 的甘油或海藻酸钠得混合体系；

【0070】 S03. 将 S02 所得混合体系在 60℃ 灭活 30 分钟，离心收集乳酸菌菌体；

【0071】 S04. 将 S03 获得的菌体中添加等质量的葡萄糖，进行真空干燥，制备得灭活乳酸菌粉，菌粉的菌数达到 10^9 个/g 以上。

【0072】 灭活乳酸菌粉细胞形态图见报图 4 所示。

【0073】 实施例 5

【0074】 S1. 将市购的低聚异麦芽糖、酒石酸、磷酸氢钠、微晶纤维素、润滑剂聚乙二醇 6000 充分烘干后分别粉碎并过 40 目筛备用；

【0075】 S2. 取实施例 1～4 任一例所得灭活乳酸菌粉，按照灭活乳酸菌粉：低聚异麦芽糖：酒石酸：磷酸氢钠：微晶纤维素 = 10：25：27：32：3：3 的重量比例，称取后，充分混合均匀，添加适量食用香料后用压片机压片即得泡腾片。

【0076】 实施例 6

【0077】 S1. 将市购的低聚果糖和低聚木糖、柠檬酸、磷酸氢钠、纤维素淀粉钠、聚乙二醇 6000 充分烘干后，分别粉碎并过 40 目筛备用；

【0078】 S2. 取实施例 1～4 任一例所得灭活乳酸菌粉，按照灭活乳酸菌粉：低聚果糖：低聚木糖：柠檬酸：磷酸氢钠：纤维素淀粉钠：聚乙二醇 6000 = 12：15：12：25：30：3：3 的重量比例称取后，充分混合均匀，压片即得泡腾片；或者添加适量食用香料后用压片机压片即得泡腾片。

【0079】 实施例 7

【0080】 S1. 将市购的低聚异木糖、富马酸、磷酸钠、交联聚乙烯吡咯烷酮、聚乙二醇 6000 充分烘干后分别粉碎并过 40 目筛备用；

【0081】 S2. 取实施例 1～4 任一例所得灭活乳酸菌粉，按照灭活乳酸菌粉：低聚木糖：富马酸：磷酸钠：交联聚乙烯吡咯烷酮：PEG6000 = 15：20：25：5：5 的重量比例，称取后，充分混合均匀，压片即得泡腾片；或者再添加适量食用香料后用压片机压片即得泡腾片。

【0082】 实施例 8

【0083】 S1. 将市购的低聚异麦芽糖、低聚木糖、低聚果糖、柠檬酸、酒石酸、磷酸氢钠、微晶纤维素、聚乙二醇 6000 充分烘干后分别粉碎并过 40 目筛备用；

【0084】 S2. 取实施例 1～4 任一例所得灭活乳酸菌粉，按照灭活乳酸菌粉：低聚麦芽糖：低聚木糖：低聚果糖：柠檬酸：酒石酸：磷酸氢钠：微晶纤维素：聚乙二醇 6000 = 12：10：5：8：17：10：30：4：4 的重量比例，称取后，充分混合均匀，压片即得泡腾片；或者再添加适量食用香料后用压片机压片即得泡腾片。

【0085】 本发明实施例 5～8 制备得到的泡腾片表面光洁、细腻，参照《中华人民共和国药典二部》（2010 版）崩解时限法对本发明泡腾片进行崩解实验，将本发明一片重约 4g 的泡腾片投入 25℃ 盛有 200mL 水的 250mL 烧杯中，立即有大量气泡放出，片剂迅速溶解，分散于
水中，6分钟内形成透明溶进行检测得到的如表1所示：

表1 泡腾片崩解实验结果

<table>
<thead>
<tr>
<th></th>
<th>崩解时限（s）</th>
<th>国家标准（<360s）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例5</td>
<td>240</td>
<td>合格</td>
</tr>
<tr>
<td>实施例6</td>
<td>280</td>
<td>合格</td>
</tr>
<tr>
<td>实施例7</td>
<td>220</td>
<td>合格</td>
</tr>
<tr>
<td>实施例8</td>
<td>260</td>
<td>合格</td>
</tr>
</tbody>
</table>