A 00 N T O

/093991 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Burcau

(43) International Publication Date
13 November 2003 (13.11.2003)

PCT

(10) International Publication Number

WO 03/093991 Al

(51) International Patent Classification”: GO6F 9/445

(21) International Application Number: PCT/US03/13953

(22) International Filing Date: 1 May 2003 (01.05.2003)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,

(25) Filing Language: English SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,

(26) Publication Language: English VC, VN, YU, ZA, ZM, ZW.

(30) Priority Data: (84) Designated States (regional): ARIPO patent (GH, GM,
60/377,354 2 May 2002 (02.05.2002) US KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
10/400,821 27 March 2003 (27.03.2003) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
First Street, San Jose, CA 95131 (US). SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors: POTTER, Timothy; 4900 S. Ulster Street,
#8-106, Denver, CO 80237 (US). UPTON, Mitch; 10099 Published:

Briargrove Way, Highlands Ranch, CO 80126 (US).
GOLDING, Christa; 407 W. English Sparrow Trail,
Littleton, CO 80129 (US). DEGRANDE, Rick; 9011 W.
Phillips Drive, Littleton, Colorado 80128 (US).
(74) Agent: MEYER, Sheldon, R.; Fliesler Dubb Meyer &
Lovejoy LLP, Four Embarcadero Center, Suite 400, San
Francisco, CA 94111-4156 (US).

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND METHODS FOR MODULAR COMPONENT DEPLOYMENT

Application Integration Component
Browser
Event Event | £iont| | Application Integration > 116
Generator | Router 3> View Adapter
102 104 108 110 Application
Iy Server
Event o
Enterprise Service » ass
Information o Loader
System Listener 122
A)
112
- Request Resource
1 Adapter EAR
" 11 ¢ Specification 124
Response —
118 120
A
100 106
Console
124

(57) Abstract: An integration component (106) such as an application integration engine can be bundled as a single, self-contained
¢ 12EE Enterprise archive (EAR) file (124). The bundling of the component into an EAR file enables the component to be deployed
to any valid system (100) domain that is running and available. A recycling of the server (120) then may be necessary only if a Java
archive file is added to the classpath for non-system domains. This description is not intended to be a complete description of, or limit
the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification,

the figures, and the claims.

10

15

20

25

30

WO 03/093991

SYSTEMS AND METHODS FOR MODULAR COMPONENT
DEPLOYMENT
CLAIM OF PRIORITY
This application claims priority from U.S. provisional patent application
"MODULAR DEPLOYMENT OF COMPONENTS", Application No. 60/377,354,
filed May 2, 2002, incorporated herein by reference.

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material

which is subject to copyright protection. The copyright owner has no objection
to the facsimile reproduction by anyone of the patent document of the patent
disclosure, as it appears in the Patent and Trademark Office patent file or

records, but otherwise reserves all copyright rights whatsoever.

CROSS-REFERENCED CASES
The following applications are cross-referenced and incorporated

herein by reference:

U.S. Provisional Application No. 60/377,322 entitled “Application View
Transactions,” by Timothy Potter et al., filed May 2, 2002 (Attorney Docket No.:
BEAS-01268US0).

U.S. Provisional Application No. 60/377,303 entitled “Adapter
Deployment Without Recycle,” by Timothy Potter ef al., filed May 2, 2002
(Attorney Docket No.: BEAS-01266US0).

U.S. Provisional Application No. 60/377,353 entitled “Shared Common
Connection Factory,” by Timothy Potter et al., filed May 2, 2002 (Aftorney
Docket No.: BEAS-01269USO).

FIELD OF THE INVENTION
The present invention relates to the deployment of software

components across a system.

PCT/US03/13953

10

15

20

25

30

WO 03/093991

BACKGROUND

In existing integration systems, the primary use of an application

integration (Al) component, such as an application view, is through a business
process management (BPM) workflow. Potential consumers of an Al
component, such as Web service developers and portal developers, will also
require access to an Enterprise information system (EIS). However, like a
business process engineer, these developers are not interested in dealing with
the intricate details of a particular EIS. Further, the developers want access to
the Al component with minimal installation, configuration, and administration
overhead.

Certain components are tightly integrated with the integration system,
such that system providers do not worry about providing integration flexibility.
Users purchasing an integration system get a pre-configured integration
domain. If a user wants to use system functionality with other domains, such
as a Web portal domain, it is necessary for the user to do the integration.

BRIEF SUMMARY

Systems and methods in accordance with embodiments of the present

invention can overcome deficiencies in existing integration systems by
changing the way in which integration components are deployed to system
domains. An integration component such as an application integration engine
can be bundled as a single, self-contained J2EE Enterprise archive (EAR)file.
The bundling of the component into an EAR file enables the component to be
deployed to any valid system domain that is running and available. A recycling
of the server can then be necessary only if a Java archive file is added to the
classpath for non-system domains.

Other features, aspects, and objects of the invention can be obtained
from a review of the specification, the figures, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a diagram of a system in accordance with one embodiment

of the present invention.
Figure 2 is a flowchart showing a method that can be used with the
system of Figure 1.

PCT/US03/13953

10

15

20

25

30

WO 03/093991

DETAILED DESCRIPTION
Systems and methods in accordance with embodiments of the present

invention can allow application integration (Al) functionality to be imbedded
deeply into an integration installation. In one such system, Al functionality can
be bundled in an enterprise application archive (EAR) file that is available to
any valid system domain. This packaging can retain backward compatibility
with existing integration systems, while providing the lightweight solution that
developers desire.

Such packaging can be used with modular deployment when, for
example, a portal needs to access an EIS. Many such products and processes
can leverage Al functionality. One purpose for using modular deploymentis to
make it as easy as possible to configure Al for downstream products.
Presently, a user has to clean up what goes onto the classpath. It can be
desirable to use Java™ 2 Enterprise Edition (J2EE) standards, as set forth by
Sun Microsystems, Inc., of Santa Clara, CA, such as using an Enterprise
application. An end-user can use an EAR file, for example, to use application
integration with a non-system domain.

An exemplary integration system that can be used in accordance with
embodiments of the present invention is shown in Figure 1. An integration
adapter 110 can include a Web application that allows a user to browse
documents or business programming application interfaces (BAPIs) that are
available in an EIS system 100, such as an SAP system, through a Web
browser 116 without the Web application. A resource adapter 114 can be
used to send requests to, and receive requests from, the EIS 100. The
resource adapter 114 can also be used to implement the connector
specification 118. An event router 104, which can also be a Web application,
can be used to route messages from the EIS 100 to an application view 108
for the application integration component 106.

When an event occurs in the EIS 100, an event generator 102 can
detect the event and determine whether anyone should receive this event. To
do this, the event generator 102 can check the types of events that have
subscriptions, which can be maintained by the event router 104. The event

router can create an event object containing pertinent data about the event,

PCT/US03/13953

10

15

20

25

30

WO 03/093991

and can sends the event object to the event router 104. The event router 104
can send the event object to any application view 108 that is subscribed to the
type of event object received from the event generator 102. The application
view 108 can receive the event object and notify any listener 112 registered for
that type of event. Exemplary listeners can include integration process flow or
custom business logic flow. A listener 112 can process the event object and
determine whether a service should Be invoked in response to the event.

The application view 108 can combine data from the event object with
data held by the application view, such as in state variables, and can make a
service invocation on a resource adapter 114. The application view can
accept the service request and determine which interaction to request on the
resource adapter 114. This mapping from service name to adapter interaction
can allow the service to be business-centric and not system-function centric.
The resource adapter 114 can carry out the request interaction with the EIS
100 and pass the data received from the application view 108. This data can
then be viewed, such as through a Web browser 116, through the integration
adapter 110.

As shown in the method of Figure 2, an application component such as
an Al engine can be bundled as a single, self-contained J2EE EAR file 200.
This bundling can enable the Al engine to be deployed to any valid, running
system domain 202. A user may still be required to re-cycle the server 206, as
the user may need to add a Java archive (JAR) file to the classpath for non-
system domains 204. A re-cycle may be needed due to classloading problems
between an application view bean and a resource adapter, for example. Any
classes that cross the bridge between an application view Enterprise
JavaBean (EJB), which can be deployed from a system EAR file, to a resource
adapter, which can be deployed in its own EAR file, can be loaded by the
same classloader. In existing systems, the only way to have two Enterprise
applications share a common class is to have that class on the system
classpath. Consequently, a system EAR file cannot be deployed without a
server re-cycle because the deployer will need to add a JAR file to the system
classpath before starting the system.

An Al engine can use an integration repository for metadata
persistence. The Al engine can rely on a pre-configured repository and

PCT/US03/13953

10

15

20

25

30

WO 03/093991

associated Java Database Connectivity (JDBC) connection pool and data
source. In this case, the Al engine deployer can provide the JDBC data source
name and credentials at the time of deployment. The Al engine can assume
that the repository has already been installed in the data source.

An application view engine can use Java Message Service (JMS)
resources to handle events and asynchronous service invocations. To support
these functions, an application view engine can use functionality such as a
JMS Connection Factory, JMS Template, JMS JDBC Store, and/or JMS
Server. In addition, an Al engine can define a request and response queue for
handling asynchronous service invocations. The Al engine deployer is not
forced to define the JMS resources before deploying the Al engine.
Consequently, at least two modes of operation can be supported for
determining which JMS resources to use.

The Al engine deployer can provide the name of pre-existing JMS
resources, such as “JMSConnectionFactory” and “JMSServer”. if a deployer
provides the name for a JMS server, the developer may also need to configure
the JMS JDBC store. The Al engine deployer does not need to provide the
name of pre-existing JMS resources. The Al startup process can use JMS
managed beans (MBeans) to define the necessary JMS resources.

Al startup and shutdown classes can be replaced by a Java HTTP
serviet, such as “LifeCycleServlet’. The serviet can be deployed in an
integration Web application and loaded on startup. On startup, the servlet can
also trigger the initialization sequence for the Al engine. The initial parameters
provided to the serviet can serve as the configuration parameters for the Al
engine. The user can change these parameters by editing a Web application
descriptor, for example. A list of potential configuration parameters can
include:

e loglevel- can contain the verbosity level for Al logging

¢ deploymentRepositoryRootPath - can hold the location where

the Al engine saves connection factory deployment descriptors

e hostUserlD - can be used to allow a remote event router (i.e.
deployed from a Web application) to authenticate itself to the
server so the remote router can post events.

PCT/US03/13953

10

15

20

25

30

WO 03/093991

¢ hostPassword - can store the password to allow a remote event
router to authenticate itself to the server so that it can post
events.

e jms.autogen - a flag (boolean) that can allow the Al startup
process to autogenerate JMS resources.

o jms.serverName - name of the JMS Server on the local server

e jms.conn - JMS Connection Factory JNDI context

e repositoryDatasourceName - JDBC data source name

An application view management console can provide a way to view
the configuration parameters for the Al engine, such as by providing alinkto a
page containing these parameters. Starting and stopping an Al engine can be
done from a console via deploying and/or undeploying the integration
application that contains the application integration component.

Certain properties can be edited by a user using a configuration page,
including properties such as loglL.evel, hostPassword, and hostUserID. Since
BPM may not always be installed with Al, Al can provide a simple command-
line import/export tool for application views. The output of this tool can be a
JAR file containing any artifacts owned by the application view. The user can
be required to manually import/export any artifacts that are not owned, but are
used by the application view.

An example of a common Al JAR file that can be added to the server
classpath at startup is “ai-core.jar.” This exemplary JAR can contain:

o |ogdj.jar contents

e logtoolkit.jar contents

o xmloolkit.jar contents

e Al jar contents|__com/ai/*.dtd

e com/ai/common/*.class

e com/ai/message/*.class

e Xcci.jar contents
Such a JAR could be required for all clients of the Al system, for example. For
integration domains, ai-core.jar can be added to a JAR such as “icommon.jar”
so that the clients and server can access the base Al classes. Consequently,
the Al experience for existing integration users can remain largely unchanged.

A client JAR, such as “ai-client.jar”, can be used to contain any classes

PCT/US03/13953

10

15

20

25

30

35

WO 03/093991

needed by clients of the Al engine, such as application view clients and
resource adapter design time Web applications.

A server JAR file, such as “ai~server.jar,” can contain all classes
needed by the server-side components, and does not need to be included into
any adapter EAR files or clients. For integration domains, ai-server.jar can be
added to a server JAR such as iserver.jar so that server components can
access the base Al server classes.

An MBean JAR file, such as “ai-mbean.jar,” can be used to contain the
application view MBeans and can be included on the system classpath for the
integration: server. For integration domains, ai-server.jar can be added to
iserver.jar so that server components can access the MBean classes.

A server EJB JAR file, such as “ai-server-gjb.jar,” can contain the base
server classes and management EJBs. This JAR can be deployed before all
other components of the Al engine, and can contain a startup EJB that can
initialize Al.

An Al Web archive (WAR) file, such as “ai.war,” can contain an
application view management console Web application and the lifecycle
servlet for the Al engine. An event processor EJB JAR file, such as “ai-
eventprocessor-ejb.jar,” can contain the event processing message driven EJB
for handling Al events.

An asynchronous EJB JAR file, such as “ai-asyncprocessor-gjb.jar,”
can contain an asynchronous service processing message-driven EJB for
handling asynchronous service invocations. A plug-in EJB JAR file, such as
“ai-plugin-ejb.jar,” can contain all classes for a plug-in for BPM. A plug-in WAR
file, such as “ai-plugin.war,” can contain the online help Web application for the
Al Plug-in for BPM.

in order to configure deployment for integration domains that require Al,
components such as the following can be added to an integration application

element:

<EJBComponent Name="AI Server EJBs" Targets="myserver"
URI="ai-server-ejb.jar" DeploymentOrder="1"/>

<WebAppComponent Name="AI Application View Management
Console" Targets="myserver" URI="al.war"
DeploymentOrder="2%/>

<EJBComponent Name="AI Event Processor Message Driven
EJB" Targets="myserver" URI="al-eventprocessor-ejb.jar"

PCT/US03/13953

10

15

20

25

30

35

40

WO 03/093991 PCT/US03/13953

DeploymentOrder="3"/>

<EJBComponent Name="AI Async Service Processor Message
Driven EJB" Targets="myserver" URI="ai-asyncprocessor-
ejb.jar" DeploymentOrder="3"/>

<EJBComponent Name="AI Plug-In for BPM"
Targets="myserver" URI="ai-plugin-ejb.jar"”
DeploymentOrder="10"/>

<WebAppComponent Name="AI Plug-In for BPM Online Help"
Targets="myserver" URI="ai-plugin.war"
DeploymentOrder="11"/>

For Al domains, there can be an Al EAR file, such as “ai.ear,” which
can contain any file needed to deploy the Al enterprise application outside of

an Al domain. The EAR file can be structured as:
| _META-INF
l |__application.xml (EAR file deployment descriptor)
| _ai.war (application view management console Web
application)
| |__WEB-INF
| | __1ib
|__Webtoolkit.jar
ai-server-ejb.jar (AI Management EJBs)
|__Startup EJB
|__ApplicationView EJB
| __SchemaManager EJB
| _ DeployManager EJB
| __ApplicationViewManager EJB
| _ NamespaceManager EJB
al-eventprocessor-ejb.jar
ai-asyncprocessor-ejb.jar
ibase.jar (ECI repository base classes)

|
_
i
l
l
|
|
1
|
|
|
|

irepository.jar (ECI repository classes)

Deployers may still need to add ai-core.jar to the system classpath and restart
their server in some embodiments.

An application component such as the following can be added to the
config.xml for the non-Al domain, or uploaded from the server console once

the ai-core.jar file is on the classpath:

<Application Deployed="true" Name="Application
Integration" Path="<PATH TO_EAR>/ai.ear">

10

15

20

25

30

35

40

WO 03/093991

<EJBComponent Name="AI Server EJBs" Targets="myserver’
URI="ai-server-ejb.jar" DeploymentOrder="1"/>

<WebAppComponent Name="AI Application View Management
Console" Targets="myserver" URI="ai.war"
DeploymentOrder="2"/>

<EJBComponent Name="AI Event Processor Message Driven
EJB" Targets="myserver" URI="ai-eventprocessor-ejb.jar"
DeploymentOrder="3"/>

<EJBComponent Name="AI Async Processor Message Driven
EJB" Targets="myserver" URI="ai-asyncprocessor-ejb.jar"
DeploymentOrder="3"/>

</Applications>

A Plug-in for BPM may not be able to be deployed from the ai.ear file for Al
domains.

An Al engine can use JMS resources such as a JMS server, a JMS
connection factory, JMS queues, and JMS topics. If the JMS connection
factory supplied by the user is not bound to a JNDI location, the factory can be
cloned and bound to a location, such as com.ai.JMSConnectionFactory, so
that internal Al components can be guaranteed to have access to a JMS
connection factory. Queues that can be used include event queues,
asynchronous request queues, and asynchronous response queues. Topics
that can be used can include event topics, for example.

An Al engine can automatically define any necessary JMS resources
that are not explicitly defined, such as for a standalone server and a cluster.
This can free a user from having to define the resources, such as through a
user interface (Ul). Automatic definition can be done in a clustered or non-
clustered environment. This can save the user from having to do an error-
prone process of defining multiple JMS resources. This process can be
relatively self-contained and can take care of defining necessary resources
and dependencies. Using a system console to define multiple queues can be
quite a tedious task, especially if the queues need to be distributed in a cluster.

A system administrator can simply specify configuration parameters
such as the JMS server name (e.g., aijms.serverName) and the JMS
connection factory JNDI name (e.g., ai.jms.connectionFactoryJNDIName). In
addition, if a user wishes to disable the auto-generation of JMS resources, the

user can set a JMS auto-generation parameter, such as ai.jms.autogen, to

PCT/US03/13953

10

15

20

25

30

35

WO 03/093991

‘false.” This can prevent the Al engine from attempting to auto-generate any
JMS resources.

It may be desirable that adapters developed and tested on existing
systems are able to run un-altered on systems in accordance with the present
invention. If an adapter provider needs to rebuild an adapter against a new
adapter development kit (ADK) that incorporates an embodiment in
accordance with the present invention, the adapter provider may need to
change the build procedure to account for new Al binary files such as those
described above. Specifically, adapter developers may need to reference new

JAR files such as the following:

<property name='AI_CORE' value='${AI_LIB DIR}/ai-
core.jar'/>

<property name='AI_CLIENT' value='${AI LIB DIR}/ai-
client.jar'/>

<property name='AI EVENTROUTER'
value='${AI LIB DIR}/ai-eventrouter.jar'/>

Adapter developers may also need to change how they declare the
environment property. In one embodiment, this declaration can be
implemented as, for example:

<property environment='env'/>

The foregoing description of preferred embodiments of the present
invention has been provided for the purposes of illustration and description. It
is not intended to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations will be apparent to one of
ordinary skill in the art. The embodiments were chosen and described in order
to best explain the principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited fo the particular
use contemplated. It is intended that the scope of the invention be defined by
the following claims and their equivalence.

-10-

PCT/US03/13953

10

15

20

25

30

WO 03/093991 PCT/US03/13953

CLAIMS
What is claimed is:
1. A method for the modular deployment of a ‘integration component,
comprising:
bundling an integration component as an enterprise archive file; and
deploying the integration component to a valid system domain from the
enterprise archive file.

2. A method according to claim 1, further comprising:
recycling a server for the valid system domain.

3. A method according to claim 1, further comprising:
adding a Java archive file for the integration component to the

classpath for a non-system domain.

4. A method according to claim 3, further comprising:
recycling a server for the valid system domain.

5. A method according to claim 1, wherein: ‘
bundling the integration component allows the integration component to

be backward compatible with existing integration systems.
6. A method according to claim 1, wherein:
deploying the integration component aliows the integration component
to utilize JMS resources available to the valid system domain.
7. A method according to claim 1, further comprising:
configuring parameters for the integration component using a

management console.

8. A system for the modular deployment of a integration component,

-11-

10

15

20

25

30

WO 03/093991

comprising:

means for bundling an integration component as an enterprise archive
file; and

means for deploying the integration component to a valid system

domain from the enterprise archive file.

9. A computer-readable medium, comprising:

means for bundling an integration component as an enterprise archive
file; and

means for deploying the integration component to a valid system

domain from the enterprise archive file.

10. A computer program product for execution by a server computer for
deploying an adapter, comprising:

computer code for bundling an integration component as an enterprise
archive file; and

computer code for deploying the integration component to a valid

system domain from the enterprise archive file.

11. A computer system comprising:
a processor;
object code executed by said processor, said object code configured
to:
bundle an integration component as an enterprise archive file;
and
deploy the integration component to a valid system domain

from the enterprise archive file.

12. A computer data signal embodied in a transmission medium, comprising:
a code segment including instructions to bundle an integration
component as an enterprise archive file; and
a code segment including instructions to deploy the integration

component to a valid system domain from the enterprise archive file.

-12-

PCT/US03/13953

PCT/US03/13953

1/2

WO 03/093991

[2mnSL]

iz}
ajosuon
& 901
INW: skt — asuodsay
¢l uoljeoyioadg L <
dv3 Joydepy
& T %
Zr souelsl e
1epeo] 90IMIOS
sse|9 .
JUSAT]
Joniog __ _ _
uoneslddy o1l ol iz ¢l
1aydepy MOIA 193noy | Jojersuan
ST uopesboju| | uonesijddy jushd JuUaAg JUaAg
Josmolg

juauoduwon uogeibajuj uognesljddy

wol)sAg
uoljewouj
asudiajusg

WO 03/093991 2/2 PCT/US03/13953

Bundle an integration component as a single, self-
contained J2EE Enterprise archive file

'

Deploy the bundled component to any valid
system domain

'

Add a Java archive file to the classpath for
any non-system domains

l

Recycle the server on which the component is
deployed if a Java archive file is added to the
classpath

00

N
o
N

0

=

206

Figure 2

INTERNATIONAL SEARCH REPORT International application No.

PCT/US03/13953
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 9/445
US CL L 7171174, 176, 177, 178

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/174, 176, 177, 178

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST 1.04 (USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,950,010 A (HESSE et al) 07 Sep 1999 (07.09.1999), Abstract, column 2, lines 9-14 1-12
and lines 34-57; column 5, line 66 to column 6, line 20; column 6, line 35 to column 7, line
10; column 11, line 8 to column 12, line 10; column 12, lines 30-67.

A US 6,282,711 B1 (HALPERN et al) 28 Aug 2001 (28.08.2001), Abstract, Summary, Figs. 1-12
A :Jé .6,237,135 B1 (TIMBOL) 22 May 2001 (22.05.2001), Abstract, Summary, Fig. 12. 1-12
AP US 6,393,605 B1 (LOOMANS) 21 May 2002 (21.05.2002), Abstract, Summary. 1-12
A US 6,349,408 B1 (SMITH) 19 Feb 2002 (19.02.2002), Abstract, Summary, Figs. 5-11. 1-12

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
\ “Xr document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the international filing date coasidered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L™ document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Y" document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international seocgreUrCT 2 803
17 September 2003 (17.09.2003) 4

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US ﬁ’
Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230 /

ephone No. 703-305-9662

Form PCT/ISA/210 (second sheet) (July 1998) /

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

