

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 January 2006 (12.01.2006)

PCT

(10) International Publication Number
WO 2006/002854 A2

(51) International Patent Classification:
A61K 38/00 (2006.01)

(Haartmaninkatu 8), University of Helsinki, FIN-00014
Helsinki (FI).

(21) International Application Number:
PCT/EP2005/006906

(74) Agents: **FINDEISEN, Marco** et al.; Witte, Weller & Partner, Postfach 105462, 70047 Stuttgart (DE).

(22) International Filing Date: 27 June 2005 (27.06.2005)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/582,858 25 June 2004 (25.06.2004) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): **LICENTIA, LTD.** [FI/FI]; Erottajankatu 19 B, 6th Floor, FIN-00130 Helsinki (FI).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TIE RECEPTOR AND TIE LIGAND MATERIALS AND METHODS FOR MODULATING FEMALE FERTILITY

(57) Abstract: The present invention provides materials and methods involving Tie receptors and Angiopoietin ligands for modulating female fertility in mammals, including humans. Materials and methods for inhibiting fertility (e.g., for contraception) or for enhancing fertility (e.g., treating infertility) are contemplated.

WO 2006/002854 A2

**TIE RECEPTOR AND TIE LIGAND MATERIALS AND METHODS FOR
MODULATING FEMALE FERTILITY**

CROSS REFERENCE TO RELATED APPLICATIONS

5 The present application claims the priority benefit of United States Provisional Application No. 60/582,858, filed June 25, 2004, incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

10 The present invention provides materials and methods for modulating (inhibiting or enhancing) female fertility in mammals, including humans.

BACKGROUND OF THE INVENTION

Angiogenesis is the process in which new blood vessels are formed by capillary sprouting from the established vascular network in response to angiogenic stimuli. Following the proliferation and migration of endothelial cells, vessels need to 15 be stabilized and matured into fully functional vessels in a process that requires recruitment and interaction of endothelial cells with mural cells and reconstitution of the surrounding extracellular matrix (ECM). In an adult, angiogenesis normally takes place only in wound healing, tissues repair, and during the female reproductive cycle and pregnancy. In addition, angiogenesis occurs in pathological conditions such as 20 tumor progression, diabetic blindness, age-related macular degeneration, rheumatoid arthritis, psoriasis, and more than 70 other conditions. The balance between the positive and negative regulatory molecules is thought to regulate angiogenesis. The second vascular system of the body, the lymph vascular system, forms during development coincidentally with the maturation of the blood vessels from embryonic 25 veins, through a process called lymphangiogenesis (reviewed in Saharinen et al., 2004).

Positive regulators of angiogenesis are fairly well characterized. Members of the vascular endothelial growth factor (VEGF) family and their receptors function during formation of the initial embryonic vascular plexus, whereas 30 angiopoietins (angs) and their receptor Tie-2 are implicated in the subsequent remodeling processes (reviewed in (Ferrara et al., Nat. Med., 9:669-676, 2003;

Rossant and Howard, Annu. Rev. Cell Dev. Biol., 18:541-573, 2002). Tie-1, an endothelial specific receptor tyrosine kinase, shares high degree of homology with Tie-2. These receptors contain two immunoglobulin-like loops, three EGF-like domains, and three fibronectin type III repeats in their extracellular domains, and 5 tyrosine kinase domains with a number of phosphorylation and protein interactions sites in their cytoplasmic tails. The expression of the *tie* gene is restricted to the endothelial cells and to some hematopoietic cell lineages (Korhonen et al., Oncogene, 9:395-403, 1994; Partanen et al., Mol. Cell. Biol., 12:1698-1707, 1992). Upregulation 10 of Tie-1 expression has been observed during wound healing, ovarian follicle maturation and tumor angiogenesis (Kaipainen et al., Cancer Res., 54:6571-6577, 1994; Korhonen et al., Blood, 80:2548-2555, 1992). Abnormal expression of Ang-2, Tie-1 and Tie-2 was also detected in menorrhagic endometrium (Blumenthal et al., Fertil. Steril., 78:1294-1300, 2002).

Tie-1 is required during the embryonic development for the integrity 15 and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries. Targeted disruption of the Tie-1 gene in mice results in embryonic lethality between E13.5 and E18.5, depending on the background strain, because of severe edema, extensive hemorrhage and defective microvessel 20 integrity (Puri et al., EMBO J., 14:5884-5891, 1995; Sato et al., Nature, 376:70-74, 1995). The genetic deletion of Tie-2 results in embryonic lethality at E10.5 due to the cardiac failure, hemorrhage, and defects in vascular remodeling and maturation, resulting from improper recruitment of periendothelial supporting cells (Dumont et 25 al., Genes Dev., 8:1897-1909, 1994; Sato et al., Nature, 376:70-74, 1995). Mice lacking both Tie-1 and Tie-2 receptors also die at about E10.5 with similar defects than Tie-2 null animals (Puri et al., Development, 126:4569-4580, 1999).

Tie-1 is an orphan receptor with no reported ligands, whereas three 30 members of the angiopoietin family (Ang-1, Ang-2 and Ang-3/4) have been identified as ligands for Tie-2. Ang-1 and Ang-2 have been extensively studied over the last years. Ang-1 promotes vascular remodeling, maturation, and stabilization of the vasculature, and the Ang-1 null phenotype is very similar but slightly less severe than Tie-2 null phenotype resulting in embryonic lethality at E12.5 (Suri et al., Cell, 87:1171-1180, 1996). Overexpression of Ang-1 under the keratin-14 (K14) promoter

in the skin confirms the role of Ang-1 in endothelial proliferation and survival (Thurston et al., *Science*, 286:2511-2514, 1999). Ang-2 is a natural antagonist for Tie-2 in endothelial cells and it is not absolutely required during embryonic development but is necessary during postnatal vascular remodeling. In addition, deletion of Ang-2 5 results in defects in the patterning and function of the lymphatic vasculature (Gale et al., *Dev. Cell.*, 3:411-423, 2002). The lymphatic defect can be completely rescued by Ang-1, but not the defects in vascular remodeling suggesting that Ang-2 acts as a Tie-2 agonist in the lymphatic vasculature but as an antagonist in the blood vascular system (Gale et al., *Dev. Cell.*, 3:411-423, 2002). Overexpression of Ang-2 in the 10 blood vessels mimics the phenotype of Tie-2 null animals and leads to embryonic lethality at E9.5-E10.5 (Maisonpierre et al., *Science*, 277:55-60, 1997). Ang-1 binding to Tie-2 induces phosphorylation of the receptor while binding of Ang-2 to Tie-2 is unable to induce phosphorylation of the receptor in endothelial cells (Maisonpierre et al., *Science*, 277:55-60, 1997). None of the angiopoietins have been reported to 15 directly bind Tie-1.

SUMMARY OF THE INVENTION

The present invention includes compositions and methods of use thereof for the modulation of female fertility and embryogenesis.

In one aspect, the invention is a soluble Tie-1 receptor extracellular 20 domain composition which is useful to inhibit female fertility and embryogenesis. Tie-1-Ig constructs expressed in mice were observed to stabilize ovarian vasculature, inhibiting its regression.

In humans, Tie-1 comprises a receptor tyrosine kinase protein of about 25 1138 amino acids (Swiss Prot database accession no. P35590 and U.S. Patent No. 5,955,291, both incorporated herein by reference). This Tie amino acid sequence comprises a signal peptide (aa 1-24) cleaved to yield a mature protein comprised of amino acids 25-1138. The extracellular domain comprises approximately amino acids 25-759, in which residues 43-105 comprises an Ig-like C2-type 1 domain; residues 83, 161, 503, 596, and 709 are putative N-linked glycosylation sites; residues 214-256, 30 258-303, and 305-345 comprise EGF-like sequences; residues 372-426 comprise an Ig-like C2-type 2 domain; and residues 446-537, 545-637 and 644-736 comprise Fibronectin type-III-like domains. Residues 760-784 comprise the putative

transmembrane domain. For the practice of the present invention, fragments of the Tie 1 extracellular domain that are effective for inhibiting fertility or embryogenesis also may be used. Effective fragments may be identified by *in vivo* screening as described herein. Without being limited to a particular theory, fragments that contain sequences effective to interact with Tie-2 and/or angiopoietin ligands (that bind Tie-1, or Tie-2, or Tie-1/Tie-2 complexes) are specifically contemplated.

In one embodiment, the Tie-1 extracellular domain is fused to an immunoglobulin constant domain (Fc), and preferably to an IgG Fc domain. Fusion to such polypeptides to increase serum half-life (i.e., to slow clearance), is specifically contemplated. Further modifications, including pegylation or addition of other 10 moieties to increase serum half-life also is contemplated.

Variants of the exact human Tie-1 sequence described herein also are contemplated. For example, polypeptides having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater percent identity to the Tie-1 receptor extracellular domain 15 sequence described herein, or effective fragments thereof, are specifically contemplated.

The composition preferably further includes a pharmaceutically acceptable diluent, excipient, or carrier.

In a related embodiment, the invention is a soluble Tie-2 receptor 20 extracellular domain composition which is useful to inhibit female fertility and embryogenesis. Human Tie-2 (Swiss Prot database accession no. Q02763, incorporated herein by reference), which has a similar structural organization as Tie-1, comprises an amino acid sequence of 1124 amino acids, of which about residues 1-22 comprise a signal peptide and residues 746-770 comprise the putative 25 transmembrane domain.

For the practice of the present invention, fragments of the Tie-2 extracellular domain that are effective for inhibiting fertility or embryogenesis also may be used. Effective fragments may be identified by *in vivo* screening (as described herein with respect to Tie-1/Ig peptides). Without being limited to a 30 particular theory, fragments that contain sequences effective to interact with Tie-1

and/or angiopoietin ligands (that bind Tie-2 or Tie-1/Tie-2 complexes) are specifically contemplated.

In one embodiment, the Tie-2 extracellular domain is fused to an immunoglobulin constant domain (Fc), and preferably to an IgG Fc domain. Fusion 5 to such polypeptides to increase serum half-life (i.e., to slow clearance), is specifically contemplated. Further modifications, including pegylation or addition of other moieties to increase serum half life also is contemplated.

Variants of the exact human Tie-2 sequence described herein also are contemplated. For example, polypeptides having at least 80%, 85%, 90%, 95%, 96%, 10 97%, 98%, 99%, or greater percent identity to the Tie-2 receptor extracellular domain sequence described herein, or effective fragments thereof, are specifically contemplated.

In another embodiment, the invention is the use of Tie-1 or Tie-2 compositions as described here for the manufacture of a medicament to modulate 15 female fertility, e.g., as a contraceptive.

For these and other embodiments where polypeptides are contemplated as therapeutic agent, the invention also includes polynucleotides and vectors (e.g., gene therapy vectors such as adenoviruses, adeno-associated viruses, or lentiviruses) that encode the polypeptides and that can be used to express the polypeptides *ex vivo* 20 or *in vivo*. Compositions comprising such polynucleotides or vectors and pharmaceutically acceptable diluents or carriers are contemplated as additional aspects of the invention.

The invention also is a method of inhibiting fertility of a female mammal by administering to the mammal an amount of the polypeptide or 25 polynucleotide materials described herein effective to inhibit fertility. All routes of administration (oral, intravenous intramuscular or other injection, skin patch, topical, vaginal, etc.) are contemplated.

Without intending to be limited to a particular theory, the soluble Tie materials are effective for inhibiting fertility by binding circulating angiopoietin 30 molecules and preventing them from stimulating Tie-1/Tie-2 expressed in the female

reproductive system. In another variation, the invention is the use of angiopoietin antibodies or short interfering RNA or antisense molecules or other angiopoietin inhibitors to inhibit female fertility.

The invention also includes compositions comprising an angiopoietin-1 polypeptide for use in manufacture of a medicament to promote fertility and embryogenesis in a subject. The invention further includes compositions comprising an angiopoietin-2 molecule for use in manufacturing a medicament to promote fertility and embryogenesis in a female subject. In an additional embodiment, the compositions contemplated by the invention further comprise a pharmaceutically acceptable diluent or carrier. The invention includes methods of administering such compositions to a female subject to increase fertility or reduce the likelihood of miscarriages. Administration after ovulation (which can be estimated from body temperature or other monitoring of the female cycle) is specifically contemplated.

As described above with reference to the Tie peptides, the use of fragments and sequence variants for the angiopoietins to treat infertility is specifically contemplated.

Administration of polynucleotides (or vectors) that encode the angiopoietin polypeptides also is contemplated, and use of such polypeptides and polypeptides for manufacture of a medicament to treat infertility is contemplated.

In another aspect, the invention provides a method for modulating female fertility comprising the step of administering to a subject a Tie-1 extracellular domain composition in an amount effective to modulate fertility in the subject. In one aspect, the Tie-1 composition inhibits fertility and inhibits embryogenesis in the subject.

The invention also provides a method for promoting fertility in a subject comprising the step of administering to a subject an Angiopoietin-1 composition in an amount effective to promote fertility in a subject. Promoting fertility includes promoting implantation of an embryo, or promoting growth of an embryo.

Yet another aspect of the invention is a method of screening for infertility in a female, or screening for a biochemical pathway that may be contributing to infertility in a female, comprising measuring Tie receptor expression or activity in a biological sample (e.g., a tissue or fluid sample or biopsy) from a mammalian female, wherein Tie expression or activity correlates with fertility.

5 Teilman and Christensen recently reported in *Cell Biol. International* (2005) that the Tie-1 and Tie-2 receptors localize to the primary cilia in the female reproductive organs, such as ovarian surface epithelium in humans. Without intending to be limited to a particular theory, aberrant Tie receptor expression or function in these

10 tissues is suggested as causative or correlative with human infertility. In a preferred variation, screening methods are performed using a biological sample that comprises female reproductive tissue, such as ovary, fallopian tube, uterine tissue, or the like. In a highly preferred variation, the biological sample comprises primary cilia of ovarian surface endothelium. In a related variation, the invention comprises analyzing Tie

15 receptor sequence for a mutation that disrupts Tie-1/Tie-2 interactions or Tie/angiopietin interactions.

Yet another variation of the invention is methods of screening for agents that modify female fertility by modulating the interactions between Tie-1 and/or Tie-2 and/or angiopoietins. More specifically, agents that disrupt the normal

20 interactions between circulating agonist angiopoietin Tie ligands and Tie receptors expressed in the female reproductive system are expected to inhibit fertility and have utility as a contraceptive agent, and agents that mimic or enhance such interactions have utility for promoting fertility.

The following numbered paragraphs summarize additional aspects and

25 embodiments of the invention:

1. A method of modulating fertility or embryogenesis in a mammalian female, comprising:

administering to a mammalian female a medicament comprising a modulator of angiopoietin-induced Tie receptor activity in cells of the female, in an

30 amount effective to modulate fertility or embryogenesis in the female. For the purposes of the invention, "fertility" refers to the ability to conceive and bear viable

offspring. The invention is applicable to any mammals but is of particular interest to humans, pets (e.g., dogs, cats), animals of importance to agricultural or sporting (horses, cows, pigs, oxen), endanageder species, and zoo animals. The terms "modulate" refers to both up-regulation (increase fertility) and down-regulation or inhibition (decrease or eliminate fertility).

2. Use of a modulator of angiopoietin-induced Tie receptor activity in the manufacture of a medicament to modulate fertility or embryogenesis in a mammalian female.

3. The method or use of paragraphs 1 or 2, wherein the female is 10 human.

4. The method or use of any one of paragraphs 1-3, wherein the medicament further comprises a pharmaceutically acceptable diluent, excipient or carrier. Appropriate carriers will be apparent for various agents and chosen routes of administration.

15 5. The method or use of any one of paragraphs 1-4, wherein the modulator is an inhibitor of angiopoietin-induced Tie receptor activity, and the modulator is present in the medicament in an amount effective to inhibit fertility or embryogenesis. Tie receptor activity can be measured in vitro by screening for phosphorylation of the receptor or downstream physiological processes of cells that 20 express the receptor.

6. The method or use of paragraph 5, wherein the inhibitor comprises a soluble polypeptide that binds to an angiopoietin protein and comprises an amino acid sequence that is at least 80% identical to the extracellular domain amino acid sequence of a mammalian Tie-1 or Tie-2 receptor tyrosine kinase.

25 7. The method or use of paragraph 5, wherein the inhibitor comprises a member selected from the group consisting of:

(A) a polypeptide that comprises:

(i) an amino acid sequence that is at least 80% identical to amino acids 25-759 of SEQ ID NO: 2;

(ii) an amino acid sequence that is at least 80% identical to amino acids 24-745 of SEQ ID NO: 4; and

(iii) fragments of (i) or (ii);

wherein the polypeptide binds at least one angiopoietin

5 polypeptide selected from the group consisting of Angiopoietin-1 (SEQ ID NO: 6), Angiopoietin-2 (SEQ ID NO: 8), Angiopoietin-3 (SEQ ID NO: 10), and Angiopoietin-4 (SEQ ID NO: 12);

(B) polynucleotides that comprise a nucleotide sequence that encode a polypeptide according to (A); and

10 (C) vectors that comprise a polynucleotide according to (B).

8. A method or use according to paragraph 6 or 7, wherein the polypeptide further comprises an immunoglobulin Fc fragment.

9. The method or use according to paragraph 8, wherein the immunoglobulin Fc fragment comprises an IgG Fc domain.

15 10. The method or use according to paragraph 5, wherein the inhibitor comprises an antibody substance that specifically immunoreacts to the extracellular domain of a Tie-1 or Tie-2 receptor tyrosine kinase, wherein the antibody substance comprises: (a) a monoclonal or polyclonal antibody; (b) a fragment of (a) that retains said immunoreactivity; or (c) a polypeptide that comprises an antigen binding fragment of (a) and that retains said immunoreactivity.

11. The method according to paragraph 5, wherein the inhibitor comprises an interfering RNA that inhibits expression of a polypeptide selected from the group consisting of a Tie-1 receptor tyrosine kinase, a Tie-2 receptor tyrosine kinase; Angiopoietin-1, Angiopoietin-2, Angiopoietin-3, and Angiopoietin-4.

25 12. The method or use according to any one of paragraphs 1-4, wherein the modulator is an agonist of Tie receptor activity, and is present in the medicament in an amount effective to increase fertility or promote embryogenesis in the female.

13. The method or use of paragraph 12, wherein the agonist comprises (a) a polypeptide that comprises an amino acid sequence at least 80% identical to a mammalian angiopoietin polypeptide or fragments thereof that is effective to bind and stimulate a Tie receptor tyrosine kinase; or (b) a polynucleotide that comprises a nucleotide sequence that encodes said polypeptide; or (c) a vector that comprises the polynucleotide.

14. The method or use according to paragraph 13, wherein the angiopoietin polypeptide is selected from group consisting of human angiopoietin-1 (SEQ ID NO: 6), angiopoietin-2 (SEQ ID NO: 8), angiopoietin-3 (SEQ ID NO: 10), 10 and angiopoietin-4 (SEQ ID NO: 12).

15. The method or use according to any one of paragraphs 1-14, wherein the medicament is administered orally, by intravenous injection, by intramuscular injection, or other injection, by transdermal patch, topically or vaginally.

16. The method according to any one of paragraphs 1-14, wherein the medicament is administered after ovulation.

17. A method of screening for infertility in a female, comprising measuring Tie receptor expression or activity in a biological sample from a mammalian female, wherein Tie expression or activity correlates with fertility.

18. The method of paragraph 17, wherein the biological sample comprises primary cilia of ovarian surface endothelium.

19. A method of screening for modulators of binding between a Tie receptor tyrosine kinase and an angiopoietin ligand, comprising:

- a) contacting a Tie receptor composition with an angiopoietin ligand in the presence and in the absence of a putative modulator compound;
- b) measuring binding between the Tie receptor and the angiopoietin ligand in the presence and absence of the putative modulator compound; and

c) identifying a modulator compound based on a decrease or increase in said binding in the presence of the putative modulator compound, as compared to binding in the absence of the putative modulator compound.

20. A method according to paragraph 19, wherein the Tie receptor
5 composition comprises a cell that expresses Tie-1 receptor on its surface.

21. A method according to paragraph 20, wherein the cell further expresses Tie-2 receptor on its surface.

22. A method according to any one of paragraphs 19-21, further comprising a step of:

10 (d) making a modulator composition by formulating a modulator identified according to step (c) in a pharmaceutically acceptable carrier.

23. A method according to paragraph 22, further comprising a step of:

15 (e) administering the modulator composition to a mammal that comprises cells that express Tie receptors, and determining physiological effects of the modulator composition in the mammal.

24. A method according to paragraph 23, comprising assessing fertility in mammal.

25. A method according to any one of paragraphs 19-24, wherein the Tie receptor is selected from the group consisting of a mammalian Tie-1 and a mammalian Tie-2 and mixtures thereof.

26. A method according to paragraph 25, wherein the Tie receptor and the angiopoietin are human.

Additional features and variations of the invention will be apparent to those skilled in the art from the entirety of this application, including the detailed description, and all such features are intended as aspects of the invention. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration

only, because various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

Moreover, features of the invention described herein can be re-combined into additional embodiments that also are intended as aspects of the invention, irrespective of whether the combination of features is specifically mentioned above as an aspect or embodiment of the invention. Also, only those limitations that are described herein as critical to the invention should be viewed as such; variations of the invention lacking features that have not been described herein as critical are intended as aspects of the invention.

With respect to aspects of the invention that have been described as a set or genus, every individual member of the set or genus is intended, individually, as an aspect of the invention, even if, for brevity, every individual member has not been specifically mentioned herein. When aspects of the invention that are described herein as being selected from a genus, it should be understood that the selection can include mixtures of two or more members of the genus.

In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations specifically described herein. Although the applicant(s) invented the full scope of the claims appended hereto, the claims appended hereto are not intended to encompass within their scope the prior art work of others. Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

DETAILED DESCRIPTION

The present invention involves the fields of cell and molecular biology, and many standard techniques relevant to those fields will be relevant to the practice

of the present invention. Many such techniques are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989), and/or Ausubel et al., eds., Current Protocols in Molecular Biology, Green Publishers Inc. and Wiley and Sons, NY (1994-2001), both 5 of which are incorporated by reference in their entirety.

A. Gene sequences of interest to the present invention.

At least two Tie receptors have been identified, referred to as Tie (Tie-1) and Tie-2. The DNA and deduced amino acid sequences of all known 10 Angiopoietins and Tie receptors of any vertebrate species that have been reported in the literature are hereby incorporated by reference. However, due to their special significance to the invention, the following table is provided for the convenience of the reader:

Molecule	Genbank Accession Number	SEQ ID NO:
Human Tie-1	NP_005415	SEQ ID NO: 1 and 2
Human Tie-2	Q02763; NP_000450	SEQ ID NO: 3 and 4
Hu Angiopoietin-1	NM001146	SEQ ID NO: 5 and 6
Hu Angiopoietin-2	NM001147	SEQ ID NO: 7 and 8
Hu Angiopoietin-3	AF074332	SEQ ID NO: 9 and 10
Hu Angiopoietin-4	AF113708	SEQ ID NO: 11 and 12

The Angiopoietin Family Members

15 The Angiopoietins are of special interest to the present invention because they have been found to modulate (stimulate or inhibit) Tie-2. The angiopoietin (Ang 1-4) family of molecules were originally identified by cDNA library screening for ligands to the orphan Tie 2 receptor tyrosine kinase. [Davis et al., Cell, 87: 1161-69 (1996)]. Ang 1, the first of the angiopoietin ligands identified, 20 was isolated through secretion trap expression cloning using cell lines which demonstrated binding of secreted factors to Tie 2 Fc molecules. This novel technique isolated a 498 amino acid, 70 kDa glycoprotein. The N terminal region of the protein showed hydrophobic sequences characteristic of secretory signal sequences. Residues 100-280 of Ang 1 resemble a coiled coil structure like that found in myosin, while 25 residues 280-498 show homology to a family of proteins which includes fibrinogen,

thus this region is the fibrinogen-like domain. Ang-1 shows a binding affinity to Tie 2 less than 4 nM, and induces phosphorylation and activation of the Tie 2 tyrosine kinase.

The remaining members of the angiopoietin family were isolated using 5 homology searches against the Ang-1 cDNA sequence. Human Ang-2, a 496 amino acid protein (Maisonpierre et al, *Science*. 277: 55 60 (1997)), shows 85% homology to mouse Ang-2 and 60% homology to the Human Ang-1 protein. Ang-2 possesses an amino-terminal secretory signal sequence also found in Ang-1, and also both the coiled coil and fibrinogen-like domains. Ang-2 also shares 8 of the 9 cysteine 10 residues found throughout the Ang-1 sequence, believed to be important in disulfide bond formation. Analysis of Ang-2 activity on the Tie 2 receptor shows that Ang-2 binds to Tie 2 but does not induce phosphorylation of the receptor, implicating Ang-2 as an antagonist to Ang-1 activation of Tie 2.

Angiopoietin 3 has been isolated by several groups based on sequence 15 similarity to Ang-1 and Ang-2. See, e.g., Kim et al., *FEBS Lett.* 443: 353 6 (1999); Nishimura et al, *FEBS Lett.* 448: 254 6 (1999). The groups identified either a 503 or 491 amino acid clone of Ang-3, respectively. Nishimura et al. cloned Ang-3 from a human aorta cDNA library, and identified a 503 amino acid protein having 45.1% identity with human Ang-1 and 44.7% identity to Ang-2. A third group 20 independently identified a 460 amino acid Ang-3 clone, (ANGPTL3) from human liver tissue. Conklin et al., *Genomics*, 62: 477 82 (1999). All three clones possess the characteristic N terminal secretory signal sequence, coiled coil motif, and fibrinogen like domains of the other angiopoietin family members.

Human Ang-4, identified by Valenzuela, et al (Proc. Natl. Acad. Sci 25 USA. 96:1904 09. 1999), using sequence homology to a mouse genomic library, is a 503 amino acid protein having the leader signal sequence, coiled coil, and fibrinogen like sequences indicative of an angiopoietin family member. Both Ang-3 and Ang-4 show conservation of 8 of the 9 cysteines present in Ang-1. Both Ang-3 and Ang-4 have been reported to show binding to the Tie-2 receptor and not Tie-1. Ang-3 acts as 30 an antagonist, while Ang-4 activates Tie-2 as an agonist.

In addition to the foregoing, the invention involves several other polypeptide factors involved in promoting or inhibiting aspects of the angiogenic process. The following description will therefore be useful in the practice of the invention.

5 With respect to the angiopoietins or other polypeptides used to practice the invention, it will be understood that native sequences will usually be most preferred, but that modifications can be made to most protein sequences without destroying the activity of interest of the protein, especially conservative amino acid substitutions. By "conservative amino acid substitution" is meant substitution of an 10 amino acid with an amino acid having a side chain of a similar chemical character. Similar amino acids for making conservative substitutions include those having an acidic side chain (glutamic acid, aspartic acid); a basic side chain (arginine, lysine, histidine); a polar amide side chain (glutamine, asparagine); a hydrophobic, aliphatic side chain (leucine, isoleucine, valine, alanine, glycine); an aromatic side chain 15 (phenylalanine, tryptophan, tyrosine); a small side chain (glycine, alanine, serine, threonine, methionine); or an aliphatic hydroxyl side chain (serine, threonine).

20 Moreover, deletion and addition of amino acids is often possible without destroying a desired activity. With respect to the present invention, where binding activity is of particular interest and the ability of molecules to activate or inhibit receptor tyrosine kinases upon binding is of special interest, binding assays and tyrosine phosphorylation assays are available to determine whether a particular ligand or ligand variant (a) binds and (b) stimulates or inhibits RTK activity.

25 Two manners for defining genera of polypeptide variants include percent amino acid identity to a native polypeptide (e.g., 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identity preferred), or the ability of encoding-polynucleotides to hybridize to each other under specified conditions. One exemplary set of conditions is as follows: hybridization at 42°C in 50% formamide, 5X SSC, 20 mM Na•PO4, pH 6.8; and washing in 1X SSC at 55°C for 30 minutes. Formula for calculating equivalent hybridization conditions and/or selecting other conditions to achieve a 30 desired level of stringency are well known. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described Ausubel, et al. (Eds.), *Protocols in Molecular*

Biology, John Wiley & Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described in Sambrook, et al., (Eds.), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47 to 9.51.

B. Gene Therapy

While much of the application, including the examples, are written in the context of protein-protein interactions and protein administration, it should be clear that genetic manipulations to achieve modulation of protein expression or activity is specifically contemplated. For example, where administration of proteins is contemplated, administration of a gene therapy vector to cause the protein of interest to be produced in vivo also is contemplated. Where inhibition of proteins is contemplated (e.g., through use of antibodies or small molecule inhibitors), inhibition of protein expression in vivo by genetic techniques, such as knock-out techniques or interfering RNA or anti-sense therapy, is contemplated.

Any suitable vector may be used to introduce a transgene of interest into an animal. Exemplary vectors that have been described in the literature include replication-deficient retroviral vectors, including but not limited to lentivirus vectors [Kim et al., J. Virol., 72(1): 811-816 (1998); Kingsman & Johnson, Scrip Magazine, October, 1998, pp. 43-46.]; adeno-associated viral vectors [Gnatenko et al., J. Investig. Med., 45: 87-98 (1997)]; adenoviral vectors [See, e.g., U.S. Patent No. 5,792,453; Quantin et al., Proc. Natl. Acad. Sci. USA, 89: 2581-2584 (1992); Stratford-Perricaudet et al., J. Clin. Invest., 90: 626-630 (1992); and Rosenfeld et al., Cell, 68: 143-155 (1992)]; Lipofectin-mediated gene transfer (BRL); liposomal vectors [See, e.g., U.S. Patent No. 5,631,237 (Liposomes comprising Sendai virus proteins)]; and combinations thereof. All of the foregoing documents are incorporated herein by reference in the entirety. Replication-deficient adenoviral vectors and adeno-associated viral vectors constitute preferred embodiments.

In embodiments employing a viral vector, preferred polynucleotides include a suitable promoter and polyadenylation sequence to promote expression in

the target tissue of interest. For many applications of the present invention, the Tie promoter (U.S. Patent No. 5,877,020, incorporated by reference) will be especially suitable. Other suitable promoters/enhancers for mammalian cell expression include, e.g., cytomegalovirus promoter/enhancer [Lehner et al., *J. Clin. Microbiol.*, 29:2494-5 2502 (1991); Boshart et al., *Cell*, 41:521-530 (1985)]; Rous sarcoma virus promoter [Davis et al., *Hum. Gene Ther.*, 4:151 (1993)]; or simian virus 40 promoter.

Anti-sense polynucleotides are polynucleotides which recognize and hybridize to polynucleotides encoding a protein of interest and can therefore inhibit transcription or translation of the protein. Full length and fragment anti sense 10 polynucleotides may be employed. Commercial software is available to optimize antisense sequence selection and also to compare selected sequences to known genomic sequences to help ensure uniqueness/specifity for a chosen gene. Such uniqueness can be further confirmed by hybridization analyses. Antisense nucleic acids (preferably 10 to 20 base pair oligonucleotides) are introduced into cells (e.g., 15 by a viral vector or colloidal dispersion system such as a liposome). The antisense nucleic acid binds to the target nucleotide sequence in the cell and prevents transcription or translation of the target sequence. Phosphorothioate and methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. The antisense oligonucleotides may be further 20 modified by poly-L-lysine, transferrin polylysine, or cholesterol moieties at their 5' end.

Genetic control can also be achieved through the design of novel transcription factors for modulating expression of the gene of interest in native cells and animals. For example, the Cys2-His2 zinc finger proteins, which bind DNA via 25 their zinc finger domains, have been shown to be amenable to structural changes that lead to the recognition of different target sequences. These artificial zinc finger proteins recognize specific target sites with high affinity and low dissociation constants, and are able to act as gene switches to modulate gene expression. Knowledge of the particular target sequence of the present invention facilitates the 30 engineering of zinc finger proteins specific for the target sequence using known methods such as a combination of structure-based modeling and screening of phage display libraries [Segal et al., (1999) *Proc Natl Acad Sci USA* 96:2758-2763; Liu et

al., (1997) Proc Natl Acad Sci USA 94:5525-30; Greisman and Pabo (1997) Science 275:657-61; Choo et al., (1997) J Mol Biol 273:525-32]. Each zinc finger domain usually recognizes three or more base pairs. Since a recognition sequence of 18 base pairs is generally sufficient in length to render it unique in any known genome, a zinc finger protein consisting of 6 tandem repeats of zinc fingers would be expected to ensure specificity for a particular sequence [Segal et al., (1999) Proc Natl Acad Sci USA 96:2758-2763]. The artificial zinc finger repeats, designed based on target sequences, are fused to activation or repression domains to promote or suppress gene expression [Liu et al., (1997) Proc Natl Acad Sci USA 94:5525-30]. Alternatively, 5 the zinc finger domains can be fused to the TATA box-binding factor (TBP) with varying lengths of linker region between the zinc finger peptide and the TBP to create either transcriptional activators or repressors [Kim et al., (1997) Proc Natl Acad Sci USA 94:3616-3620]. Such proteins, and polynucleotides that encode them, have utility for modulating expression *in vivo* in both native cells, animals and humans. 10 15 The novel transcription factor can be delivered to the target cells by transfecting constructs that express the transcription factor (gene therapy), or by introducing the protein. Engineered zinc finger proteins can also be designed to bind RNA sequences for use in therapeutics as alternatives to antisense or catalytic RNA methods [McColl et al., (1999) Proc Natl Acad Sci USA 96:9521-6; Wu et al., (1995) Proc Natl Acad Sci USA 92:344-348].

Another class of therapeutics for inhibiting expression (and therefore activity) of target genes/pathways described herein is interfering RNA technology, also known as RNA interference (RNAi) or short interfering RNA (siRNA).

Using the knowledge of the sequence of target genes such as Tie-1, 25 Tie-2 and Ang-1, siRNA molecules are formed that interfere with the expression of the genes. SiRNA describes a technique by which post-transcriptional gene silencing (PTGS) is induced by the direct introduction of double stranded RNA (dsRNA: a mixture of both sense and antisense strands). (Fire et al., Nature 391:806-811, 1998). Current models of PTGS indicate that short stretches of interfering dsRNAs (21-23 30 nucleotides; siRNA also known as "guide RNAs") mediate PTGS. siRNAs are apparently produced by cleavage of dsRNA introduced directly or via a transgene or virus. These siRNAs may be amplified by an RNA-dependent RNA polymerase

(RdRP) and are incorporated into the RNA-induced silencing complex (RISC), guiding the complex to the homologous endogenous mRNA, where the complex cleaves the transcript. It is contemplated that RNAi may be used to disrupt the expression of a gene in a tissue-specific manner. By placing a gene fragment 5 encoding the desired dsRNA behind an inducible or tissue-specific promoter, it should be possible to inactivate genes at a particular location within an organism or during a particular stage of development.

In one aspect, the invention provides double-stranded RNA (dsRNA) wherein one strand is complementary to a target region in a target Ang-1, Tie-1 or 10 Tie-2 encoding polynucleotide. In general, dsRNA molecules of this type less than 30 nucleotides in length are referred to in the art as short interfering RNA (siRNA). The invention also contemplates, however, use of dsRNA molecules longer than 30 nucleotides in length, and in certain aspects of the invention, these longer dsRNA molecules can be about 30 nucleotides in length up to 200 nucleotides in length and 15 longer, and including all length dsRNA molecules in between. As with other RNA inhibitors, complementarity of one strand in the dsRNA molecule can be a perfect match with the target region in the target polynucleotide, or may include mismatches to the extent that the mismatches do not preclude specific hybridization to the target region in the target Ang-1, Tie-1 or Tie-2 encoding polynucleotide. As with other 20 RNA inhibition technologies, dsRNA molecules include those comprising modified internucleotide linkages and/or those comprising modified nucleotides which are known in the art to improve stability of the oligonucleotide, i.e., make the oligonucleotide more resistant to nuclease degradation, particularly in vivo. Preparation and use of RNAi compounds is described in U.S. Patent Application No. 25 20040023390, the disclosure of which is incorporated herein by reference in its entirety.

The invention further contemplates methods wherein inhibition of Ang-1, Tie-1 or Tie-2 is effected using RNA lasso technology. Circular RNA lasso inhibitors are highly structured molecules that are inherently more resistant to 30 degradation and therefore do not, in general, include or require modified internucleotide linkage or modified nucleotides. The circular lasso structure includes a region that is capable of hybridizing to a target region in a target polynucleotide, the

hybridizing region in the lasso being of a length typical for other RNA inhibiting technologies. As with other RNA inhibiting technologies, the hybridizing region in the lasso may be a perfect match with the target region in the target polynucleotide, or may include mismatches to the extent that the mismatches do not preclude specific hybridization to the target region in the target PDGF-B or PDGFR- β -encoding polynucleotide. Because RNA lassos are circular and form tight topological linkage with the target region, inhibitors of this type are generally not displaced by helicase action unlike typical antisense oligonucleotides, and therefore can be utilized as dosages lower than typical antisense oligonucleotides. Preparation and use of RNA lassos is described in U.S. Patent 6,369,038, the disclosure of which is incorporated herein by reference in its entirety.

Anti-sense RNA and DNA molecules, ribozymes, RNAi and triple helix molecules directed against Ang-1, Tie-1 or Tie-2 can be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art including, but not limited to, solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably or transiently into cells.

C. Aptamer Therapeutics

Aptamers are another nucleic acid based method for interfering with Tie/Ang interaction is the use of an aptamer. Aptamers are DNA or RNA molecules that have been selected from random pools based on their ability to bind other molecules. Aptamers have been selected which bind nucleic acid, proteins, small organic compounds, and even entire organisms. Methods and compositions for identifying and making aptamers are known to those of skill in the art and are described e.g., in U.S. Patent No. 5,840,867 and U.S. Patent No. 5,582,981 each incorporated herein by reference. Aptamers that bind Tie or Ang are known to those

of skill in the art and are specifically contemplated to be useful in the present therapeutic embodiments.

Recent advances in the field of combinatorial sciences have identified short polymer sequences with high affinity and specificity to a given target. For 5 example, SELEX technology has been used to identify DNA and RNA aptamers with binding properties that rival mammalian antibodies, the field of immunology has generated and isolated antibodies or antibody fragments which bind to a myriad of compounds and phage display has been utilized to discover new peptide sequences with very favorable binding properties. Based on the success of these molecular 10 evolution techniques, it is certain that molecules can be created which bind to any target molecule. A loop structure is often involved with providing the desired binding attributes as in the case of: aptamers which often utilize hairpin loops created from short regions without complimentary base pairing, naturally derived antibodies that utilize combinatorial arrangement of looped hyper-variable regions and new phage 15 display libraries utilizing cyclic peptides that have shown improved results when compared to linear peptide phage display results. Thus, sufficient evidence has been generated to suggest that high affinity ligands can be created and identified by combinatorial molecular evolution techniques. For the present invention, molecular evolution techniques can be used to isolate binding constructs specific for ligands 20 described herein. For more on aptamers, See generally, Gold, L., Singer, B., He, Y.Y., Brody. E., "Aptamers As Therapeutic And Diagnostic Agents," J. Biotechnol. 74:5-13 (2000). Relevant techniques for generating aptamers may be found in U.S. Pat. No. 6,699,843, which is incorporated by reference in its entirety.

In some embodiments, the aptamer may be generated by preparing a 25 library of nucleic acids; contacting the library of nucleic acids with a growth factor, wherein nucleic acids having greater binding affinity for the growth factor (relative to other library nucleic acids) are selected and amplified to yield a mixture of nucleic acids enriched for nucleic acids with relatively higher affinity and specificity for binding to the growth factor. The processes may be repeated, and the selected nucleic 30 acids mutated and re-screened, whereby a growth factor aptamer is be identified.

D. Antibodies

Antibodies are useful for modulating Tie/Ang interactions due to the ability to easily generate antibodies with relative specificity, and due to the continued improvements in technologies for adopting antibodies to human therapy. Thus, the invention contemplates use of antibodies (e.g., monoclonal and polyclonal antibodies, 5 single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR) grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) specific for polypeptides of interest to the invention, especially Tie receptors and angiopoietins. Preferred 10 antibodies are human antibodies which are produced and identified according to methods described in WO93/11236, published June 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab', F(ab')², and Fv, are also provided by the invention. The term "specific for," when used to describe antibodies of the invention, indicates that the variable regions of the 15 antibodies of the invention recognize and bind the polypeptide of interest preferentially and substantially exclusively (i.e., able to distinguish the polypeptides of interest from other known polypeptides of the same family, by virtue of measurable differences in binding affinity, despite the possible existence of localized sequence identity, homology, or similarity between family members). It will be understood that 20 specific antibodies may also interact with other proteins (for example, *S. aureus* protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a 25 comprehensive discussion of such assays, see Harlow et al. (Eds), *Antibodies A Laboratory Manual*; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988), Chapter 6. Antibodies of the invention can be produced using any method well known and routinely practiced in the art.

A monoclonal antibody to a Tie or angiopoietin protein may be 30 prepared by using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include but are not limited to the hybridoma technique originally described by Köhler et al., (Nature, 256: 495-497, 1975), and the more recent human B-cell hybridoma technique (Kosbor et al.,

Immunology Today, 4: 72, 1983) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R Liss, Inc., pp. 77-96, 1985), all specifically incorporated herein by reference. Antibodies also may be produced in bacteria from cloned immunoglobulin cDNAs. With the use of the recombinant 5 phage antibody system it may be possible to quickly produce and select antibodies in bacterial cultures and to genetically manipulate their structure.

When the hybridoma technique is employed, myeloma cell lines may be used. Such cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and exhibit 10 enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 15 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 all may be useful in connection with cell fusions.

Antibody fragments that contain the idiotype of the molecule may be generated by known techniques. For example, such fragments include, but are not limited to, the F(ab')2 fragment which may be produced by pepsin digestion of the 20 antibody molecule; the Fab' fragments which may be generated by reducing the disulfide bridges of the F(ab')2 fragment, and the two Fab fragments which may be generated by treating the antibody molecule with papain and a reducing agent.

Non-human antibodies may be humanized by any methods known in the art. A preferred "humanized antibody" has a human constant region, while the 25 variable region, or at least a complementarity determining region (CDR), of the antibody is derived from a non-human species. The human light chain constant region may be from either a kappa or lambda light chain, while the human heavy chain constant region may be from either an IgM, an IgG (IgG1, IgG2, IgG3, or IgG4) an IgD, an IgA, or an IgE immunoglobulin.

30 Methods for humanizing non-human antibodies are well known in the art (see U.S. Patent Nos. 5,585,089, and 5,693,762). Generally, a humanized antibody

has one or more amino acid residues introduced into its framework region from a source which is non-human. Humanization can be performed, for example, using methods described in Jones et al. (Nature 321: 522-525, 1986), Riechmann et al., (Nature, 332: 323-327, 1988) and Verhoeyen et al. Science 239:1534-1536, 1988), by 5 substituting at least a portion of a rodent complementarity-determining region (CDRs) for the corresponding regions of a human antibody. Numerous techniques for preparing engineered antibodies are described, e.g., in Owens and Young, J. Immunol. Meth., 168:149 165, 1994. Further changes can then be introduced into the antibody framework to modulate affinity or immunogenicity.

10 E. Dosing

Polypeptides according to the invention may be administered in any suitable manner using an appropriate pharmaceutically-acceptable vehicle, e.g., a pharmaceutically-acceptable diluent, adjuvant, excipient or carrier. The composition to be administered according to methods of the invention preferably comprises (in 15 addition to the polynucleotide or vector) a pharmaceutically-acceptable carrier solution such as water, saline, phosphate-buffered saline, glucose, or other carriers conventionally used to deliver therapeutics.

The “administering” that is performed according to the present invention may be performed using any medically-accepted means for introducing a 20 therapeutic directly or indirectly into a mammalian subject, including but not limited to injections (e.g., intravenous, intramuscular, subcutaneous, or catheter); vaginal administration; oral ingestion; intranasal or topical administration; and the like. The therapeutic composition may be delivered to the patient at multiple sites. The multiple administrations may be rendered simultaneously or may be administered 25 over a period of several hours. In certain cases it may be beneficial to provide a continuous flow of the therapeutic composition. Additional therapy may be administered on a period basis, for example, daily, weekly or monthly, although administration following ovulation is preferred.

30 Polypeptides for administration may be formulated with uptake or absorption enhancers to increase their efficacy. Such enhancer include for example, salicylate, glycocholate/linoleate, glycholate, aprotinin, bacitracin, SDS caprate and

the like. See, e.g., Fix (J. Pharm. Sci., 85(12) 1282-1285, 1996) and Oliyai and Stella (Ann. Rev. Pharmacol. Toxicol., 32:521-544, 1993).

5 The amounts of peptides in a given dosage will vary according to the size of the individual to whom the therapy is being administered as well as the serum half life and potency of the agent. A medicament may be administered as a single dosage form or as multiple doses. Standard dose-response studies, first in animal models such as mice or rats and then primates and then in clinical testing, reveal optimal dosages.

F. Kits

10 As an additional aspect, the invention includes kits which comprise compounds or compositions of the invention packaged in a manner which facilitates their use to practice methods of the invention. In a simplest embodiment, such a kit includes a compound or composition described herein as useful for practice of a method of the invention (e.g., polynucleotides or polypeptides for administration to a 15 person), packaged in a container such as a sealed bottle or vessel, with a label affixed to the container or included in the package that describes use of the compound or composition to practice the method of the invention. Preferably, the compound or composition is packaged in a unit dosage form. The kit may further include a device suitable for administering the composition according to a preferred route of 20 administration.

Compounds of compositions of the invention also may be packaged with or in admixture with other materials and methods for modulating female fertility, such as natural or synthetic hormones, including but not limited to ethinyl estradiol (EE), estrane progestins, levonorgestrels, and the like.

25 Additional aspects and details of the invention will be apparent from the following examples, which are intended to be illustrative rather than limiting.

EXAMPLE 1

In order to clarify the function of Tie-1 a mouse line was generated, which expresses an extracellular domain of human Tie-1 (tyrosine kinase with Ig and EGF homology domains 1) receptor fused to the human IgG Fc region under the K14 promoter in dermal keratinocytes. Expression of this construct *in vivo* is expected to result in the secretion of the soluble receptor molecule into the dermis and diffusion eventually into the blood stream and various tissue fluids where it would be able to trap possible ligand molecules and prevent their interaction with the endogenous receptor. Three different founder lines were used. The K14-Tie-1/Fc mice in FVB/N background were viable and appeared normal. However, while breeding this transgenic mouse line it became evident that the females were unable to produce progeny and the transgene was transferred to the next generation only via the males. Transgenic females from two different founder lines were mated with a transgenic male seven times. Each time, a plug was observed, but in only one of the females two embryos were found at E18.5, while no progeny was produced in the six matings. In contrast, when a transgenic male was mated with a FVB/N female, each of the fifteen matings resulted with a normal size litter (between 6 and 12 pups/litter, female:male ratio about 50:50).

To define the problem leading to infertility of the females, implantation of the embryo was studied. To this end, both transgenic and normal FVB/N females were super-ovulated and mated with normal FVB/N males. At E7.5 the animals were sacrificed and uterus were removed for histological analysis. Embryos had implanted and appeared normal in both transgenic and non-transgenic uterus, indicating that implantation takes places normally in these mice. However, no signs of the embryos were observed at E12.5.

When analyzing the ovaries after the super-ovulation, an abnormal luteinization in the transgenic animals was observed, which was not seen in the normal FVB/N females. In addition, cyst formation was detected in the ovaries. Furthermore, the uterus had cyst formation surrounded by thin endometrium.

The expression of the soluble Tie-1 receptor under the K14 promoter in the skin of transgenic mice resulted in infertility of the females. The mice appeared otherwise normal, and the males were fertile and able to transfer the transgene to the next generation. Also, the same transgenic males, when mated with transgenic

females and producing no progeny, were able to produce normal progeny with normal FVB/N females indicating problems with the female mice. The ovaries showed massive luteinization with some maturing follicles of fairly normal appearance. However, the number of follicles seemed to be somewhat decreased compared to the 5 wild type ovaries. It seems that the implantation of the embryos occurred subnormally; there were fewer implanted embryos in the transgenic utero than in the normal utero. No embryos were detected at E12.5, indicating problems in the post-implantation events. These observations also suggest that the sperm was not defective. Because the transgene expression in the embryos starts between E14 and 10 E15, i.e., after the abortion of the transgenic progeny, and because not only the transgenic embryos get aborted, these results indicate that the infertility is due to the transgene expression in the mother.

Tie-1 and Tie-2 have been shown to form heterodimers as described below in Example 2 and in (Marron et al., 2000). No ligand has been reported for 15 Tie-1, and none of the Tie-2 ligands are reported to bind directly to Tie-1, although, curiously, Tie-1 is phosphorylated upon Ang-1 or Ang-4 stimulation, as described below in Example 2. However, Ang-2 expression is readily detectable only in ovary, placenta, and uterus, which are the predominant sites of vascular remodeling in the normal adult, and the site where we see a phenotype in K14-Tie-1/Fc animals. 20 Furthermore, Ang-2 mRNA expression is highly upregulated in the aged corpus luteum in which blood vessels degenerate. It is plausible that even if there is no direct binding of the angiopoietins to Tie-1, there exist a Tie-1/Tie-2 complex, which generates specific signals in the presence of Ang-2 and/or Ang-1. We are proposing a model in which the overexpression of the soluble Tie-1 receptor in the transgenic 25 animals results in the abolishment of the signaling through endogenous Tie-1 receptor leading to sustained corpus luteum in the ovaries. The massive luteinization of the ovaries supports this idea and that probably leads to improper hormone production by the ovaries. The phenotype is very similar to that obtained in a transgenic mouse overexpressing the human chorionic gonadotropin, which also causes infertility of the 30 females (Rulli et al., 2002). Furthermore, the placentation of the embryos could be defective in these transgenic animals.

Administration of a soluble Tie-1 extracellular domain construct (or the *in vivo* expression of same via gene therapy) in wildtype female adult mice can be performed to rule out the possibility that the presence of the soluble Tie-1 receptor would lead to defective development of the ovaries/uterus in the transgenic mice.

5 Results with the K14-Tie1/Fc transgenic mice indicate that blocking the signaling through Tie-1 receptor caused infertility in females, which indicates that soluble Tie1 has an indication as a contraceptive agent. The molecular mechanisms underlying this phenomenon also will be used to enhance fertility.

10

EXAMPLE 2

Tie-1 Interactions with Tie-2 and Angiopoietins

Experiments were conducted to evaluate and characterize Tie-1 interactions with Tie-2 and with angiopoietin family members. The results, 15 summarized herein, are described in greater detail in Saharinen et al., 2005, *J. Cell Biol.*, 169(2): 239-43, incorporated herein by reference in its entirety.

Materials and methods

20 293, 293T (American Type Culture Collection), and EA.hy926 immortalized hybrid HUVECs (Edgell et al., 1983) were grown in DME supplemented with 10% FBS (PromoCell). HUVECs were cultured as described in (Marron et al., 2000, *J. Biol. Chem.*, 275: 39741-39746). LEC, BEC (Makinen et al., 2001, *EMBO J.*, 20: 4762-4773), and HMEC-1 human dermal microvascular cells immortalized with SV40 Large T antigen (Ades et al., 1992, *J. Invest. Dermatol.*, 99: 683-690) were grown in Endothelial Cell Basal Medium (PromoCell) with 25 supplements provided by the manufacturer. Confluent plates of cells were serum-starved overnight, followed by ligand stimulation for 15 minutes, unless otherwise indicated.

The following reagents were used: Tie-1-Fc, Tie-2-Fc, Ang-1, VEGF (all from R&D Systems), Ang-2, Ang-3, Ang-4 (Lee et al., *FASEB J.*, 18: 1200-

1208.2004), COMP-HFARP (Kim et al., 2000, Biochem. J., 346:603–610), and Ang-2 (Scharpfenecker et al., 2005, J. Cell Sci., 188:771–780).

The following antibodies were used: antiphosphotyrosine (4G10; Upstate Biotechnology), anti-Tie-1 and anti-Tie-2 (R&D Systems; Santa Cruz Biotechnology, Inc.; clone 33 [Upstate Biotechnology]), anti-V5 (Invitrogen), and anti-Tie-2 (Harris et al., 2001, Clin. Cancer Res., 7: 1992–1997).

Cells were transfected using Fugene6 (Roche Diagnostics), changed to serum-free medium after 48 hours, and harvested 72 hours after transfection. Kinase-inactivating mutation in human Tie-2 (lysine 855 to arginine), human Tie-1 (lysine 870 to arginine), Tie1-V5, and Tie2-Myc constructs were created by PCR. All constructs were confirmed by sequencing (Applied Biosystems).

For immunoprecipitation and immunoblotting, cells were lysed in lysis buffer (50 mM Hepes, pH 7.5, 1% Triton X-100, 5% glycerol, 1 mM EGTA, 150 mM NaCl, 1.5 mM MgCl₂, 100 mM NaF, 1 mM Na₃VO₄, PMSF, aprotinin, and leupeptin) or alternatively in SDS-lysis buffer (Saharinen et al., 1997, Blood, 90: 4341–4353). Equal amounts of cell lysate protein were pre-cleared by incubation with protein G-Sepharose (Amersham Biosciences), followed by addition of BSA (1%) and specific antibodies. The immunocomplexes, captured by protein G-Sepharose, were separated in 7.5% SDS-PAGE (Ready-Gels; Bio-Rad Laboratories) and blotted and detected using specific primary antibodies, biotinylated anti-mouse or anti-goat secondary antibodies (DakoCytomation), and streptavidin-biotin HRP conjugate (Amersham Biosciences) followed by ECL detection with the SuperSignal West Femto Maximun Sensitivity Substrate (Pierce Chemical Co.).

HUVECs were cross-linked in PBS containing 0.5 mM DTSSP for 30 minutes, quenched by addition of Tris, pH 7.5, to 100 mM, and lysed in 50 mM Tris, pH 7.4, 50 mM NaCl, 1% Triton X-100, 1mM sodium orthovanadate, 1 mM sodium fluoride, 1 mM EGTA, and complete protease inhibitor.

293T cells were cross-linked for 40 min with 1 mM DTSSP on ice.

For RNA isolation and Northern blotting, total RNA was isolated using the RNeasy kit (QIAGEN), electrophoresed, blotted, and hybridized with 32P-labeled cDNA probes.

Results

5 To investigate the signal transduction pathways of Tie-1, human dermal blood vascular endothelial cells (BEC) and lymphatic endothelial cells (LEC; Makinen et al., 2001, EMBO J., 20: 4762–4773) were stimulated with a COMP-Ang-1 chimeric protein (Cho et al., 2004, Proc. Natl. Acad. Sci. USA., 101: 5547–5552; Cho et al., 2004, Proc. Natl. Acad. Sci. USA., 101: 5553–5558, both incorporated 10 herein by reference).

Surprisingly, COMP-Ang-1 induced tyrosine phosphorylation of Tie-1, in addition to phosphorylation of Tie-2. Phosphorylation of Tie-1 occurred in endothelial cells within 5 minutes of COMP-Ang-1 stimulation, reaching a maximum level at 1 hour, followed by a gradual down-regulation. The kinetics of Tie-2 15 phosphorylation paralleled these changes observed for Tie-1. Significant phosphorylation occurred with a 100 ng/ml concentration of COMP-Ang-1, but maximal phosphorylation of both receptors required 600 ng/ml. COMP-Ang-1 also induced phosphorylation of Tie-1 and Tie-2 in the hybrid endothelial cell line EA.hy926.

20 In contrast, 600 ng/ml Ang-2 did not activate either Tie-1 or Tie-2. In fact, decreased Tie-1 phosphorylation was seen when COMP-Ang-1 was provided in combination with an excess of Ang-2.

The soluble extracellular domain of Tie-2 (Tie-2-Fc) has been found to bind Ang-1 and to inhibit Ang-1-induced Tie-2 activation, whereas no effect has been 25 found with the soluble Tie-1 receptor (Davis et al., 1996; Peters et al., 2004). Tie-2-Fc inhibited COMP-Ang-1-induced Tie-1 and Tie-2 phosphorylation, whereas Tie-1-Fc had little if any effect, indicating that COMP-Ang-1 binds to the soluble form of Tie-2 but not to soluble Tie-1, although COMP-Ang-1 was capable of inducing activation of Tie-1 at the cell surface.

To understand the mechanism of COMP-Ang-1-induced Tie-1 activation, Tie-1 was over-expressed in 293T cells, which lack both Tie-1 and Tie-2. Variable and low levels of Tie-1 tyrosine phosphorylation were detected after stimulation of these cells with 600 ng/ml of COMP-Ang-1. This finding suggested 5 that over-expressed Tie-1 can be activated to some degree by high concentrations of COMP-Ang-1 in the absence of Tie-2.

The effect of Tie-2 on COMP-Ang-1 activation of Tie-1 in the transfected cells was examined. Because of the strong basal autophosphorylation of Tie-2 observed in 293T cells, 293 cells that do not replicate transiently transfected 10 expression plasmids were used. The 293 cells were transfected with vectors encoding Tie-1, Tie-2, or both receptors, and stimulated with COMP-Ang-1. COMP-Ang-1-induced tyrosine phosphorylation of Tie-1 was increased in the double transfected cells in comparison with cells transfected only with Tie-1, suggesting that heteromerization of Tie-1 and Tie-2 enhances Tie-1 activation. In contrast, Tie-2 15 phosphorylation was not enhanced by the presence of Tie-1 when compared with cells transfected with Tie-2 alone.

It was possible that Tie-2 was required for high-affinity binding of COMP-Ang-1 to Tie-1, or that Tie-2 induced the phosphorylation and thereby enhanced the activation of Tie-1 in a Tie-1-Tie-2 complex. To analyze this 20 hypothesis, K870R-Tie-1 was expressed with or without Tie-2. This Tie-1 variant has an inactivating substitution in the kinase domain. K870R-Tie-1 was phosphorylated in a ligand-dependent manner when coexpressed with Tie-2, whereas no phosphorylation was detected in the absence of Tie-2. Thus, Tie-2 was able to induce Tie-1 phosphorylation.

25 A kinase-inactive K855R-Tie-2 was tested to determine if it, like wild-type Tie-2, was able to enhance Tie-1 phosphorylation. Tie-1 phosphorylation was reduced when it was co-expressed with K855R-Tie-2, indicating that the kinase activity of Tie-2 is required for full enhancement of Tie-1 activation by COMP-Ang-1.

30 The results obtained from the transfected cells suggested that Tie-1 and Tie-2 undergo heteromerization when stimulated by COMP-Ang-1. To analyze this

finding, 293T cells transfected with Tie-1-V5 and Tie-2-Myc constructs were used. After COMP-Ang-1 stimulation, the cell surface proteins were chemically cross-linked with 3,3'-dithiobis[sulfosuccinimidylpropionate] (DTSSP), a membrane non-permeable cross-linker, and Tie-1 was immunoprecipitated from the cell lysates. 5 Interestingly, Tie-2 was co-precipitated with Tie-1 from the double transfected cells. The treatment of human umbilical vein endothelial cells (HUVECs) with DTSSP resulted in co-precipitation of Tie-1 with Tie-2, whereas no co-precipitation was found in non-treated cells. This evidence indicates that Tie-1 and Tie-2 form heteromeric complexes on the cell surface.

10 These results also suggest that, in the heteromeric complexes, Tie-2 directly phosphorylates Tie-1, as Tie-2 induced phosphorylation of kinase-inactive Tie-1 in a COMP-Ang-1-dependent manner. COMP-Ang-1 has been shown to be a more potent angiopoietin ligand than native Ang-1 (Cho et al., 2004).

15 Experiments also were conducted to analyze whether native Ang-1 can induce Tie-1 phosphorylation. Native Ang-1 induced Tie-1 phosphorylation in endothelial cells, although several-fold less efficiently than COMP-Ang-1. The chimeric protein COMP-HFARP (hepatic fibrinogen/angiopoietin-related protein) that does not bind to Tie-1 or Tie-2 (Kim et al., 2000) had no effect even at high concentrations. Thus, COMP-Ang-1-induced Tie-1 activation is mediated via Ang-1 20 and not by the COMP domain. In addition to Ang-1, Ang-4 is a ligand for human Tie-2, whereas Ang-3 is a specific ligand for murine Tie-2 (Lee et al., 2004, FASEB J., 18:1200–1208.). In additional experiments, Tie-1 phosphorylation was induced by native Ang-4, but not by Ang-3 or Ang-2.

REFERENCES

Blumenthal, R. D., Taylor, A. P., Goldman, L., Brown, G., and Goldenberg, D. M. (2002). Abnormal expression of the angiopoietins and Tie receptors in menorrhagic endometrium. *Fertil Steril* 78, 1294-1300.

5 Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., and Breitman, M. L. (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. *Genes Dev* 8, 1897-1909.

10 Ferrara, N., Gerber, H. P., and LeCouter, J. (2003). The biology of VEGF and its receptors. *Nat Med* 9, 669-676.

Gale, N. W., Thurston, G., Hackett, S. F., Renard, R., Wang, Q., McClain, J., Martin, C., Witte, C., Witte, M. H., Jackson, D., *et al.* (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. *Dev Cell* 3, 411-423.

15 Kaipainen, A., Vlaykova, T., Hatva, E., Bohling, T., Jekunen, A., Pyrhonen, S., and Alitalo, K. (1994). Enhanced expression of the tie receptor tyrosine kinase messenger RNA in the vascular endothelium of metastatic melanomas. *Cancer Res* 54, 6571-6577.

20 Korhonen, J., Partanen, J., Armstrong, E., Vaahtokari, A., Elenius, K., Jalkanen, M., and Alitalo, K. (1992). Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. *Blood* 80, 2548-2555.

Korhonen, J., Polvi, A., Partanen, J., and Alitalo, K. (1994). The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. *Oncogene* 9, 395-403.

25 Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., *et al.* (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. *Science* 277, 55-60.

30 Marron, M. B., Hughes, D. P., Edge, M. D., Forder, C. L., and Brindle, N. P. (2000). Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. *J Biol Chem* 275, 39741-39746.

35 Partanen, J., Armstrong, E., Makela, T. P., Korhonen, J., Sandberg, M., Renkonen, R., Knuutila, S., Huebner, K., and Alitalo, K. (1992). A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. *Mol Cell Biol* 12, 1698-1707.

Puri, M. C., Partanen, J., Rossant, J., and Bernstein, A. (1999). Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. *Development* 126, 4569-4580.

Puri, M. C., Rossant, J., Alitalo, K., Bernstein, A., and Partanen, J. (1995). The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. *Embo J* 14, 5884-5891.

5 Rossant, J., and Howard, L. (2002). Signaling pathways in vascular development. *Annu Rev Cell Dev Biol* 18, 541-573.

Rulli, S. B., Kuorelahti, A., Karaer, O., Pelliniemi, L. J., Poutanen, M., and Huhtaniemi, I. (2002). Reproductive disturbances, pituitary lactotrope adenomas, and mammary gland tumors in transgenic female mice producing high levels of human chorionic gonadotropin. *Endocrinology* 143, 4084-4095.

10 Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W., and Qin, Y. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. *Nature* 376, 70-74.

15 Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., and Yancopoulos, G. D. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. *Cell* 87, 1171-1180.

Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., and McDonald, D. M. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. *Science* 286, 2511-2514.

20 All documents cited herein are hereby incorporated by reference in their entirety.

The invention has been described with reference to specific embodiments and experiments. However, the foregoing description should be understood to be exemplary and not limiting. The only limitations defining or placed on the invention are those in the claims.

What is claimed is:

1. A method of modulating fertility or embryogenesis in a mammalian female, comprising:

5 administering to a mammalian female a medicament comprising a modulator of angiopoietin-induced Tie receptor activity in cells of the female, in an amount effective to modulate fertility or embryogenesis in the female.

2. Use of a modulator of angiopoietin-induced Tie receptor activity in the manufacture of a medicament to modulate fertility or embryogenesis in a mammalian female.

10 3. The method or use of claims 1 or 2, wherein the female is human.

4. The method or use of any one of claims 1-3, wherein the medicament further comprises a pharmaceutically acceptable diluent, excipient or carrier.

15 5. The method or use of any one of claims 1-4, wherein the modulator is an inhibitor of angiopoietin-induced Tie receptor activity, and the modulator is present in the medicament in an amount effective to inhibit fertility or embryogenesis.

20 6. The method or use of claim 5, wherein the inhibitor comprises a soluble polypeptide that binds to an angiopoietin protein and comprises an amino acid sequence that is at least 80% identical to the extracellular domain amino acid sequence of a mammalian Tie-1 or Tie-2 receptor tyrosine kinase.

7. The method or use of claim 5, wherein the inhibitor comprises a member selected from the group consisting of:

(A) a polypeptide that comprises:

25 (i) an amino acid sequence that is at least 80% identical to amino acids 25-759 of SEQ ID NO: 2;

(ii) an amino acid sequence that is at least 80% identical to amino acids 23-745 of SEQ ID NO: 4; and

(iii) fragments of (i) or (ii);

wherein the polypeptide binds at least one angiopoietin
5 polypeptide selected from the group consisting of Angiopoietin-1 (SEQ ID NO: 6),
Angiopoietin-2 (SEQ ID NO: 8), Angiopoietin-3 (SEQ ID NO: 10), and
Angiopoietin-4 (SEQ ID NO: 12);

(B) polynucleotides that comprise a nucleotide sequence that encode a polypeptide according to (A); and

10 (C) vectors that comprise a polynucleotide according to (B).

8. A method or use according to claim 6 or 7, wherein the polypeptide further comprises an immunoglobulin Fc fragment.

9. The method or use according to claim 8, wherein the immunoglobulin Fc fragment comprises an IgG Fc domain.

15 10. The method or use according to claim 5, wherein the inhibitor comprises an antibody substance that specifically immunoreacts to the extracellular domain of a Tie-1 or Tie-2 receptor tyrosine kinase, wherein the antibody substance comprises: (a) a monoclonal or polyclonal antibody; (b) a fragment of (a) that retains said immunoreactivity; or (c) a polypeptide that comprises an antigen binding
20 fragment of (a) and that retains said immunoreactivity.

11. The method according to claim 5, wherein the inhibitor comprises an interfering RNA that inhibits expression of a polypeptide selected from the group consisting of a Tie-1 receptor tyrosine kinase, a Tie-2 receptor tyrosine kinase; Angiopoietin-1, Angiopoietin-2, Angiopoietin-3, and Angiopoietin-4.

25 12. The method or use according to any one of claims 1-4, wherein the modulator is an agonist of Tie receptor activity, and is present in the medicament in an amount effective to increase fertility or promote embryogenesis in the female.

13. The method or use of claim 12, wherein the agonist comprises
(a) a polypeptide that comprises an amino acid sequence at least 80% identical to a
mammalian angiopoietin polypeptide or fragments thereof that is effective to bind and
stimulate a Tie receptor tyrosine kinase; or (b) a polynucleotide that comprises a
5 nucleotide sequence that encodes said polypeptide; or (c) a vector that comprises the
polynucleotide.

14. The method or use according to claim 13, wherein the
angiopoietin polypeptide is selected from group consisting of human angiopoietin-1
(SEQ ID NO: 6), angiopoietin-2 (SEQ ID NO: 8), angiopoietin-3 (SEQ ID NO: 10),
10 and angiopoietin-4 (SEQ ID NO: 12).

15. The method or use according to any one of claims 1-14,
wherein the medicament is administered orally, by intravenous injection, by
intramuscular injection, or other injection, by transdermal patch, topically or
vaginally.

16. The method according to any one of claims 1-14, wherein the
medicament is administered after ovulation.

17. A method of screening for infertility in a female, comprising
measuring Tie receptor expression or activity in a biological sample from a
mammalian female, wherein Tie expression or activity correlates with fertility.

18. The method of claim 17, wherein the biological sample
comprises primary cilia of ovarian surface endothelium.

19. A method of screening for modulators of binding between a Tie
receptor tyrosine kinase and an angiopoietin ligand, comprising:

a) contacting a Tie receptor composition with an angiopoietin ligand in
25 the presence and in the absence of a putative modulator compound;

b) measuring binding between the Tie receptor and the angiopoietin
ligand in the presence and absence of the putative modulator compound; and

c) identifying a modulator compound based on a decrease or increase in said binding in the presence of the putative modulator compound, as compared to binding in the absence of the putative modulator compound.

20. A method according to claim 19, wherein the Tie receptor
5 composition comprises a cell that expresses Tie-1 receptor on its surface.

21. A method according to claim 20, wherein the cell further expresses Tie-2 receptor on its surface.

22. A method according to any one of claims 19-21, further comprising a step of:

10 (d) making a modulator composition by formulating a modulator identified according to step (c) in a pharmaceutically acceptable carrier.

23. A method according to claim 22, further comprising a step of:
15 (e) administering the modulator composition to a mammal that comprises cells that express Tie receptors, and determining physiological effects of the modulator composition in the mammal.

24. A method according to claim 23, comprising assessing fertility in mammal.

25. A method according to any one of claims 19-24, wherein the Tie receptor is selected from the group consisting of a mammalian Tie-1 and a
20 mammalian Tie-2 and mixtures thereof.

26. A method according to claim 25, wherein the Tie receptor and the angiopoietin are human.

SEQUENCE LISTING

<110> LICENTIA, LTD.

<120> Tie Receptor and Tie Ligand Materials and Methods for Modulating Female Fertility

<130> 3432P103WO

<150> US 60/582,858

<151> 2005-06-25

<160> 12

<170> PatentIn version 3.0

<210> 1

<211> 3845

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (37)..(3453)

<220>

<221> misc_feature

<223> Human Tie-1

```

<400> 1
cgctcgtaat ggctggccctg ggtcggccatc tggagt atg gtc tgg cggttggcc
                                         Met Val Trp Arg Val Pro
                                         1                      5
                                         54

cct ttc ttg ctc ccc atc ctc ttc ttg gct tct cat gtgttgc ggc gcg gcg
Pro Phe Leu Leu Pro Ile Leu Phe Leu Ala Ser His Val Gly Ala Ala
                                         10                  15                  20
                                         102

.
.
.
gtg gac ctg acg ctg ctg gcc aac ctg cgg ctc acg gac ccc cag cgc
Val Asp Leu Thr Leu Leu Ala Asn Leu Arg Leu Thr Asp Pro Gln Arg
                                         25                  30                  35
                                         150

ttc ttc ctg act tgc gtgttgc tct ggg gag gcc ggg gcg ggg agg ggc tcg
                                         198

```

Phe	Phe	Leu	Thr	Cys	Val	Ser	Gly	Glu	Ala	Gly	Ala	Gly	Arg	Gly	Ser			
40					45				50									
gac	gcc	tgg	ggc	ccg	ccc	ctg	ctg	gag	aag	gac	gac	cgt	atc	gtg		246		
Asp	Ala	Trp	Gly	Pro	Pro	Leu	Leu	Leu	Glu	Lys	Asp	Asp	Arg	Ile	Val			
55					60				65				70					
cgc	acc	ccg	ccc	ggg	cca	ccc	ctg	cgc	ctg	gcg	cgc	aac	ggt	tcg	cac		294	
Arg	Thr	Pro	Pro	Gly	Pro	Pro	Leu	Arg	Leu	Ala	Arg	Asn	Gly	Ser	His			
					75				80			85						
cag	gtc	acg	ctt	cgc	ggc	ttc	tcc	aag	ccc	tcg	gac	ctc	gtg	ggc	gtc		342	
Gln	Val	Thr	Leu	Arg	Gly	Phe	Ser	Lys	Pro	Ser	Asp	Leu	Val	Gly	Val			
					90				95			100						
ttc	tcc	tgc	gtg	ggc	ggt	gct	ggg	gct	cg	cgc	cgc	acg	cgc	gtc	atc	tac		390
Phe	Ser	Cys	Val	Gly	Gly	Ala	Gly	Ala	Arg	Arg	Thr	Arg	Val	Ile	Tyr			
					105				110			115						
gtg	cac	aac	agc	cct	gga	gcc	cac	ctg	ctt	cca	gac	aag	gtc	aca	cac		438	
Val	His	Asn	Ser	Pro	Gly	Ala	His	Leu	Leu	Pro	Asp	Lys	Val	Thr	His			
					120				125			130						
act	gtg	aac	aaa	ggt	gac	acc	gct	gta	ctt	tct	gca	cgt	gtg	cac	aag		486	
Thr	Val	Asn	Lys	Gly	Asp	Thr	Ala	Val	Leu	Ser	Ala	Arg	Val	His	Lys			
					135				140			145			150			
gag	aag	cag	aca	gac	gtg	atc	tgg	aag	agc	aac	gga	tcc	tac	ttc	tac		534	
Glu	Lys	Gln	Thr	Asp	Val	Ile	Trp	Lys	Ser	Asn	Gly	Ser	Tyr	Phe	Tyr			
					155				160			165						
acc	ctg	gac	tgg	cat	gaa	gcc	cag	gat	ggg	cg	ttc	ctg	ctg	cag	ctc		582	
Thr	Leu	Asp	Trp	His	Glu	Ala	Gln	Asp	Gly	Arg	Phe	Leu	Leu	Gln	Leu			
					170				175			180						
cca	aat	gtg	cag	cca	cca	tcg	agc	ggc	atc	tac	agt	gcc	act	tac	ctg		630	
Pro	Asn	Val	Gln	Pro	Pro	Ser	Ser	Gly	Ile	Tyr	Ser	Ala	Thr	Tyr	Leu			
					185				190			195						
gaa	gcc	agc	ccc	ctg	ggc	agc	gcc	ttc	ttt	cg	ctc	atc	gtg	cg	ggt		678	
Glu	Ala	Ser	Pro	Leu	Gly	Ser	Ala	Phe	Phe	Arg	Leu	Ile	Val	Arg	Gly			
					200				205			210						
tgt	ggg	gct	ggg	cgc	tgg	ggg	cca	gg	tgt	acc	aag	gag	tgc	cca	ggt		726	
Cys	Gly	Ala	Gly	Arg	Trp	Gly	Pro	Gly	Cys	Thr	Lys	Glu	Cys	Pro	Gly			
					215				220			225			230			
tgc	cta	cat	gga	ggt	gtc	tgc	cac	gac	cat	gac	ggc	gaa	tgt	gt	tgc		774	
Cys	Leu	His	Gly	Gly	Val	Cys	His	Asp	His	Asp	Gly	Glu	Cys	Val	Cys			
					235				240			245						
ccc	cct	ggc	tcc	act	ggc	acc	cgc	tgt	gaa	cag	ggc	tgc	aga	gag	ggc		822	
Pro	Pro	Gly	Phe	Thr	Gly	Thr	Arg	Cys	Glu	Gln	Ala	Cys	Arg	Glu	Gly			
					250				255			260						
cgt	ttt	ggg	cag	agc	tgc	cag	gag	cag	tgc	cca	ggc	ata	tca	ggc	tgc		870	
Arg	Phe	Gly	Gln	Ser	Cys	Gln	Glu	Gln	Cys	Pro	Gly	Ile	Ser	Gly	Cys			
					265				270			275						
cg	ggc	ctc	acc	tcc	tgc	ctc	cca	gac	ccc	tat	ggc	tgc	tct	tgt	gg		918	
Arg	Gly	Leu	Thr	Phe	Cys	Leu	Pro	Asp	Pro	Tyr	Gly	Cys	Ser	Cys	Gly			
					280				285			290						
tct	ggc	tgg	aga	gga	agc	cag	tgc	caa	gaa	gct	tgt	gcc	cct	ggt	cat		966	
Ser	Gly	Trp	Arg	Gly	Ser	Gly	Ser	Gln	Cys	Gln	Glu	Ala	Cys	Ala	Pro	Gly		
					295				300			305			310			
ttt	ggg	gct	gat	tgc	cga	ctc	cag	tgc	cag	tgt	cag	aat	ggt	ggc	act		1014	

Phe	Gly	Ala	Asp	Cys	Arg	Leu	Gln	Cys	Gln	Cys	Gln	Asn	Gly	Gly	Thr		
315							320								325		
tgt	gac	cggttc	agt	ggtgt	tgt	gtc	tgc	ccc	tct	ggg	tgg	cat	gga	gtg		1062	
Cys	Asp	Arg	Phe	Ser	Gly	Cys	Val	Cys	Pro	Ser	Gly	Trp	His	Gly	Val		
330							335								340		
cac	tgt	gag	aag	tca	gac	cggttc	atc	ccc	cag	atc	ctc	aac	atg	gcc	tca		1110
His	Cys	Glu	Lys	Ser	Asp	Arg	Ile	Pro	Gln	Ile	Leu	Asn	Met	Ala	Ser		
345							350								355		
gaa	ctg	gag	ttc	aac	tta	gag	acg	atg	ccc	cggttc	atc	aac	tgt	gca	gct		1158
Glu	Leu	Glu	Phe	Asn	Leu	Glu	Thr	Met	Pro	Arg	Ile	Asn	Cys	Ala	Ala		
360							365								370		
gca	ggg	aac	ccc	ttc	ccc	gtgttc	cggttc	ggc	agc	ata	gag	cta	cgc	aag	cca		1206
Ala	Gly	Asn	Pro	Phe	Pro	Val	Arg	Gly	Ser	Ile	Glu	Leu	Arg	Lys	Pro		
375							380								390		
gac	ggc	act	gtgttc	ctc	ctg	tcc	acc	aag	gcc	att	gtgttc	gag	cca	gag	aag		1254
Asp	Gly	Thr	Val	Leu	Leu	Ser	Thr	Lys	Ala	Ile	Val	Glu	Pro	Glu	Lys		
395							400								405		
acc	aca	gct	gag	ttc	gag	gtgttc	ccc	cggttc	ttt	ctt	gcg	gac	agt	ggg		1302	
Thr	Thr	Ala	Glu	Phe	Glu	Val	Pro	Arg	Leu	Val	Leu	Ala	Asp	Ser	Gly		
410							415								420		
ttc	tgg	gag	tgc	cgt	gtgttc	tcc	aca	tct	ggc	ggc	caa	gac	agc	cggttc		1350	
Phe	Trp	Glu	Cys	Arg	Val	Ser	Thr	Ser	Gly	Gly	Gln	Asp	Ser	Arg	Arg		
425							430								435		
ttc	aag	gtc	aat	gtgttc	aaa	gtgttc	ccc	ccc	gtgttc	ccc	ctg	gct	gca	cct	cggttc		1398
Phe	Lys	Val	Asn	Val	Lys	Val	Pro	Pro	Val	Pro	Leu	Ala	Ala	Pro	Arg		
440							445								450		
ctc	ctg	acc	aag	cag	agc	cggttc	cgc	cag	ctt	gtgttc	gtc	tcc	ccg	ctg	gtc	tcg	1446
Leu	Leu	Thr	Lys	Gln	Ser	Arg	Gln	Leu	Val	Val	Ser	Pro	Leu	Val	Ser		
455							460								470		
ttc	tct	ggg	gat	ggatcc	atc	tcc	act	gtc	cggttc	ctg	cac	tac	cggttc	ccc		1494	
Phe	Ser	Gly	Asp	Gly	Pro	Ile	Ser	Thr	Val	Arg	Leu	His	Tyr	Arg	Pro		
475							480								485		
cag	gac	agt	acc	atg	gac	tgg	tcgttc	acc	att	gtgttc	gtc	gac	ccc	agt	gag		1542
Gln	Asp	Ser	Thr	Met	Asp	Trp	Ser	Thr	Ile	Val	Val	Asp	Pro	Ser	Glu		
490							495								500		
aac	gtgttc	acg	tta	atg	aaatcc	ctg	agg	ccatcc	aag	aca	gga	tac	agt	gtt	cgt		1590
Asn	Val	Thr	Leu	Met	Asn	Leu	Arg	Pro	Lys	Thr	Gly	Tyr	Ser	Val	Arg		
505							510								515		
gtgttc	cag	ctg	agc	cggttc	cca	gggttc	gaa	gggttc	gga	gggttc	gag	gggttc	gcc	tgg	gggttc	cct	1638
Val	Gln	Leu	Ser	Arg	Pro	Gly	Glu	Gly	Gly	Glu	Gly	Ala	Trp	Gly	Pro		
520							525								530		
ccc	acc	ctc	atg	acc	aca	gac	tgt	cct	gag	cct	ttt	ttt	cag	ccg	tgg		1686
Pro	Thr	Leu	Met	Thr	Asp	Cys	Pro	Glu	Pro	Leu	Leu	Gln	Pro	Trp			
535							540								550		
ttt	gag	ggc	tgg	cat	gtgttc	gggttc	act	gac	cggttc	ctg	cga	gtgttc	agc	tgg		1734	
Leu	Glu	Gly	Trp	His	Val	Glu	Gly	Thr	Asp	Arg	Leu	Arg	Val	Ser	Trp		
555							560								565		
tcc	ttt	ccc	ttt	gtgttc	ccc	gggttc	cca	ctg	gtgttc	gggttc	gac	gggttc	ttt	ctg	ctg		1782
Ser	Leu	Pro	Leu	Val	Pro	Gly	Pro	Leu	Val	Gly	Asp	Gly	Phe	Leu	Leu		
570							575								580		
cgc	ctg	tgg	gac	gggttc	aca	cggttc	gggttc	cag	gag	cggttc	gggttc	gag	aac	gtgttc	tca		1830

Arg	Leu	Trp	Asp	Gly	Thr	Arg	Gly	Gln	Glu	Arg	Arg	Glu	Asn	Val	Ser	
585				590				595								
tcc	ccc	cag	gcc	cgc	act	gcc	ctc	ctg	acg	gga	ctc	acg	cct	ggc	acc	1878
Ser	Pro	Gln	Ala	Arg	Thr	Ala	Leu	Leu	Thr	Gly	Leu	Thr	Pro	Gly	Thr	
600				605				610								
cac	tac	cag	ctg	gat	gtg	cag	ctc	tac	cac	tgc	acc	ctc	ctg	ggc	ccg	1926
His	Tyr	Gln	Leu	Asp	Val	Gln	Leu	Tyr	His	Cys	Thr	Leu	Leu	Gly	Pro	
615				620				625			630					
gcc	tcg	ccc	cct	gca	cac	gtg	ctt	ctg	ccc	ccc	agt	ggg	cct	cca	gcc	1974
Ala	Ser	Pro	Pro	Ala	His	Val	Leu	Leu	Pro	Pro	Ser	Gly	Pro	Pro	Ala	
635							640					645				
ccc	cga	cac	ctc	cac	gcc	cag	gcc	ctc	tca	gac	tcc	gag	atc	cag	ctg	2022
Pro	Arg	His	Leu	His	Ala	Gln	Ala	Leu	Ser	Asp	Ser	Glu	Ile	Gln	Leu	
650				655				660								
aca	tgg	aag	cac	ccg	gag	gct	ctg	cct	ggg	cca	ata	tcc	aag	tac	gtt	2070
Thr	Trp	Lys	His	Pro	Glu	Ala	Leu	Pro	Gly	Pro	Ile	Ser	Lys	Tyr	Val	
665				670				675								
gtg	gag	gtg	cag	gtg	gct	ggg	ggt	gca	gga	gac	cca	ctg	tgg	ata	gac	2118
Val	Glu	Val	Gln	Val	Ala	Gly	Gly	Ala	Gly	Asp	Pro	Leu	Trp	Ile	Asp	
680				685				690								
gtg	gac	agg	cct	gag	gag	aca	agc	acc	atc	atc	cgt	ggc	ctc	aac	gcc	2166
Val	Asp	Arg	Pro	Glu	Glu	Thr	Ser	Thr	Ile	Ile	Arg	Gly	Leu	Asn	Ala	
695				700				705			710					
agc	acg	cgc	tac	ctc	ttc	cgc	atg	cgg	gcc	agc	att	cag	ggg	ctc	ggg	2214
Ser	Thr	Arg	Tyr	Leu	Phe	Arg	Met	Arg	Ala	Ser	Ile	Gln	Gly	Leu	Gly	
715							720					725				
gac	tgg	agc	aac	aca	gta	gaa	gag	tcc	acc	ctg	ggc	aac	ggg	ctg	cag	2262
Asp	Trp	Ser	Asn	Thr	Val	Glu	Glu	Ser	Thr	Leu	Gly	Asn	Gly	Leu	Gln	
730				735				740								
gct	gag	ggc	cca	gtc	caa	gag	agc	cgg	gca	gct	gaa	gag	ggc	ctg	gat	2310
Ala	Glu	Gly	Pro	Val	Gln	Glu	Ser	Arg	Ala	Ala	Glu	Glu	Gly	Leu	Asp	
745				750				755								
cag	cag	ctg	atc	ctg	gcg	gtg	gtg	ggc	tcc	gtg	tct	gcc	acc	tgc	ctc	2358
Gln	Gln	Leu	Ile	Leu	Ala	Val	Val	Gly	Ser	Val	Ser	Ala	Thr	Cys	Leu	
760				765				770								
acc	atc	ctg	gcc	gcc	ctt	tta	acc	ctg	gtg	tgc	atc	cgc	aga	agc	tgc	2406
Thr	Ile	Leu	Ala	Ala	Leu	Leu	Thr	Leu	Val	Cys	Ile	Arg	Arg	Ser	Cys	
775				780				785			790					
ctg	cat	cgg	aga	cgc	acc	ttc	acc	tac	cag	tca	ggc	tcg	ggc	gag	gag	2454
Leu	His	Arg	Arg	Thr	Phe	Thr	Tyr	Gln	Ser	Gly	Ser	Gly	Glu	Glu		
795				800				805								
acc	atc	ctg	cag	ttc	agc	tca	ggg	acc	ttg	aca	ctt	acc	cgg	cgg	cca	2502
Thr	Ile	Leu	Gln	Phe	Ser	Ser	Gly	Thr	Leu	Thr	Leu	Thr	Arg	Arg	Pro	
810				815				820								
aaa	ctg	cag	ccc	gag	ccc	ctg	agc	tac	cca	gtg	cta	gag	tgg	gag	gac	2550
Lys	Leu	Gln	Pro	Glu	Pro	Leu	Ser	Tyr	Pro	Val	Leu	Glu	Trp	Glu	Asp	
825				830				835								
atc	acc	ttt	gag	gac	ctc	atc	ggg	gag	ggg	aac	ttc	ggc	cag	gtc	atc	2598
Ile	Thr	Phe	Glu	Asp	Leu	Ile	Gly	Glu	Gly	Asn	Phe	Gly	Gly	Gln	Val	
840				845				850								
cgg	gcc	atg	atc	aag	aag	gac	ggg	ctg	aag	atg	aac	gca	gcc	atc	aaa	2646

Arg Ala Met Ile Lys Lys Asp Gly Leu Lys Met Asn Ala Ala Ile Lys	870	
855 860 865		
atg ctg aaa gag tat gcc tct gaa aat gac cat cgt gac ttt gcg gga	2694	
Met Leu Lys Glu Tyr Ala Ser Glu Asn Asp His Arg Asp Phe Ala Gly		
875 880 885		
gaa ctg gaa gtt ctg tgc aaa ttg ggg cat cac ccc aac atc atc aac	2742	
Glu Leu Glu Val Leu Cys Lys Leu Gly His His Pro Asn Ile Ile Asn		
890 895 900		
ctc ctg ggg gcc tgc aag aac cga ggt tac ttg tat atc gct att gaa	2790	
Leu Leu Gly Ala Cys Lys Asn Arg Gly Tyr Leu Tyr Ile Ala Ile Glu		
905 910 915		
tat gcc ccc tac ggg aac ctg cta gat ttt ctg cgaa aac agc cggt gtc	2838	
Tyr Ala Pro Tyr Gly Asn Leu Leu Asp Phe Leu Arg Lys Ser Arg Val		
920 925 930		
cta gag act gac cca gct ttt gct cga gag cat ggg aca gcc tct acc	2886	
Leu Glu Thr Asp Pro Ala Phe Ala Arg Glu His Gly Thr Ala Ser Thr		
935 940 945 950		
ctt agc tcc cgg cag ctg cgt ttc gcc agt gat gct gcc gaa aat ggc	2934	
Leu Ser Ser Arg Gln Leu Leu Arg Phe Ala Ser Asp Ala Ala Asn Gly		
955 960 965		
atg cag tac ctg agt gag aag cag ttc atc cac agg gac ctg gct gcc	2982	
Met Gln Tyr Leu Ser Glu Lys Gln Phe Ile His Arg Asp Leu Ala Ala		
970 975 980		
cgg aat gtg ctg gtc gga gag aac cta gcc tcc aag att gca gac ttc	3030	
Arg Asn Val Leu Val Gly Glu Asn Leu Ala Ser Lys Ile Ala Asp Phe		
985 990 995		
ggc ctt tct cgg gga gag gag gtt tat gtg aag aag acg atg ggg	3075	
Gly Leu Ser Arg Gly Glu Val Tyr Val Lys Lys Thr Met Gly		
1000 1005 1010		
cgt ctc cct gtg cgc tgg atg gcc att gag tcc ctg aac tac agt	3120	
Arg Leu Pro Val Arg Trp Met Ala Ile Glu Ser Leu Asn Tyr Ser		
1015 1020 1025		
gtc tat acc acc aag agt gat gtc tgg tcc ttt gga gtc ctt ctt	3165	
Val Tyr Thr Thr Lys Ser Asp Val Trp Ser Phe Gly Val Leu Leu		
1030 1035 1040		
tgg gag ata gtg agc ctt gga ggt aca ccc tac tgt ggc atg acc	3210	
Trp Glu Ile Val Ser Leu Gly Gly Thr Pro Tyr Cys Gly Met Thr		
1045 1050 1055		
tgt gcc gag ctc tat gaa aag ctg ccc cag ggc tac cgc atg gag	3255	
Cys Ala Glu Leu Tyr Glu Lys Leu Pro Gln Gly Tyr Arg Met Glu		
1060 1065 1070		
cag cct cga aac tgt gac gat gaa gtg tac gag ctg atg cgt cag	3300	
Gln Pro Arg Asn Cys Asp Asp Glu Val Tyr Glu Leu Met Arg Gln		
1075 1080 1085		
tgc tgg cgg gac cgt ccc tat gag cga ccc ccc ttt gcc cag att	3345	
Cys Trp Arg Asp Arg Pro Tyr Glu Arg Pro Pro Phe Ala Gln Ile		
1090 1095 1100		
gcg cta cag cta ggc cgc atg ctg gaa gcc agg aag gcc tat gtg	3390	
Ala Leu Gln Leu Gly Arg Met Leu Glu Ala Arg Lys Ala Tyr Val		
1105 1110 1115		
aac atg tcg ctg ttt gag aac ttc act tac gcg ggc att gat gcc	3435	

Asn	Met	Ser	Leu	Phe	Glu	Asn	Phe	Thr	Tyr	Ala	Gly	Ile	Asp	Ala	
1120						1125					1130				
aca	gct	gag	gag	gcc	tga	gctccatcc	agccagaacg	tggctctgct							3483
Thr	Ala														
															1135
ggccggagca	aactctgctg	tctaacctgt	gaccagtctg	acccttacag	cctctgactt										3543
aagctgcctc	aaggaatttt	tttaacttaa	gggagaaaaa	aaggatctg	gggatggggt										3603
ggccttaggg	gaactgggtt	ccatgctt	gtaggtgtct	catagctatc	ctggcatcc										3663
ttctttctag	ttcagctgcc	ccacaggtgt	gtttccatc	ccactgctcc	ccaaacacaa										3723
accccccactc	cagctccttc	gcttaagcca	gcactcacac	actaacatg	ccctgttcag										3783
ctactccac	tcccgccctg	tcattcagaa	aaaaataaaat	gttctaataa	gctccaaaaaa										3843
aa															3845

<210> 2

<211> 1138

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human Tie-1

<400> 2

Met	Val	Trp	Arg	Val	Pro	Pro	Phe	Leu	Leu	Pro	Ile	Leu	Phe	Leu	Ala
1				5					10					15	

Ser	His	Val	Gly	Ala	Ala	Val	Asp	Leu	Thr	Leu	Leu	Ala	Asn	Leu	Arg
				20				25					30		

Leu	Thr	Asp	Pro	Gln	Arg	Phe	Phe	Leu	Thr	Cys	Val	Ser	Gly	Glu	Ala
				35			40				45				

Gly	Ala	Gly	Arg	Gly	Ser	Asp	Ala	Trp	Gly	Pro	Pro	Leu	Leu	Leu	Glu
				50			55			60					

Lys	Asp	Asp	Arg	Ile	Val	Arg	Thr	Pro	Pro	Gly	Pro	Pro	Leu	Arg	Leu
65					70			75					80		

Ala	Arg	Asn	Gly	Ser	His	Gln	Val	Thr	Leu	Arg	Gly	Phe	Ser	Lys	Pro
								85					95		

Ser	Asp	Leu	Val	Gly	Val	Phe	Ser	Cys	Val	Gly	Gly	Ala	Gly	Ala	Arg
					100			105				110			

Arg Thr Arg Val Ile Tyr Val His Asn Ser Pro Gly Ala His Leu Leu
115 120 125

Pro Asp Lys Val Thr His Thr Val Asn Lys Gly Asp Thr Ala Val Leu
130 135 140

Ser Ala Arg Val His Lys Glu Lys Gln Thr Asp Val Ile Trp Lys Ser
145 150 155 160

Asn Gly Ser Tyr Phe Tyr Thr Leu Asp Trp His Glu Ala Gln Asp Gly
165 170 175

Arg Phe Leu Leu Gln Leu Pro Asn Val Gln Pro Pro Ser Ser Gly Ile
180 185 190

Tyr Ser Ala Thr Tyr Leu Glu Ala Ser Pro Leu Gly Ser Ala Phe Phe
195 200 205

Arg Leu Ile Val Arg Gly Cys Gly Ala Gly Arg Trp Gly Pro Gly Cys
210 215 220

Thr Lys Glu Cys Pro Gly Cys Leu His Gly Gly Val Cys His Asp His
225 230 235 240

Asp Gly Glu Cys Val Cys Pro Pro Gly Phe Thr Gly Thr Arg Cys Glu
245 250 255

Gln Ala Cys Arg Glu Gly Arg Phe Gly Gln Ser Cys Gln Glu Gln Cys
260 265 270

Pro Gly Ile Ser Gly Cys Arg Gly Leu Thr Phe Cys Leu Pro Asp Pro
275 280 285

Tyr Gly Cys Ser Cys Gly Ser Gly Trp Arg Gly Ser Gln Cys Gln Glu
290 295 300

Ala Cys Ala Pro Gly His Phe Gly Ala Asp Cys Arg Leu Gln Cys Gln
305 310 315 320

Cys Gln Asn Gly Gly Thr Cys Asp Arg Phe Ser Gly Cys Val Cys Pro
325 330 335

Ser Gly Trp His Gly Val His Cys Glu Lys Ser Asp Arg Ile Pro Gln
340 345 350

Ile Leu Asn Met Ala Ser Glu Leu Glu Phe Asn Leu Glu Thr Met Pro
355 360 365

Arg Ile Asn Cys Ala Ala Gly Asn Pro Phe Pro Val Arg Gly Ser
370 375 380

Ile Glu Leu Arg Lys Pro Asp Gly Thr Val Leu Leu Ser Thr Lys Ala
385 390 395 400

Ile Val Glu Pro Glu Lys Thr Thr Ala Glu Phe Glu Val Pro Arg Leu
405 410 415

Val Leu Ala Asp Ser Gly Phe Trp Glu Cys Arg Val Ser Thr Ser Gly
420 425 430

/

Gly Gln Asp Ser Arg Arg Phe Lys Val Asn Val Lys Val Pro Pro Val
435 440 445

Pro Leu Ala Ala Pro Arg Leu Leu Thr Lys Gln Ser Arg Gln Leu Val
450 455 460

Val Ser Pro Leu Val Ser Phe Ser Gly Asp Gly Pro Ile Ser Thr Val
465 470 475 480

Arg Leu His Tyr Arg Pro Gln Asp Ser Thr Met Asp Trp Ser Thr Ile
485 490 495

Val Val Asp Pro Ser Glu Asn Val Thr Leu Met Asn Leu Arg Pro Lys
500 505 510

Thr Gly Tyr Ser Val Arg Val Gln Leu Ser Arg Pro Gly Glu Gly Gly
515 520 525

Glu Gly Ala Trp Gly Pro Pro Thr Leu Met Thr Thr Asp Cys Pro Glu
530 535 540

Pro Leu Leu Gln Pro Trp Leu Glu Gly Trp His Val Glu Gly Thr Asp
545 550 555 560

Arg Leu Arg Val Ser Trp Ser Leu Pro Leu Val Pro Gly Pro Leu Val
565 570 575

Gly Asp Gly Phe Leu Leu Arg Leu Trp Asp Gly Thr Arg Gly Gln Glu
580 585 590

Arg Arg Glu Asn Val Ser Ser Pro Gln Ala Arg Thr Ala Leu Leu Thr
595 600 605

Gly Leu Thr Pro Gly Thr His Tyr Gln Leu Asp Val Gln Leu Tyr His
610 615 620

Cys Thr Leu Leu Gly Pro Ala Ser Pro Pro Ala His Val Leu Leu Pro
625 630 635 640

Pro Ser Gly Pro Pro Ala Pro Arg His Leu His Ala Gln Ala Leu Ser
645 650 655

Asp Ser Glu Ile Gln Leu Thr Trp Lys His Pro Glu Ala Leu Pro Gly
660 665 670

Pro Ile Ser Lys Tyr Val Val Glu Val Gln Val Ala Gly Gly Ala Gly
675 680 685

Asp Pro Leu Trp Ile Asp Val Asp Arg Pro Glu Glu Thr Ser Thr Ile
690 695 700

Ile Arg Gly Leu Asn Ala Ser Thr Arg Tyr Leu Phe Arg Met Arg Ala
705 710 715 720

Ser Ile Gln Gly Leu Gly Asp Trp Ser Asn Thr Val Glu Glu Ser Thr
725 730 735

Leu Gly Asn Gly Leu Gln Ala Glu Gly Pro Val Gln Glu Ser Arg Ala
740 745 750

Ala Glu Glu Gly Leu Asp Gln Gln Leu Ile Leu Ala Val Val Gly Ser
755 760 765

Val Ser Ala Thr Cys Leu Thr Ile Leu Ala Ala Leu Leu Thr Leu Val
770 775 780

Cys Ile Arg Arg Ser Cys Leu His Arg Arg Arg Thr Phe Thr Tyr Gln
785 790 795 800

Ser Gly Ser Gly Glu Glu Thr Ile Leu Gln Phe Ser Ser Gly Thr Leu
805 810 815

Thr Leu Thr Arg Arg Pro Lys Leu Gln Pro Glu Pro Leu Ser Tyr Pro
820 825 830

Val Leu Glu Trp Glu Asp Ile Thr Phe Glu Asp Leu Ile Gly Glu Gly
835 840 845

Asn Phe Gly Gln Val Ile Arg Ala Met Ile Lys Lys Asp Gly Leu Lys
850 855 860

Met Asn Ala Ala Ile Lys Met Leu Lys Glu Tyr Ala Ser Glu Asn Asp
865 870 875 880

His Arg Asp Phe Ala Gly Glu Leu Glu Val Leu Cys Lys Leu Gly His
885 890 895

His Pro Asn Ile Ile Asn Leu Leu Gly Ala Cys Lys Asn Arg Gly Tyr
900 905 910

Leu Tyr Ile Ala Ile Glu Tyr Ala Pro Tyr Gly Asn Leu Leu Asp Phe
915 920 925

Leu Arg Lys Ser Arg Val Leu Glu Thr Asp Pro Ala Phe Ala Arg Glu
930 935 940

His Gly Thr Ala Ser Thr Leu Ser Ser Arg Gln Leu Leu Arg Phe Ala
945 950 955 960

Ser Asp Ala Ala Asn Gly Met Gln Tyr Leu Ser Glu Lys Gln Phe Ile
965 970 975

His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Gly Glu Asn Leu Ala
980 985 990

Ser Lys Ile Ala Asp Phe Gly Leu Ser Arg Gly Glu Glu Val Tyr Val
995 1000 1005

Lys Lys Thr Met Gly Arg Leu Pro Val Arg Trp Met Ala Ile Glu
1010 1015 1020

Ser Leu Asn Tyr Ser Val Tyr Thr Thr Lys Ser Asp Val Trp Ser
1025 1030 1035

Phe Gly Val Leu Leu Trp Glu Ile Val Ser Leu Gly Gly Thr Pro
1040 1045 1050

Tyr Cys Gly Met Thr Cys Ala Glu Leu Tyr Glu Lys Leu Pro Gln
1055 1060 1065

Gly Tyr Arg Met Glu Gln Pro Arg Asn Cys Asp Asp Glu Val Tyr
1070 1075 1080

Glu Leu Met Arg Gln Cys Trp Arg Asp Arg Pro Tyr Glu Arg Pro
1085 1090 1095

Pro Phe Ala Gln Ile Ala Leu Gln Leu Gly Arg Met Leu Glu Ala
1100 1105 1110

Arg Lys Ala Tyr Val Asn Met Ser Leu Phe Glu Asn Phe Thr Tyr
1115 1120 1125

Ala Gly Ile Asp Ala Thr Ala Glu Glu Ala
1130 1135

<210> 3

<211> 4138

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (149) .. (3523)

<220>

<221> misc_feature

<223> Human Tie-2

<400> 3
 cttctgtgct gttccttctt gcctctaact tgtaaacaag acgtactagg acgatgctaa 60
 tggaaagtca caaaccgctg ggttttgaa aggatccttg ggacctcatg cacatttgtg 120
 gaaactggat ggagagattt gggaaagc atg gac tct tta gcc agc tta gtt 172
 Met Asp Ser Leu Ala Ser Leu Val
 1 5
 ctc tgt gga gtc agc ttg ctc ctt tct gga act gtg gaa ggt gcc atg 220
 Leu Cys Gly Val Ser Leu Leu Ser Gly Thr Val Glu Gly Ala Met
 10 15 20
 gac ttg atc ttg atc aat tcc cta cct ctt gta tct gat gct gaa aca 268
 Asp Leu Ile Leu Ile Asn Ser Leu Pro Leu Val Ser Asp Ala Glu Thr
 25 30 35 40
 tct ctc acc tgc att gcc tct ggg tgg cgc ccc cat gag ccc atc acc 316
 Ser Leu Thr Cys Ile Ala Ser Gly Trp Arg Pro His Glu Pro Ile Thr
 45 50 55
 ata gga agg gac ttt gaa gcc tta atg aac cag cac cag gat ccg ctg 364
 Ile Gly Arg Asp Phe Glu Ala Leu Met Asn Gln His Gln Asp Pro Leu
 60 65 70
 gaa gtt act caa gat gtg acc aga gaa tgg gct aaa aaa gtt gtt tgg 412
 Glu Val Thr Gln Asp Val Thr Arg Glu Trp Ala Lys Lys Val Val Trp
 75 80 85
 aag aga gaa aag gct agt aag atc aat ggt gct tat ttc tgt gaa ggg 460
 Lys Arg Glu Lys Ala Ser Lys Ile Asn Gly Ala Tyr Phe Cys Glu Gly
 90 95 100
 cga gtt cga gga gag gca atc agg ata cga acc atg aag atg cgt caa 508
 Arg Val Arg Gly Glu Ala Ile Arg Ile Arg Thr Met Lys Met Arg Gln
 105 110 115 120
 caa gct tcc ttc cta cca gct act tta act atg act gtg gac aag gga 556
 Gln Ala Ser Phe Leu Pro Ala Thr Leu Thr Met Thr Val Asp Lys Gly
 125 130 135
 gat aac gtg aac ata tct ttc aaa aag gta ttg att aaa gaa gaa gat 604
 Asp Asn Val Asn Ile Ser Phe Lys Lys Val Leu Ile Lys Glu Glu Asp
 140 145 150
 gca gtg att tac aaa aat ggt tcc ttc atc cat tca gtg ccc cgg cat 652
 Ala Val Ile Tyr Lys Asn Gly Ser Phe Ile His Ser Val Pro Arg His
 155 160 165
 gaa gta cct gat att cta gaa gta cac ctg cct cat gct cag ccc cag 700
 Glu Val Pro Asp Ile Leu Glu Val His Leu Pro His Ala Gln Pro Gln
 170 175 180
 gat gct gga gtg tac tcg gcc agg tat ata gga gga aac ctc ttc acc 748

Asp	Ala	Gly	Val	Tyr	Ser	Ala	Arg	Tyr	Ile	Gly	Gly	Asn	Leu	Phe	Thr	
185					190				195				200			
tcg	gcc	tcc	acc	agg	ctg	ata	gtc	cgg	aga	tgt	gaa	gcc	cag	aag	tgg	796
Ser	Ala	Phe	Thr	Arg	Leu	Ile	Val	Arg	Arg	Cys	Glu	Ala	Gln	Lys	Trp	
				205					210				215			
gga	cct	gaa	tgc	aac	cat	ctc	tgt	act	gct	tgt	atg	aac	aat	ggt	gtc	844
Gly	Pro	Glu	Cys	Asn	His	Leu	Cys	Thr	Ala	Cys	Met	Asn	Asn	Gly	Val	
				220					225			230				
tgc	cat	gaa	gat	act	gga	gaa	tgc	att	tgc	cct	cct	ggg	ttt	atg	gga	892
Cys	His	Glu	Asp	Thr	Gly	Glu	Cys	Ile	Cys	Pro	Pro	Gly	Phe	Met	Gly	
				235					240			245				
agg	acg	tgt	gag	aag	gct	tgt	gaa	ctg	cac	acg	ttt	ggc	aga	act	tgt	940
Arg	Thr	Cys	Glu	Lys	Ala	Cys	Glu	Leu	His	Thr	Phe	Gly	Arg	Thr	Cys	
				250					255			260				
aaa	gaa	agg	tgc	agt	gga	caa	gag	gga	tgc	aag	tct	tat	gtg	ttc	tgt	988
Lys	Glu	Arg	Cys	Ser	Gly	Gln	Glu	Gly	Cys	Lys	Ser	Tyr	Val	Phe	Cys	
				265					270			275			280	
ctc	cct	gac	ccc	tat	ggg	tgt	tcc	tgt	gcc	aca	ggc	tgg	aag	ggt	ctg	1036
Leu	Pro	Asp	Pro	Tyr	Gly	Cys	Ser	Cys	Ala	Thr	Gly	Trp	Lys	Gly	Leu	
				285					290			295				
cag	tgc	aat	gaa	gca	tgc	cac	cct	ggt	ttt	tac	ggg	cca	gat	tgt	aag	1084
Gln	Cys	Asn	Glu	Ala	Cys	His	Pro	Gly	Phe	Tyr	Gly	Pro	Asp	Cys	Lys	
				300					305			310				
ctt	agg	tgc	agc	tgc	aac	aat	ggg	gag	atg	tgt	gat	cgc	ttc	caa	gga	1132
Leu	Arg	Cys	Ser	Cys	Asn	Asn	Gly	Glu	Met	Cys	Asp	Arg	Phe	Gln	Gly	
				315					320			325				
tgt	ctc	tgc	tct	cca	gga	tgg	cag	ggg	ctc	cag	tgt	gag	aga	gaa	ggc	1180
Cys	Leu	Cys	Ser	Pro	Gly	Trp	Gln	Gly	Leu	Gln	Cys	Glu	Arg	Glu	Gly	
				330					335			340				
ata	ccg	agg	atg	acc	cca	aag	ata	gtg	gat	ttg	cca	gat	cat	ata	gaa	1228
Ile	Pro	Arg	Met	Thr	Pro	Lys	Ile	Val	Asp	Leu	Pro	Asp	His	Ile	Glu	
				345					350			355			360	
gta	aac	agt	ggt	aaa	ttt	aat	ccc	att	tgc	aaa	gct	tct	ggc	tgg	ccg	1276
Val	Asn	Ser	Gly	Lys	Phe	Asn	Pro	Ile	Cys	Lys	Ala	Ser	Gly	Trp	Pro	
				365					370			375				
cta	cct	act	aat	gaa	gaa	atg	acc	ctg	gtg	aag	ccg	gat	ggg	aca	gtg	1324
Leu	Pro	Thr	Asn	Glu	Glu	Met	Thr	Leu	Val	Lys	Pro	Asp	Gly	Thr	Val	
				380					385			390				
ctc	cat	cca	aaa	gac	ttt	aac	cat	acg	gat	cat	ttc	tca	gta	gcc	ata	1372
Leu	His	Pro	Lys	Asp	Phe	Asn	His	Thr	Asp	His	Phe	Ser	Val	Ala	Ile	
				395					400			405				
tcc	acc	atc	cac	cg	atc	ctc	ccc	cct	gac	tca	gga	gtt	tgg	gtc	tgc	1420
Phe	Thr	Ile	His	Arg	Ile	Leu	Pro	Pro	Asp	Ser	Gly	Val	Trp	Val	Cys	
				410					415			420				
agt	gtg	aac	aca	gtg	gct	ggg	atg	gtg	gaa	aag	ccc	ttc	aac	att	tct	1468
Ser	Val	Asn	Thr	Val	Ala	Gly	Met	Val	Glu	Lys	Pro	Phe	Asn	Ile	Ser	
				425					430			435			440	
gtt	aaa	gtt	ctt	cca	aag	ccc	ctg	aat	gcc	cca	aac	gtg	att	gac	act	1516
Val	Lys	Val	Leu	Pro	Lys	Pro	Leu	Asn	Ala	Pro	Asn	Val	Ile	Asp	Thr	
				445					450			455				
gga	cat	aac	ttt	gct	gtc	atc	aac	atc	agc	tct	gag	cct	tac	ttt	ggg	1564

Gly His Asn Phe Ala Val Ile Asn Ile Ser Ser Glu Pro Tyr Phe Gly		
460 465 470		
gat gga cca atc aaa tcc aag aag ctt cta tac aaa ccc gtt aat cac		1612
Asp Gly Pro Ile Lys Ser Lys Lys Leu Leu Tyr Lys Pro Val Asn His		
475 480 485		
tat gag gct tgg caa cat att caa gtg aca aat gag att gtt aca ctc		1660
Tyr Glu Ala Trp Gln His Ile Gln Val Thr Asn Glu Ile Val Thr Leu		
490 495 500		
aac tat ttg gaa cct cgg aca gaa tat gaa ctc tgt gtg caa ctg gtc		1708
Asn Tyr Leu Glu Pro Arg Thr Glu Tyr Glu Leu Cys Val Gln Leu Val		
505 510 515 520		
cgt cgt gga gag ggt ggg gaa ggg cat cct gga cct gtg aga cgc ttc		1756
Arg Arg Gly Glu Gly Glu Gly His Pro Gly Pro Val Arg Arg Phe		
525 530 535		
aca aca gct tct atc gga ctc cct cca aga ggt cta aat ctc ctg		1804
Thr Thr Ala Ser Ile Gly Leu Pro Pro Arg Gly Leu Asn Leu Leu		
540 545 550		
cct aaa agt cag acc act cta aat ttg acc tgg caa cca ata ttt cca		1852
Pro Lys Ser Gln Thr Thr Leu Asn Leu Thr Trp Gln Pro Ile Phe Pro		
555 560 565		
agc tcg gaa gat gac ttt tat gtt gaa gtg gag aga agg tct gtg caa		1900
Ser Ser Glu Asp Asp Phe Tyr Val Glu Val Glu Arg Arg Ser Val Gln		
570 575 580		
aaa agt gat cag cag aat att aaa gtt cca ggc aac ttg act tcg gtg		1948
Lys Ser Asp Gln Gln Asn Ile Lys Val Pro Gly Asn Leu Thr Ser Val		
585 590 595 600		
cta ctt aac aac tta cat ccc agg gag cag tac gtg gtc cga gct aga		1996
Leu Leu Asn Asn Leu His Pro Arg Glu Gln Tyr Val Val Arg Ala Arg		
605 610 615		
gtc aac acc aag gcc cag ggg gaa tgg agt gaa gat ctc act gct tgg		2044
Val Asn Thr Lys Ala Gln Gly Glu Trp Ser Glu Asp Leu Thr Ala Trp		
620 625 630		
acc ctt agt gac att ctt cct cct caa cca gaa aac atc aag att tcc		2092
Thr Leu Ser Asp Ile Leu Pro Pro Gln Pro Glu Asn Ile Lys Ile Ser		
635 640 645		
aac att aca cac tcc tcg gct gtg att tct tgg aca ata ttg gat ggc		2140
Asn Ile Thr His Ser Ser Ala Val Ile Ser Trp Thr Ile Leu Asp Gly		
650 655 660		
tat tct att tct tct att act atc cgt tac aag gtt caa ggc aag aat		2188
Tyr Ser Ile Ser Ser Ile Thr Ile Arg Tyr Lys Val Gln Gly Lys Asn		
665 670 675 680		
gaa gac cag cac gtt gat gtg aag ata aag aat gcc acc atc att cag		2236
Glu Asp Gln His Val Asp Val Lys Ile Lys Asn Ala Thr Ile Ile Gln		
685 690 695		
tat cag ctc aag ggc cta gag cct gaa aca gca tac cag gtg gac att		2284
Tyr Gln Leu Lys Gly Leu Glu Pro Glu Thr Ala Tyr Gln Val Asp Ile		
700 705 710		
ttt gca gag aac aac ata ggg tca agc aac cca gcc ttt tct cat gaa		2332
Phe Ala Glu Asn Asn Ile Gly Ser Ser Asn Pro Ala Phe Ser His Glu		
715 720 725		
ctg gtg acc ctc cca gaa tct caa gca cca gcg gac ctc gga ggg ggg		2380

Leu Val Thr Leu Pro Glu Ser Gln Ala Pro Ala Asp Leu Gly Gly Gly		
730 735 740		
aag atg ctg ctt ata gcc atc ctt ggc tct gct gga atg acc tgc ctg	2428	
Lys Met Leu Leu Ile Ala Ile Leu Gly Ser Ala Gly Met Thr Cys Leu		
745 750 755 760		
act gtg ctg ttg gcc ttt ctg atc ata ttg caa ttg aag agg gca aat	2476	
Thr Val Leu Leu Ala Phe Leu Ile Ile Leu Gln Leu Lys Arg Ala Asn		
765 770 775		
gtg caa agg aga atg gcc caa gcc ttc caa aac gtg agg gaa gaa cca	2524	
Val Gln Arg Arg Met Ala Gln Ala Phe Gln Asn Val Arg Glu Glu Pro		
780 785 790		
gct gtg cag ttc aac tca ggg act ctg gcc cta aac agg aag gtc aaa	2572	
Ala Val Gln Phe Asn Ser Gly Thr Leu Ala Leu Asn Arg Lys Val Lys		
795 800 805		
aac aac cca gat cct aca att tat cca gtg ctt gac tgg aat gac atc	2620	
Asn Asn Pro Asp Pro Thr Ile Tyr Pro Val Leu Asp Trp Asn Asp Ile		
810 815 820		
aaa ttt caa gat gtg att ggg gag ggc aat ttt ggc caa gtt ctt aag	2668	
Lys Phe Gln Asp Val Ile Gly Glu Gly Asn Phe Gly Gln Val Leu Lys		
825 830 835 840		
gcg cgc atc aag aag gat ggg tta cgg atg gat gct gcc atc aaa aga	2716	
Ala Arg Ile Lys Lys Asp Gly Leu Arg Met Asp Ala Ala Ile Lys Arg		
845 850 855		
atg aaa gaa tat gcc tcc aaa gat gat cac agg gac ttt gca gga gaa	2764	
Met Lys Glu Tyr Ala Ser Lys Asp Asp His Arg Asp Phe Ala Gly Glu		
860 865 870		
ctg gaa gtt ctt tgt aaa ctt gga cac cat cca aac atc atc aat ctc	2812	
Leu Glu Val Leu Cys Lys Leu Gly His His Pro Asn Ile Ile Asn Leu		
875 880 885		
tta gga gca tgt gaa cat cga ggc tac ttg tac ctg gcc att gag tac	2860	
Leu Gly Ala Cys Glu His Arg Gly Tyr Leu Tyr Leu Ala Ile Glu Tyr		
890 895 900		
gcg ccc cat gga aac ctt ctg gac ttc ctt cgc aag agc cgt gtg ctg	2908	
Ala Pro His Gly Asn Leu Leu Asp Phe Leu Arg Lys Ser Arg Val Leu		
905 910 915 920		
gag acg gac cca gca ttt gcc att gcc aat agc acc gcg tcc aca ctg	2956	
Glu Thr Asp Pro Ala Phe Ala Ile Ala Asn Ser Thr Ala Ser Thr Leu		
925 930 935		
tcc tcc cag cag ctc ctt cac ttc gct gcc gac gtg gcc cggt ggc atg	3004	
Ser Ser Gln Gln Leu Leu His Phe Ala Ala Asp Val Ala Arg Gly Met		
940 945 950		
gac tac ttg agc caa aaa cag ttt atc cac agg gat ctg gct gcc aga	3052	
Asp Tyr Leu Ser Gln Lys Gln Phe Ile His Arg Asp Leu Ala Ala Arg		
955 960 965		
aac att tta gtt ggt gaa aac tat gtg gca aaa ata gca gat ttt gga	3100	
Asn Ile Leu Val Gly Glu Asn Tyr Val Ala Lys Ile Ala Asp Phe Gly		
970 975 980		
ttg tcc cga ggt caa gag gtc tac gtg aaa aag aca atg gga agg ctc	3148	
Leu Ser Arg Gly Gln Glu Val Tyr Val Lys Lys Thr Met Gly Arg Leu		
985 990 995 1000		
cca gtg cgc tgg atg gcc atc gag tca ctg aat tac agt gtg tac	3193	

Pro	Val	Arg	Trp	Met	Ala	Ile	Glu	Ser	Leu	Asn	Tyr	Ser	Val	Tyr	
				1005					1010					1015	
aca	acc	aac	agt	gat	gta	tgg	tcc	tat	ggt	gtg	tta	cta	tgg	gag	3238
Thr	Thr	Asn	Ser	Asp	Val	Trp	Ser	Tyr	Gly	Val	Leu	Leu	Trp	Glu	
				1020					1025					1030	
att	gtt	agc	tta	gga	ggc	aca	ccc	tac	tgc	ggg	atg	act	tgt	gca	3283
Ile	Val	Ser	Leu	Gly	Gly	Thr	Pro	Tyr	Cys	Gly	Met	Thr	Cys	Ala	
				1035					1040					1045	
gaa	ctc	tac	gag	aag	ctg	ccc	cag	ggc	tac	aga	ctg	gag	aag	ccc	3328
Glu	Leu	Tyr	Glu	Lys	Leu	Pro	Gln	Gly	Tyr	Arg	Leu	Glu	Lys	Pro	
				1050					1055					1060	
ctg	aac	tgt	gat	gat	gag	gtg	tat	gat	cta	atg	aga	caa	tgc	tgg	3373
Leu	Asn	Cys	Asp	Asp	Glu	Val	Tyr	Asp	Leu	Met	Arg	Gln	Cys	Trp	
				1065					1070					1075	
cgg	gag	aag	cct	tat	gag	agg	cca	tca	ttt	gcc	cag	ata	ttg	gtg	3418
Arg	Glu	Lys	Pro	Tyr	Glu	Arg	Pro	Ser	Phe	Ala	Gin	Ile	Leu	Val	
				1080					1085					1090	
tcc	tta	aac	aga	atg	tta	gag	gag	cga	aag	acc	tac	gtg	aat	acc	3463
Ser	Leu	Asn	Arg	Met	Leu	Glu	Glu	Arg	Lys	Thr	Tyr	Val	Asn	Thr	
				1095					1100					1105	
acg	ctt	tat	gag	aag	ttt	act	tat	gca	gga	att	gac	tgt	tct	gct	3508
Thr	Leu	Tyr	Glu	Lys	Phe	Thr	Tyr	Ala	Gly	Ile	Asp	Cys	Ser	Ala	
				1110					1115					1120	
gaa	gaa	gcg	gcc	tag	gac	aga	acat	ctgtata	cc	tctgttt	ttt	cact	ggc		3563
Glu	Glu	Ala	Ala												
atgggagacc	cttgaca	act	gctgagaaaa	catgcctctg	ccaaaggat	tgatata	ata								3623
gtgtacat	at	gtgctgaa	at	tctaaca	agt	catagg	ttaa	tat	taa	gagac	actgaaaa	aa			3683
ctaagt	gata	taa	atc	atc	atc	atc	atc	atc	atc	atc	atc	atc	atc	atc	3743
cccg	ttt	cat	tt	tagt	catgt	gacc	act	tct	gtgttt	ccac	agc	ctg	caag	ttc	3803
ccaggat	gct	aa	atc	atc	atc	atc	atc	atc	atc	atc	atc	atc	atc	atc	3863
tagaga	agta	ta	ca	ta	ta	ta	ta	ta	ta	ta	ta	ta	ta	ta	3923
atatt	gact	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	3983
gacattt	tata	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4043
tttgat	gagtt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	4103
gtgaataa	at	gtt	gc	ct	caaaaaaa	aaaaaa									4138

<210> 4

<211> 1124

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human Tie-2

<400> 4

Met Asp Ser Leu Ala Ser Leu Val Leu Cys Gly Val Ser Leu Leu Leu
1 5 10 15

Ser Gly Thr Val Glu Gly Ala Met Asp Leu Ile Leu Ile Asn Ser Leu
20 25 30

Pro Leu Val Ser Asp Ala Glu Thr Ser Leu Thr Cys Ile Ala Ser Gly
35 40 45

Trp Arg Pro His Glu Pro Ile Thr Ile Gly Arg Asp Phe Glu Ala Leu
50 55 60

Met Asn Gln His Gln Asp Pro Leu Glu Val Thr Gln Asp Val Thr Arg
65 70 75 80

Glu Trp Ala Lys Lys Val Val Trp Lys Arg Glu Lys Ala Ser Lys Ile
85 90 95

Asn Gly Ala Tyr Phe Cys Glu Gly Arg Val Arg Gly Glu Ala Ile Arg
100 105 110

Ile Arg Thr Met Lys Met Arg Gln Gln Ala Ser Phe Leu Pro Ala Thr
115 120 125

Leu Thr Met Thr Val Asp Lys Gly Asp Asn Val Asn Ile Ser Phe Lys
130 135 140

Lys Val Leu Ile Lys Glu Glu Asp Ala Val Ile Tyr Lys Asn Gly Ser
145 150 155 160

Phe Ile His Ser Val Pro Arg His Glu Val Pro Asp Ile Leu Glu Val
165 170 175

His Leu Pro His Ala Gln Pro Gln Asp Ala Gly Val Tyr Ser Ala Arg
180 185 190

Tyr Ile Gly Gly Asn Leu Phe Thr Ser Ala Phe Thr Arg Leu Ile Val
195 200 205

Arg Arg Cys Glu Ala Gln Lys Trp Gly Pro Glu Cys Asn His Leu Cys
210 215 220

Thr Ala Cys Met Asn Asn Gly Val Cys His Glu Asp Thr Gly Glu Cys
225 230 235 240

Ile Cys Pro Pro Gly Phe Met Gly Arg Thr Cys Glu Lys Ala Cys Glu
245 250 255

Leu His Thr Phe Gly Arg Thr Cys Lys Glu Arg Cys Ser Gly Gln Glu
260 265 270

Gly Cys Lys Ser Tyr Val Phe Cys Leu Pro Asp Pro Tyr Gly Cys Ser
275 280 285

Cys Ala Thr Gly Trp Lys Gly Leu Gln Cys Asn Glu Ala Cys His Pro
290 295 300

Gly Phe Tyr Gly Pro Asp Cys Lys Leu Arg Cys Ser Cys Asn Asn Gly
305 310 315 320

Glu Met Cys Asp Arg Phe Gln Gly Cys Leu Cys Ser Pro Gly Trp Gln
325 330 335

Gly Leu Gln Cys Glu Arg Glu Gly Ile Pro Arg Met Thr Pro Lys Ile
340 345 350

Val Asp Leu Pro Asp His Ile Glu Val Asn Ser Gly Lys Phe Asn Pro
355 360 365

Ile Cys Lys Ala Ser Gly Trp Pro Leu Pro Thr Asn Glu Glu Met Thr
370 375 380

Leu Val Lys Pro Asp Gly Thr Val Leu His Pro Lys Asp Phe Asn His
385 390 395 400

Thr Asp His Phe Ser Val Ala Ile Phe Thr Ile His Arg Ile Leu Pro
405 410 415

Pro Asp Ser Gly Val Trp Val Cys Ser Val Asn Thr Val Ala Gly Met
420 425 430

Val Glu Lys Pro Phe Asn Ile Ser Val Lys Val Leu Pro Lys Pro Leu
435 440 445

Asn Ala Pro Asn Val Ile Asp Thr Gly His Asn Phe Ala Val Ile Asn
450 455 460

Ile Ser Ser Glu Pro Tyr Phe Gly Asp Gly Pro Ile Lys Ser Lys Lys
465 470 475 480

Leu Leu Tyr Lys Pro Val Asn His Tyr Glu Ala Trp Gln His Ile Gln
485 490 495

Val Thr Asn Glu Ile Val Thr Leu Asn Tyr Leu Glu Pro Arg Thr Glu
500 505 510

Tyr Glu Leu Cys Val Gln Leu Val Arg Arg Gly Glu Gly Glu Gly
515 520 525

His Pro Gly Pro Val Arg Arg Phe Thr Thr Ala Ser Ile Gly Leu Pro
530 535 540

Pro Pro Arg Gly Leu Asn Leu Leu Pro Lys Ser Gln Thr Thr Leu Asn
545 550 555 560

Leu Thr Trp Gln Pro Ile Phe Pro Ser Ser Glu Asp Asp Phe Tyr Val
565 570 575

Glu Val Glu Arg Arg Ser Val Gln Lys Ser Asp Gln Gln Asn Ile Lys
580 585 590

Val Pro Gly Asn Leu Thr Ser Val Leu Leu Asn Asn Leu His Pro Arg
595 600 605

Glu Gln Tyr Val Val Arg Ala Arg Val Asn Thr Lys Ala Gln Gly Glu
610 615 620

Trp Ser Glu Asp Leu Thr Ala Trp Thr Leu Ser Asp Ile Leu Pro Pro
625 630 635 640

Gln Pro Glu Asn Ile Lys Ile Ser Asn Ile Thr His Ser Ser Ala Val
645 650 655

Ile Ser Trp Thr Ile Leu Asp Gly Tyr Ser Ile Ser Ser Ile Thr Ile
660 665 670

Arg Tyr Lys Val Gln Gly Lys Asn Glu Asp Gln His Val Asp Val Lys
675 680 685

Ile Lys Asn Ala Thr Ile Ile Gln Tyr Gln Leu Lys Gly Leu Glu Pro
690 695 700

Glu Thr Ala Tyr Gln Val Asp Ile Phe Ala Glu Asn Asn Ile Gly Ser
705 710 715 720

Ser Asn Pro Ala Phe Ser His Glu Leu Val Thr Leu Pro Glu Ser Gln
725 730 735

Ala Pro Ala Asp Leu Gly Gly Lys Met Leu Leu Ile Ala Ile Leu
740 745 750

Gly Ser Ala Gly Met Thr Cys Leu Thr Val Leu Leu Ala Phe Leu Ile
755 760 765

Ile Leu Gln Leu Lys Arg Ala Asn Val Gln Arg Arg Met Ala Gln Ala
770 775 780

Phe Gln Asn Val Arg Glu Glu Pro Ala Val Gln Phe Asn Ser Gly Thr
785 790 795 800

Leu Ala Leu Asn Arg Lys Val Lys Asn Asn Pro Asp Pro Thr Ile Tyr
805 810 815

Pro Val Leu Asp Trp Asn Asp Ile Lys Phe Gln Asp Val Ile Gly Glu
820 825 830

Gly Asn Phe Gly Gln Val Leu Lys Ala Arg Ile Lys Lys Asp Gly Leu
835 840 845

Arg Met Asp Ala Ala Ile Lys Arg Met Lys Glu Tyr Ala Ser Lys Asp
850 855 860

Asp His Arg Asp Phe Ala Gly Glu Leu Glu Val Leu Cys Lys Leu Gly
865 870 875 880

His His Pro Asn Ile Ile Asn Leu Leu Gly Ala Cys Glu His Arg Gly
885 890 895

Tyr Leu Tyr Leu Ala Ile Glu Tyr Ala Pro His Gly Asn Leu Leu Asp
900 905 910

Phe Leu Arg Lys Ser Arg Val Leu Glu Thr Asp Pro Ala Phe Ala Ile
915 920 925

Ala Asn Ser Thr Ala Ser Thr Leu Ser Ser Gln Gln Leu Leu His Phe
930 935 940

Ala Ala Asp Val Ala Arg Gly Met Asp Tyr Leu Ser Gln Lys Gln Phe
945 950 955 960

Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Gly Glu Asn Tyr
965 970 975

Val Ala Lys Ile Ala Asp Phe Gly Leu Ser Arg Gly Gln Glu Val Tyr
980 985 990

Val Lys Lys Thr Met Gly Arg Leu Pro Val Arg Trp Met Ala Ile Glu
995 1000 1005

Ser Leu Asn Tyr Ser Val Tyr Thr Thr Asn Ser Asp Val Trp Ser
1010 1015 1020

Tyr Gly Val Leu Leu Trp Glu Ile Val Ser Leu Gly Gly Thr Pro
1025 1030 1035

Tyr Cys Gly Met Thr Cys Ala Glu Leu Tyr Glu Lys Leu Pro Gln
1040 1045 1050

Gly Tyr Arg Leu Glu Lys Pro Leu Asn Cys Asp Asp Glu Val Tyr
1055 1060 1065

Asp Leu Met Arg Gln Cys Trp Arg Glu Lys Pro Tyr Glu Arg Pro
1070 1075 1080

Ser Phe Ala Gln Ile Leu Val Ser Leu Asn Arg Met Leu Glu Glu
1085 1090 1095

Arg Lys Thr Tyr Val Asn Thr Thr Leu Tyr Glu Lys Phe Thr Tyr
1100 1105 1110

Ala Gly Ile Asp Cys Ser Ala Glu Glu Ala Ala
1115 1120

<210> 5

<211> 3041

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human angiopoietin 1 (ANG-1), mRNA

<220>

<221> misc_feature

<222> (96)..(665)

<223> FBG; Region: Fibrinogen-related domains (FReDs)

<220>

<221> CDS

<222> (96)..(674)

<400> 5
gaaaaagaga ggaagagaaa ccatttagag actgtgcaga tgtatatcaa gctggttta 60

ataaaagtgg aatctacact atttatatta ataat atg cca gaa ccc aaa aag 113
Met Pro Glu Pro Lys Lys
1 5

gtg ttt tgc aat atg gat gtc aat ggg gga ggt tgg act gta ata caa 161
Val Phe Cys Asn Met Asp Val Asn Gly Gly Gly Trp Thr Val Ile Gln
10 15 20

cat cgt gaa gat gga agt cta gat ttc caa aga ggc tgg aag gaa tat 209
His Arg Glu Asp Gly Ser Leu Asp Phe Gln Arg Gly Trp Lys Glu Tyr

25	30	35	
aaa atg ggt ttt gga aat ccc tcc ggt gaa tat tgg ctg ggg aat gag			257
Lys Met Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu			
40 45 50			
ttt att ttt gcc att acc agt cag agg cag tac atg cta aga att gag			305
Phe Ile Phe Ala Ile Thr Ser Gln Arg Gln Tyr Met Leu Arg Ile Glu			
55 60 65 70			
tta atg gac tgg gaa ggg aac cga gcc tat tca cag tat gac aga ttc			353
Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr Ser Gln Tyr Asp Arg Phe			
75 80 85			
cac ata gga aat gaa aag caa aac tat agg ttg tat tta aaa ggt cac			401
His Ile Gly Asn Glu Lys Gln Asn Tyr Arg Leu Tyr Leu Lys Gly His			
90 95 100			
act ggg aca gca gga aaa cag agc agc ctg atc tta cac ggt gct gat			449
Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu Ile Leu His Gly Ala Asp			
105 110 115			
ttc agc act aaa gat gct gat aat gac aac tgt atg tgc aaa tgt gcc			497
Phe Ser Thr Lys Asp Ala Asp Asn Asp Asn Cys Met Cys Lys Cys Ala			
120 125 130			
ctc atg tta aca gga gga tgg tgg ttt gat gct tgt ggc ccc tcc aat			545
Leu Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro Ser Asn			
135 140 145 150			
cta aat gga atg ttc tat act gcg gga caa aac cat gga aaa ctg aat			593
Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln Asn His Gly Lys Leu Asn			
155 160 165			
ggg ata aag tgg cac tac ttc aaa ggg ccc agt tac tcc tta cgt tcc			641
Gly Ile Lys Trp His Tyr Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ser			
170 175 180			
aca act atg atg att cga cct tta gat ttt tga aagcgcaatg tcagaagcga			694
Thr Thr Met Met Ile Arg Pro Leu Asp Phe			
185 190			
ttatgaaagc aacaaagaaa tccggagaag ctgccaggtg agaaaactgtt tgaaaacttc			754
agaagcaaac aatattgtct cccttccagc aataagtgg agttatgtga agtcaccaag			814
gttcttgacc gtgaatctgg agccgttga gttcacaaga gtctctactt ggggtgacag			874
tgctcacgtg gctcgactat agaaaaactcc actgactgtc gggcttaaa aagggaaagaa			934
actgctgagc ttgctgtgct tcaaactact actggacctt attttggAAC tatggtagcc			994
agatgataaa tatggtaat ttcatgtaaa acagaaaaaa agagtggaaa agagaatata			1054
catgaagaat agaaacaagc ctgccataat cctttggaaa agatgttata taccagtcaa			1114
aaggcgttat atctatgcaa acctactaac aaattatact gttgcacaat tttgataaaa			1174
attnagaaca gcattgtcct ctgagttgg taaatgttaa tggatttcag aagcctaatt			1234
ccagtatcat acttactagt tgatttctgc ttaccatct tcaaatgaaa attccattt			1294
tgttaagccat aatgaactgt agtacatgga caataagtgt gtggtagaaa caaactccat			1354
tactctgatt tttgatacag ttttcagaaa aagaaatgaa cataatcaag taaggatgta			1414
tgtggtgaaa acttaccacc cccatactat ggtttcatt tactctaaaa actgattgaa			1474

tgatataaa atatatttat agcctgagta aagttaaaag aatgtaaaat atatcatcaa	1534
gttcttaaaa taatatacat gcatttaata tttccttga tattatacag gaaagcaata	1594
tttggagta tgttaagttg aagtaaaacc aagtactctg gagcagttca tttacagta	1654
tctacttgca tgtgtataca tacatgtaac ttcatttattt taaaaatattt tttagaactc	1714
caatactcac cctgttatgt cttgctaatt taaatttgc taattaactg aaacatgctt	1774
accagattca cactgttcca gtgtctataa aagaaacact ttgaagtcta taaaaataaa	1834
aataattata aatatcattt tacatagcat gtttatct gcaaaaaacc taatagctaa	1894
ttaatctgga atatgcaaca ttgccttaa ttgatgcaaa taacacaaat gctcaaagaa	1954
atctactata tcccttaatg aaatacatca ttcttcata atttctcctt cagtcattc	2014
ccttaggcaa ttttaattt taaaaatta ttatcagggg agaaaaattt gcaaaactat	2074
tatatgttaag ggatataat atacaaaaag aaaattaatc atagtcacct gactaagaaa	2134
ttctgactgc tagttgccat aaataactca atggaaatat tcctatggg taatgtattt	2194
taagtgaatt ttggggtgc ttgaagttac tgcatttattt tatcaagaag tcttcctgc	2254
ctgttgtgt ccaaggttat gacagtaaac agttttattt aaaacatgag tcactatggg	2314
atgagaaaat tgaaataaaag ctactggcc tccttcata aaagagacag ttgttggcaa	2374
ggtagcaata ccagttcaa acttggtgac ttgatccact atgccttaat gtttcctcc	2434
atttgagaaa ataaagctat tcacattgtt aagaaaaata cttttaaag tttaccatca	2494
agtctttttt atatttatgt gtctgtattc taccctttt tgccttacaa gtgatatttgc	2554
caggtattat accattttc tattcttggt ggcttcata tagcaggtaa gccttcctt	2614
ctaaaaactt ctcaactgtt ttcatthaag ggaaagaaaa tgagtatttt gtcctttgt	2674
tttcctacag acactttctt aaaccagttt ttggataaaag aatactattt ccaaactcat	2734
attacaaaaa caaaataaaaa taataaaaaa agaaagcatg atatttactg ttttgggtc	2794
tgggtttgag aaatgaaata ttgtttccaa ttatttataa taaatcagta taaaatgttt	2854
tatgattgtt atgtgttata tgaatacgt acatgtttt ggcaattttaa catgtgtatt	2914
cttttcattt aattgttca gaataggata attaggtatt cgaattttgt cttaaaatt	2974
catgtggttt ctatgcaaag ttcttcataat catcacaaca ttatggatt taaataaaat	3034
tgaaagt	3041

<210> 6

<211> 192

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human angiopoietin 1 (ANG-1), mRNA

<220>

<221> misc_feature

<222> (96)..(665)

<223> FBG; Region: Fibrinogen-related domains (FReDs)

<400> 6

Met Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp Val Asn Gly Gly
1 5 10 . . - 15 .

Gly Trp Thr Val Ile Gln His Arg Glu Asp Gly Ser Leu Asp Phe Gln
20 25 30

Arg Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly Asn Pro Ser Gly Glu
35 40 45

Tyr Trp Leu Gly Asn Glu Phe Ile Phe Ala Ile Thr Ser Gln Arg Gln
50 55 60

Tyr Met Leu Arg Ile Glu Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr
65 70 75 80

Ser Gln Tyr Asp Arg Phe His Ile Gly Asn Glu Lys Gln Asn Tyr Arg
85 90 95

Leu Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu
100 105 110

Ile Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp Asn
115 120 125

Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp Phe Asp
130 135 140

Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln
145 150 155 160

Asn His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr Phe Lys Gly Pro
165 170 175

Ser Tyr Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe
180 185 190

<210> 7

<211> 2269

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<223> Human angiopoietin 2 (ANG-2), mRNA

<220>

<221> CDS

<222> (350)..(1840)

<400> 7
tgggttggtg tttatctcct cccagccttg agggagggaa caacactgt a ggatctgggg 60
agagaggaac aaaggaccgt gaaagctgct ctgtaaaagc tgacacagcc ctcccaagtg 120
agcaggactg ttcttccac tgcaatctga cagtttactg catgcctgga gagaacacag 180
cagtaaaaac caggtttgct actggaaaaa gaggaaagag aagactttca ttgacggacc 240
cagccatggc agcgtagcag ccctgcgtt cagacggcag cagctcggga ctctggacgt 300
gtgtttgccc tcaagttgc taagctgctg gtttattact gaagaaaaga atg tgg cag 358
Met Trp Gln
1

```
att gtt ttc ttt act ctg agc tgt gat ctt gtc ttg gcc gca gcc tat
Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala Ala Ala Tyr
      5          10          15
                                         406
```

```

aac aac ttt cgg aag agc atg gac agc ata gga aag aag caa tat cag 454
Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys Gln Tyr Gln
20 25 30 35

```

gtc cag cat ggg tcc tgc agc tac act ttc ctc ctg cca gag atg gac 502
 Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro Glu Met Asp
 40 45 50

```

aac tgc cgc tct tcc tcc agc ccc tac gtg tcc aat gct gtg cag agg 550
Asn Cys Arg Ser Ser Ser Pro Tyr Val Ser Asn Ala Val Gln Arg
      55          60          65

```

gac gcg ccg ctc gaa tac gat gac tcg gtg cag agg ctg caa gtg ctg 598
 Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu
 70 75 80

gag aac atc atg gaa aac aac act cag tgg cta atg aag ctt gag aat 646
 Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys Leu Glu Asn
 85 90 95

tat atc cag gac aac atg aag aaa gaa atg gta gag ata cag cag aat 694
 Tyr Ile Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile Gln Gln Asn
 100 105 110 115

gca gta cag aac cag acg gct gtg atg ata gaa ata ggg aca aac ctg 742
 Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly Thr Asn Leu
 120 125 130

ttg aac caa aca gct gag caa acg cg ^g aag tta act gat gtg gaa gcc	790
Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp Val Glu Ala	
135 140 145	
caa gta tta aat cag acc acg aga ctt gaa ctt cag ctc ttg gaa cac	838
Gln Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu Leu Glu His	
150 155 160	
tcc ctc tcg aca aac aaa ttg gaa aaa cag att ttg gac cag acc agt	886
Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp Gln Thr Ser	
165 170 175	
gaa ata aac aaa ttg caa gat aag aac agt ttc cta gaa aag aag gtg	934
Glu Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu Lys Lys Val	
180 185 190 195	
cta gct atg gaa gac aag cac atc atc caa cta cag tca ata aaa gaa	982
Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser Ile Lys Glu	
200 205 210	
gag aaa gat cag cta cag gtg tta gta tcc aag caa aat tcc atc att	1030
Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn Ser Ile Ile	
215 220 225	
gaa gaa cta gaa aaa aaa ata gtg act gcc acg gtg aat aat tca gtt	1078
Glu Glu Leu Glu Lys Lys Ile Val Thr Ala Thr Val Asn Asn Ser Val	
230 235 240	
ctt caa aag cag caa cat gat ctc atg gag aca gtt aat aac tta ctg	1126
Leu Gln Lys Gln Gln His Asp Leu Met Glu Thr Val Asn Asn Leu Leu	
245 250 255	
act atg atg tcc aca tca aac tca gct aag gac ccc act gtt gct aaa	1174
Thr Met Met Ser Thr Ser Asn Ser Ala Lys Asp Pro Thr Val Ala Lys	
260 265 270 275	
gaa gaa caa atc agc ttc aga gac tgt gct gaa gta ttc aaa tca gga	1222
Glu Glu Gln Ile Ser Phe Arg Asp Cys Ala Glu Val Phe Lys Ser Gly	
280 285 290	
cac acc aca aat ggc atc tac acg tta aca ttc cct aat tct aca gaa	1270
His Thr Thr Asn Gly Ile Tyr Thr Leu Thr Phe Pro Asn Ser Thr Glu	
295 300 305	
gag atc aag gcc tac tgt gac atg gaa gct gga gga ggc ggg tgg aca	1318
Glu Ile Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly Gly Trp Thr	
310 315 320	
att att cag cga cgt gag gat ggc agc gtt gat ttt cag agg act tgg	1366
Ile Ile Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Thr Trp	
325 330 335	
aaa gaa tat aaa gtg gga ttt ggt aac cct tca gga gaa tat tgg ctg	1414
Lys Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu	
340 345 350 355	
gga aat gag ttt gtt tcg caa ctg act aat cag caa cgc tat gtg ctt	1462
Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu	
360 365 370	
aaa ata cac ctt aaa gac tgg gaa ggg aat gag gct tac tca ttg tat	1510
Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr Ser Leu Tyr	
375 380 385	
gaa cat ttc tat ctc tca agt gaa gaa ctc aat tat agg att cac ctt	1558
Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Ile His Leu	
390 395 400	

aaa gga ctt aca ggg aca gcc ggc aaa ata agc agc atc agc caa cca	1606
Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile Ser Gln Pro	
405 410 415	
gga aat gat ttt agc aca aag gat gga gac aac gac aaa tgt att tgc	1654
Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys Cys Ile Cys	
420 425 430 435	
aaa tgt tca caa atg cta aca gga ggc tgg tgg ttt gat gca tgt ggt	1702
Lys Cys Ser Gln Met Leu Thr Gly Trp Trp Phe Asp Ala Cys Gly	
440 445 450	
cct tcc aac ttg aac gga atg tac tat cca cag agg cag aac aca aat	1750
Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln Asn Thr Asn	
455 460 465	
aag ttc aac ggc att aaa tgg tac tac tgg aaa ggc tca ggc tat tcg	1798
Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser Gly Tyr Ser	
470 475 480	
ctc aag gcc aca acc atg atg atc cga cca gca gat ttc taa	1840
Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp Phe	
485 490 495	
acatcccaagt ccacctgagg aactgtctcg aactatttc aaagacttaa gcccagtgc	1900
ctgaaagtca cggctgcgca ctgtgtcctc ttccaccaca gagggcgtgt gctcggtgct	1960
gacgggaccc acatgctcca gattagagcc tgtaaacttt atcacttaaa ctgcacatcac	2020
ttaacggacc aaagcaagac cctaaacatc cataattgtg attagacaga acacctatgc	2080
aaagatgaac ccgaggctga gaatcagact gacagttac agacgctgct gtcacaacca	2140
agaatgttat gtgcaagttt atcagtaat aactggaaaa cagaacactt atgttataca	2200
atacagatca tcttggaaact gcattttct gagcactgtt tatacactgt gttaataccc	2260
atatgtcct	2269

<210> 8

<211> 496

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human angiopoietin 2 (ANG-2), mRNA

<400> 8

Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala	
1 5 10 15	

Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys	
20 25 30	

Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro	
---	--

35

40

45

Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala
50 55 60

Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu
65 70 75 80

Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys
85 90 95

Leu Glu Asn Tyr Ile Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile
100 105 110

Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly
115 120 125

Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp
130 135 140

Val Glu Ala Gln Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu
145 150 155 160

Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp
165 170 175

Gln Thr Ser Glu Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu
180 185 190

Lys Lys Val Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser
195 200 205

Ile Lys Glu Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn
210 215 220

Ser Ile Ile Glu Glu Leu Glu Lys Ile Val Thr Ala Thr Val Asn
225 230 235 240

Asn Ser Val Leu Gln Lys Gln His Asp Leu Met Glu Thr Val Asn
245 250 255

Asn Leu Leu Thr Met Met Ser Thr Ser Asn Ser Ala Lys Asp Pro Thr
260 265 270

Val Ala Lys Glu Glu Gln Ile Ser Phe Arg Asp Cys Ala Glu Val Phe
275 280 285

Lys Ser Gly His Thr Thr Asn Gly Ile Tyr Thr Leu Thr Phe Pro Asn
290 295 300

Ser Thr Glu Glu Ile Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly Gly

305	310	315	320
Gly Trp Thr Ile Ile Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln			
325		330	335
Arg Thr Trp Lys Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu			
340		345	350
Tyr Trp Leu Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg			
355		360	365
Tyr Val Leu Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr			
370		375	380
Ser Leu Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg			
385		390	395
Ile His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile			
405		410	415
Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys			
420		425	430
Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp			
435		440	445
Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln			
450		455	460
Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser			
465		470	475
Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp Phe			
485		490	495

<210> 9

<211> 1957

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human angiopoietin-3 (ANG-3), mRNA

<220>

<221> misc_feature

<222> (1497)..(1497)

<223> n= a or g or t or c

<220>

<221> CDS

<222> (106)..(1617)

185	190	195	
gcg ctc gag aag cgg ttg cag gcc ctg gag acc aag cag cag gag gag Ala Leu Glu Lys Arg Leu Gln Ala Leu Glu Thr Lys Gln Gln Glu Glu 200	205	210	741
ctg gcc agc atc ctc agc aag aag gcg aag ctg ctg aac acg ctg agc Leu Ala Ser Ile Leu Ser Lys Lys Ala Lys Leu Leu Asn Thr Leu Ser 215	220	225	789
cgc cag agc gcc gcc ctc acc aac atc gag cgc ggc ctg cgc ggt gtc Arg Gln Ser Ala Ala Leu Thr Asn Ile Glu Arg Gly Leu Arg Gly Val 230	235	240	837
agg cac aac tcc agc ctc ctg cag gac cag cag cac agc ctg cgc cag Arg His Asn Ser Ser Leu Leu Gln Asp Gln Gln His Ser Leu Arg Gln 245	250	255	885
ctg ctg gtg ttg ttg cgg cac ctg gtg caa gaa agg gct aac gcc tcg Leu Leu Val Leu Leu Arg His Leu Val Gln Glu Arg Ala Asn Ala Ser 265	270	275	933
gcc ccg gcc ttc ata atg gca ggt gag cag gtg ttc cag gac tgt gca Ala Pro Ala Phe Ile Met Ala Gly Glu Gln Val Phe Gln Asp Cys Ala 280	285	290	981
gag atc cag cgc tct ggg gcc agt gcc agt ggt gtg tac acc atc cag Glu Ile Gln Arg Ser Gly Ala Ser Ala Ser Gly Val Tyr Thr Ile Gln 295	300	305	1029
gtg tcc aat gca acg aag ccc agg aag gtg ttc tgt gac ctg cag agc Val Ser Asn Ala Thr Lys Pro Arg Lys Val Phe Cys Asp Leu Gln Ser 310	315	320	1077
agt gga ggc agg tgg acc ctc atc cag cgc cgt gag aat ggc acc gtg Ser Gly Gly Arg Trp Thr Leu Ile Gln Arg Arg Glu Asn Gly Thr Val 325	330	335	1125
aat ttt cag cgg aac tgg aag gat tac aaa cag ggc ttc gga gac cca Asn Phe Gln Arg Asn Trp Lys Asp Tyr Lys Gln Gly Phe Gly Asp Pro 345	350	355	1173
gct ggg gag cac tgg ctg ggc aat gaa gtg gtg cac cag ctc acc aga Ala Gly Glu His Trp Leu Gly Asn Glu Val Val His Gln Leu Thr Arg 360	365	370	1221
agg gca gcc tac tct ctg cgt gtg gag ctg caa gac tgg gaa ggc cac Arg Ala Ala Tyr Ser Leu Arg Val Glu Leu Gln Asp Trp Glu Gly His 375	380	385	1269
gag gcc tat gcc cag tac gaa cat ttc cac ctg ggc agt gag aac cag Glu Ala Tyr Ala Gln Tyr Glu His Phe His Leu Gly Ser Glu Asn Gln 390	395	400	1317
cta tac agg ctt tct gtg gtc ggg tac agc ggc tca gca ggg cgc cag Leu Tyr Arg Leu Ser Val Val Gly Tyr Ser Gly Ser Ala Gly Arg Gln 405	410	415	1365
agc agc ctg gtc ctg cag aac acc agc ttt agc acc ctt gac tca gac Ser Ser Leu Val Leu Gln Asn Thr Ser Phe Ser Thr Leu Asp Ser Asp 425	430	435	1413
aac gac cac tgt ctc tgc aag tgt gcc caa gtg atg tct gga ggg tgg Asn Asp His Cys Leu Cys Lys Cys Ala Gln Val Met Ser Gly Gly Trp 440	445	450	1461
tgg ttt gac gcc tgt ggc ctg tca aac ctc aac ggn gtc tac tac cac Trp Phe Asp Ala Cys Gly Leu Ser Asn Leu Asn Gly Val Tyr Tyr His			1509

455	460	465	
gct ccc gac aac aag tac aag atg gac ggc atc cgc tgg cac tac ttc Ala Pro Asp Asn Lys Tyr Lys Met Asp Gly Ile Arg Trp His Tyr Phe			1557
470	475	480	
aag ggc ccc agc tac tca ctg cgt gcc tct cgc atg atg ata cgg cct Lys Gly Pro Ser Tyr Ser Leu Arg Ala Ser Arg Met Met Ile Arg Pro			1605
485	490	495	500
ttg gac atc taa cgagcagctg tgccagaggc tggaccacac aggagaagct Leu Asp Ile			1657
cggaacttggc actcctggac aacctggacc cagatgcaag acactgtgcc accgccttcc ctgacaccct gggcttcctg agccagccct ctttgaccacca gaagtccaga agggtcatct			1717
gccccccac tccctccgt ctgtgacatg gagggtgttc ggggcccattc cctctgatgt agtcctcgcc cctttctct ccctccccct tcaggggctc cttgcctgag gtcacagta			1777
ccttgaatgg gctgagaaca gacaa			1837
			1897
			1957
<210> 10			
<211> 503			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> misc_feature			
<223> Human angiopoietin-3 (ANG-3), mRNA			
<220>			
<221> misc_feature			
<222> (1497)..(1497)			
<223> n= a or g or t or c			
<400> 10			
Met Leu Ser Gln Leu Ala Met Leu Gln Gly Ser Leu Leu Leu Val Val 1 5 10 15			
Ala Thr Met Ser Val Ala Gln Gln Thr Arg Gln Glu Ala Asp Arg Gly 20 25 30			

35 40 45

Leu Pro Lys Ser Glu Pro Cys Pro Pro Glu Pro Glu Val Ser Arg Asp
50 55 60

Leu Pro Lys Ser Glu Pro Cys Pro Pro Gly Pro Glu Val Ser Arg Asp
50 55 60

Ser Asn Thr Leu Gln Arg Glu Ser Leu Ala Asn Pro Leu His Leu Gly

65

70

75

80

Lys Leu Pro Thr Gln Gln Val Lys Gln Leu Glu Gln Ala Leu Gln Asn
85 90 95

Asn Thr Gln Trp Leu Lys Lys Leu Glu Arg Ala Ile Lys Thr Ile Leu
100 105 110

Arg Ser Lys Leu Glu Gln Val Gln Gln Met Ala Gln Asn Gln Thr
115 120 125

Ala Pro Met Leu Glu Leu Gly Thr Ser Leu Leu Asn Gln Thr Thr Ala
130 135 140

Gln Ile Arg Lys Leu Thr Asp Met Glu Ala Gln Leu Leu Asn Gln Thr
145 150 155 160

Ser Arg Met Asp Ala Gln Met Pro Glu Thr Phe Leu Ser Thr Asn Lys
165 170 175

Leu Glu Asn Gln Leu Leu Leu Gln Arg Gln Lys Leu Gln Gln Leu Gln
180 185 190

Gly Gln Asn Ser Ala Leu Glu Lys Arg Leu Gln Ala Leu Glu Thr Lys
195 200 205

Gln Gln Glu Glu Leu Ala Ser Ile Leu Ser Lys Lys Ala Lys Leu Leu
210 215 220

Asn Thr Leu Ser Arg Gln Ser Ala Ala Leu Thr Asn Ile Glu Arg Gly
225 230 235 240

Leu Arg Gly Val Arg His Asn Ser Ser Leu Leu Gln Asp Gln Gln His
245 250 255

Ser Leu Arg Gln Leu Leu Val Leu Leu Arg His Leu Val Gln Glu Arg
260 265 270

Ala Asn Ala Ser Ala Pro Ala Phe Ile Met Ala Gly Glu Gln Val Phe
275 280 285

Gln Asp Cys Ala Glu Ile Gln Arg Ser Gly Ala Ser Ala Ser Gly Val
290 295 300

Tyr Thr Ile Gln Val Ser Asn Ala Thr Lys Pro Arg Lys Val Phe Cys
305 310 315 320

Asp Leu Gln Ser Ser Gly Gly Arg Trp Thr Leu Ile Gln Arg Arg Glu
325 330 335

Asn Gly Thr Val Asn Phe Gln Arg Asn Trp Lys Asp Tyr Lys Gln Gly

340 345 350

Phe Gly Asp Pro Ala Gly Glu His Trp Leu Gly Asn Glu Val Val His
355 360 365

Gln Leu Thr Arg Arg Ala Ala Tyr Ser Leu Arg Val Glu Leu Gln Asp
370 375 380

Trp Glu Gly His Glu Ala Tyr Ala Gln Tyr Glu His Phe His Leu Gly
385 390 395 400

Ser Glu Asn Gln Leu Tyr Arg Leu Ser Val Val Gly Tyr Ser Gly Ser
405 410 415

Ala Gly Arg Gln Ser Ser Leu Val Leu Gln Asn Thr Ser Phe Ser Thr
420 425 430

Leu Asp Ser Asp Asn Asp His Cys Leu Cys Lys Cys Ala Gln Val Met
435 440 445

Ser Gly Gly Trp Trp Phe Asp Ala Cys Gly Leu Ser Asn Leu Asn Gly
450 455 460

Val Tyr Tyr His Ala Pro Asp Asn Lys Tyr Lys Met Asp Gly Ile Arg
465 470 475 480

Trp His Tyr Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ala Ser Arg Met
485 490 495

Met Ile Arg Pro Leu Asp Ile
500

<210> 11

<211> 1512

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human angiopoietin 4 (ANG-4), mRNA

<220>

<221> CDS

<222> (2)..(1510)

<400>	11		
c atg ctc tcc cag cta gcc atg ctg cag ggc agc ctc ctc ctt gtg gtt			49
Met Leu Ser Gln Leu Ala Met Leu Gln Gly Ser Leu Leu Leu Val Val			
1	5	10	15
gcc acc atg tct gtg gct caa cag aca agg cag gag ggc gat agg ggc			97
Ala Thr Met Ser Val Ala Gln Gln Thr Arg Gln Glu Ala Asp Arg Gly			
20	25	30	
tgc gag aca ctt gta gtc cag cac ggc cac tgt agc tac acc ttc ttg			145
Cys Glu Thr Leu Val Val Gln His Gly His Cys Ser Tyr Thr Phe Leu			
35	40	45	
ctg ccc aag tct gag ccc tgc cct ccg ggg cct gag gtc tcc agg gac			193
Leu Pro Lys Ser Glu Pro Cys Pro Pro Gly Pro Glu Val Ser Arg Asp			
50	55	60	
tcc aac acc ctc cag aga gaa tca ctg gcc aac cca ctg cac ctg ggg			241
Ser Asn Thr Leu Gln Arg Glu Ser Leu Ala Asn Pro Leu His Leu Gly			
65	70	75	80
aag ttg ccc acc cag cag gtg aaa cag ctg gag cag gca ctg cag aac			289
Lys Leu Pro Thr Gln Gln Val Lys Gln Leu Glu Gln Ala Leu Gln Asn			
85	90	95	
aac acg cag tgg ctg aag aag cta gag agg gcc atc aag acg atc ttg			337
Asn Thr Gln Trp Leu Lys Leu Glu Arg Ala Ile Lys Thr Ile Leu			
100	105	110	
agg tcg aag ctg gag cag gtc cag cag caa atg gcc cag aat cag acg			385
Arg Ser Lys Leu Glu Gln Val Gln Gln Met Ala Gln Asn Gln Thr			
115	120	125	
gcc ccc atg cta gag ctg ggc acc agc ctc ctg aac cag acc act gcc			433
Ala Pro Met Leu Glu Leu Gln Thr Ser Leu Leu Asn Gln Thr Thr Ala			
130	135	140	
cag atc cgc aag ctg acc gac atg gag gct cag ctc ctg aac cag aca			481
Gln Ile Arg Lys Leu Thr Asp Met Glu Ala Gln Leu Leu Asn Gln Thr			
145	150	155	160
tca aga atg gat gcc cag atg cca gag acc ttt ctg tcc acc aac aag			529
Ser Arg Met Asp Ala Gln Met Pro Glu Thr Phe Leu Ser Thr Asn Lys			
165	170	175	
ctg gag aac cag ctg cta cag agg cag aag ctc cag cag ctt cag			577
Leu Glu Asn Gln Leu Leu Gln Arg Gln Lys Leu Gln Gln Leu Gln			
180	185	190	
ggc caa aac agc gcg ctc gag aag cgg ttg cag gcc ctg gag acc aag			625
Gly Gln Asn Ser Ala Leu Glu Lys Arg Leu Gln Ala Leu Glu Thr Lys			
195	200	205	
cag cag gag gag ctg gcc agc atc ctc agc aag aag gcg aag ctg ctg			673
Gln Gln Glu Glu Leu Ala Ser Ile Leu Ser Lys Lys Ala Lys Leu Leu			
210	215	220	
aac acg ctg agc cgc cag agc gcc ggc ctc acc aac atc gag cgc ggc			721
Asn Thr Leu Ser Arg Gln Ser Ala Ala Leu Thr Asn Ile Glu Arg Gly			
225	230	235	240
ctg cgc ggt gtc agg cac aac tcc agc ctc ctg cag gac cag cag cac			769
Leu Arg Gly Val Arg His Asn Ser Ser Leu Leu Gln Asp Gln Gln His			
245	250	255	

agc ctg cgc cag ctg ctg gtg ttg ttg cgg cac ctg gtg caa gaa agg	817
Ser Leu Arg Gln Leu Leu Val Leu Leu Arg His Leu Val Gln Glu Arg	
260 265 270	
gct aac gcc tcg gcc ccg gcc ttc ata atg gca ggt gag cag gtg ttc	865
Ala Asn Ala Ser Ala Pro Ala Phe Ile Met Ala Gly Glu Gln Val Phe	
275 280 285	
cag gac tgt gca gag atc cag cgc tct ggg gcc agt gcc agt ggt gtc	913
Gln Asp Cys Ala Glu Ile Gln Arg Ser Gly Ala Ser Ala Ser Gly Val	
290 295 300	
tac acc atc cag gtg tcc aat gca acg aag ccc agg aag gtg ttc tgt	961
Tyr Thr Ile Gln Val Ser Asn Ala Thr Lys Pro Arg Lys Val Phe Cys	
305 310 315 320	
gac ctg cag agc agt gga ggc agg tgg acc ctc atc cag cgc cgt gag	1009
Asp Leu Gln Ser Ser Gly Gly Arg Trp Thr Leu Ile Gln Arg Arg Glu	
325 330 335	
aat ggc acc gtg aat ttt cag cgg aac tgg aag gat tac aaa cag ggc	1057
Asn Gly Thr Val Asn Phe Gln Arg Asn Trp Lys Asp Tyr Lys Gln Gly	
340 345 350	
ttc gga gac cca gct ggg gag cac tgg ctg ggc aat gaa gtg gtg cac	1105
Phe Gly Asp Pro Ala Gly Glu His Trp Leu Gly Asn Glu Val Val His	
355 360 365	
cag ctc acc aga agg gca gcc tac tct ctg cgt gtg gag ctg caa gac	1153
Gln Leu Thr Arg Arg Ala Ala Tyr Ser Leu Arg Val Glu Leu Gln Asp	
370 375 380	
tgg gaa ggc cac gag gcc tat gcc cag tac gaa cat ttc cac ctg ggc	1201
Trp Glu Gly His Glu Ala Tyr Ala Gln Tyr Glu His Phe His Leu Gly	
385 390 395 400	
agt gag aac cag cta tac agg ctt tct gtg gtc ggg tac agc ggc tca	1249
Ser Glu Asn Gln Leu Tyr Arg Leu Ser Val Val Gly Tyr Ser Gly Ser	
405 410 415	
gca ggg cgc cag agc agc ctg gtc ctg cag aac acc agc ttt agc acc	1297
Ala Gly Arg Gln Ser Ser Leu Val Leu Gln Asn Thr Ser Phe Ser Thr	
420 425 430	
ctt gac tca gac aac gac cac tgt ctc tgc aag tgt gcc cag gtg atg	1345
Leu Asp Ser Asp Asn Asp His Cys Leu Cys Lys Cys Ala Gln Val Met	
435 440 445	
tct gga ggg tgg tgg ttt gac gcc tgt ggc ctg tca aac ctc aac ggc	1393
Ser Gly Gly Trp Trp Phe Asp Ala Cys Gly Leu Ser Asn Leu Asn Gly	
450 455 460	
gtc tac tac cac gct ccc gac aac aag tac aag atg gac ggc atc cgc	1441
Val Tyr Tyr His Ala Pro Asp Asn Lys Tyr Lys Met Asp Gly Ile Arg	
465 470 475 480	
tgg cac tac ttc aag ggc ccc agc tac tca ctg cgt gcc tct cgc atg	1489
Trp His Tyr Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ala Ser Arg Met	
485 490 495	
atg ata cgg cct ttg gac atc ta	1512
Met Ile Arg Pro Leu Asp Ile	
500	

<211> 503

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Human angiopoietin 4 (ANG-4), mRNA

<400> 12

Met Leu Ser Gln Leu Ala Met Leu Gln Gly Ser Leu Leu Leu Val Val
1. 5 10 15

Ala Thr Met Ser Val Ala Gln Gln Thr Arg Gln Glu Ala Asp Arg Gly
20 25 30

Cys Glu Thr Leu Val Val Gln His Gly His Cys Ser Tyr Thr Phe Leu
35 40 45

Leu Pro Lys Ser Glu Pro Cys Pro Pro Gly Pro Glu Val Ser Arg Asp
50 55 60

Ser Asn Thr Leu Gln Arg Glu Ser Leu Ala Asn Pro Leu His Leu Gly
65 70 75 80

Lys Leu Pro Thr Gln Gln Val Lys Gln Leu Glu Gln Ala Leu Gln Asn
85 90 95

Asn Thr Gln Trp Leu Lys Lys Leu Glu Arg Ala Ile Lys Thr Ile Leu
100 105 110

Arg Ser Lys Leu Glu Gln Val Gln Gln Met Ala Gln Asn Gln Thr
115 120 125

Ala Pro Met Leu Glu Leu Gly Thr Ser Leu Leu Asn Gln Thr Thr Ala
130 135 140

Gln Ile Arg Lys Leu Thr Asp Met Glu Ala Gln Leu Leu Asn Gln Thr
145 150 155 160

Ser Arg Met Asp Ala Gln Met Pro Glu Thr Phe Leu Ser Thr Asn Lys
165 170 175

*
Leu Glu Asn Gln Leu Leu Leu Gln Arg Gln Lys Leu Gln Gln Leu Gln
180 185 190

Gly Gln Asn Ser Ala Leu Glu Lys Arg Leu Gln Ala Leu Glu Thr Lys
195 200 205

Gln Gln Glu Glu Leu Ala Ser Ile Leu Ser Lys Lys Ala Lys Leu Leu
210 215 220

Asn Thr Leu Ser Arg Gln Ser Ala Ala Leu Thr Asn Ile Glu Arg Gly
225 230 235 240

Leu Arg Gly Val Arg His Asn Ser Ser Leu Leu Gln Asp Gln Gln His
245 250 255

Ser Leu Arg Gln Leu Leu Val Leu Leu Arg His Leu Val Gln Glu Arg
260 265 270

Ala Asn Ala Ser Ala Pro Ala Phe Ile Met Ala Gly Glu Gln Val Phe
275 280 285

Gln Asp Cys Ala Glu Ile Gln Arg Ser Gly Ala Ser Ala Ser Gly Val
290 295 300

Tyr Thr Ile Gln Val Ser Asn Ala Thr Lys Pro Arg Lys Val Phe Cys
305 310 315 320

Asp Leu Gln Ser Ser Gly Gly Arg Trp Thr Leu Ile Gln Arg Arg Glu
325 330 335

Asn Gly Thr Val Asn Phe Gln Arg Asn Trp Lys Asp Tyr Lys Gln Gly
340 345 350

Phe Gly Asp Pro Ala Gly Glu His Trp Leu Gly Asn Glu Val Val His
355 360 365

Gln Leu Thr Arg Arg Ala Ala Tyr Ser Leu Arg Val Glu Leu Gln Asp
370 375 380

Trp Glu Gly His Glu Ala Tyr Ala Gln Tyr Glu His Phe His Leu Gly
385 390 395 400

Ser Glu Asn Gln Leu Tyr Arg Leu Ser Val Val Gly Tyr Ser Gly Ser
405 410 415

Ala Gly Arg Gln Ser Ser Leu Val Leu Gln Asn Thr Ser Phe Ser Thr
420 425 430

Leu Asp Ser Asp Asn Asp His Cys Leu Cys Lys Cys Ala Gln Val Met
435 440 445

Ser Gly Gly Trp Trp Phe Asp Ala Cys Gly Leu Ser Asn Leu Asn Gly
450 455 460

Val Tyr Tyr His Ala Pro Asp Asn Lys Tyr Lys Met Asp Gly Ile Arg
465 470 475 480

Trp His Tyr Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ala Ser Arg Met
485 490 495

Met Ile Arg Pro Leu Asp Ile
500