(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/088698 A2

12 June 2014 (12.06.2014) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/52 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) Tat tional Application Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCT/US2013/064366 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
10 October 2013 (10.10.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(30) Priority Data: ZW.
61/734,190 6 December 2012 (06.12.2012) us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant: COHERENT LOGIX, INCORPORATED kind of regional protection available): ARIPO (BW, GH,
[US/US]; 1120 South Capital of Texas Hwy., Building 3, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Suite 310, Austin, Texas 78746 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72) Tnventors: DOBBS, Carl S.; 12010 Jim Bridger Drive, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
) , EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Austin, Texas 78737 (US). MALIK, Afzal M.; 10205
. . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Peekston Drive, Austin, Texas 78726 (US). FAULKNER,
) : TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Kenneth R.; 3809 Lost Cavern Cove, Austin, Texas 78739 KM, ML, MR, NE, SN, TD, TG)
— (US). SOLKA, Michael B.; 6209 Cat Mountain Cove, ? ? T T T ’
= Austin, Texas 78731 (US). Published:
= (74) Agent: HOOD, Jeffrey C.; Meyertons, Hood, Kivlin, — with declaration under Article 17(2)(a); without abstract;
— Kowert & Goetzel, P.C., P.O. Box 398, Austin, TX 78767- title not checked by the International Searching Authority
— 0398 (US).
<
o]
AN
\o
o0
o]
&
~
-
e
=]
g\
O (54) Title: PROCESSING SYSTEM WITH SYNCHRONIZATION INSTRUCTION

(57) Abstract:

WO 2014/088698 PCT/US2013/064366

PROCESSING SYSTEM WITH SYNCHRONIZATION INSTRUCTION

BACKGROUND

Technical Field
[0001] The present disclosure relates to computer systems and digital signal processors
(DSP), and more particularly, to multi-processor systems.

Description of the Related Art

[0002] The present application relates to electronic systems, especially digital electronic
systems such as computers, digital signal processors (DSP), and these systems embedded in
larger systems. More particularly the concept relates to signal networks within digital electronic
systems, and especially to synchronization signal networks within multi-processor arrays
(MPAs). An MPA is composed of a group of processing elements (PE), supporting memories
(SM), and a primary interconnection network (PIN) that supports high bandwidth data
communication among the PEs and memories.

[0003] A PE has registers to buffer input data and output data, an instruction processing unit
(IPU), and logic / circuitry for performing arithmetic and logic functions on the data plus a
number of switches and ports to communicate with other parts of the system. The IPU fetches
instructions from memory, decodes them, and sets appropriate control signals to move data in
and out of the processor and to perform arithmetic and logical functions.

[0004] Memory for computers and DSP is organized in a hierarchy with fast memory at the
top and slower but higher capacity memory at each step down the hierarchy. In an MPA,
supporting memories at the top of the hierarchy are located adjacent to each PE. Each supporting
memory may be specialized to hold only instructions or only data. Supporting memory for a
particular PE may be private to that PE or shared with other PE.

[0005] MPAs were first constructed as arrays of digital integrated circuits (ICs) on circuit
boards, each IC containing one processor, and the circuit board providing the data
communication links to interconnect the processors. The continuing progress in very large scale
integration (VLSI) technology based on complementary metal oxide silicon (CMOS) transistor
circuits with finer fabrication dimensions has resulted in great increases in the densities of logic
and memory circuits per silicon IC chip. Today, on a single IC chip, MPAs are made with a
hundred or more processors and their supporting memories and interconnection networks. These

MPA chips may be further interconnected on circuit boards to make larger systems.

WO 2014/088698 PCT/US2013/064366

[0006] PEs suitable for MPA may be more energy efficient than general purpose processors
(GPP), simply because of the large number of PEs per MPA chip, and the extra energy becomes
extra waste heat and its removal adds to chip packaging and operational costs.
SUMMARY OF THE EMBODIMENTS

[0007] Various embodiments of a multi-processor array are disclosed. Broadly speaking, a
circuit and a method are contemplated in which a plurality of processors and a plurality
controllers are coupled together in an interspersed fashion. Each processor includes a plurality of
processor ports and a sync adapter, which includes a plurality of adapter ports. Each adapter port
is coupled to a controller port of one of a plurality of controllers, each controller including a
plurality of controller ports, and a configuration port. Each processor is configured to send a
synchronization signal through one or more adapter ports to a respective one or more controllers,
and is further configured to pause execution of program instructions dependent on receiving a
response from the one or more controllers.
[0008] In a further embodiment, each controller may include a configuration port. The
configuration port may be configured to receive one or more configuration data bits.
[0009] In another non-limiting embodiment, each controller may be further configured to
send the response dependent upon the one or more configuration bits.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 is a block diagram illustrating an embodiment of computing system.
[0011] FIG. 2A is a block diagram illustrating an embodiment software and hardware
hierarchy of a computing system.
[0012] FIG. 2B is a block diagram illustrating a test and development system.
[0013] FIG. 3 is a block diagram illustrating an embodiment of a multiprocessor integrated
circuit.
[0014] FIG. 4 is a block diagram illustrating an embodiment of a multiprocessor array.
[0015] FIG. 5 is a block diagram illustrating an embodiment of a synchronization controller.
[0016] FIG. 6 is a block diagram illustrating another embodiment of a synchronization
network.
[0017] FIG. 7 is a block diagram illustrating an embodiment of a synchronization adapter.
[0018] FIG. 8 is a block diagram illustrating an embodiment of a synchronization controller.
[0019] FIG. 9 is a block diagram illustrating synchronization chaining.
[0020] FIG. 10 is a flow diagram depicting an embodiment of a method for operating a

multiprocessor array.

WO 2014/088698 PCT/US2013/064366

[0021] FIG. 11 is a flow diagram depicting an embodiment of another method for operating a
multiprocessor array.

[0022] FIG. 12 is a block diagram illustrating the synchronization between two processing
elements of a multiprocessor array.

[0023] FIG. 13 is a flow diagram depicting an embodiment of a method for synchronizing
processing elements of a multiprocessor system.

[0024] FIG. 14 is a block diagram illustrating the synchronization between three processing
clements of a multiprocessor system.

[0025] FIG. 15 is a flow diagram depicting an embodiment of a method for operating a
synchronization controller in a multiprocessor system.

[0026] FIG. 16 is a flow diagram depicting an embodiment of a method for synchronizing
two groups of processors in a multiprocessor system.

[0027] FIG. 17 is a flow diagram depicting an embodiment of a method for synchronizing
two sets of processors in a multiprocessor system.

[0028] FIG. 18 is a flow diagram depicting an embodiment of a method for synchronizing
two sets of processors in a multiprocessor system.

[0029] FIG. 19 is a flow diagram depicting an embodiment of a method for designing
software for multiprocessor system.

[0030] While the disclosure is susceptible to various modifications and alternative forms,
specific embodiments thereof are shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that the drawings and detailed description
thereto are not intended to limit the disclosure to the particular form illustrated, but on the
contrary, the intention is to cover all modifications, equivalents and alternatives falling within the
spirit and scope of the present disclosure as defined by the appended claims. The headings used
herein are for organizational purposes only and are not meant to be used to limit the scope of the
description. As used throughout this application, the word “may” is used in a permissive sense
(i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must).
Similarly, the words “include,” “including,” and “includes” mean including, but not limited to.
[0031] Various units, circuits, or other components may be described as “configured to”
perform a task or tasks. In such contexts, “configured to” is a broad recitation of structure
generally meaning “having circuitry that” performs the task or tasks during operation. As such,
the unit/circuit/component can be configured to perform the task even when the

unit/circuit/component is not currently on. In general, the circuitry that forms the structure

WO 2014/088698 PCT/US2013/064366

corresponding to “configured to” may include hardware circuits. Similarly, various
units/circuits/components may be described as performing a task or tasks, for convenience in the
description. Such descriptions should be interpreted as including the phrase “configured to.”
Reciting a unit/circuit/component that is configured to perform one or more tasks is expressly
intended not to invoke 35 U.S.C. § 112, paragraph six interpretation for that
unit/circuit/component. More generally, the recitation of any element is expressly intended not
to invoke 35 U.S.C. § 112, paragraph six interpretation for that element unless the language
“means for” or “step for” is specifically recited.
DETAILED DESCRIPTION OF EMBODIMENTS

Incorporation by Reference

[0032] U.S. Patent No. 7,415,594 titled “Processing System With Interspersed Stall

Propagating Processors And Communication Elements” whose inventors are Michael B. Doerr,
William H. Hallidy, David A. Gibson, and Craig M. Chase is hereby incorporated by reference in
its entirety as though fully and completely set forth herein.

[0033] U.S. Patent Application Serial No. 13/274,138, titled “Disabling Communication in a
Multiprocessor System”, filed October 14, 2011, whose inventors are Michael B. Doerr, Carl S.
Dobbs, Michael B. Solka, Michael R Trocino, and David A. Gibson is hereby incorporated by
reference in its entirety as though fully and completely set forth herein.

Terms

[0034] Hardware Configuration Program — a program consisting of source text that can be
compiled into a binary image that can be used to program or configure hardware, such as an
integrated circuit, for example.

[0035] Computer System — any of various types of computing or processing systems,
including a personal computer system (PC), mainframe computer system, workstation, network
appliance, internet appliance, personal digital assistant (PDA), grid computing system, or other
device or combinations of devices. In general, the term "computer system" can be broadly
defined to encompass any device (or combination of devices) having at least one processor that
executes instructions from a memory medium.

[0036] Automatically — refers to an action or operation performed by a computer system
(e.g., software executed by the computer system) or device (e.g., circuitry, programmable
hardware elements, ASICs, etc.), without user input directly specifying or performing the action
or operation. Thus the term "automatically" is in contrast to an operation being manually
performed or specified by the user, where the user provides input to directly perform the

operation. An automatic procedure may be initiated by input provided by the user, but the

WO 2014/088698 PCT/US2013/064366

subsequent actions that are performed “automatically” are not specified by the user, i.e., are not
performed “manually”, where the user specifies each action to perform. For example, a user
filling out an electronic form by selecting each field and providing input specifying information
(e.g., by typing information, selecting check boxes, radio selections, etc.) is filling out the form
manually, even though the computer system must update the form in response to the user
actions. The form may be automatically filled out by the computer system where the computer
system (e.g., software executing on the computer system) analyzes the ficlds of the form and fills
in the form without any user input specifying the answers to the fields. As indicated above, the
user may invoke the automatic filling of the form, but is not involved in the actual filling of the
form (e.g., the user is not manually specifying answers to fields but rather they are being
automatically completed). The present specification provides various examples of operations
being automatically performed in response to actions the user has taken.

Overview

[0037] A computer system that is capable of parallel processing may be composed of
multiple data processing elements (PE), supporting memory (SM) units, and a high bandwidth
interconnection network (IN) for moving data between and among individual PE, SM, and
system /O ports. The primary IN (or PIN) in such a system may be optimized for high
bandwidth and low average delivery times (latency). However, PINs may not be optimized for
guaranteed delivery (messages can block other messages resulting in “busy” signals). As a
result, a PIN may not be suitable for the synchronization of tasks across a group of PEs. In some
embodiments, an additional network may be added to the computer system for the purpose of
synchronization. Such a network may allow for guaranteed delivery of messages, however, the
network may add complexity, power dissipation, or physical size to the computer system. The
embodiments illustrated in the drawings and described below may provide techniques to
synchronize parallel processing elements within a computer system while minimizing the impact
to the complexity, power dissipation and physical size of the computer system.

Parallel Processing

[0038] Older microprocessors and digital signal processors (DSPs) may execute one task at a
time, which is commonly referred to as following a thread of execution. Seen from a processor’s
IPU unit, the thread of execution is a stream of instructions. In some embodiments, a single
stream of results is generated in response to the stream of instructions. This mode of execution is
commonly referred to as Single Instruction Single Data (SISD). In other embodiments, multiple
arithmetic and logic units (ALUs) may be employed allowing for multiple streams of results.

This mode of execution is commonly referred to as Single Instruction Multiple Data (SIMD).

WO 2014/088698 PCT/US2013/064366

Larger microprocessors and DSPs may have a SIMD capability and, in various embodiments,
software may be employed to exploit such parallelism to boost performance. For example, the
used of SIMD may accelerate video compression and trans-coding, computer vision, speech
recognition, and encryption.

[0039] SIMD instructions may allow for the efficient processing of instructions. The
efficiency, however, may depend on the rate at which data is supplied to the ALUs. Typically, a
number of data results from one SIMD instruction ranges from 2 to 8, and as the number of data
results per SIMD increases, a number of bits included in cach data item typically decreases.
Efforts to increase that number of data items per SIMD instruction may result in various
problems, including, but not limited to: providing multiple data items to the ALUs
simultaneously from common memory, storing results from the ALUs simultaneously back into
memory, extra power dissipation during operation, and additional leakage power dissipation
when the extra ALUs are idle but powered up and ready.

[0040] More recent microprocessors and DSPs are able to execute multiple threads at the
same time by means of multiple IPU as well as ALUs. What is replicated and whether it is
specialized varies widely with each microprocessor/DSP design type. Because each thread may
have an independent stream of instructions this mode of parallel operation is called multi-
instruction multi-data (MIMD). Typical number of threads per processor is 2-4, though
processors have been designed capable of 16 threads or more. Efforts to increase the number of
threads per processor run into problems of getting simultaneous streams of instructions to
multiple IPU from common memory and extra leakage power dissipation for extra registers,
these being in addition to the problems of multiple data streams to feed the corresponding ALUs.

Multi-processing

[0041] Multi-processor systems allow programmers to divide large tasks into multiple
smaller tasks that can be executed in parallel. Parallel execution can be used to shorten the time
to complete the large task, or to reduce the power consumption (by reducing the processor’s
clock frequency). If the clock frequency is reduced then the power supply voltage may also be
reduced to save energy.

[0042] A multi-processor system may be employed in one of various computer systems. An
embodiment of a computing system is illustrated in FIG. 1. In the illustrated embodiment,
computing system 100 may be desktop computer, laptop computer, tablet computer, smartphone,
or any other suitable system. Computing system 100 may, in various embodiments, include one
or more embedded systems, such as, e.g., embedded system 110. In some embodiment,

embedded system 100 may include one or more integrated circuits (ICs) such as, e.g., multi-

WO 2014/088698 PCT/US2013/064366

processor IC 120. Although only one IC is depicted in embedded system 110, in other
embodiments, different numbers of ICs may be employed, each of which may be configured to
perform different functions.

[0043] Turning to FIG. 2A, a block diagram depicting an embodiment of software and
hardware hierarchy is illustrated. At the bottom of the hierarchy, is computing system 240. In
some embodiments, computing system 240 may correspond to computing system 100.
Computing system 240 may, in various embodiments, be a desktop workstation, while in other
embodiments, computing system 240 may be a laptop computer or other mobile device, and may
include components such as displays, hard disk drives, network interface devices, and any other
suitable components.

[0044] At the next level of the hierarchy, is operating system 250. In various embodiments,
operating system 250 may be one of various types of operating systems, such as, e.g., Windows,
Linux, Unix, and the like. Operating systems, such as operating system 250 may, in various
embodiments, provide commands and program instructions necessary for application or user
programs to access the hardware of computing system 240.

[0045] As described above, operating system 250 may provide access to hardware resources
for other programs. In the illustrated embodiment, such programs include design tool suite 210,
and project databases 220A and 220B. In some embodiments, design tool suite 210 may be
configured to allow a user to configure hardware resources within computing system 240. As will
be described in more detail below, such configuration may include storing control bits into one or
more control registers within a multi-processor. The control bits may, in various embodiments,
control the routing of information between processing elements of the multi-processor. In some
embodiments, the control bits may also control synchronization between processing elements of
a multi-processor.

[0046] An embodiment of a test and development system is illustrated in FIG. 2B. In the
illustrated embodiment, multi-processor IC 270 is included in a development system 250.
Development system 250 is coupled to test bench 260. In various embodiments, test bench 260
may include test equipment, a laptop computer, and any other suitable equipment to aid in the
test and development of multi-processor 1C 270.

[0047] During operation, development system 250 may be used to determine how to
configure multi-processor 270 for use with a given software application. In some embodiments,
the configuration may include determining how to synchronize one or more processing elements
within multi-processor 270 in order to allow the individual processing elements to exchange data

during parallel processing.

WO 2014/088698 PCT/US2013/064366

[0048] It is noted that the embodiment illustrated in FIG. 2B is merely an example. In other
embodiments, different numbers of multi-processor ICs and different test equipment may be
employed.

[0049] An embodiment of a multi-processor IC is illustrated in FIG. 3. In the illustrated
embodiment, multi-processor IC 300 includes a processor array 310. Multi-processor IC 300
may, in other embodiments, also include other circuits and functional blocks (not shown). For
example, multi-processor IC 300 may include and analog/mixed-signal block which may include
oscillators, phase-locked loops (PLLs), internal power supply generation and regulation circuits,
and the like.

[0050] During operation, program instructions stored in memory or on a hard disk drive or
other suitable media, may be executed by processor array 310. In some embodiments, individual
processing elements (PEs) within processor array 310 may be configured to execute certain
program instructions. As described below in more detail, the execution of program instructions
may, in various embodiments, be coordinated between PEs through the use of synchronization.
[0051] Turning to FIG. 4, an example multi-processor array (MPA) is illustrated. In some
embodiments, MPA 400 may correspond to processor array 310 of multi-processor IC 300 as
illustrated in FIG. 3. In the illustrated embodiments, MPA 400 includes a plurality of processing
elements (PEs) and a plurality of supporting memory (SM) and an interconnection network (IN).
The IN is composed of switch nodes and links. Switch nodes, also referred to as routers, may be
used with the links to form communication pathways between PEs and between PEs and MPA
I/O ports. However, at each PE any information communicated may be buffered in SM. In the
illustrated embodiment, SM is combined with the communication path routers called data-
memory routers (DMRs). As used herein, a PE may also be referred to as a PE node, and a DMR
may also be referred to as a DMR node. A DMR is also referred to herein as a “configurable
communication element, or CCE.”

[0052] The links between DMRs as illustrated in FIG. 4 form a rectilinear mesh. In other
embodiments, however, many other connection schemes are possible and contemplated. In the
MPA connection scheme illustrated in FIG. 4, each PE is connected to four neighbor DMRs,
while each DMR is connected to four neighbor PEs as well as four neighbor DMRs. Other
connection schemes are also envisioned to support higher dimensionality INs, such as the use of
six DMR-to-DMR links per DMR to support a three dimensional rectilinear mesh, or eight links
per DMR to support the four diagonal directions in addition to the north, east, south, and west

directions. Links need not be limited to physically nearest neighbors.

WO 2014/088698 PCT/US2013/064366

[0053] The combination of an MPA and application software may, in various embodiments,
be referred to as a parallel processing system (PPS). For example, an MPA may be programmed
to buffer and analyze raw video data from a camera, then perform video data compression on the
buffer contents for transmission of the compressed data out onto a radio link. This combination
of application software and MPA may be referred to as a parallel video signal processor, for
example.

[0054] MPA 400 with chip I/O cells may be used in any of various systems and applications
where general-purpose microprocessors, DSPs, FPGAs, or ASICs are currently used. For
example, the processing systems illustrated in FIG. 4 may be used in any of various types of
computer systems, digital signal processors (DSP) or other devices that require computation.
[0055] It is noted that the MPA illustrated in FIG. 4 is merely an example. In other
embodiments, different numbers of PEs and different connection mechanisms between PEs may
be employed.

Synchronization

[0056] While multi-processing may allow for more program instructions to be executed
simultaneously, multi-processing may create the need to synchronize smaller tasks at specific
boundaries in time and space for efficient communication and coordination. Two or more tasks
are synchronized when they begin on the same smallest tic of the system clock, also called clock
cycle or just “cycle” for short. The synchronization of task may, in various embodiments, be
difficult to implement synchronization with a small number of cycles.

[0057] As noted above the PIN does not guarantee message delivery, and as such, is unsuited
for synchronization of a PE. An alternative is to employ a software barrier in each PE, and a
shared memory location. When a PE reaches its barrier it increments the location value and then
polls it periodically until the location value matches the expected number of PE that are to be
coordinated. When employing such a technique, however, most PE architectures will not
guarantee that a set of PEs will all continue beyond the barrier synchronized to the other PE
within the same clock cycle.

[0058] In various embodiments, PE architectures might be able to synchronize tasks within a
wide range of cycles, such as, e.g., 1 to 20 cycles, but the actual number of cycles in any
particular instance depends on several factors beyond the normal control of programmers, such as
the state of other active threads, the location of currently processed data in SM, caching, interrupt
processing, etc.

[0059] In some embodiments, a synchronization network (also referred to herein as a “sync

network™) may be employed to synchronize task between one or more PEs of a MPA. While a

WO 2014/088698 PCT/US2013/064366

primary interconnect network (PIN) of a multi-processor system may be composed of links and
nodes wherein the nodes have ports to connect to the links and to interspersed processing
elements (PE) and supporting memories (SM), a sync network may be composed of a set of sync
controllers, a set of PE adapters and connections between them and a new instruction in each PE.

[0060] An embodiment of a MPA with a sync network is illustrated in FIG. 5. In the
illustrated embodiment, a single sync controller (C) is used for each node in the PIN. The sync
controllers in a system may all be identical. Each sync controller may have multiple ports each
one to couple to a neighboring PE, and one port for configuration purposes. In some
embodiments, the set of neighboring PE that are coupled to a sync controller may be the same set
to which the nearest PIN node is coupled. The configuration port may be coupled to a SM
location, a PE register, a secondary network for programming/debug, or any other means of
supplying it with configuration data. The PE port on the sync controller has an inbound sync
signal and an outbound sync_stall signal.

[0061] In some embodiments, each PE may employ a sync adapter (A) that has multiple
ports, each one for coupling to a sync controller, plus its own PE. A sync adapter may, in some
embodiments, be integrated into a PE, while in other embodiments, the sync adapter may be a
separate entity. The different ports coupled to sync controllers may be discriminated by
directions as seen from a PE, such as the compass directions NE, SE, SW, and NW in the case of
four couplings. Each port on the adapter has an outbound sync signal and an inbound sync_stall
signal. Other connection schemes between sync controller and adapters are also envisioned to
support higher dimensionality INs. Links between sync controllers and sync adapters need not
be limited to physically nearest neighbors.

[0062] It is noted that the sync network illustrated in FIG. 5 is merely an example. In other
embodiments, different numbers of sync controllers and adapters, and different connections
between sync controllers and adapters are possible and contemplated.

[0063] In some embodiments, software control of the synchronization between PEs may be
employed. In such cases, a dedicated “sync” instruction may be included to the PE instruction
set. In various embodiments, the assembly language format for such a instruction may be:

sync <direction list>

[0064] The <direction list> field may indicate a list, i.e., one or more, of sync
controller directions to send (assert) a sync signal and then wait for a de-asserted sync_stall
signal. A PE may wait until all sync_stall signals corresponding to the list have been de-asserted

before executing the next instruction.

10

WO 2014/088698 PCT/US2013/064366

[0065] In some embodiments, if a sync controller is not configured to synchronize this PE to
one or more other PEs then the sync_stall signal will remain de-asserted and the PE may not wait
for the sync stall signal. The sync controller may ignore sync from, and may not assert
sync_stall to, a PE that is “masked” in the sync configuration register. In various embodiments,
the sync configuration register may store information configuration information specific to a
given application being executed by a MPA.

[0066] If the sync controller is configured to synchronize a given PE to one or more other
non-masked PEs, and the non-masked PEs have not yet asserted their respective sync signals,
then the sync controller may respond by asserting back the sync stall signal. The given PE may
then wait until the sync controller has received all non-masked PE sync signals and de-asserts all
non-masked sync_stall signals.

[0067] It is noted that in various embodiments, a sync controller may be included as part of a
DMR, while in other embodiments, each sync controller may be implemented as a standalone
unit within an MPA.

[0068] Turning to FIG. 6, an embodiment of a portion of a sync network is illustrated. In the
illustrated embodiment, sync network 600 includes sync adapters 601, 603, and 605, and sync
controllers 602, 604, and 606. The connection between each sync controller sync adapter
includes two wires. One wire may be used to communication a sync_request (SR) signal, while
the other wire may be used to communication a sync_stall (SS) signal. In some embodiments, a
SR signal may be sent from a sync adapter to a sync controller, and a SS may be sent from a sync
controller to a sync adapter.

[0069] The two wires included in a connection between a given sync controller and a given
sync adapter, may encoded four states. In the first state, both the SR and SS signals may be at a
logic 0 level, indicating inactivity. The SR signal may be a logic 0 level and the SS signal may be
a logic 1 level in the second state, indicating a sync barrier is activated, but not yet requested. In
the third state, the SR and SS signals may both be at a logic 1 value indicating that the sync
barrier is active and requested, but has not yet been completed. In the fourth state, the SR request
signal may be at a logic 1 value and the SS signal may be at a logic 0 value indicating that the
sync barrier has been completed.

[0070] It is noted that the embodiment illustrated in FIG. 6 is merely an example. In other
embodiments, different numbers of sync adapter and sync controllers, as well as different
configurations of the sync controller and sync adapters may be employed.

[0071] An embodiment of a sync adapter is illustrated in FIG. 7. In the illustrated
embodiment, sync adapter 700 includes OR gate 710 coupled. Sync adapter 700 may, in various

11

WO 2014/088698 PCT/US2013/064366

embodiments, be included within a PE, while in other embodiments, sync adapter may be a
separate entity within a MPA. Although sync adapter 700 includes an OR gate, in other
embodiments, other logic gates and configurations of logic gates may be employed.

[0072] During operation, sync adapter 700 may mediate communication between a PE’s
instruction fetch and decode unit and neighboring sync controllers. SR signals received from a
PE’s instruction fetch and decode unit may pass through sync adapter 700 to the neighboring
sync controllers. In some embodiments, the SR signals may be a function of a software
instruction such as the instruction previously described. SS signals return from each of sync
controllers and are logically combined by OR gate 710. The resultant signal may be used to stall
the PE’s instruction fetch and decode unit. In some embodiments, a single active SS signal from
one of the neighboring sync controllers may be sufficient to delay instruction fetch for a next PE
clock cycle.

[0073] It is noted that the sync adapter illustrated in FIG. 7 is merely an example. In other
embodiments, different numbers of logic gates and different numbers of SR and SS signals are
possible and contemplated.

[0074] Turning to FIG. 8, an embodiment of a sync controller is illustrated. In the illustrated
embodiment, sync controller 800 includes logic gates 801 through 804, and mask register 805. In
some embodiments, mask register may be located externally to sync controller 800 or may a
mapped location in memory. Registers such as those described herein may be a particular
embodiment of a storage circuit configured to store one or more data bits. In some embodiments,
a register may include one or more data storage cells such as, latches, flip-flops, and the like.
Register 805 may include a mask bit corresponding to each “direction” of a corresponding PE. It
is noted that while only four directions are depicted in the mask register 805, in other
embodiments, different numbers of “directions” are possible and contemplated.

[0075] During operation, sync controller 800 receives SR signals 806 from neighboring sync
adapter, such as, e.g., sync adapter 700 as illustrated in FIG. 7. Logic gates 801 through 804 may
then generate SS signals 807 by combining the received SR signals. In some embodiments,
configuration bits from mask register 805 may also be used in the generation of the SS signals
807. For example, if a mask bit is a logic 0, the input from the corresponding direction may be
ignored and the SS signal corresponding to that direction may be set to a logic 0 level indicating
that the corresponding PE is not stalled.

[0076] When a mask bit is at a logic 1 level, the state of the SS signal for the corresponding
direction may depend on the SR signal from that direction and the output of the corresponding

OR gate within the corresponding logic gates. When the mask bit is at a logic 0 level, the state of

12

WO 2014/088698 PCT/US2013/064366

the corresponding SS signal and the corresponding SR signal will not affect the state of the SS
signal.

[0077] When two or more mask bits are at a logic 1 level, the corresponding SS signals will
be at a logic 0 level which may, in various embodiments, indicate a “no stall” condition, when
the SR signals are at a logic 0 level. If the SR signal corresponding to the SS signal is at a logic 1
level, and at least one other SR signal is at a logic 1 level, the SS signal will be at a logic 1 level
which may indicate a “stall” condition.

[0078] It is noted that “low,” “low logic level” or “logic 0 level” refers to a voltage at or near
ground and that “high,” “high logic level” or “logic 1 level” refers to a voltage level sufficiently
large to turn on a n-channel MOSFET and turn off a p-channel MOSFET. In other embodiments,
different technology may result in different voltage levels for “low” and “high. It is further noted
that the embodiment of a sync controller depicted in FIG. 8 is merely an example. In other
embodiments, different logic gates and different configurations of logic gates may be employed.
[0079] It is noted that for any real processor array, there is a finite number, n, of PEs
connected to a DMR, and this is the maximum number of PE that can be synchronized in one
clock cycle by that DMR. In some embodiments, this number may be 4, although in other
embodiments, different numbers may be employed. If there are t threads of execution per PE then
t*n threads can be synchronized with a single DMR by multiplying the number of sync and
sync_stall signals by t in each sync controller port and in each adapter port. To synchronize more
than n PEs, different techniques may be employed.

[0080] By programming chains of carefully-constructed sync commands across a large group
of PEs, one can synchronize any number of PEs, though not immediately in one clock cycle. The
programming technique is to arrange for a stall barrier from the outermost PE in a group to some
DMR that is central to the group, and then arrange for a release wave to propagate from the
central DMR to the outermost PE. In some embodiments, no-operation instructions (commonly
referred to as “nops”) may be added to fine tune the synchronization.

[0081] Turning to FIG. 9, an example describing the synchronization of six PEs arranged in a
line is illustrated. It is noted that the PEs may be arranged in any shape, but that for the purposes
of clarity, a line was chosen for the example.

[0082] For a line of PEs, DMRs may be used to synchronize pairs of PE as shown in FIG. 9.
A given DMR may be configured to release a pair of PEs from sync stall only when both the PEs
at the DMR’s NE and NW ports have issued a sync signal to the DMR. To prevent other PE
from interfering, all five DMRs are configured to mask (ignore) their sync ports in the SW and

SE directions (this is not shown on the diagram except by the absence of DMR connections in the

13

WO 2014/088698 PCT/US2013/064366

SW, SE directions to other PE). The configuration of the DMRs is made in advance of the sync
instructions by storing configuration bits in the Sync Configuration Register in each DMR.

[0083] The sync programming necessary to synchronize the six PEs depicted in FIG. 9 is also
illustrated in FIG. 9. A set of instructions is listed below each PE. Each PE will execute the
corresponding instructions from top to bottom. The dotted connector lines show which sync
instructions for different PE are paired to operate together through a common DMR (a DMR
connected to both PE in the pair). Each PE may arrive at the first sync instruction on a different
clock cycle, but it is forced by the hardware to exit that sync instruction on the same clock cycle
as the PE to which it is paired. In this particular chaining example PEs are paired, however,
more than two PE may be synchronized in a single cycle as needed, subject to the DMR
constraints described above.

[0084] Examining at the PE programming as illustrated in FIG. 9, it is noted that two chains
that cross in the center. The first chain has a first link made of the first pair of sync instructions
for PEOO and PEO1, a second link made of the first pair of sync instructions between PEOI and
PEO2, a third link made of the only pair of sync instructions between PE02 and PEO3, a fourth
link made of the second pair of sync instructions between PEO3 and PE04, and a fifth link made
of the second pair of sync instructions between PE04 and PEOS5. The second chain is formed
similarly but in mirror image to the first chain; and it begins with the link made by the first pair
of sync instructions between PEOS5 and ends with the fifth link made by the second pair of sync
instructions between PEOO and PEOI.

[0085] Thus when PEO1 is released from the stall at the first syncSW instruction, it will be
caught by the first syncSE instruction, which by being paired with PE02’s first syncSW
instruction is the next link in the chain. Similarly in the column for PE0Q2 when PEO2 is released
from the first syncSW instruction it will be caught by its first syncSE instruction, which by being
paired with PE02’s first syncSW instruction is the next link in the chain. And so forth.

[0086] Assume that each PE has a programmed task and that each of these tasks can take a
different, and possibly random, amount of time; then the PEs are to exchange data to be ready for
another iteration. To prepare for the data exchange, the PEs may be synchronized with the sync
programming of FIG. 9.

[0087] As each PE ends its task, it executes the first sync instruction in its corresponding
column in FIG. 9. If it is the first PE to hit a sync instruction in a chain, then it waits. More PE
arrive at the upper half of each chain causing links to be released, where upon each PE proceeds
to the next sync instruction, which is in a lower half chain, and waits. Eventually the upper part

of both chains release and the link across the center DMR 03 is released. Since all of the PE are

14

WO 2014/088698 PCT/US2013/064366

now waiting on the lower half chains, these chains release PE in quick succession at a rate of one
link per cycle.

[0088] As shown, it may be necessary to have inner PEs wait for the outermost PE to be
released during the outward moving wave of sync exits. This may be programmed by adding
nops after the sync instruction where exit occurs. When a PE executes a nop instruction it waits
one clock cycle. The number of nops to use in the program for each PE is computed knowing
that the outward moving sync executions will take exactly one clock cycle each. Since each
outward moving sync execution takes one cycle and all nops take one cycle and no PEs are
executing any code that could potentially stall, all PEs may be released in a synchronous manner.
The programming shown in the diagram will guarantee that all PEs will exit the instruction
sequence on the exact same clock cycle.

[0089] The technique is scalable to MPAs with thousands of PE. For example, a square array
of 2025 PE has an edge length of 45 PE or 44 PE-to-PE hops, and a diagonal Manhattan
(staircase) distance of 88 hops. Sync chains can be set up in a radial fan pattern to cover the
entire area. The chains that run from corner-to-comner are 88 hops long and these determine the
worst-case time interval to synchronize all 2025 PE, which is 88 clock cycles. In operation PE’s
stall as they encounter sync instructions, and eventually this is communicated to the center of the
array. The stalls are released from the center in a wave that propagates radially outward. No-ops
may be needed to delay the PEs nearer the center until the wave reaches the corners. Then all PE
may start subsequent instructions on the same clock cycle.

[0090] The sync instruction may be used to coordinate a group of processors with distributed
supporting memory to execute a parallel program. There are many different types of parallel
programs.

[0091] This instruction may allow programmers to put multiple processors in a large MPA
into lock-step execution. This may greatly enhance the utility of the parallelism of such arrays,
especially for real-time processing tasks, and operation in a systolic mode. Systolic mode is a
programming method where the MPA is programmed to have a heartbeat that may be one or
more cycles long. In each heartbeat some data items are received by each PE, some operations
are performed, and the result is output to neighboring PE. Systolic mode requires little memory
per PE and has been applied to matrix mathematics, filtering, and image processing applications,
to name a few. Systolic mode in one dimension is usually referred to as pipelining. These and
other parallel programming methods help programmers to divide the computational effort of a

large single task into many smaller tasks.

15

WO 2014/088698 PCT/US2013/064366

[0092] In conventional computer/DSP systems with Single Instruction Multi-Data (SIMD)
capability the parallelism is limited by the number of data items that can be made available to the
ALUs in one PE cycle. Typically this number has a fixed maximum -- typically 2-8 for a
microprocessor and perhaps up to 128 in a supercomputer. A conventional multi-processor
system capable of MIMD parallelism may be programmed with the same instructions in each of
its multiple instruction streams; however, this alone does not guarantee that the PE involved will
start or remain in lock-step execution.

[0093] By employing sync instruction chaining, starting a large group of PE may, in some
embodiments, be started on the same cycle, and overcomes the SIMD limitation on the number
of ALU that execute the same instruction at the same time. It enables but does not guarantee that
multiple PE remain in lock-step through the execution of multiple copies of the same task. PE
may remain in lock-step only if they do not have cycle count dependencies on the data values,
wait states due to interference for data memory or communication resources, interrupts,
breakpoints, etc. Careful programming may be required to achieve lock step execution for
extended periods. However, if this is not successful then multiple threads may be periodically
resynchronized by the methods described above.

[0094] The hardware (and thus power) impact is very low for the added Sync Instruction
capability. PE that are not needed may be shut down. Thus power is used only upon algorithm
need, not as a part of the overhead power that is required to have SIMD instructions implemented
but not always utilized.

[0095] Turning to FIG. 10, an embodiment of a method for operating a multiprocessor array,
such as array MPA 500 as depicted in FIG. 5, is illustrated. The method begins in block 1001. A
configuration and software may then be designed for a multiprocessor system (block 1002). In
some embodiments, the software may be any one of various application programs whose
individual program instructions may be able to run on an individual PE within an MPA. The
configuration may, in some embodiments, include synchronization instructions and settings to
allow for common points in time for PEs to exchange data.

[0096] Once the design of the software and configuration has been completed, the
multiprocessor system may then be configured (block 1003). In some embodiment, the
configuration of the multiprocessor system may include storing information in configuration
registers such as, e.g., register 805 as illustrated in FIG. 8. In other embodiments, configuration
data may be stored in one or more memories included within the multiprocessor system.

[0097] With the configuration of the multiprocessor array complete, the previously designed

software may then be loaded onto the multiprocessor system (block 1004). In some

16

WO 2014/088698 PCT/US2013/064366

embodiments, the software may be loaded into one or more memories included within the
multiprocessor system. The software may, in other embodiments, be stored on computer-
accessible media, such as, e.g., a hard disk drive, a CD, or any other suitable storage media.
[0098] Once the software has been loaded into the multiprocessor system, the individual PEs
of the multiprocessor are then started (block 1005). In some embodiments, each PE may execute
a specific set of instructions included within the loaded software. Each PE may, in various
embodiments, halt execution of instructions pending the completion of instructions being
executed by other PEs within the multiprocessor system. With the PEs executing instructions, the
method may then conclude in block 1006.

[0100] It is noted that the method depicted in FIG. 10 is merely an example. In other
embodiments, different operations and different orders of operations may be employed.

[0101] Another embodiment of a method for operating a multiprocessor system is illustrated
in FIG. 11. The method begins in block 1101. Multiple sets for operating the multiprocessor
system may then be designed (block 1102). In some embodiments, each set may include
configuration data and a software application. The configuration data may, in various
embodiments, be unique to the particular software application included in the set.

[0102] With the multiple sets defined, the multiprocessor system may be configured based on
configuration data of a first set of the multiple sets and then execute the corresponding software
application (block 1103). In some embodiments, different PEs within the multiprocessor system
may execute different instructions that are part of the software application.

[0103] When the software application from the first set has been executed, the multiprocessor
system may then be configured with data from a subsequent set of the multiple sets (block 1104).
A corresponding software application may be run with newly configured multiprocessor system.
In some embodiments, the processors executing the tasks of the corresponding software
application may be brought to a halt, and the method may proceed from block 1103 as described
above. The method may then conclude in block 1105.

[0104] It is noted that method illustrated in FIG. 11 is merely an example. In other
embodiments, different operations and different orders of operations are possible and
contemplated.

[0105] Turning to FIG. 12, a block diagram depicting an embodiment of the synchronization
of two PEs of a multiprocessor system is illustrated. In the illustrated embodiment, processing
elements P1 and P2 are coupled to a synchronization controller C1, through directions D1 and

D2, respectively. Each thread being processed by PEs P1 and P2 include a synchronization

17

WO 2014/088698 PCT/US2013/064366

instruction. In some embodiments, the synchronization instruction may include a direction, such
as described in more detail above.

[0106] During operation, the multiprocessor system may be configured and a software
application may be loaded and executed. As PEs P1 and P2 are executing their respective
designated tasks, the synchronization instructions may be encountered. The first PE to encounter
a synchronization instruction may halt execution until the other PE encounters its respective
synchronization instruction. At that time, the two PE may exchange data, and then resume
execution of their respective threads.

[0107] It is noted that the embodiment illustrated in FIG. 12 is merely an example. In other
embodiments, different numbers of PEs and different numbers of synchronization controllers
may be employed.

[0108] A flow diagram illustrating an embodiment of a method for synchronizing PEs within
a multiprocessor system is depicted in FIG. 13. Referring collectively to the block diagram of
FIG. 12 and the flowchart of FIG. 13, the method begins in block 1301. Software instructions
prior to a synchronization barrier may then be executed by processors P1 and P2 (block 1302).
[0109] Processor P1 may then encounter a synchronization instruction, and in response to the
synchronization instruction, send a synchronization request to controller C1 (block 1303). In
some embodiments, locations may be identified in the software that each require synchronization
between instruction threads being executed by different processors within a multiprocessor
system.

[0110] Once processor P1 has sent the synchronization instruction, processor P1 may then
halt execution responsive to a stall signal generated by controller C1 (block 1304). Although a
single controller is illustrated in FIG. 12, in other embodiments, a processor may be coupled to
multiple controllers, and a stall signal from any one of the multiple controllers may halt the
execution of further program instructions. In various embodiments, the stall signal may be de-
assert once controller C1 receives synchronization requests from both processor P1 and processor
P2. When controller C1 receives synchronization requests from both processors, both processors
have reached the synchronization barrier, and are said to be “in sync.” Controller C1 may, in
various embodiments, determine when to de-assert a stall signal in a fashion similar to the
method described below in regards to FIG. 15.

[0111] With the de-asserting of the stall signal, processor P1 may the resume execution of the
software after the synchronization barrier (block 1305). At that point, the method may conclude
in block 1306. Although only synchronization request is depicted in the method illustrated in

FIG. 13, in other embodiments, multiple synchronization instructions may be inserted into a

18

WO 2014/088698 PCT/US2013/064366

given processor’s instruction thread. Additional synchronization instructions may, in some
embodiments, allow for larger numbers of processors within the multiprocessor system to be
synchronized.

[0112] It is noted that the method illustrated in FIG. 13 is merely an example. In other
embodiments, different operations and different orders of operations may be employed.

[0113] Turning to FIG. 14, a block diagram depicting an embodiment of the synchronization
of three PEs of a multiprocessor system is illustrated. In the illustrated embodiment, processing
element P1 is coupled to synchronization controller C1 through direction D1, processing element
is coupled to synchronization controllers C1 and C2 through directions D2 and D4, respectively,
and processing element P3 is coupled to synchronization controller C2 through direction D3.
[0114] During design phase, a configuration is designed for operating the three PEs. In some
embodiments, the configuration may include data bits to be loaded into mask registers in
synchronization controllers C1 and C2. The data bits may determined in accordance with the
directions D1 through D4 as described above. For example, a register in C1 may be configured to
mask all directions except directions D1 and D2. The design may also include determining where
synchronization instructions need to be inserted in the instruction threads of the associated
software. The data bits and synchronization instructions may together form a barrier, i.e., a place
in time where each of the three processing elements wait until all the threads arrive at that point.
[0115] The configuration data and associated software may then be loaded into the
multiprocessor system. Once loaded instructions targeted (also referred to as a thread) for each of
P1, P2, and P3 may be executed. When P1 encounters a synchronization instruction, P1 may halt
execution of its thread until P2 encounters a synchronization instruction in the D2 direction. In a
similar fashion, when P3 encounters a synchronization instruction, it may halt execution of its
thread until P2 encounters a synchronization instruction in the D4 direction.

[0116] If the synchronization instructions for P1 and P3 arrive before any synchronization
instructions for P2, then the arrival of the synchronization instruction in the D2 direction allows
P1 to advance to its second synchronization instruction in the D1 direction in the next clock
cycle. Also in the next clock cycle, when P2 encounters the synchronization instruction in the D4
direction, this allows P3 to advance to its second synchronization instruction in the D3 direction.
In a third clock cycle, the arrival of P2 at a synchronization instruction in the D2 direction allows
resynchronization with P1 in one cycle. In some embodiments, a no-op instruction may be

desirable for P3.

19

WO 2014/088698 PCT/US2013/064366

[0117] In the case where P1 arrives at the barrier after P2, then P2 waits at its sync(D2)
instruction until P1 arrives. If P3 arrives at the barrier after P2, then P2 waits at its sync(D4)
instruction until P3 arrives at the barrier.

[0118] It is noted that the embodiment illustrated in FIG. 14 is merely an example. In other
embodiments, different numbers of PEs and controllers may be employed.

[0119] Turning to FIG. 15, a flowchart depicting an embodiment of a method for operating a
synchronization controller, such as, e.g., the synchronization controller of FIG. 8, is illustrated.
The method begins in block 1501. The configuration may then be determined (block 1502). In
some embodiments, the configuration data may be included in a register, such as, e.g., register
805 as illustrated in FIG. 8. The configuration data bits stored in such a register may, in various
embodiments, be decoded to determine from which direction to allow the receipt of
synchronization information. Each direction may correspond to a respective one of a neighboring
processor.

[0120] Asserted synchronization requests from all directions may then be compared to the
configuration (block 1503). In some embodiments, the comparison may be performed using a
logic circuit such as, e.g., logic circuit 801 as illustrated in FIG. 8. The synchronization stall
signals may then be asserted or de-asserted according to the received synchronization requests
and the configuration (block 1504). In some embodiments, a logic circuit, such as logic circuit
801 of FIG. 8, may logically combine one or more synchronization requests and configuration
information to determine when a given stall signal should be assert or de-asserted. It is noted that,
in some embodiments, more than one synchronization stall signal may be asserted and de-
asserted at any given time. The method may then conclude in block 1505. Although the flowchart
illustrated in FIG. 15 describes a single application of the operations depicted therein, in various
embodiments, the method of FIG. 15 may constantly be performed during the operation of a
multiprocessor system.

[0121] It is noted that the method illustrated in FIG. 15 is merely an example. In other
embodiments, different numbers of synchronization requests and configuration data bits are
possible and contemplated.

[0122] A flowchart depicting an embodiment of a method for synchronizing two groups of
processors in a multiprocessor system is illustrated in FIG. 16. The method begins in block 1601.
A synchronization of a first group of processors of the multiprocessor system may then be started
(block 1602). In some embodiments, the synchronization of the first group of processors may
include operations similar those described above in regards to the methods described in FIG. 13

and FIG. 15. The first group may, in various embodiments, include one or more processors of the

20

WO 2014/088698 PCT/US2013/064366

multiprocessor system. In some embodiments, the synchronization of the first group of
processors of the multiprocessor system may require multiple clock cycles to complete.

[0123] A synchronization of a second group of processors may also be started (block 1603).
Like the synchronization of the first group, the synchronization of the second group of processors
may include operations similar those described above in regards to the methods described in FIG.
13 and FIG. 15. The second group may, in various embodiments, include one or more processors
of the multiprocessor system excluding the processors included in the first group. In some
embodiments, one or more processors may be shared between the first group and the second
group. As with the synchronization of the first group, the synchronization of the second group
may require multiple clock cycles to complete.

[0124] The method may then depend on the status of the synchronization operations of the
first group and second group (block 1604). When either one or both of the synchronization
operations has not completed, further execution by the two groups of processors remains halted
(block 1605). Once both synchronization operations have completed, the first group of processors
may resume execution of program instructions (block 1606). The second group of processors
may also resume execution of program instructions (block 1607). Once both groups of processors
have resumed execution, the method may conclude in block 1608. It is noted that the two resume
execution operations are depicted as being performed in a serial fashion. In other embodiments,
these operations may be performed in parallel on in the reverse order. Other operations and other
orders of operations may also be employed in alternative embodiments.

[0125] Turning to FIG. 17, a flowchart depicting an embodiment of a method for
synchronizing two sets of processors in a multiprocessor system is illustrated. The method begins
in block 1701. A first set of processors of the multiprocessor system may then be synchronized
(block 1702). In some embodiments, the synchronization may include operations similar those
described above in regards to the methods described in FIG. 13 and FIG. 15. Each processor
included in the first set of processors may, in various embodiments, be coupled to a common
synchronization controller, such as, e.g., the synchronization controller illustrated in FIG. 8.
[0126] Once the first set of processors of the multiprocessor system has been synchronized, a
second set of processors of the multiprocessor system may then be synchronized (block 1703). In
various embodiments, each processor of the second set may be coupled to a common
synchronization controller. As with synchronizing the first set of processors, synchronizing the
second set of processors may include operations similar those described above in regards to the

methods described in FIG. 13 and FIG. 15.

21

WO 2014/088698 PCT/US2013/064366

[0127] With the completion of the synchronization of the second set of processors, a
processor from the first set of processors may be synchronized to a processor of the second set of
processors (block 1704). In some embodiments, the processor from the first set of processors and
the processor from the second set of processors may be coupled to a common synchronization
controller.

[0128] Once the processor from the first set and the processor from the second set have been
synchronized, the first set of processors may then be re-synchronized (block 1705). The second
set of processors may also then be re-synchronized (block 1706). It is noted that while the two re-
synchronization operations are shown as being performed in a serial fashion, in other
embodiments, the operation may be performed in parallel or in the reverse order. The method
may then conclude in block 1707. By employing the method depicted in FIG. 17, any number of
processors of the multiprocessor system may, in various embodiments, be synchronized.

[0129] It is noted that the method depicted in the flowchart of FIG. 17 is merely an example.
In other embodiments, different operations and different orders are operations are possible and
contemplated.

[0130] Another embodiment of a method for synchronizing two sets of processors of a
multiprocessor system is illustrated in the flowchart of FIG. 18. The method begins in block
1801. A first set of processors of the multiprocessor system may then be synchronized (block
1802). In some embodiments, the synchronization may include operations similar those described
above in regards to the methods described in FIG. 13 and FIG. 15. Each processor included in the
first set of processors may, in various embodiments, be coupled to a common synchronization
controller, such as, e.g., the synchronization controller illustrated in FIG. 8.

[0131] Once the first set of processors of the multiprocessor system has been synchronized, a
second set of processors of the multiprocessor system may then be synchronized (block 1803). In
various embodiments, each processor of the second set may be coupled to a common
synchronization controller, and at least one processor included in the second set of processors is
also included in the first set of processors. As with synchronizing the first set of processors,
synchronizing the second set of processors may include operations similar those described above
in regards to the methods described in FIG. 13 and FIG. 15.

[0132] With the completion of the synchronization of the second set of processors of the
multiprocessor system, the first set of processor may then be re-synchronized (block 1804). In
some embodiments, the inclusion of the at least one processor in the first and second sets of
processors may allow for all of the processors in both the first and second sets to by

synchronized. With the completion of the re-synchronization of the first set of processors, the

22

WO 2014/088698 PCT/US2013/064366

method may then conclude in block 1805. By employing the method depicted in FIG. 18, any
number of processors of the multiprocessor system may, in various embodiments, be
synchronized.

[0133] It is noted that the flowchart illustrated in FIG. 18 is merely an example. In other
embodiments, alternate operations may be employed.

[0134] A flowchart depicting an embodiment of a method for designing software for a
multiprocessor system is illustrated in FIG. 19. The method begins in block 1901. Software may
then be designed for a multiprocessor system, such as, e.g., multiprocessor IC 300 as illustrated
in FIG. 3 (block 1902). The software may, in various embodiments, include applications for
processing graphics or video data, or any other suitable application that may be mapped onto an
array of processors. In some embodiments, locations within instruction threads for individual
processors that require synchronization with other instructions threads may be identified.
Synchronization instructions such as those previously described, may be inserted into the
instruction threads to form a synchronization barrier and to enable synchronization between one
or more processors within the multiprocessor system.

[0135] Once the synchronization instructions have been inserted, configuration data may then
be designed (block 1903). In some embodiments, the configuration data may include
configuration data bits that enable a synchronization controller to accept synchronization requests
from one or more processors coupled to the synchronization controller. Each bit of a given set of
configuration bits may, in some embodiments, represent a corresponding direction to a coupled
processor while, in other embodiments, a given set of configuration bits may be decoded in order
to determine allowed directions for synchronization input.

[0136] The configuration data may then be loaded into the multiprocessor system (block
1905). In some embodiments, portions of the configuration data may be loaded into registers
within controllers, such as, e.g., register 805 as illustrated in FIG. 8. The configuration data may,
in other embodiments, be loaded into one or more memories within the multiprocessor system.
[0137] The designed software may then be loaded into the multiprocessor system (block
1905). In some embodiments, the software may be loaded into one or more shared memories
within the multiprocessor system. The software may, in other embodiments, be partitioned an
individual parts of the software may be loaded into local memories within the multiprocessor
system. Each such local memory may be coupled to a corresponding processor within the
multiprocessor system.

[0138] Once the configuration data and software have been loaded into the multiprocessor

system, the software may be executed (block 1906). During execution, each processor may

23

WO 2014/088698 PCT/US2013/064366

execute the inserted synchronization instructions allowing different subsets of processors, or
different processors, to synchronize their operations at the previously identified locations within
the instructions threads. With the completion of the execution of the software, the method may
conclude in block 1907.

[0139] It is noted that the some of the operations illustrated in the flowchart of FIG. 19 are
depicted as being performed in a sequential fashion. In other embodiments, one or more of the
may be performed in parallel.

[0140] Although the system and method of the present invention has been described in
connection with the preferred embodiment, it is not intended to be limited to the specific form set
forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and
equivalents, as can be reasonably included within the spirit and scope of the invention as defined

by the appended claims.

24

WO 2014/088698 PCT/US2013/064366

WHAT IS CLAIMED IS:

1. A system, comprising:

a plurality of processors, wherein each processor of the plurality of processors includes a
plurality of processor ports and a synchronization adapter, wherein the
synchronization adapter includes a plurality of adapter ports;

a plurality of controllers, wherein each controller of the plurality of controllers includes a
plurality of controller ports, wherein each controller port of the plurality of
controller ports is coupled to adapter port of a neighboring processor of the
plurality of processors;

wherein each processor of the plurality of processors is configured to:
send, selectively, a synchronization signal through one or more adapter ports to a

respective one or more controllers of the plurality of controllers; and
pause execution of program instructions dependent upon a response from the one
or more controllers;

wherein each controller of the plurality of controllers is configured to:
receive one or more synchronization signals from a respective one or more

processors of the plurality of processors; and
send a response to each of the respective one or more processors of the plurality of
processors dependent upon the received one or more synchronization

signals.

2. The system of claim 1, wherein each controller of the plurality of controllers includes a

configuration port configured to receive one or more configuration data bits.

3. The system of claim 2, wherein to send the response to each of the respective one or more
processors, each controller of the plurality of controllers is further configured to send the
response to the respective one or more processors dependent upon the one or more configuration

data bits.

4. The system of claim 1, wherein each controller of the plurality of controllers includes a

register.

25

WO 2014/088698 PCT/US2013/064366

5. The system of claim 4, wherein the one or more configuration bits for each controller of

the plurality of controllers is stored in the register of each controller.

6. A method for operating a multiprocessor system, wherein the multiprocessor system
includes a plurality of processors and a plurality of synchronization controllers, wherein each
processor of the plurality of processors includes a synchronization adapter, the method
comprising:
designing configuration data and software for each group of one or more groups of
processors, wherein each group of the one or more groups of processors includes a
subset of the plurality of processors, and wherein designing the configuration data
and the software includes:
identifying a given group of the one or more groups of processors and at least one
location in the software of each processor of the given group for inserting
a synchronization barrier;
indentifying a synchronization controller of the plurality of synchronization
controllers that is coupled with each synchronization adapter of each
processor of the given group;
determining configuration data for the identified synchronization controller
dependent upon a direction to each synchronization adapter coupled to the
identified synchronization controller, wherein the configuration data
enables the transmission of a plurality of synchronization signals between
the identified synchronization controller and the synchronization adapter
of selected processors of the given group; and
inserting a synchronization barrier into each one of the identified locations in the
software for each processor of the given group, wherein each
synchronization barrier includes a sequence of one or more
synchronization instructions, wherein each synchronization instruction
includes one or more arguments, and wherein each argument of the one or
more arguments specifics a given one of one or more directions of the
identified synchronization controller from the synchronization adapter of
cach processor of the given group;
loading the designed configuration data and software into the multiprocessor system;

executing the loaded software;

26

WO 2014/088698 PCT/US2013/064366

pausing execution of each processor of the given group responsive to each processor of
the given group executing a given one of the inserted synchronization instructions;
and

resuming execution of each processor of the given group responsive to a determination
that all processors if the given group have executed a respective one of the

inserted synchronization instructions.

7. The method of claim 6, wherein the determined configuration data includes a plurality of
configuration data bits, each data pattern corresponding to each combination of the plurality of
configuration data bits corresponds to a direction to the synchronization adapter of a given

processor of the given group of processors coupled to the identified synchronization controller.

8. The method of claim 7, wherein loading configuration data into the multiprocessor
system comprises storing the plurality of configuration data bits into a register of the identified

synchronization controller.

0. The method of claim 6, wherein resuming execution of each processor of the given group

comprises de-asserting a stall signal by the identified synchronization controller.

10. The method of claim 6, wherein pausing execution of each processor of the given group
comprises asserting synchronization request signal by the synchronization adapter of each

processor of the given group.

11. A synchronization controller, comprising:

a register configured to store a plurality of configuration bits, wherein the plurality of
configuration bits encode a plurality of data patterns, wherein each data pattern of
the plurality of data patterns corresponds to a given one of a plurality of subsets of
coupled directions;

one or more logic circuits, wherein each logic circuit of the one or more logic circuits is
configured to:
receive one or more synchronization request signals; and
generate a stall signal for at least one processor dependent upon the received one

or more synchronization requests and a corresponding data pattern of the

plurality of data patterns, wherein the at least one processor is coupled to

27

WO 2014/088698 PCT/US2013/064366

synchronization controller in a given direction of a corresponding one of

the plurality of subsets of coupled directions.

12. The synchronization controller of claim 11, wherein each entry of the one or more entries

includes a latch.

13. The synchronization controller of claim 11, wherein to generate the stall signal dependent
upon the received one or more synchronization requests and the corresponding data pattern of the
plurality of data patterns, each logic circuit is further configured to generate one or more stall
signals corresponding to the directions of the corresponding one of the plurality of subsets of

coupled directions.

14. The synchronization controller of claim 11, wherein to generate the stall signal dependent
upon the received synchronization requests and the corresponding data pattern of the plurality of
data patterns, each logic circuit is further configured to generate the stall signal responsive to the
assertion of a selected one of the received synchronization signals, wherein the selected one of
the received synchronization signals corresponds to the direction of the corresponding data

pattern of the plurality of data patterns.

15. The synchronization controller of claim 14, wherein to generate the stall signal dependent
upon the received synchronization requests and the corresponding data pattern of the plurality of
data patterns, each logic circuit is further configured to generate the stall signal responsive to a

determination that the remaining received synchronization signals are not asserted.

16. A system, comprising:

a plurality of processors, wherein each processor of the plurality of processors includes a
synchronization adapter, wherein the synchronization adapter includes a plurality
of adapter ports;

a plurality of data memory routers coupled to the plurality of processors in an interspersed
arrangement, wherein each data memory router of the plurality of data memory
routers includes:

a local memory coupled to a subset of the plurality of processors;

at least one routing engine; and

28

WO 2014/088698 PCT/US2013/064366

a synchronization controller coupled to at least one of the plurality of adapter
ports of each processor of the subset of the plurality processors;
wherein each synchronization adapter is configured to:
selectively send at least one synchronization signal through a given one of the
plurality of adapter ports to at least one synchronization controller;
pause processor execution of program instructions after sending the
synchronization signal;
resume execution of the program instructions dependent on a response to the
synchronization signal from the at least one synchronization controller;
wherein each synchronization controller is configured to:
receive one or more synchronization signals from a respective one or more
synchronization adapters; and
send a response to each of the respective one or more synchronization adapter of
the plurality of processors dependent upon the received one or more

synchronization signals.

17. The system of claim 16, wherein each synchronization controller includes a configuration

port configured to receive one or more configuration data bits.

18. The system of claim 17, wherein to send the response to each of the respective one or
more synchronization adapters, each synchronization controller is further configured to send the
response to the respective one or more synchronization adapters dependent upon the one or more

configuration data bits.

19. The system of claim 17, wherein each synchronization controller is further configured to

store the received one or more configuration bits in a register.
20. The system of claim 17, wherein each one of the one or more configuration bits
corresponds to a given one of one or more directions, wherein each direction of the one or more

directions corresponds to a respective one of the synchronization adapters.

21. A method for operating a multiprocessor system, wherein the multiprocessor system

includes a plurality of processors and a plurality of controllers, the method comprising:

29

WO 2014/088698 PCT/US2013/064366

designing configuration data for a synchronization barrier, wherein the configuration data
includes:
configuration data for a first controller of the plurality of controllers enabling
receipt of synchronization information from a first processor of the
plurality of processors and a second processor of the plurality of
processors; and
wherein the first processor of the plurality of processors is coupled to the first
controller;
configuration data for a second controller of the plurality of processors enabling
receipt of synchronization information from the second processor of the
plurality of processors and a third processor of the plurality of processors;
wherein the second processor of the plurality of processors is coupled to the first
controller of the plurality of controllers and the second controller of the
plurality of controllers;
wherein the third processor of the plurality of processors is coupled to the second
controller of the plurality of controllers;
designing software for the synchronization barrier, wherein the software includes:
a first plurality of synchronization instructions for the first processor of the
plurality of processors;
a second plurality of synchronization instructions for the second processor of the
plurality of processors; and
at least one synchronization instruction for the third processor of the plurality of
processors;
loading the designed configuration data into the multiprocessor array;
loading the designed software into the multiprocessor array; and
executing the loaded software, wherein executing the software includes:
pausing execution of the first processor responsive to the first processor executing
a first one of the first plurality of synchronization instructions;
pausing execution of the second processor responsive to the second processor
executing a first one of the second plurality of synchronization
instructions;
resuming execution by the first and second processors responsive a determination
that the first processor has paused at the first one of the first plurality of

synchronization instructions and a determination that the second processor

30

WO 2014/088698 PCT/US2013/064366

has paused at the first one of the second plurality of synchronization
instructions;

pausing execution of the first processor responsive to the first processor executing
a second one of the first plurality of synchronization instructions;

pausing execution of the second processor responsive to the second processor
executing a second one of the second plurality of synchronization
instructions;

pausing execution of the third processor responsive to the third processor
executing the at least one synchronization instruction;

resuming execution by the second processor and the third processor, responsive
to a determination that the second processor has paused at the second one
of the second plurality of synchronization instructions and the third
processor has paused at the at least one synchronization instruction;

pausing execution of the second processor responsive to the second processor
executing a third one of the second plurality of synchronization
instructions; and

resuming execution by the first processor and the second processor responsive to
a determination that the first processor has paused at the second one of the
first plurality of synchronization instructions and the second processor has

paused at third one of the second plurality of synchronization instructions.

22. The method of claim 21, wherein loading the designed configuration data into the
multiprocessor array comprises storing one or more configuration bits into a register of each

controller of the plurality of controllers.

23. A method for operating a multiprocessor array, wherein the multiprocessor array includes
a plurality of processors and a plurality of controllers, the method comprising:
designing a plurality of sets for the multiprocessor system, wherein each set of the
plurality of sets includes configuration data and software;
wherein each configuration data includes data for a subset of the plurality of controllers,
wherein the data enables receipt of synchronization information from a subset of
the plurality of processors for each controller of the subset of the plurality of

controllers;

31

WO 2014/088698 PCT/US2013/064366

wherein each software includes one or more synchronization instructions for each
processor of the subset of the plurality of processors;

loading a first set of the plurality of sets into the multiprocessor array;

executing the software included in the first set;

pausing executing of the software included in the first set;

loading a second set of the plurality of sets into the multiprocessor array; and

executing the software included in the second set.

24, The method of claim 23, wherein loading the first set of the plurality of sets comprises
storing a portion of the configuration data into a register of each controller of a subset of the

plurality of controllers.

25. The method of claim 23, wherein designing the plurality of sets comprises:
identifying for each set of the plurality of sets a plurality of locations for synchronization
instructions; and
inserting a synchronization instruction into each one of the identified plurality of

locations in the software of each set of the plurality of sets.

26. A method for operating a multiprocessor system, wherein the multiprocessor system
includes a plurality of processors, and a plurality of synchronization controllers, where the
method comprises:
synchronizing a first subset of the plurality of processors, wherein each processor of the
first subset of the plurality of processors is coupled to a first synchronization
controller of the plurality of synchronization controllers;
synchronizing a second subset of the plurality of processors, wherein each processor of
the second subset of the plurality of processors is coupled to a second
synchronization controller of the plurality synchronization controllers;
synchronizing at least a first processor of the first subset of the plurality of processors to
at least a second processor of the second subset of the plurality of processors,
wherein the at least first processor of the first subset of the plurality of processors
is further coupled to a third controller of the plurality of synchronization
controllers, and wherein the at least second processor of the second subset of the
plurality of processors is further coupled to the third controller of the plurality of

synchronization controllers; and

32

WO 2014/088698 PCT/US2013/064366

re-synchronizing the first subset of the plurality of processors and the second subset of
processors responsive to the completion of the synchronizing of the at least first

processor and the at least second processor.

27. A method for operating a multiprocessor system, wherein the multiprocessor system
includes a plurality of processors, and a plurality of synchronization controllers, wherein the
method comprises:
synchronizing a first subset of the plurality of processors, wherein each processor of the
first subset of the plurality of processors is coupled to a first synchronization
controller of the plurality of synchronization controllers;
synchronizing a second subset of the plurality of processors, wherein each processor of
the second subset of the plurality of processors is coupled to a second
synchronization controller of the plurality of synchronization controllers, and
wherein at least one processor of the second subset of the plurality of processors is
further coupled to the first synchronization controller of the plurality of
synchronization controllers; and
re-synchronizing the first subset of the plurality of processors responsive to a
determination that the synchronizing of the second subset of the plurality of

processors has completed.

33

WO 2014/088698 PCT/US2013/064366

1/19

Computing System 100
Embedded System 110

Multi-Processor IC Chip
120

FIG. 1

WO 2014/088698 PCT/US2013/064366

2/19
Design Tool Suite Project Database Project Database
210 220A 220B

Operating System 230

Computing System 240

FIG. 2A

A Proces-
sor iC

Dev. Board

Multi-Processor IC Chip
270

Development System 250

Test Bench with Laptop Computer and Test Equipment 260

FIG. 2B

WO 2014/088698 PCT/US2013/064366

3/19

Multiprocessor IC Chip
300

°
)
310
L,

.ng
.vlm.@

%@.1

PCT/US2013/064366

WO 2014/088698

5/19

550
e

A A

A

A

FIG. 5

WO 2014/088698 PCT/US2013/064366

6/19

600

601 603 605
Y \A 4 vYY
<] €] <]
N
602 602 602

FIG. 6

WO 2014/088698 PCT/US2013/064366

7/19
700
Sync Request Instruction
Direction Outputs Fetch Stall Input
{from {FDU) (to {FDU)
A
-~ ~
7 i A > ~
' AN
To & From 4q4—~ '\\»\ »»»»»»»» p To & From
NW //% S S N NE
Controtler / \\ Controller
/ \
! \
/ \
! \
! i
! L N |
| T N f
\ — 7 !
\ — !
\ /
\ /
\ /
\ /
\ /

To & From gw——-M i N \ / 4 To&From
W o » SE
Controfler N o e Controller
~. ///

FIG. 7

WO 2014/088698 PCT/US2013/064366

8/19

|NE NW SE SW | . 805

SynC SW_»......../\....J‘\...J_.
Req SE N

inputs) N\W -+
806

Sync Stall
> Outputs
807

FIG. 8

PCT/US2013/064366

WO 2014/088698

9/19

6 9ld
MSOUAS @ — — - —— — 23S oufs dou dou MS oUfs @ — — — ~ — — 38 OuAs
MS aufse - — - — -~ - 38 oufs MS oufse — - — — — — -8 35 oufs
MS ouAS ® — = — — — ~ - 35 oufs
MS OufsSe —— ———— - 35 oufs MS oufse — — ——— — -8 JS OUAs
MS UAS @ ~ — ~ ~ — ~ - 35 0UAS MS ouAS® ~ ~ ~ — — ~ -3 oufs
§03d v'03d £03d 203d L0 3d 003d
50 y0 £0 Al L0
dNag dNa SN b141el b141el
80 70 £0 20 L0 00
3d Id ad ad ad dd

WO 2014/088698 PCT/US2013/064366

10/ 19

Start
1001

Design configuration and multiprocessor software for a
multiprocessor system
1002

Configure the multiprocessor system based on the
configuration data
1003

Load the designed software onto the configured
multiprocessor system
1004

Start each processor that has loaded software in the
configured multiprocessor system
1005

End
1006

FIG. 10

WO 2014/088698 PCT/US2013/064366

11/19

Start
1101

Design multiple sets, each set containing a configuration
and a corresponding software for a multiprocessor system
1102

\

Configure the multiprocessor system based on the first set
configuration data, then load and execute the
corresponding software from the first set
1103

For subsequent sets of configuration data and
corresponding software, bring the targeted processors fo a
halt, then repeat 1103
1104

End
1105

FIG. 11

WO 2014/088698 PCT/US2013/064366

12/19
P1 D1 P2
C1 D2
Threads
P1: P2
- —_
(% sync (D1) e C1-e sync (D2)

Y

FIG. 12

WO 2014/088698

13/ 19

Start
1301

Y

Execute software ahead of
barrier
1302

Y

Send Sync Request to
Controller
1303

\

Pause execution while
receiving Stall Signal from
Controller
1304

Execute software after
barrier
1305

Y

End
1306

FIG. 13

PCT/US2013/064366

PCT/US2013/064366

WO 2014/088698
14/19
P1 D7 P2 D4 P3
ct D2 c2 D3
Threads
P1: P2 P3
ik sync(D1) o -C1-e sync(D2) -—-
= sync(D4) - C2 e sync(D3) } Rarrier
@ sync(D1) o-C1 e sync(D2) no-op
\J

FIG. 14

WO 2014/088698

15/19

Start
1501

Yy

Determine Configuration
1502

A

Compare asserted sync
request signals from all
directions with configuration
1503

Assert/De-assert sync stail
signals in all directions
according to sync requests
and configuration
1504

End
1505

FIG. 15

PCT/US2013/064366

WO 2014/088698 PCT/US2013/064366

16/ 19

Start
1601

Y
Start synchronization of 1°
group of processors
1602

\

Start synchronization of 2™
group of processors
1603

.
P

Sync o
7 & 2”% YES

complete?
1604

NO
\J
Wait for 15" and 2™ groups to Resume execution of 1°
complete sync group
1605 1606

Y

Resume execution of 2™

group
1607

End
1608

FIG. 16

WO 2014/088698 PCT/US2013/064366

17/ 19

Start
1701

¥
Synchronize 1° set of

processors
1702

A

Synchronize 2™ set of
processors
1703

Y

Synchronize a processor of
the 1% setto a nprocessors of
the 2™ set
1704

Re-synchronize 1% set of
processors
1705

¥
Re-synchronize 2™ set of
processors
1706

Y

End
1707

FIG. 17

WO 2014/088698

18/ 19

Start
1801

A 4

Synchronize 1° set of
processors
1802

Synchronize 2™ set of
processors where the 2™ set
of processors includes a
processor from the 1% set
1803

Re-synchronize 1% set of
processors
1804

Y

End
1805

FIG. 18

PCT/US2013/064366

WO 2014/088698

19/19

Start
1901

Y

Design software for
multiprocessor system
1902

y

Design configuration for
multiprocessor system
1903

Y

Load configuration into
multiprocessor system
1904

Load software into
multiprocessor system
1905

Y

Execute software
1906

Y

End
1907

FIG. 19

PCT/US2013/064366

PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a), Rules 13ter.1(c) and Rule 39)

Applicant's or agent's file reference Date of mailing{day/month/year)
IMPORTANT DECLARATION
5860-02202 4 February 2014 (04-02-2014)
International application No. International filing date{day/month/year) (Earliest) Priority date{day/month/year)
PCT/US2013/064366 10 October 2013 (10-10-2013) 6 December 2012 (06-12-2012)
International Patent Classification (IPC) or both national classification and IPC
GO6F9/52
Applicant

COHERENT LOGIX, INCORPORATED

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be
established on the international application for the reasons indicated below

1. The subject matter of the international application relates to:

a.
b.

C.

3

XOOOOOX¥OOOOOdo

scientific theories
mathematical theories
plant varieties

anhimal varieties

essentially biological processes for the production of plants and animals, other than microbiological processes and
the products of such processes

schemes, rules or methods of doing business

schemes, rules or methods of performing purely mental acts
schemes, rules or methods of playing games

methods for treatment of the human body by surgery or therapy
methods for treatment of the animal body by surgery or therapy
diagnostic methods practised on the human or animal body
mere presentations of information

computer programs for which this International Searching Authority is not equipped to search prior art

2. |:| The failure of the foIIovs_/ing parts of the international application to comply with prescribed requirements prevents a meaningful
search from being carried out:

the description |:| the claims |:| the drawings

3. |:| A meaningful search could not be carried out without the sequence listing; the applicant did not, within the prescribed time limit:

[
[l

[

furnish a sequence listing on paper complying with the standard provided for in Annex C of the Administrative
Instructions, and such listing was not available to the International Searching Authority in a form and manner
acceptable to it.

furnish a sequence listing in electronic form complying with the standard provided for in Annex C of the
Administrative Instructions, and such listing was not available to the International Searching Authority in a form
and manner acceptable to it.

pay the required late furnishing fee for the furnishing of a sequence listing in response to an invitation under
Rule 13ter.1(a) or (b).

4. Further comments:

Name and mailing address of the International Searching Authority Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2 SOGNO-PABIS. Elzbiet
NL-2280 HV Rijswijk EiZbieta
0 Tel. (+31-70) 340-2040 Tel: +31 (0)70 340-2414

Fax: (+31-70) 340-3016

Form PCT/ISA/203 (July 2009)

International Application No. PCT/ US2013/ 064366

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 2()3

The present application contains twenty-seven claims, of which eight are
independent and there is no clear distinction between them because of
overlapping scope.

There are so many claims, and they are drafted in such a way, that the
claims as a whole are not in compliance with the provisions of clarity
and conciseness of Article 6 PCT, as it is particularly burdensome and
unreasonable for a skilled person to establish the subject-matter for
which protection is sought: there appears to be no subset of features
common to all independent claims defining an invention as allegedly
indicated in the description, even when going well beyond the synthetic
propensity normally to be expected by a skilled person.

The non-compliance with the substantive provisions is to such an extent
that a meaningful search of the whole claimed subject-matter could not be
carried out (Article 17(2) PCT and PCT Guidelines 9.30).

There being no reasonable basis in the application that clearly indicates
the subject-matter which might be expected to form the subject of the
claims later in the procedure, no search at all was deemed possible.
Indeed, the description contains so many embodiments and aspects of the
invention that in view of the drafting of the claims an expected fall
back position could not be determined.

The applicant's attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guidelines C-1V, 7.2),
should the problems which led to the Article 17(2) declaration be
overcome.

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - pct-art17.2a
	Page 55 - pct-art17.2a

