发明名称
棉/天丝/毛混纺织物及其制造工艺

摘要
一种棉、天丝、毛混纺织物，采用棉纤维、天丝纤维和羊毛纤维混纺纱织造，其织物组织采用 2/2 变化斜纹组织。所述棉纤维、天丝纤维和羊毛纤维混纺纱为 14.7tex，其混纺比为：棉：天丝：羊毛 = 38 : 38 : 24，为重量百分比。本发明的有益之处在于：①合理利用了三种环保型纤维，优势互补，较好的发挥各自的优点，使织物集挺括、弹性好、透气凉爽的特性于一体，使产品档次大大提高，是理想的春秋季高档时装面料。②解决了三种纤维混纺的工艺难点，探索出合适的混纺比，在各道工序上有针对性地进行创新，达到了良好的效果。③该产品及工艺的研发，为社会提供了一种理想的环保型纺织产品，为该类产品的实现提供了一种借鉴，具有较好社会效益和经济效益。
权利要求书

1. 一种棉、天丝、毛混纺织物，其特征在于：该织物采用棉纤维、天丝纤维和羊毛纤维混纺纱织造，其织物组织采用 2/2 变化斜纹组织。

2. 根据权利要求 1 所述的织物，其特征在于：所述棉纤维、天丝纤维和羊毛纤维混纺纱为 14.7tex，其混纺比为：棉：天丝：羊毛 =38：38：24，为重量百分比。

3. 根据权利要求 1 所述的织物，其特征在于：该织物的经密为 547 根/10cm，纬密为 318.5 根/10cm。

4. 一种棉、天丝、毛混纺织物的制造工艺，其特征在于该制造工艺的技术要点在于以下几个步骤：

(1) 并条工艺：工艺参数如下，

<table>
<thead>
<tr>
<th></th>
<th>混一</th>
<th>混二</th>
<th>混三</th>
</tr>
</thead>
<tbody>
<tr>
<td>并合数</td>
<td>8 (JC3LY3W2)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>后区欠伸倍数</td>
<td>1.97</td>
<td>1.59</td>
<td>1.38</td>
</tr>
<tr>
<td>总欠伸倍数</td>
<td>7.71</td>
<td>6.1</td>
<td>6.17</td>
</tr>
<tr>
<td>干重克/5 米</td>
<td>17</td>
<td>16.8</td>
<td>16.5</td>
</tr>
<tr>
<td>罗拉隔距 mm</td>
<td>12×20</td>
<td>12×20</td>
<td>12×20</td>
</tr>
<tr>
<td>喇叭口直径 mm</td>
<td>3.4</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

(2) 粗纱工艺
后区欠伸倍数选择 1.32 倍，捻系数 96，干重 4 克/10 米，罗拉隔距 10×27×40mm；

(3) 细纱工艺
罗拉隔距 18×30mm，钳口隔距 3.5mm，后区欠伸倍数 1.29 倍，捻系数 418；

(4) 络筒工艺
成纱质量水平：条干 15.6%，细节 20，粗节 158，棉结 151，毛羽 4.2，单强 CV% 10.4，断强 14.8，重量 CV%3.0，重偏+1.4，黑板结/结杂 15/18，捻度 105.6 捻/10cm，捻度 CV%4.8；

(5) 整经工艺
该织物总经根数 8764 根，配轴为 675×2+674×11，共 13 个配轴。
采用分段分层张力盘角度控制张力方式保证片纱张力均匀，整经压力 200CN，速度 450 米/分；

(6)、浆纱工艺

① 浆料配方如下：

- PVA 12.5KG
- 磷酸酯变性淀粉 50KG
- 205MB 5KG
- 丙烯酸 KT 5KG
- 渗透剂 1KG
- 水 430L；

② 上浆工艺如下：

退绕张力 500N，分绞张力 1300N，卷绕张力 1800N，托纱张力 2300N，浆槽牵伸系数 0.9906，烘房牵伸系数 1.0060；

浆锅温度 85～90℃，粘度 12～13 秒，预烘温度 90℃，主烘温度 65℃；

实际 V=30 米/分，P=10KN；

上浆率 13±1%，回潮率 9～10%；

(7)、穿筘工艺

使用 67.6 号筘筘，地经边经每筘均 4 入，经经片穿法 1、2、3、4、5、6，边经穿在 1、2 片综，地经穿在 1、2、3、4 片综上；

(8)、织造工艺

织造工艺：速度 650 转/分，T0—TW 90～240°，后梁 0/3，停经架 1/50，开口时间 300，平稳量 6 格，主喷气压 188Kpa，辅喷气压 370 Kpa，微风气压 85 Kpa，经纱张力 200kgf，开口角度 32°，开口动程 149、131、113、96，综框高度平综时 120°。
说明 书

棉/天丝/毛混纺织物及其制造工艺

技术领域

本发明涉及一种纺织领域的织物及其制造方法，特别是涉及一种棉、天丝、毛混纺织物及其制造工艺。

背景技术

随着“绿色”概念的兴起，人们对穿著健康舒适也在不断的追求，纺织服装外在质感和内在功能的结合将成为服饰消费中的新趋势，“绿色”产品将主导世界纺织品和服饰消费的新潮流。为适应市场需求，选择绿色环保纤维，开发多种原料的混纺产品，研究不同纺织纤维的性能，使纤维在混合时达到功能互补，对重点工艺技术进行研究和攻关，开发出手感柔软蓬松、赋有弹性、抗皱性强、悬垂性好的“绿色”新型面料，是目前纺织企业面临的课题。

天丝纤维是以木浆为原料经溶剂纺丝方法生产的一种新型纤维，因其生产过程无毒害且纤维本身可被自然界完全分解，被称为21世纪的绿色纤维。天丝纤维集人造纤维与天然纤维的优点于一身，羊毛纤维具有良好的吸湿性、弹性和保暖性，手感柔软，光泽柔和，悬垂性好。目前，有关以棉、天丝、毛为原料研制开发棉/天丝/毛混纺织物及其制造方法还是个空白。

发明内容

为了克服现有产品和生产工艺的不足之处，本发明提供了一种棉、天丝、毛混纺织物及其制造工艺。该织物结合了三种纤维的优点，是一种理想的环保产品，具有较大的市场潜力。

本发明的技术方案是这样实现的。

一种棉、天丝、毛混纺织物，该织物采用棉纤维、天丝纤维和羊毛纤维混纺纱织造，其织物组织采用2/2变化斜纹组织。

所述棉纤维、天丝纤维和羊毛纤维混纺纱为14.7tex，其混纺比为：棉：天丝：羊毛=38：38：24，为重量百分比。

该织物的经密为547根/10cm，纬密为318.5根/10cm。
该织物的制造工艺的技术要点在于以下几个步骤：

1. 并条工艺：工艺参数如下，

<table>
<thead>
<tr>
<th></th>
<th>混一</th>
<th>混二</th>
<th>混三</th>
</tr>
</thead>
<tbody>
<tr>
<td>并合数</td>
<td>8（JC3LY3W2）</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>后区欠伸倍数</td>
<td>1.97</td>
<td>1.59</td>
<td>1.38</td>
</tr>
<tr>
<td>总欠伸倍数</td>
<td>7.71</td>
<td>6.1</td>
<td>6.17</td>
</tr>
<tr>
<td>干重克/5米</td>
<td>17</td>
<td>16.8</td>
<td>16.5</td>
</tr>
<tr>
<td>罗拉隔距mm</td>
<td>12×20</td>
<td>12×20</td>
<td>12×20</td>
</tr>
<tr>
<td>喇叭口直径mm</td>
<td>3.4</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

2. 粗纱工艺
后区欠伸倍数选择 1.32 倍，捻系数 96，干重 4 克/10 米，罗拉隔距 10×27×40mm。

3. 细纱工艺
罗拉隔距 18×30mm，钳口隔距 3.5mm，后区欠伸倍数 1.29 倍，捻系数 418。

4. 络筒工艺
成纱质量水平：条干 15.6%，细节 20，粗节 158，棉结 151，毛羽 4.2，单强 CV% 10.4，断强 14.8，重量 CV%3.0，重偏+1.4，黑板结/结杂 15/18，捻度 105.6 捻/10cm，捻度 CV%4.8。

5. 整经工艺
该织物总经根数 8764 根，配轴为 675×2+674×11，共 13 个配轴，采用分段分层张力盘角度控制张力方式保证片纱张力均匀，整经张力 200CN，速度 450 米/分。

6. 浆纱工艺
①浆料配方如下：

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA</td>
<td>12.5KG</td>
</tr>
<tr>
<td>磷酸酯变性淀粉</td>
<td>50KG</td>
</tr>
<tr>
<td>205MB</td>
<td>5KG</td>
</tr>
</tbody>
</table>
丙烯类 KT 5KG
渗透剂 1KG
水 430L；

②上浆工艺如下：
退绕张力 500N，分绞张力 1300N，卷绕张力 1800N，托纱张力 2300N，
浆槽牵伸系数 0.9906，烘房牵伸系数 1.0060；
浆锅温度 85～90℃，粘度 12～13 秒，预烘温度 90℃，主烘温度 65℃；
实际 V=30 米/分，P=10KN；上浆率 13±1%，回潮率 9～10%。

7、穿筘工艺
使用 67.6 号筘筘，地经边经每筘均 4 入，停经片穿法 1、2、3、4、5、6，边纱穿在 1、2 片综，地经穿在 1、2、3、4 片综上。

8、织造工艺
织造工艺：速度 650 转/分，T0—TW 90～240°，后梁 0/3，停经架-1/50，开口时间 300，平稳量 6 格，主喷气压 188Kpa，辅喷气压 370 Kpa，
微风气压 85 Kpa，经纱张力 200kgf，开口角度 32°，开口动程 149、131、
113、96，综框高度平综时 120°。

本发明的有益之处在于：①合理利用了三种环保型纤维，优势互补，
较好的发挥各自的优点，使织物集挺括，弹性好，透气凉爽的特性于一体，
使产品档次大大提高，是理想的春秋季高档时装面料。②解决了三
种纤维混纺的工艺难点，探索出合适的混纺比，在各道工序上有针对性
地进行创新，达到了良好的效果。③该产品及工艺的研发，为社会提供
了一种理想的环保型纺织产品，为该类产品的实现提供了一种借鉴，具
有较好社会效益和经济效益。

具体实施方式

下面结合实施例对本发明作进一步说明。

一、原料的选用及产品设计

1、原料的选择与配比
羊毛纤维具有良好的吸湿性、弹性和保暖性，但因其缩绒性使织物增厚，作为春秋时装面料受到限制。天丝纤维具有透气、吸湿性强、滑爽等良好的服用性能。将棉纤维、天丝纤维和羊毛纤维混纺，可以优势互补，较好的发挥各自的优点，集挺括、弹性好、透气凉爽的特性于一体，使产品档次大大提高，是理想的春秋季高档时装面料。

毛纤维选择适于棉纺设备纺纱的规格，纤维长度 26.9mm，直径 20.18 微米，由于毛纤维蓬松抱和力差，纤维两端伸出纱条外，缩水率大且贴身穿着不舒服，因此选择与具有较高强力、抱和力大的天丝纤维及穿着舒适的天然棉纤维混纺。天丝 A100，1.26D×38MM，棉纤维使用细绒棉，技术长度 28.9MM。

经过多次实验，优选出棉 38%、天丝 38%、毛 24% 的混纺比例。从织物风格讲，既体现了毛织物的挺括、弹性及天丝织物的绿色环保、光滑，又保留了天然棉织物的舒适及柔软。

2. 产品设计

根据棉、天丝、毛纤维的特性，开发春秋时装面料，因此纱线设计为 14.7tex 细号纱。

织物组织规格设计为新颖的 2/2 变化斜纹组织，使面料具有滑糯的毛织物手感，综合考虑织物风格和紧密程度等因素，织物设计规格为：采用 14.7tex 的棉纤维，天丝纤维和羊毛纤维混纺纱，混纺比为棉：天丝：羊毛=38：38：24，为重量百分比；织物的经密为 547 根/10cm，纬密为 318.5 根/10cm，幅宽为 160cm。

二、工艺流程

1. 纺纱工艺流程

采用棉、天丝纤维分别打卷，成条后，与外购羊毛半精梳条混合的工艺路线。其工艺流程为 A002C 抓包机、A035 混开棉机、A036C 开棉机、A092A 双棉箱给棉机、A076A 成卷机、FA201 梳棉机、FA302 并条机（三道混合）、FA401 粗纱机、FA506 细纱机，村田自动络筒机。

2. 织造工艺流程

整经、浆纱、穿筘、织造、检验、分等、修织、成品。
三、重点工序技术要点

1、清纺工艺

天丝在清花单独打卷，提前松包平衡回潮，车间温湿度偏大掌握。因天丝长度整齐度好，含杂少，清花工序缩短流程，经优化后确定，采取“勤抓少抓、多松少打、轻梳少落”的工艺原则，适当降低各部速度。

2、梳棉工艺

根据天丝纤维特性，梳棉工序温湿度偏大掌握，采取多梳少落的工艺原则，给棉板一刺辊距离适当加大，降低刺辊速度减少纤维损伤，适当控制小漏底入出口隔距，降低落棉，增大刺辊与锡林线速比，缩小道夫与锡林的隔距，有利于纤维转移，适当加大锡林与盖板隔距，控制好纤维的梳理，降低棉结。

3、并条工艺

并条以充分提高三种纤维的混合均匀度，提高纤维的伸直平行度及棉条内在质量为重点，采用三道并合，加大车间温湿度。为提高毛纤维的抱合力，将毛条用和毛油进行预处理，混一采用经过抗静电处理的前皮辊，喇叭口直径适当加大。为更好地伸直纤维，混一采用较大的后区欠伸倍数，混二、混三为提高条干水平，后区欠伸倍数偏小掌握。

<table>
<thead>
<tr>
<th>并合数</th>
<th>混一</th>
<th>混二</th>
<th>混三</th>
</tr>
</thead>
<tbody>
<tr>
<td>后区欠伸倍数</td>
<td>1.97</td>
<td>1.59</td>
<td>1.38</td>
</tr>
<tr>
<td>总欠伸倍数</td>
<td>7.71</td>
<td>6.1</td>
<td>6.17</td>
</tr>
<tr>
<td>干重克/5米</td>
<td>17</td>
<td>16.8</td>
<td>16.5</td>
</tr>
<tr>
<td>罗拉隔距 mm</td>
<td>12×20</td>
<td>12×20</td>
<td>12×20</td>
</tr>
<tr>
<td>喇叭口直径 mm</td>
<td>3.4</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

4、粗纱工艺

后区欠伸倍数偏大掌握，在保证细纱正常欠伸的情况下，粗纱捻系数偏大掌握，防止细纱退绕时产生意外欠伸。后区欠伸倍数选择 1.32 倍，捻系数 96，干重 4 克/10 米，罗拉隔距 10×27×40mm。

5、细纱工艺
细纱工序在后区大隔距、小欠伸、重加压的原则下，后区欠伸偏大掌握。合理控制钳口距离，过大易出细节，过小欠伸不开出“硬头”。选用硬度稍低的前皮辊，控制浮游纤维，提高纱线条干水平，降低毛羽，减少细节，提高纱线质量水平。罗拉隔距 18×30mm，钳口隔距 3.5mm，后区欠伸倍数 1.29 倍，捻系数 418。

6、络筒工艺
络筒工序适当降低槽筒速度，做好电子清纱器的工艺设定工作，调好捻结器，保证接头质量，注意纱线通路光洁无毛刺，减少毛羽，减少纱线质量的恶化。槽筒速度 800 米/分，电请参数 1.3×1.5，空气捻结器接头，接头强力达到原纱强力的 85%以上。

成纱质量水平：条干 15.6%，细节 20，粗节 158，棉结 151，毛羽 4.2，单强 CV% 10.4，断强 14.8，重量 CV%3.0，重偏 1.4，黑板结/结杂 15/18，捻度 105.6 捻/10cm，捻度 CV%4.8。

7、整经工艺
该织物经纱根数 8764 根，配轴为 675×2+674×11，共 13 个配轴。采用分段分层张力盘角度控制张力方式保证片纱张力均匀，整经压力 200CN，速度 450 米/分。

8、浆纱工艺
由于羊毛纤维表面有鳞片层，湿热状态下会产生缩绒现象，因此浆纱不宜高温。毛纱弹性好，但毛羽多、湿强度低、耐热耐碱性差，且本身含油脂，不宜使用蜡片且 PVA 用量不宜太多，依据“相似相溶”原理，研究制定了该产品最佳浆料配方。

浆纱使用先进的德国祖克浆纱机，采用双锅双浸双压不分层浆纱路线。浆纱工艺采用小张力、低伸长、中压力，使浆纱的浸透与被覆兼顾。在保证开车的基础上尽量降低各区张力，保证纱线伸长率。为保证织造开车顺利，保持一定的上浆率，为保证纱线质量回潮偏大掌握，减少锡林使用数量。上浆后，纱线达到了贴伏毛羽、增加耐磨、增强保伸、改善纱线织造性能的目的。

浆料配方如下：
PVA 12.5KG
磷酸酯变性淀粉 50KG
205MB 5KG
丙烯类 KT 5KG
渗透剂 1KG
水 430L。

上浆工艺如下：
退绕张力 500N，分绞张力 1300N，卷绕张力 1800N，托纱张力 2300N，
浆槽牵伸系数 0.9906，烘房牵伸系数 1.0060。
浆锅温度 85～90℃，粘度 12～13 秒，预烘温度 90℃，主烘温度 65℃。

设定 V= 5～50 米/分，P= 5～16KN；实际 V=30 米/分，P=10KN。

上浆率 13±1%，回潮率 9～10%。

9、穿筘工艺
使用 67.6 号钢筘，采用先进的瑞士自动穿筘机，地经边经每筘均 4
入，停经片穿法 1、2、3、4、5、6，边纱穿在 1、2 片综，地经穿在 1、
2、3、4 片综上。

10、织造工艺
织造采用先进的丰田 710-190 积极凸轮织机。

织造工艺：速度 650 转/分，T0—TW 90～240°，后梁 0/3，停经架
-1/50，开口时间 300，平稳量 6 格，主喷气压 188Kpa，辅喷气压 370 Kpa，
微风气压 85 Kpa，经纱张力 200kgf，开口角度 32°，开口动程 149、131、
113、96，综框高度 120°。

四、产品评价
该织物手感柔软、光泽柔和，具有棉织物的舒适，天丝织物丝绸般的
光泽，毛织物的挺阔、滑糯。面料体现了优良的手感和悬垂性，是理想的春秋时装面料。