Office de la Propriete Canadian CA 2377649 A1 2003/09/20

Intellectuelle Intellectual Property
du Canada Office (21) 2 377 649
v organisime An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2002/03/20 (51) CLInt."/Int.CI." GOBF 17/30, GO6F 9/44, GOBF 15/16

(41) Mise a la disp. pub./Open to Public Insp.: 2003/09/20 (71) Demandeur/Applicant:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
WILDING, MARK F., CA;
HURAS, MATTHEW A., CA

(74) Agent: ROSEN, ARNOLD

(54) Titre : ARCHITECTURE DYNAMIQUE DE BASE DE DONNEES DE GROUPE
(54) Title: DYNAMIC CLUSTER DATABASE ARCHITECTURE

i Computer 4 | Computer B
I) [—
Database Engine 12 Database Engine 14
|' - e {4
I| Databass Manager | MaDnaatggfszﬂ |
| 22 :
L — g
- — —— ——

Computer 10

N\ Database Engine 18

Database %
Manager 26

Database

(Manager 28 o

—

Database Engine 186

Computer 8

5

. — p—— — A —

(57) Abrége/Abstract:

A distributed database management system implemented on a cluster of computers. The cluster including disks organized as
data nodes. The data nodes being locally connected to one or more computers In the cluster. The distributed database
management system Includes a distributed database manager layer having a lock manager, a resource manager, and an
architecture manager. The lock manager serializes access to the data nodes in the cluster. The resource manager maintains a
data representation of the resources of each computer in the cluster and makes the data available to other computers in the
cluster to facilitate access to the resources by the other computers. The architecture manager defines logical ownership
relationships between data nodes and computers In the cluster to permit the architecture of the database to be dynamically
reconfigured to provide improved performance.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

d

10

CA 02377649 2002-03-20

DYNAMIC CLUSTER DATABASE ARCHITECTURE

ABSTRACT

A distributed database management system implemented on a cluster of computers. The
cluster inclﬁding disks organized as data nodes. The data nodes being locally connected to one or
more computers in the cluster. The distributed database management system includes a
distributed database manager layer having a lock manager, a resource manager, and an
architecture manager. The lock manager serializes access to the data nodes in the cluster. The
resource manager maintains a data representation of the resources of each computer in the cluster
and makes the data available to other computers in the cluster to facilitate access to the resources
by the other computers. The architecture manager defines logical OWnership relationships
between data nodes and computers in the cluster to permit the architecture of the database to be

dynamically reconfigured to provide improved performance.

CA9-2001-0060

10

15

20

25

CA 02377649 2002-03-20

DYNAMIC CLUSTER DATABASE ARCHITECTURE

FIELD OF THE INVENTION

This invention generally relates to computing systems and in particular to an architecture

for clustering in database systems.

BACKGROUND OF THE INVENTION

Database systems often require computational resources or availability requirements that
cannot be achieved by a single computer. In such cases, a number of machines can be arranged
in a cluster to permit a single database task to be carried out by the cluster of machines rather
than by a single machine. In terms of scalability, clusters of machines provide for a potentially
more attractive model for database proceséing in comparison with alternatives such as SMP
systems. In addition, cluster architectures for database systems also provide for pétentially higher

availability than is possible with a single machine.

For these reasons, cluster architectlires for database systems are used in different database
management systems that are commercially available. In such systems, there are two approaches
typically used in the definition of the cluster architecture: shared nothing architectures and shared
disk architectures. '

A shared nothing architecture 1s typically characterized by data partitioning and no
sharing between the machine components in a cluster of computers, except where
communication between partitions is carried out. The database task being carried out by the
cluster 1s subdivided and each machine carries out processing steps using its own resources to
complete its subdivided portion or portions\ of the task. Such a cluster architecture scales

extremely well for database workloads that have a limited need for intracluster communication.

A shared disk architecture configures computers in the cluster to share disks. The shared
disk architecture for database clustering is typically able to provide availability of resources as
the cluster can dynamically alter the allocation of the workload between the different machines in
the cluster. However, the shared disk architecture has potential scalability problems because

such a system requires a distributed lock manager for the database. Because in use portions of

CA9-2001-0060 1

10

15

20

25

CA 02377649 2002-03-20

the database are locked, and the database is potentially spread across different shared disks, the
mechanism to implement the lock function is similarly distributed. When such a system is scaled
up, workloads that require a significant amount of lock communication between cluster machines

will cause efficiency problems for the system.

It is therefore desirable to develop an architecture for a clustered database management

system that offers both availability of resources and scalability.

Summary Of The Invention

According to an aspect of the present invention there is provided an improved method

and system for defining access to data in a database management system.

According to another aspect of the present invention there is provided a computer
program product comprising a computer usable medium tangibly embodying computer readable
program code means for implementing a .se.t of database manager components in a distributed
database management system, the distributed database management system being implementable
on a computer cluster, the cluster comprising a set of one or more interconnected computers and
further comprising a set of data nodes, each computer having associated resources, each data
node being locally connected to one or mofe of the set of computers in the cluster, each database
manager component having an associated computer in the set of computers, the computer
readable program code means for implementing the set of database manager components

comprising, for each database manager component:

resource manager code means for managing resources associated with the associated

computer,

lock manager code means for managing locks on the data stored on data nodes locally

connected to the associated computer, and '

architecture manager code means for specifying logical connections for the local data

nodes of the associated computer, whereby access to the local data nodes is determined by the

CA9-2001-0060 2

10

15

20

25

CA 02377649 2002-03-20

specified logical connections.

According to another aspect of the present invention there is provided the above
computer program product in which the architecture manager codes means further comprises
code means for monitoring workload for the local data nodes of the associated computer and for
altering the specified logical connections fdr the local data nodes of the associated computer 1n

response to monitored workload conditions.

According to another aspect of the present invention there is provided the above
computer program product in which the architecture manager code means further comprises code
means for monitoring lock contention for the local data nodes of the associated computer and for
altering the specified logical connections for the local data nodes of the associated computer in

response to monitored lock contention conditions.

According to another aspect of the present invention there is provided the above
computer program product in which the architecture manager code means further comprises code
means for monitoring workload and lock contention for the local data nodes of the associated
computer and for altering the specified logical connections for the local data nodes of the

associated computer in response to monitored workload and lock contention conditions.

According to another aspect of the present invention there is provided the above

computer program product in which the resource manager code means further comprises:

code means for communicating the availability of resources on the associated computer to

other computers in the cluster,

code means for receiving information regarding availability of resources associated with

the other computers n the cluster, and
code means for representing resource availability for the cluster,

the code means for implementing: the set of database manager components further

comprising resource sharing code means for enabling a first computer in the cluster to access

CA9-2001-0060 3

—ep——— by

10

15

20

25

CA 02377649 2002-03-20

available resources of a second computer in the cluster, based on resource availability for the
cluster represented by the resource manager code means, thereby balancing workload in the

cluster.

According to another aspect of the present invenﬁon there 1s provided the above
computer program product in which the resource sharing code means further comprises code
means executable by the first compufer for accepting a request for a memory resource from the
second computer, for reserving a block of memory in the associated computer and for providing

a handle for the block of memory to the second computer.

According to another aspect of the present invention there is provided the above
computer program product in which the code means for fepresenting cluster fesource availability

comprises code means for representing memory, CPU, disk and network resources in the cluster.

According to another aspect of the present invention there is provided the above
computer program product in which the representation of memory resourc es in the cluster

comprises the representation of size, speed, free space and exported size characteristics.

According to another aspect of the present invention there is provided the above
computer program product in which the representation of disk resources in the cluster comprises

the representation of type, size, speed and disk identifier characteristics.

According to another aspect of the present invention there is provided the above
computer program product in which the representation of CPU resources in the cluster comprises

the representation of speed, number, and load characteristics.

According to another aspect of the present invention there is provided the above
computer program product in which the architecture manager code means further comprises data
node controller code means for establishing and recording logical connections to local data

nodes.

According to another aspect of the present invention there is provided the above

CA9-2001-0060 4

10

15

20

25

CA 02377649 2002-03-20

computer program product in which the data node controller code means further comprises code
means for communicating the status of logical data node connections for the associated computer

to other computers in the cluster.

According to another aspect of the present invention there is provided the above
computer program product in which the data node controller code means further comprises code
means for receiving the status of logical data node connections for other computers in the cluster
and further comprises code means for maintaining a representation of logical data node

connections for the cluster.

According to another aspect of the present invention there 1s provided a distributed
database management system for implementation on a computer cluster, the cluster comprising a
set of one or more interconnected computers and further comprising a set of data nodes, each
data node being locally cdnnected to one or more computers in the cluster, each cbmputer having
potentially shareable resources, the distributed database management system comprising a set of
distributed database manager components, éach component being implementable on a unique
one of the computers in the cluster, the distributed database management system comprising
means for specifying the database architeétljre applicable to one or more defined subsets of the

set of data nodes to be selectively a shared disk architecture or a shared nothing architecture.

According to another aspect of the present invention there is provided the above
distributed database management system, further comprising meéns for migrating detined
subsets of data nodes from a 'Speciﬁéd applied shared disk architecture to a specified applied
shared nothing architecture and comprising means for migrating defined subsets of data nodes
from a specified applied shared nothing ;archjtecture to a specified applied shared disk
architecture. ' '

According to another aspect of the present invention there is provided the above
distributed database management system, further comprising means for communicating the

availability of the potentially shareable -resources. for the computers in the cluster, and means for

CA9-2001-0060 5

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

CA 02377649 2002-03-20

sharing available resources between computers in the cluster.

According to another aspect of ‘the present invention there is provided a
computer-implemented method of imple_menting database management system operations on a
computer cluster comprising a set of interconnected computers and a set of data nodes, each data
node being locally connected to one or more of the set of computers, the method comprising the

steps of:

defining ownership relationships between the computers in the set of computers and the
data nodes locally connected with the computers, whereby a database management
system operation may be carried out by a one of the set of computers directly only on

those data nodes owned by the said computer,
monitoring database usage characteristics,

in response to the monitored usage characteristics, carrying out a re-architecture step by
redefining the defined ownership relationships to improve the efficiency of the database

management system operations.

According to another aspect of the present invention there is provided a computer
program product comprising a computer usable medium tangibly embodying computer readable

program code means for carrying out the above method.

BRIEF DESCRIPTION OF THE DRAWINGS
In drawings which illustrate by way of example only a preferred embodiment of the invention,

Figure 1 is a block diagram showing an example' configuration of the architecture of the

preferred embodiment.

Figure 2 1s a flowchart showing steps carried out by the preferred embodiment in

-response to receipt of a request for data.

Figure 1 shows, in a block diagram format, an example illustrating a computer cluster

CA9-2001-0060 6

10

15

20

25

CA 02377649 2002-03-20

upon which is implemented a database management system according to the preferred
embodiment. Figure 1 shows computers 4, 6, 8, 10 that collectively represent a cluster of
computers usable by a database system. The database engine for the system of the preferred
embodiment is distributed and shown in Figure 1 by database engine components 12, 14, 16, 18
on computers 4, 6, 8, 10, respectively. The database engine components are? able to execute
database tasks on their respective computers 4, 6, 8, 10 forming the cluster, as well as to carry
out the functions described below that relate to the operation of the distributed database system

in the cluster. Each of computers 4, 6, 8, 10 in the cluster shown in Figure 1 are connected by

network 20.

The preferred embodiment includes a distributed database manager layer that is shown
collectively in Figure 1 by distributed database managers 22, 24, 26, 28. These database
manager components are each respectively ipart of database engine components 12, 14, 16, 18

running on associated computers 4, 6, 8, 10, respectively.

In the same way that data is partitioned into database partitions for existing
shared-nothing databases, the preferred embodiment partitions the data into data nodes. While
database partitions in prior art shared-nothing databases often include both a disk device
component as well as logical grouping of processes, a data node in the system of the preferred
embodiment only includes the disk device COmponent of the prior database partition. Figure 1
shows the cluster including data nodes connécted to each of computers 4, 6, 8, 10. A data node
consists of one or more storage devices (typically, as shown in the example of Figure 1, one or
more disk storage devices) or file Systems; Each data node has an identifier that uniquely
identifies the data node to the specific database engine that is managing the set of data nodes
containing the data node. o '

Disks connected to a computer in the cluster by a disk sub-system connection are
considered to be local to that computer, as opposed to disks that may be available to the
computer by using network 20 (or an alternative connection mechanism). As will be referred to

below, disks may be local to one or more than one computer in the cluster.

CA9-2001-0060 7

CA 02377649 2002-03-20

In the example shoWn in Figure 1, ‘data nodes 38, 40, 42 are shown as local to each of

computers 6, 8 and 10. Data nodes 44, 46, 48, 50 are local to computer 8 only. Data nodes 52,

54 are local to computer 10 only, while data node 56 is local to both computer 10 and to
computer 4. As will be appreciated, all daﬁa nodes shown in Figure 1 are poteritially accessible

5 to all computers in the cluster. Where a data node is not locally available to a computer, access
will be obtained by the database engine .run\ning on that computer sending a quéry over network

20 to a computer that does have local access to the data node.

For example, the distributed database engine running on computer 4 has direct (local)
access to data node 56 only. Therefore, for database engine 12 running on computer 4 to access
10 data node 50, a query 1s sent by database engine 12 to distributed databasé engine 16 running on
computer 8, using network 20. The query 1s processed by database engine 16 to return the result
set of the query run against data stored in data node 50. The result set 1s returned to database
engine 12 using network 20. The request from computer 4 to computer \8 in this case 1s carried
using a method like that used in a shared nothing \databa'se system for requesting data from a

15 database partition to which the database engine seeking the data is not attached.

As 1s referred to above, in a particulér cluster configuration, a defined set of data nodes
may be local to a given computer. These data nodes are configurable to be analogous to
partitions in a share-nothing database system. The database manager layer of Software in the
preferred embodiment permits a computer in the cluster to receive requests for data from one of

20 the data nodes local to the computer (to havé an incoming connection established) without a need
for the request to specify which of the nodes in the set of data nodes is to be accessed. The
database manager for the set of data nodes will resolve such requests to permit the correct data
node to be accessed. The database manager uses the data node controller component (described
in more detail below) to determine how to access the data sought in the request. If the data node

25 controller indicates that the data node containing the data is available locally, the database

manager will access the data node directly (aIthough access may be serialized if the data node is
shared).

In this way, all data nodes that are local to a given computer are equally accessible.

CA9-2001-0060 8

10

15

20

25

CA 02377649 2002-03-20

Where a computer has more than one lbcal data node, there are no additional routing costs
incurred for incoming connections seeking to find the appropriate data to satisty the request that
is communicated over the connection. This is in contrast to prior art systems where if a request is
sent to the engine associated with a database partition that cannot satisfy the request, the database
engine makes a further request or requests to retrieve (and possibly merge) the result sets from

the appropriate partition or partitions. This approach (making further requests) is not required

‘when using the preferred embodiment if all the data nodes necessary for the request are local to

the computer receiving the request. Where, for example, one computer has ten local data nodes,
any query that only requires access to thosé nodes does not mcur any extra routing costs. This is
because the preferred embodiment treats each local data node equally and the paﬁ of the database
engine that handles requests has equal access to all data nodes that are on the same computer (for

the same database mstance).

As is shown in Figure 1 it is possible for a single data node to be local to more than one
computer. The figure shows each of data nodes 38, 40, 42, as being local to each one of the set of
computers 6, 8, 10 while data node 56 is shown as local to both computer 4 and computer 10. In
the case when a data node is locally coﬁnected to more than one computer, the distributed
database manager co-ordinates access to the data. In the preferred embodiment; the distributed
database manager co-ordinates access at the page, disk and database object level. As will be set
out in more detail below, the distributed database manager permits portions of the database
system of the preferred embodiment to be dynamically configured according to shared nothing or
shared disk architectures. '

The distributed database manager of the preferred embodiment includes three

components:
1. A lock manager,
2. A resource manager, and

3. An architecture manager.

CA9-2001-0060 9

10

15

20

25

CA 02377649 2002-03-20

The first of these components is a distributed component that carries out functions
analogous to those typically implemented by a lock manager in a distributed database system
having a shéu:ed disk architecture. As the désign and operation of such a lock manager is known
in the art, it will not be described in detail. The lock manager in the distributed database manager
maintains locks for both pages and database objects (such as indexes, tables and rows). The
distributed database manager ensures that access to data nodes in the cluster is properly

serialized.

The resource manager of the distributed database manager manages the resources to
balance the workload b.etween computers in the cluster. For example, if a first computer in the
cluster has limited memory, the resource manager may potentially execute a process to configure
the cluster to permit the first computer to nse the memory of a second cluster computer as a
volatile memory cache. In such a case, the first computer’s local memory is represented in the
distributed database manager resource manager for the first computer as having a defined size
and speed and a latency of zero. The first computer’s local memory i1s also defined as
"non-volatile" as the memory will be availnble and reliable as long as that computer continues to
run. In contrast, remote memory (the second computer’s available memory) will be represented
in the first computer resource manager component as having a slower speed and a greater latency
to include the delays associated with netwnrk communication. The remote memory will also be
represented as "volatile" in the first computer resource manager as the accessibility of this remote

memory does not have the permanence of the local memory.

The above example indicates how the resource manager component on each computer 1n
the cluster méintains a representation of the cluster resources. In the preferred embodiment, each
computer 1n a cluster has a distributed copy ef the resource manager running on it (the resource
manager is a component of distributed database manager 22. 24, 26, 28 shown n ?the example of
Figure 1). The resource manager is therefore part of the distributed database engine and
collectively controls and monitors the resonrces that are available to the computers making up

the cluster. The resource manager of the preferred embodiment monitors memory, disk, CPU,

CA9-2001-0060 10

10

15

20

25

CA 02377649 2002-03-20

and network resources.

Information about each resource is gathered using APIs or methods provided by the
operating system. For example, in the preferred embodiment, the information gathered about the
disk resources includes: type (manufacturer, model number), size, identifier (if possible), and
speed (bandwidth and latency, if possible). The information gathered about memory includes:
size, speed, free space, and exported size:" The information gathered about the CPUS_ includes:
speed, number, and CPU load. The infofmation gathered about the network includes: type (if
possible), bandwidth, latency, subnet information, and network load. The resource manager

includes means for representing such resource availability.

In general, each distributed resource manager running on a given computer in the cluster
advertises each available resource on that 'ﬁcomputer to the other computers in the cluster(i.e. the
availability of resources is communicated to other computers in the cluster by the resource
manager, each resource manager iricludes a mechanism for receiving this information regarding
availability of resources). This information is also made available to the architecture manager
components in the cluster. As describedf in more detail, below, the architecture manager
components carry out decision making process to balance the database workload across the
cluster and to determine the architecture to be used for data nodes in the cluster (the access to be

permitted).

The preferred embodiment supp,orts a unique identifier that is written to each disk to
permit disks to be identified as a shareable by the distributed database manager and to permit
unique identification of each disk across the cluster. As described above, memory not in current
use by a local machine can be identified and advertised as exportable (available) by the resource
manager component for that machine. When memory is flagged as exportable by a resource
manager, other computers in the cluster are able to access the exportable memory to temporarily
store infonnation. In such a case, the local computer includes a mechanism fbr accepting a
request for a memory resource and allocates and reserves the memory using an operating system
call. A remote system seeking to use the exportable memory makes a request for a block of

memory and receives a handle for the memory allocation from the resource manager (as

CA9-2001-0060 11

10

15

20

25

30

35

CA 02377649 2002-03-20

communicated using the network connection between computers in the cluster). Using this
handle, the distributed database manager. on the remote computer is able to store, retrieve and
invalidate data pages stored in the allocated block of memory. In the preferred embodiment, the
remote memory handle contains a unique 64 bit identifier used to identify the block of memory.

This unique identifier is generated when the remote computer requests a block of memory.

Since the remote memory will only be accessible using the network, the remote memory

takes on the bandwidth and latency of the \network. This information can be stored in the remote

memory handle. Example data structures for the unique identifier are set out below:

struct RemoteMemoryHandle

{
char ComputerName[64];

Uint64 memiD;
Uint64 latency;
Uint64 bandwidth;

}s

OSSErr OSSAllocRemoteMemoryPool

(struct RemoteMemoryHandle **oppMemHandle,
char *ipComputeName, '

Uint64 1S1ze

);

struct RemoteBlockHandle

{
struct RemoteMemoryHandle MemHandle;

Jint64 blockID:;
5

OSSErr OSSAllocRemoteBlock

(struct RemoteMemoryHandle *ipMemHandle,
struct RemoteBlockHandle **oppBlockHandle,
Uint64 1Size

);
OSSErr OSSSetRemoteBlock

CA9-2001-0060 12

CA 02377649 2002-03-20

(struct RemoteBlockHandle *ipBlockHandle,
Uint64 1Size, - -
void * ipData

);

OSSErr OSSSetRemoteSubBlock
(struct RemoteBlockHandle *ipBlockHandle,

Uint64 101f1set,
Uint64 1Size,

10 void * ipData
);

OSSErr OSSGetRemoteBlock
(struct RemoteBlockHandle *ipBlockHandle,
Uint64 1Size, '
15 void * 1pData
);

OSSErr OSSGetRemoteSubBlock

(struct RemoteBlockHandle *ipBlockHandle,
20 Uint64 10Offset,

Uint64 iSize,

void * ipData

);

25 OSSErr OSSFreeRemoteBlock
(struct RemoteBlockHandle *ipBlockHandle

);

OSSErr OSSFreeRemoteMemoryPool
30 (struct RemoteMemoryHandle *ipMemHandle
); '

For a new block allocation, the computer which is managing the exported memory will
call memory allocation routines (for example malloc and free) on behalf of the remote system

35 and will return the blockiD as the unique identifier for the block. The preferred embodiment

CA9-2001-0060 13

10

15

20

25

CA 02377649 2002-03-20

uses the underlying network or interconnect layer to transfer the block information from one
computer to another. In particular, this remote memory feature may be used to store victim
pages from a buffer pool on another computer. In the preferred embodiment this is used for
pages which are synchronized With the disk subsystem since the remote memory could be

volatile.

The above example indicates the manner i which the resource manager component of
the database manager layer permits sharing of resources across the computers in a defined

cluster.

A general description of data access uéing the preferred embodiment shown in the
flowchart of Figure 2. Step 50 in Figure 2 represents the receipt of a request for data by a
database engine running on a computer in a cluster of computers. On receipt of the request for
data, the database engine will deternﬁne (using a known hash algorithm approach as referred to
above) the correct data node for the requested data, as is represented in step 52 in Figure 2. The
distributed database manager component foi_' the database engine will be determine whether the
data node 1s logically connected to the computer of the database engine (as shown in decision
box 54 in Figure 2). If there is no deﬁned logical connection then the request is ee,nt by cluster's

network to another computer (shown in step 56 in Figure 2).

If, however, there is a specified legical connection, then the database engine will use the
distributed database manager component to access the data node locally (box 58 1n Figure 2). As
part of this process, the distributed database manager will determine 1f the data nede in question
is shared or not (decision box 68 in the ﬂowchart of Figure 2). If the data node is not shared, the
access to the node will be carried out directly by the distributed database ma.nager component
(step 62 in Figure 2). If the data node is shared, access to the data node will be made using the
distributed lock manager component (step 64 in Figure 2).

The above description sets out, m a general way, how a data request is handled by the
system of the preferred embodiment. As may be seen, the specified logical connections between

computer and data nodes are important to the manner in which data may be accessed. Where a

CA9-2001-0060 ' 14

10

15

20

25

CA 02377649 2002-03-20

logical connection is specified, data in a data node may be locally accessed. This local access, in
turn, will be dependent on whether other logical connections are defined for the data node.

Where there are multiple logical connections specified access will be made using the distributed

lock manager.

The third component of the distributed database manager is the architecture manager.
The database management system of the preferred embodiment permits the us er to specify data
node groups and assign database tables to _the node groups that are so specified. During database
system execution, the architecture manager cemponeilts may change the specified access to data
nodes from shared nothing to shared disk and vice versa, as system usage dictates. In this way, a
dynamic reconfiguration of the architecture of the database system is able to be carried out in the
system of the preferred embodiment. The dynamic reconfiguration is carried out by the
architecture manager changing the specified logical connections between computers and data

nodes in the cluster.

Although for each cluster there 1s an underlying arrangement of data nodes and
computers, defined by the physical connections of disks and computers, the architecture manager
is able to redefine the logical connections between, or “ownership” of, data nodes and database
engine components. Only when a data node is defined by the architecture mane,ger to be
“owned” by a database engine on a computer, will that database engine be able to treat the data
node as being local. In this manner, the architecture manager is able to specify logical
connections for the local data nodes. This permits enhanced execution efficiencies in the
database system. The change in ownership of a data node permits a smooth transition from a

shared nothing to a shared disk architecture, as well as from the latter to the former.

Architecture manager components monitor (among other things) the type of workload
and the contention on the locks that are needed to support a shared disk environment. Systems
that provide for concurrency will typieally also mclude a mechanism for monitoring lock
contention. In the preferred embodiment, the time that a database engine 'spen'ds waiting for

locks for shared data nodes is recorded. In this way, lock contention is monitored.

CA9-2001-0060 15

10

15

20

25

CA 02377649 2002-03-20

‘Monitoring the database workload involves an analysis of the data and Gperations on the
data that are baing performed by a database engine. The complexity of queries and the size of
the result sets will be analysed to determine. For example, if a database engine is carrying out a
number of queries requiring numerous large table scans with small result sets the system may be
more efficient if configured as shared nothing. If there are short lived queries that join two tables
that are not properly collocated among thé‘ data nodes, the system may be more eflicient if a
shared disk architecturé is specified. Workload monitoring may calculate the \ magnitude of a

table scan as well as the size of the result set and to permit an appropriate architecture

‘specification to be made. An alternative or complementary approach is to use empirical statistics

gathered based on system usage to determine, for example, when the architecture would be more

effective in shared nothing mode.

In response to such monitored lock contention and workload = conditions, a
decision-making process may be initiated within an architecture manager component to
determine whether a shared disk or shared nothing approach is more favourable for a given data
node group. For example, if the workload for a partiéular data node groupi 1s typified by
long-running queries that have relatively' small result sets the architecture manager’s

decision-making process may determine that a shared nothing approach will be implemented for

the data node group and associated computers in the cluster.

Examples of how distributed database manager components are able to manage system
configuration and data access are illustrated With reference to Figure 1. As indiaated above, the
architecture manager of the distributed ,database manager manages workload distribution for
node groups having associated database tables. In the preferred embodiment,; a partitioning
process is used to divide data between data nodes. The process of the preferred embodiment is
analogous to known approaches used in shafed nothing database architectures, with the salient
difference that data is not divided between different database partitions, but between data nodes.
Data nodes groups are created (data nodes are Spemﬁed as being within identified groups) by the
user (administrator) of the ‘database system using functionality provided by the database

management system. The implementation of such functionality will vary between database

CA9-2001-0060 16

10

15

20

25

CA 02377649 2002-03-20

management systems.

Each architecture manager component in a distributed database engine also contains a
data node controller component. A data node controller coordinates the ownership of data nodes
for the database engine (in other words, the data node controller is used to alter the specified
logical connections to data nodes). Each data node controller is also responsible for ensuring that
a dynamic list of owners for each data node 1s synehroni-zed and known across the cluster (all
logical connections are advertised). In the preferred embodiment, these dynamic lists of logical
connections are the mechanism by which logical connections are specified. Updating such lists

will provide for alterations to specified I_o gical connections between data nodes and database

engine components.

A simple example of a node group is one that contains only one data node and that data
node is not sharable. For example, a node group N could be defined to include oniy the data node
44 in Figure 1. Data node 44 is only directly accessible by computer 8. Tables stored in node
group N are therefore accessible by computer 8 either where the database engirre executing on
computer 8 requires table access (local acees s) or where that database engine receives a remote

request over network 20 requiring access to data stored in node group N. In the latter case,

database manager 26 receives the request and resolves the request to data node 44 in the set of

data nodes 38, 40, 42, 44, 46, 48, 50 that are local to computer 8 in the preferred embodiment. In
the preferred embodiment, a hash al gorithm 1s used to find the correct data node given a primary

key in the data values being accessed in the tables in node group N.

A more complex example is where a node group is defined to be a single data node that is

sharable between two 'computers. In the example of Figure 1 a node group P may be defined to

be data node 56, sharable between computers 4, 10 (ie. the disks in data node 56 are connected to
both computers 4, 10 by a disk sub-system connectiori). In this case, any table essociated with

node group P is potentially accessible directly by either of these computers. Other computers

seeking to access data in these tables will be required to send a remote request ofer network 20.

As mdicated above, because data node 56 is accessible directly by computers 4, 10, any access to

the data in data node 56 will be required to use the distributed database manager (either the |

CA9-2001-0060 17

10

15

20

23

CA 02377649 2002;03-20

distributed database manager component 28 running on computer 10 or distributed database

manager component 22 running on computer 4, as appropriate).

In such an arrangement, the distributed database manager defines whether one or both of
computers 4, 10 logically -“owns” data node 56 (i.e. there is a specified logical connection
between both computers 4, 10 and local data node 56). Where, given the data distribution and
system usage, 1t 1s advantageous for both ¢0mputers 4, 10 to have direct access to data node 56,.
then both cbmputers will be given 10gi¢al ownership (logical connections are specified and
therefore local access to data node 56 1s permitted for both computers 4, 10). In- such a case, the
lock manager layer of the distributed database manager components 22, 28 will be used to ensure
proper, potentially serialized, access to data node 56. If lock contention between the two
computers 4, 10 becomes significant, the architecture manager layer in the distributed database
manager may redefine the logical connection of data node 56 to be with one of the two
computers, only. Another example relating to F igure 1 1s provided by considering a defined a
node group Q that includes data nodes 35 2,: 56. In this example, the architecture manager in the *
distributed database manager is able to define the ownership of these two data nodes. This
change in the logical configuration of the cluster changes the effective architecture of node group
Q. If, for example, data node 56 in node group Q is defined to be owned by (logically connected
to) computer 4 only, the effective architeCture of node group Q will be a shared nothing
architecfure (data node 52 is always local té ¢omputer 10, only). Altematively, da-ta\ node 56 may
be defined to be owned by both computers 4, 10. In such a configuration the tables associated

with node grdup Q will be accessible in a shared disk architecture.

A similar example is provided by data 'nbdes 38, 40, 42. Each of these nodes 1s sharable
by computers 6, 8, 10. Where these three no_dés make up a node group R, the distributed database
manager of the preferred embodiment may pqtentially assign ownership of each dzita node to one
computer only; In this case, the efféctiVe architécture of node group R is shared Iiothing. Where
each of data nodes 38, 40, 42 is defined to be local to each of computers 6, 8, 10 (the architecture

manager specifies the logical connectionS), the effective architecture of node group R is a shared

CA9-2001-0060 18

10

15

20

25

CA 02377649 2002-03-20

disk architecture.

In the above examples, it is the node controller layer that ensures that the logical
connection relationship (ownership) between data nodes and database engines is correctly
maintained and distributed across the cluster. In the preferred embodiment, each database
manager component in the cluster has a Q_data structure that represents the ownership relations
between data nodes and database-engine COmponentS runhing' on eomputers in ._ the cluster. The
data node controller in each database maneger is able to initiate processes to ensure that these
data structures are kept current. The data node controller layer of the preferred embodiment
establishes and records logical connectioﬁs -_to local data nodes. The status of logical data node

connections is communicated between computers in the cluster using the data node controller

layer.

An -ej(ample of how the architecture manager layer carries out a change in logical
connection for a data node 1s described with reference to data node 40 in Figure 1. As may be
seen in the Figure, data node 40 is potentially local to cemputers 6, 8, 10 (and hence to database
engine components 14, 16, 18). It is thefefore possible for the logical conﬁguration of the

system to permit shared disk access to data ;_nede 40.

As indicated above, in such a case; the architecture manager component in database
manager 24 monitors workload and lock contention for data node 40. Where an enalysis process
carried out by the architecture manager in':database manager 24 indicates that the access to data
node 40 is more efficient using a shared nothing architecture, the architecture manager will

redefine the logical connection or ownerehip of data node 40 (this is referred to as a

re-architecture step).

Where data node 40 1s to be moved out of a shared disk architecture that involves
database engines 14, 16, 18, the first step carried out in the preferred embodiment is to broadcast
the re-architecture plan to all the data node controllers in the cluster. The re-architecture plan

includes information about the planned' architecture (i.e., which database engines will own data

CA9-2001-0060 19

10

15

20

25

CA 02377649 2002-03-20

node 40 after the change in architecture).

While it is possible to migrate only one database engine out of the logical ownership pool
for data node 40, an example is described here involving the migration of both databases engines

16, 18. As a result, database engine 14 will remain as the sole owner of data node 40.

‘The first step described above, the broadcast of the re-architecture plan, ensures that the
database engines in the cluster other than database engine 14 (namely database engines 12, 16,
18) will send any new requests for data node 40 to database engine 14. This is because database
engme 14 1s the only database engine that will own the data node 40 after the reconﬁguratlon 1S

complete. The broadcast of the re-archltecture plan puts database engmes 16, 18 nto a

remove-ownership-pending state.

In the preferred embodiment, the second step in the ownership change may be carried out

in one of two different ways:

1. The architecture manager components wait for the completion of any existing work

carried out by database engines 16, 18 accesses data node 40 using a local connection; or

2. The database manager components may interrupt such existing work. As a result, the

interrupted work will generate an error trap and the work will be resubmitted. On resubmission,

the work will be carried out using the network connection to obtain data from data node 40.

During this phase data node 40 effectlvely remains in a shared disk mode. Existing work

on the database engines that are being mi grated out of the logical ownership pool for the data
node potentlally accesses data node 40 until the work is either completed or migrated to database
engine 14. During this time, the locks must continue to be coordinated between the database

engines that are using data node 40 locally.

The process of migrating a database engine out of the logical ownership pool 1s analogous
to how existing shared disk database products can migrate systems out of a cluster. However, in

the system of the preferred embodiment, more than one data node may be defined to be in a

CA9-2001-0060 , 20

10

15

20

25

CA 02377649 2002-03-20

shared disk data node group. The system allows the database engine that was migrated out of the

data node group to continue to perform useful work on other local data nodes or forward requests

- for remote data nodes to the appropriate database engine(s).

The migration described above is complete when all work involving local access to data
node 40 is complete on database engines 16, 18. At this stage, the architecture for data node 40
18 shared nothing. The data node controllers for database engines 16, 18 send a broadcast to the
other data node controllers in the cluster when their local work with data node 40 is complete.
This broadcast essentially completes the migration of these database engines out of the logical

ownership pool for data node 40.

As mdicated, atter the migration is ;completc, database engines 16, 18 are able to pérform
other database work. In the example of F 1gure 1, both database engines own (shared or not
shared) other data nodes and can handle réqueéts for information for these data nodes. If a
request for data stored on data node 40 is réceived by either database engines 16, 18, they simply
forward the requests to database engine 14 (in the same fashion that a shared nothing database

would forward a request to another database partition).

The system of the preferred ,embodij:nent 1s also able to carry out a change in logical
configuration by migrating data node 40 back from a shared nothing architecture to a shared disk
architecture. EStep one involves coo:dinat'i()n between database engines 14, 16, 18 to ensure that
each 1s aware that database engines 16, 18' will become logical owners of data node 40 in
addition to database engille 14. This coordination starts the shared lock management between the

database engines and prepares them for being logical owners of data node 40.

Step two mnvolves sending a broadfcast to other data node controllers in the cluster to
inform them that database engine 16, 18 are in an add-ownership-pending state. After the

broadcast, the other database engines can send requests directly to database engines 16, 18 for

data node 40.

Adding database engines to the logical ownership pool for data node 40 is analogous to

how existing database products introduce systems into a shared disk cluster. The invention does

CA9-2001-0060 \ 21

| CA 02377649 2002-03-20

not limit a cluster to a single data node and allows a mix, hybrid architecture for each data node.

As the- above indicates, the dynamic nature of the database architecture supported by the
preferred embodiment permits the use of resourCes -infcomputei's 4, 6, 8, 10 to be changed over
time. The data nodes within a node group inay be used in a sha,red disk conﬁgmation and then

5 dynamically switched to a shared nothing configuration by reassigning portions of the data to

redistribute data nodes in the cluster to minimize lock contention.

The database system also permits access to all the disks in the data nodes in the cluster at
any given time. This is possible if each of the data nodes in the cluster is shared between more
than one computer, permitting logical ownérship to be redefined dynamically. In this case the

10 cost of failing over a set of disks is low as the failed system (i.e. computer) is merely removed
from the logical ownership list for the data node that is maintained by the architecture manager.
This reduces the cost of failing over a set of disks. After a failure, one or more computers in the
cluster can potentially replace the failed 'c()mponent by taking over the workload previously
assigned to the component with minimal é.dditional overhead, given the role played by the
15 resource manager in the distributed database manager. When the failed machine is repaired and
returned to the cluster, the computer is able to be reassigned the work it was previously doing, if
necessary (1.e. will be re-added to the logipal ownership list for the node). In this manner,

improved availability of resources is provided by thé preferred embodiment.

As 1s apparent from the above descriptibn, the system of the preferred embodiment is able

20 to be scaled up in at least the following ways:
1. by increaSing the number of compuiers that own a given data node ;

2. by increasing the size of storage for a data node (typically by increasing the number or
size of disks); and '

3. by increasing the number of data nodes in the cluster.

25 Various embodiments of the present invention having been thus described in detail by

CA9-2001-0060 22

CA 023776459 2002-03-20

way of example, it will be apparent to those skilled in the art that variations and modifications
may be made without departing from the invention. The invention includes all such variations

and modifications as fall within the scope of the appended claims.

CA9-2001-0060 . - 23

10

15

20

25

CA 02377649 2002-03-20

The embodiments of the invention in which an exclusive property or privilege is claimed are

defined as follows:

1. A computer program product comprising a computer usable medium tangibly embodying
computer readable program code means for implementing a set of database manager components
in a distributed database management system, the distributed database management system being
implementable on a computer clustef, the cluster comprising a set of one or moré interconnected
computers and further comprising a set of data nodes, each computer having associated
resources, each data node being locally connected to one or more of the set of computers in the
cluster, each database manager :component having an associated computer in the set of
computers, the computer readable program code means for implementing the set of database

manager components comprising, for each database manager component:

resource manager code means for managing resources associated with the associated

computer,

lock manager code means for managing locks on the data stored on data nodes locally

connected to the associated computer, and

architecture manager code means for specifying logical connections for the local data
nodes of the associated computer, whereby access to the local data nodes is determined by the

specified logical connections.

2. The computer program product of claim 1 in which the architecture manager codes means
further comprises code means for monitoring workload for the local data nodes of the associated

computer and for altering the specified logical connections for the local data nodes of the

assoclated computer in response to monitored workload conditions.

3. The computer program product of claim 1 in which the architecture manager code means
further comprises code means for monitoring lock contention for the local data nodes of the

associated computer and for altering the specified logical connections for the local data nodes of

CA9-2001-0060 24

10

15

20

CA 02377649 2002-03-20

the associated computer in response to monitored lock contention conditions.

4. The computer program product of claim 1 in which the architecture manager code means
further comprises code means for monitoring workload and lock contention for the local data
nodes of the associated computer and for altering the specified logical connections for the local

data nodes of the associated computer in response to monitored workload and lock contention

conditions.

5. The computer program product of claim 1 in which the resource manager code means
further comprises code means for communicating the availability of resources on the associated

computer to other computers in the cluster.

6. The computer program product of claim 5 in which the resource manager code means

further comprises code means for receiving information regarding availability of resources

“associated with the other computers in the cluster.

7. The computer program product of claim 5 or 6 in which the resource managér code

means further comprises code means for representing resource availability for the cluster.

8. The computer program product of claim 7 in which the code means for representing
resource availability for the cluster comprises code means for representing memory, CPU, disk

and network resources in the cluster.

0. The computer program product of claim 8 in which the representation of memory

resources in the cluster comprises the representation of size, speed, free space and exported size

characteristics.

10. The computer pro gram product of claim 8 in which the representation of disk resources in

the cluster comprises the representation of type, size, speed and disk identifier characteristics.

11. The computer program product of claim 8 in which the representation of CPU resources

in the cluster comprises the representation of speed, number, and load characteristics.

CA9-2001-0060 25

—— b, L o b L —— P o v —

10

15

20

25

CA 02377649 2002-03-20

12. The computer program product of claim 1 in which the resource manager code means

further comprises:

code means for communicating the availability of resources on the associated computer to

other computers in the cluster;

code means for receiving information regarding availability of resources associated with

the other computers in the cluster, and

code means for representing resource availability for the cluster,

the code means for implementing the set of database manager components further

comprising resource sharing code means for enabling a first computer in the cluster to access

available resources of a second computer in the cluster, based on resource availability for the

cluster represented by the resource manager code means, thereby balancing workload in the

cluster.

13. The computer program product of claim 12 in which the resource sharing code means
further comprises code means executable by the first computer for accepting a request for a
memory resource from the second computer, for reserving a block of memory in the associated

computer and for providing a handle for the block of memory to the second computer.

14. The computer program product of claim 1 in which the architecture manager code means
further comprises data node controller code means for establishing and reé_ording logical

connections to local data nodes.

15. The computer program product of claim 14 in which the data node controller code means
further comprises code means for communicating the status of logical data node connections for

the associated computer to ofher computers 1n the cluster.

16. The computer program product of claim 15 in which the data node controller code means
further comprises code means for receiving the status of 1o gical data node connections for other

computers in the cluster and further comprises code means for maintaining a representation of

CA9-2001-0060 , 26

T A e AR

10

15

20

25

CA 02377649 2002-03-20

logical data node connections for the cluster.

17. A distributed database management system for implemehtation on a computer cluster, the
cluster comprising a set of one or more interconnected computers and further comprising:
a set of data nodes, each data node being locally connected to one or more computers in the

cluster, each computer having potentially shareable resources,

the distributed database management system comprising a set of distributed database
manager components, each component being implementable on a unique one of the computers
in the cluster, the distributed database management system comprising means for specifying the
database architecture applicable to one or more defined subsets of the set of data nodes to be

selectively a shared disk architecture or a shared nothing architecture.

18. The distributed database management system of claim 17, further comprising means for
migrating defined subsets of data nodes from a specified applied shared disk architecture to a
specified applied shared nothing architecture and comprising means for migrating defined
subsets of data nodes from a specified applied shared nothing architecture to a specified applied
shared disk architecture.

19. The distributed database managément system of claim 18, further comprising means for
communicating the availability of the potentially shareable resources for the computers in the

cluster, and means for sharing available resources between computers in the cluster.

20. In a computer system, a distributed database manager apparatus for implementation on an
associated computer in a computer cluster, the cluster comprising a set of one or more
interconnected computers and further comprising a set of data nodes, each data node being
locally connected to one or more of the set of computers in the cluster, the distributed database

manager apparatus comprising

a resource manager comprising means for managing resources on the associated

computer,

CA9-2001-0060 27

10

15

20

25

CA 02377649 2002-03-20

a lock manager comprising means for managing locks on the data stored on data nodes

locally connected to the associated computer, and

an architecture manager comprising means for specifying logical connections for the

local data nodes of the associated computer, whereby access to the local data nodes is determined

by the specified logical connections.

21. The distributed database manager apparatus of claim 20 in which the architecture
manager further comprises means for monitoring workload for the local data nodes of the
associated computer and for altering the specified logical connections for the local data nodes of

the associated computer in response to monitored workload conditions.

22. The distributed database manager apparatus of claim 20 in which the architecture
manager further comprises means for monitoring lock contention for the local data nodes of the
associated computer and for altering the specified logical connections for the local data nodes of

the associated computer i response to monitored lock contention conditions.

23. The distributed database manager apparatus of claim 20 in which the architecture
manager further comprises means for monitoring workload and lock contention for the local data
nodes of the associated computer and for altering the specified logical connections for the local

data nodes of the associated computer in response to monitored workload and lock contention

conditions.

24. The distributed database manager apparatus of claim 20 in which the resource manager
further comprises means for communicating the availability of resources on the associated

computer to other computers in the cluster.

25. The distributed database manager apparatus of claim 24 in which the resource manager
further comprises means for receiving information regarding availability of resources associated

with the other computers in the cluster.

26. The distributed database manager apparatus of claim 24 or 25 in which the resource

CA9-2001-0060 28

10

15

20

25

CA 02377649 2002-03-20

manager further comprises means for representing resource availability for the cluster.

27. The distributed database manager apparatus of claim 26 in which the means for
representing cluster resource availability comprises means for representing memory, CPU, disk

and network resources in the cluster.

28. The distributed database manager apparatus of claim 27 in- which the means for
representing memory resources in the cluster comprises means for representing size, speed, free

space and exported size characteristics.

29. The distributed database manager apparatus of claim 27 in which the means for
representing disk resources in the cluster comprises means for representing type, size, speed and

disk identifier characteristics.

30. The distributed database manager apparatus of claim 27 in which the means for
representing CPU resources in the cluster comprises means for representing speed, number, and

load characteristics.

31. The distributed database manager apparatus of claim 20 in which the architecture
manager further comprises a data node controller for establishing and recording logical

connections to local data nodes.

32. The distributed database manager apparatus of claim 31 in which the data node controller -
further comprises means for communicating the status of logical data node connections for the

associated computer to other computers in the cluster.

33. The distributed database manager apparatus of claim 32 in which the data node controller
turther comprises means for receiving the status of logical data node connections for other
computers in the cluster and further comprises means for maintaining a representation of logical

data node connections for the cluster.

34. A computer-implemented method of implementing database management system

operations on a computer cluster comprising a set of interconnected computers and a set of data

CA9-2001-0060 | 29

CA 02377649 2002-03-20

nodes, each data node being locally connected to one or more of the set of computers, the method

comprising the steps of:

defining ownership relationships between the computers in the set of computers and the
data nodes locally connected with the computers, whereby a database management system

> operation may be carried out by a one of the set of computers directly only on those data nodes

owned by the said computer,

a. monitoring database usage characteristics,

b. in response to the monitored usage characteristics, carrying out a re-architecture
step by redefining the defined ownership relationships to improve the efficiency of the database

10 management system operations.

35. A computer program product comprising a computer usable medium tangibly embodying

computer readable program code means for carrying out the method of claim 34.

CA9-2001-0060 30

CA 02377649 2002-03-20

Computer 4 | Computer 6

Database Engine 12

Database Engine 14

Database

Database Manager Manager 24

22

B

Computer 10

Database Engine 18

- Database
Manager 26

Database M

l Manager 28 I

16

Computer 8

(<10

' " o aam o o il gy MMWMW*__— pre—. E L T T e T L L L P ar Sy T v S ———— =T DT T P T PR T T T PRV SR SR —
0 T

CA 02377649 2002-03-20

DB Engine Receives
Request for Data 50

Determine Data Node
for Requested Data
52

Send Request to
Other Computers in
Cluster 56

Is Data Node
Local? = 54

Access Data Node
Locally 58

Coordinate Data Node
Access Directly 62

Is Data Node
Shared? 60

Coordinate Data Node
Access with
Distributed Lock
Manager 64

h Computer 4 | | Computer B
I — —

Database Engine 12 Database Engine 14
h - -
1 Database Manager | | Maor?atgg?sz_g
| 22 > o
N —— g 7

"4 A
Network
20
Computer 10

I\ Database Engine 18

A -

l Database

"r’ Manager 26
7.

Database Engine 16

Database /‘ '

(Manager 28 ~

Computer 8

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

