wo 2007/032939 A1 |0 0 000 I 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 March 2007 (22.03.2007)

lﬂfb A0 0

(10) International Publication Number

WO 2007/032939 Al

(51) International Patent Classification:
GOG6F 17/00 (2006.01) GOG6F 15/00 (2006.01)
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2006/034310
(22) International Filing Date: 29 August 2006 (29.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/716,169
11/317,580

12 September 2005 (12.09.2005)
23 December 2005 (23.12.2005)

Us
Us

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: KOTHARI, Nikhil; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). LE ROY, Bertrand;

One Microsoft Way, Redmond, Washington 98052-6399
US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SCRIPT APPLICATION FRAMEWORK

100
’ Script Application Framework T~
102
——lr Application T~
104
Component i
106
TypeDescriptor [~
108
Binding T~
110
Transformer
112
Action [~
114
Condition T~
116
Event ™~
118
IDisposable "\/
.
[]
.

(57) Abstract: A script application framework is provided to
abstract common scripting patterns and to provide a structure for
scripting. The script application framework encapsulates script-
ing logic into script components, manages lifetime of script ob-
jects, and builds relationships among different script objects. The
script application framework can be applied to any scripting en-
vironment

WO 2007/032939 A1 |00 00 0T 000000000 0

Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of
patent (Rule 4.17(ii)) amendments

— asto the applicant’s entitlement to claim the priority of the

li lication (Rule 4.17(iii
carlier application (Rule (iit)) Fortwo-letter codes and other abbreviations, refer to the "Guid-

Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2007/032939 PCT/US2006/034310

SCRIPT APPLICATION FRAMEWORK

BACKGROUND

As known by those skilled in the art of computers, a programming language or
computer language is a standardized communication tool for expressing instructions to a
computer so the computer can execute the instructions to perform specific acts.
Programming languages come in various styles. Some are procedural languages such as
C. Some are object oriented, such as C++ and Java. Some are functional such as Haskell.
A scripting language tends to be a simple programming language designed for ease of
programming and for performing special or limited tasks. For example, nowadays,
JavaScript is often used to provide additional functionality and/or interactivity for Web
applications. Visual Basic Script, Perl, and TCL are other examples of scripting
languages. In general, a scripting language has simpler syntax and fewer programming
constructs than a traditional programming language such as C, C++, or Java. In addition,
scripting languages do not need to be compiled, and they can be interpreted at run time,
though can be executed immediately.

Scripting is the process of using a scripting language to create a set of instructions
to achieve a specific function using a scripting language. Unlike traditional programming
using programming languages such as C, C++, or Java that manipulate the processes of a
computer, scripting tends to involve a fast, smaller set of simple instructions. A script
tends to accomplish a specific purpose, such as controlling the process of connecting a
computer to another computer via a modem, or controlling how content in a Web page
changes according to user input. On the World Wide Web, a scripting language can be
used to create scripts to customize or add interactivity to Web pages and Web applications.
For example, when inserted into a Web page, a script can control various elements of the

Web page, such as the user interface, styles, and HTML markup of the Web page.

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

Over time, traditional programming has integrated concepts such as abstraction and
encapsulation into a programming language and generated programming languages such
as C++ and Java that provides predetermined patterns and structures. On the other hand,
scripting has remained ad-hoc, involving no patterns or structures and often resulting in
error-prone code that is hard to maintain. For example, a scripting environment generally
lacks an application framework layer. Scripting thus occurs without any abstractions to
hide the complexity of different functionalities and to address common scripting patterns.

While specific disadvantages of existing systems have been illustrated and
described in this Background Section, those skilled in the art and others will recognize that
the subject matter claimed herein is not limited to any specific implementation for solving
any or all of the described disadvantages.

SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This summary is not intended
to identify key features of the claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

Aspects of the invention provide a script application framework to ease the
development of scripts. The script application framework encapsulates scripting logics
into components, provides script object models, binds properties and methods of different
script objects, and manages the lifetime of script objects, etc. The script application
framework can be applied to any scripting environment.

In accordance with one aspect of the invention, the script application framework
may provide an Application class encapsulating common functionalities for a script
application. The script application may include a plurality of script objects. The
Application class may include functionalities for managing the plurality of script objects.

A Component class may be provided for defining behavior and at least one object
attribute associated with a script object. The object attribute may be a property of the
script object, a method for the script object, or an event for the script object. Preferably, a
TypeDescriptor class is provided for describing object model of the script object.

In accordance with another aspect of the invention, script objects may
communicate with each other, through mechanisms such as binding and actions. A
Binding class provides functionalities for connecting a first script object with a second

script object by transferring data from an object attribute of the first script object to an

2.

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

object attribute of the second script object. Preferably, a Transformer class is used to
convert type of the data of the object attribute of the first script object to type of the object
attribute of the second script object, when necessary.

Meanwhile, an Action class can be used to invoke a specific action upon
occurrence of a specific event in a script object. The specific action can be, for example,
to invoke a method of another script object or to configure a property of another script
object. An Event class may be used for to maintaining one or more event handlers and
signaling an occurrence of an event for a script object. In addition, a Condition class may
be used to provide specific criteria for deciding whether to perform the specific action
when the specific event occurs.

In addition, the script application framework may further include an IDispose
interface that can be implemented for disposing a script object and/or clearing up its
relationships to other script objects.

DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will
become more readily appreciated as the same become better understood by reference to
the following detailed description, when taken in conjunction with the accompanying
drawings, wherein:

FIGURE 1 is a block diagram illustrating an exemplary script application
framework.

DETAILED DESCRIPTION

The following text illustrates and describes exemplary embodiments of the
invention. However, those of ordinary skill in the art will appreciate that various changes
can be made therein without departing from the spirit and scope of the invention.

FIGURE 1 illustrates an exemplary script application framework 100 and its
exemplary components. In embodiments of the invention, the script application
framework 100 may include more or fewer components than the ones illustrated in
FIGURE 1.

As shown in FIGURE 1, the illustrated script application framework 100 includes
an Application 102 class. The Application 102 class is the top-level class that brings
together all components of the script application framework 100 and performs tasks such
as managing the lifetime of script objects in an application and providing access to

services to different parts of the application. In an exemplary embodiment of the

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

invention, an individual Web page includes one instance of the Application 102 class. The
following pseudo code illustrates an exemplary Application 102 class:
/[Application
e Web._Application = function() {
this.get_type = function();
this.Joad = new Web.Event(this);
this.unload = new Web.Event(this);
this.findObject = function(id);
this.getService = function(serviceType);
this.registerDisposableObject = function(object);
this.unregisterDisposableObject = function(object);

o Type.registerSealedClass("Web._Application', null, Web.IDisposable,
Web.ITypeDescriptorProvider, Web.ICustomTypeDescriptor);

e Web.Application = new Web._Application();

/I

The Component 104 class is the base class for all script components. The
Component 104 class is a mechanism to encapsulate a set of specific funétionalities for a
script component that can be used by an application developer or by other script
components. In exemplary embodiments of the invention, the Component 104 class
describes a script object's behavior and object model attributes such as properties,
methods, and events. The Component 104 class also may enable a script object to
participate in lifetime management of script objects in the application, to raise change
notifications when a property of the script object changes, and to manage events specific
to the scripf object. The following pseudé code illustrates an exemplary implementation

of the Component 104 class:

// Component

e Web.Component = function(registerAsDisposable) {
this.get_bindings = function();
this.get_dataContext = function();
this.set_dataContext = function(value);
this.get_id = function();

10

15

20

25

30

WO 2007/032939

}

/1

The TypeDescriptor 106 class allows a script object to describe its object model,
which includes properties (along with type, and associated attributes), events, and methods
(along with associated parameters). For example, the TypeDescriptor object for a TIMER
script object may include an Interval property of numerical type and an Enabled property
of Boolean type, a Tick event, and methods such as Start() and Stop(). For example, the
TypeDescriptor object for an Array script object may provide information on what types

of objects are in the array. The following text illustrates an exemplary implementation of

this.set_id = function(value);
this.get_isInitialized = function();
this.get_isUpdating = function();
this.createEvent = function(autoInvoke);
this.propertyChanged = this.createEvent();
this.beginUpdate = function();
this.dispose = function();

;chis.endUpdate = function();
this.getDescriptor = function();
this.initialize = function();
this.raisePropertyChanged = function(propertyName);
this.updated = function();

Type.registerAbstractClass('Web.Component', null, Web.IDisposable,
Web.ITypeDescriptorProvider, Web.ISupportBatchedUpdates,
Web.INotifyPropertyChanged);

the TypeDescriptor 106 class:

/I TypeDescriptor

Web.TypeDescriptor = function() { }

Web.TypeDescriptor.prototype.add Attribute = function(attributeName,
attributeValue);

Web.TypeDescriptor.prototype.addEvent = function(eventName,
supportsActions);

PCT/US2006/034310

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

Web.TypeDescriptor.prototype.addMethod = function(methodName,

associatedParameters);

Web.TypeDescriptor.prototype.addProperty = function(propertyName,
propertyType, readOnly);

Web.TypeDescriptor.addType = function(tagPrefix, tagName, type);

Web.TypeDescriptor.createParameter = function(parameterName,

parameterType);

Web.TypeDescriptor.getType = function(tagPrefix, tagName);

Web.TypeDescriptor.getTypeDescriptor = function(instance);

Web.TypeDescriptor.getProperty = function(instance, propertyName, key);

Web.TypeDescriptor.setProperty = function(instance, propertyName, value,
key);

Web.TypeDescriptor.invokeMethod = function(instance, methodName,

parameters);

Web.TypeDescriptor.getPropertyType = function(instance, propertyName,
key);

Web.ICustomTypeDescriptor = function() {
this.getProperty = Function.abstractMethod;
this.setProperty = Function.abstractMethod;
this.invokeMethod = Function.abstractMethod; }

Type.registerInterface("Web.ICustomTypeDescriptor’);

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

e Web.ITypeDescriptorProvider = function() {
this.getDescriptor = Function.abstractMethod;}

e Type.registerInterface("Web.ITypeDescriptorProvider’);

/I

Embodiments of the invention provide one or more mechanisms to connect script
objects with each other. FIGURE 1 illustrates two such mechanisms: a Binding 108 class
and an Action 112 class. The Binding 108 class can be used to transfer data from one
object property to another object property, and vice versa. For example, if a script object
Counter has a Value property and another script object Label has a Text property. An
instance of the Binding 108 class can bind Counter.Value to Label.Text. As a result, the
script object Label is able to display Counter.Value. In exemplary embodiments of the
invention, an instance of the Binding 108 class may be associated with arbitrary property
paths instead of specific property names. For example, Label. Text may be bound to
Foo.Bar.Baz, an expression of the referenced script object that is the source of the data for
Label.Text. In exemplary embodiments of the invention, data may be allowed to only
transfer into a property, to only transfer out of a property to another property, or both, i.e.,
to be transferred out and into a property.

In embodiments of the invention, the Binding 108 class may be associated with a
Transformer 110 class that converts the type of one property into the type of another
property. For example, the exemplary Counter.Value is of a numerical type while the
exemplary Label. Text is of a string type. Therefore, when a binding between these two
properties occurs, an instance of the Trénsformer 110 class implicitly converts the
Counter.Value from the numerical type to the string type, the type of Label. Text.

The following pseudo code illustrates an exemplary implementation of the
Binding 106 class:

//Binding

e Web.BindingDirection = Web.Enum.create('In’, 'Out’, 'InOut");

e Web.BindingEventArgs = function(value, direction, targetPropertyType,
transformerArgument) {
this.get_direction = function();

WO 2007/032939 PCT/US2006/034310

this.get_targetPropertyType = function();
this.get transformerArgument = function();
this.get value = function();

this.set_value = function(value);

}
e Type.registerSealedClass("Web.BindingEventArgs', Web.CancelEventArgs);

- e Web.Binding = function() {
this.get automatic = function();
this.set_automatic = function(value);
this.get _dataContext = function();
this.set_dataContext = function(value);
this.get dataPath = function(),
this.set_dataPath = function(value);
this.get_direction = function();
this.set_direction = function(value);
this.get property = function();
this.set_property = function(value);
this.get propertyKey = function();
this.set_propertyKey = function(value);
this.get transformerArgument = function();
this.set_transformerArgument = function(value);
this.transform = new Web.Event(null);
this.dispose = function();
this.evaluate = function(directilon);
this.evaluateIn = function();
this.evaluateOut = function();
this.initialize = function(component);
3
e Type.registerSealedClass("Web.Binding', null, Web.IDisposable,
Web.ITypeDescriptorProvider);
/

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

Embodiments of the invention may also provide an Event 116 class that may be

used to maintain a list of event handlers, and to signal events as they occur. The follow

text illustrates an exemplary implementation of the Event 116 class:

// Event

}

I

Web.Event = function(owner, autoInvoke) {
this.get autoInvoke = function();
this.isActive = function();
this.get_isInvoked = function();
this.dispose = function();

Type.registerSealedClass("Web.Event', null, Web.IDisposable);

Web.Event.prototype.add = function(handler);
Web.Event.prototype.addAction = function(action);
Web.Event.prototype.remove = function(handler);
Web.Event.prototype.removeAction = function(action);

Web.Event.prototype.invoke = function(sender, eventArgs);

Web.EventArgs = functidn() {
this.getDescriptor = function();

Type.registerClass('Web.EventArgs', null, Web.ITypeDescriptorProvider);
Web.EventArgs Empty = new Web.EventArgs();
Web.CancelEventArgs = function() {

this.get_canceled = function();

this.set_canceled = function(value);

Type.registerClass("Web.CancelEventArgs', Web.EventArgs);

Another exemplary binding mechanism is provided by the Action 112 class, which

allows a specific action to be invoked when a specific event occurs. For example, a script

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

object Timer may include a Counter property and a Tick event. In an exemplary
implementation of the script object Timer, whenever the Tick event occurs, an instance of
the Action 112 class increments the value of the Counter property. Such an action may be
called an InvokeMethod action. Exemplary embodiments of the invention provide
multiple types of actions. For example, a SetProperty action may be provided to set the
property of a script object to a particular value. In an exemplary embodiment of the
invention, the Action 112 class may be further associated with a Condition 114 class that
can be used to decide whether to perform an action even though the designated event has
occurred. The following text illustrates an exemplary implementation of an IAction
interface and the Action 112 class:
/[Action
e Web.JAction = function() {
this.get_sequence = Function.abstractMethod,;
this.execute = Function.abstractMethod;

this.setOwner = Function.abstractMethod;

}

e Type.registerInterface("Web.IAction');

e Web.Action = function() {
this.get eventArgs = function();
this.get result = function();
this.get sequence = function();
this.set_sequence = function(value);
this.get sender = function();
this.get_target = function();
this.set_target = function(value);
this.execute = function(sender, eventArgs);
this.performAction = Function.abstractMethod;
this.setOwner = function(eventSource);

}
e Type.registerAbstractClass('Web.Action', Web.Component, Web.IAction);

-10-

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

e Web.InvokeMethodAction = function() {
this.get method = function();
this.set method = function(value);
this.get_parameters = function();

}
e Type.registerSealedClass("Web.InvokeMethodAction', Web.Action);

e Web.SetPropertyAction = function() {
this.get property = function();
this.set_property = function(value);
this.get propertyKey = function();
this.set_propertyKey = function(value);
this.get value = function();
this.set_value = function(value);

}

e Type.registerSealedClass("Web.SetPropertyAction', Web.Action);

/

In embodiments of the invention, services (data transfer, e.g.) provided by an
instance of the Binding 108 class may need to be triggered explicitly or automatically in
response to change notifications. Change notifications can be a property change
notification or a collection change notification. For example, when the exemplary
Counter.Value associated with the script object Timer changes, a property change
notification is issued to the corresponding instance of the Binding 108 class, which then
updates Label. Text with the current Counter.Value. Collection change notification occurs
when a change occurs to a collection script object such as a DataSource. A collection
script object includes a collection of data. A DataSource can be, for example, a database.
The DataSource may have a Data property. A Repeater script object may have a Data
property as well. Assuming Repeater.Data is bounded with DataSource.Data. When new
records of data are added to the DataSource.Data, a collection change notification is issued
to the corresponding instance of Binding 108 class, which then updates Repeater.Data
accordingly. For example, the instance of the Binding 108 class may populate a table of
the Repeater with the new data. The following pseudo code illustrates an exemplary

implementation of the change notification functionalities:

-11-

10

15

20

25

30

WO 2007/032939 PCT/US2006/034310

//Change Notification
e Web.INotifyPropertyChanged = function() {
this.propertyChanged = null;

e Type.registerInterface("Web.INotifyPropertyChanged');

e Web.INotifyCollectionChanged = function() {this.collectionChanged = null;}
o Type.registerlnterface("Web.INotifyCollectionChanged");

e Web.PropertyChangedEventArgs = function(propertyName) {
this.get propertyName = function();

o Type.registerSealedClass('Web.PropertyChangedEventArgs', Web.EventArgs);

e Web.NotifyCollectionChangedAction = Web.Enum.create('Add', Remove',
'Reset");

e Web.CollectionChangedEventArgs = function(action, changedItem) {
this.get action = function(); |
this.get changedltem = function();
}

e Type.registerSealedClass('"Web.CollectionChangedEventArgs',
Web.EventArgs);

/

Once script objects reference each other, such as through instances of the
Binding 108 class, they create circular references. The IDisposable 118 interface
implementation can then be used to break a circular reference. The Djisposable 118
implementation includes logic and mechanism for disposing and cleaning up a script
object and its references to other script objects. The following pseudo code illustrates an

exemplary implementation of the IDisposable 118 interface:

-12-

10

15

WO 2007/032939 PCT/US2006/034310

// Web.IDisposable

e Web.IDisposable = function() {

this.dispose = Function.abstractMethod;
}

e Type.registerInterface("'Web.IDisposable');

//

In summary, the script application framework 100 encapsulates common scripting
logics into components, provides definitions for script objects, and enables script objects
to communicate with each other through mechaﬁisms such as binding and actions. The
script application framework 100 thus provides a structure for traditionally ad hoc
scripting.

It is to be understood that the subject matter defined in the appended claims is not
necessarily limited to the specific features or implementations described above. Rather,
the specific features and implementations described above are disclosed as example forms

of implementing the claims.

-13-

WO 2007/032939 PCT/US2006/034310

CLAIMS
The embodiments of the invention in which an exclusive property or privilege is

claimed are defined as follows:

1. An application programming interface ("API") embodied on one or more
computer-readable media for providing a script application framework (100) for a
scripting environment, comprising:

a first group of services ("Application") (102) related to providing an application
including a plurality of script objects and related to managing the plurality of script

objects.

2. The API of Claim 1, further comprising:
a second group of services ("Component") related to defining behavior and at least

one object attribute associated with one of the plurality of script objects.

3. The API of Claim 2, wherein the object attribute is selected from a group of
items consisting of: a property of the script object, a method for the script object, and an

event for the script object.

4. The API of Claim 2, wherein the second group of the services is further

related to providing a change notification if the object attribute changes.

5. The API of Claim 2, wherein the second group of services further includes
a third group of services ("TypeDescriptor") related to describing object model of the

script object.

6. The API of Claim 1, wherein the first group of services is further related to

connecting the plurality of script objects.

7. The API of Claim 6, wherein the first group of services further includes a
fourth group of services ("Binding") related to connecting a first script object in the
plurality of script objects with a second script object in the plurality of script objects by
transferring data from an object atiribute of the first script object to an object attribute of

the second script object.

-14-

WO 2007/032939 PCT/US2006/034310

8. The API of Claim 7, wherein the fourth group of services further includes a
fifth group of services ("transformer") related to converting type of the data of the object
attribute of the first script object to type of the object attribute of the second script object.

9. The API of Claim 7, wherein the data is configured to transfer in a direction
of the group consisting of:
only into an object attribute of a script object, only out of an object attribute of a

script object, and both into and out of an object attribute of a script object.

10. The API of Claim 7, wherein the fourth group of services is triggered in
response to a change notification signaling that the object attribute of the first script object
has changed.

11. The API of Claim 10, wherein the change notification is either a property

change notification or a collection change notification.

12. The API of Claim 11, wherein the property change notification occurs
when the object attribute of the first script object is a property and the value of the
property has changed.

13. The API of Claim 11, wherein the collection change notification occurs
when the first script object is a collection script object, i.e., containing a collection of data,

and the object attribute of the first script object is updated.

14. The API of Claim 1, further comprising a sixth group of services ("Event")

related to maintaining one or more event handlers and signaling an occurrence of an event.

15. The API of Claim 7, further comprising a seventh group of services
("Action") related to invoking a specific action upon occurrence of a specific event in one

of the plurality of script objects.

16. The API of Claim 15, wherein the specific action is to invoke another

object attribute of the script object, wherein the another object attribute is a method.

17. The API of Claim 15, wherein the specific action is to modify another
object attribute of the script object.

-15-

WO 2007/032939 PCT/US2006/034310

18. The API of Claim 15, further comprising an eighth group of services
("Condition") related to providing specific criteria to decide whether to perform the

specific action when the specific event occurs.

19. The API of Claim 1, further comprising a ninth group of services
("IDispose") related to disposing one of the plurality of script objects.

20. An application programming interface ("API") embodied on one or more
computer-readable media for providing a script application framework (100) for a
scripting environment, comprising:

a first group of services ("Application") (102) related to providing an application
including a plurality of script objects and related to managing the plurality of script
objects;

a second group of services ("Component") (104) related to defining behavior and
at least one object attribute associated with one of the plurality of script objects;

a third group of services ("TypeDescriptor") (106) related to describing object
model of the script object;

a fourth group of services ("Binding") (108) related to connecting a first script
object in the plurality of script objects with a second script object in the plurality of script
objects by transferring data from an object attribute of the first script object to an object
attribute of the second script object;

a fifth group of services ("Transformer") (110) related to converting type of the
data of the object attribute of the first script object to type of the object attribute of the
second script object;

a sixth group of serv‘ices ("Event") (116) related to maintaining one or more event
handlers and signaling an occurrence of an event;

a seventh group of services ("Action") (112) related to invoking a specific action
upon occurrence of a specific event in the script object;

an eighth group of services ("Condition") (114) related to providing specific
criteria to decide whether to perform the specific action when the specific event occurs;
and

a ninth group of services ("IDispose") (118) related to disposing the script object.

-16-

WO 2007/032939 PCT/US2006/034310

1/1
) L 100
Script Application Framework T~
102
Application e
104
Component e
106
TypeDescriptor e
108
Binding T~
110
Transformer ad
112
Action e
114
Condition
116
Event T~
118
IDisposable T~
o
[
o

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2006/034310

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 17/00(2006.01)i, GOGF 15/16(2006.01)i, GOGF 15/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC8 GO6F17/00, GO6F 19/00, GO6Q10/00~99/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Patents and applications for inventions since 1975

Korean Utility models and applications for Utility models since 1975

Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
PAJ, FPD, USPAT, eKIPASS(KIPO internal) "Keyword: framework, application, script, and similar terms"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A KR 10-2004-0111167 A (MICROSOFT CORPORATION) 31 DECEMBER 2004 1-20
See abstract; claims 1-49.

A KR 10-2005-0039549 A (MICROSOFT CORPORATION) 29 APRIL 2005 1-20
See abstract; pages 1-5.

A US 5,745,675 A (KYLE DAVID HERBIG; MARK AMBROSE MCKELVEY; THOMAS 1-20
JOSEPH WARNE) 28 APRIL 1998
See abstract.

A US 5,991,877 A (GARY L. LUCKENBAUGH) 23 NOVEMBER 1999 1-20
See abstract; figures 1-10.

A US 5,668,998 A (DONALD MASON; BETSY ANN ZIMMERMAN) 16 SEPTEMBER 1997 1-20
See abstract.

|:| Further documents are listed in the continuation of Box C. |E See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
09 JANUARY 2007 (09.01.2007) 09 JANUARY 2007 (09.01.2007)
Name and mailing address of the ISA/KR Authorized officer
' ' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, KIM, Hyun Soo
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5993

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2006/034310

Patent document Publication Patent family Publication

cited in search report date member(s) date

KR 1020040111167 A 31.12.2004 EP 01489494 A2 22.12.2004
JP 17011365 A 13.01.2005
US 20040268228 A1l 30.12.2004
WO 2004097873 A2 11.11.2004

KR 1020050039549 A 29.04.2005 EP 01536327 A2 01.06.2005
JP 17135384 A 26.05.2005
US 2005091576 A1l 28.04.2005

US 05745675 A 28.04.1998 None

US 05991877 A 23.11.1999 None

US 05668998 A 16.09. 1997 None

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - wo-search-report
	Page 21 - wo-search-report

