
(19) United States
US 20020052959A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0052959 A1
FRETAS et al. (43) Pub. Date: May 2, 2002

(54) METHOD FOR MANAGING CONCURRENT
PROCESSES USING DUAL LOCKING

(76) Inventors: RICHARD FRANCIS FREITAS,
SAN MARTIN, CA (US); DIVYESH
JADAV, CAMPBELL, CA (US);
DEEPAK
KENCHAMMANA-HOSEKOTE,
SUNNYVALE, CA (US);
JAISHANKAR MOOTHEDATH
MENON, SAN JOSE, CA (US);
HOVEY RAYMOND STRONG JR.,
SAN JOSE, CA (US)

Correspondence Address:
Dan Hubert & Associates
3111 Camino Del Rio North
4th floor
San Diego, CA 92108 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/203,101

(22) Filed: Nov.30, 1998

Publication Classification

(51) Int. Cl. ... G06F 15/173

54 TOKEN
GENERATOR

OCK
ABLE

ADAPER

CONTROLLER

50

SCSE BUS

(52) U.S. Cl. .. 709/226

(57) ABSTRACT

Multiple competing processors cooperatively manage access
to a shared resource. Each processor Separately Stores a lock
table, listing shared resource Subparts, Such as memory
addresses of a data Storage device, for example. The lock
tables are Stored in nonvolatile Storage. In each lock table,
each Subpart is associated with a “state,” Such as LOCAL or
REMOTE. In response to access requests from the hosts, the
processorS eXchange various messages to cooperatively
elect a single processor to have eXclusive access to the
Subparts involved in the access requests. After one processor
is elected, the lock-holding processor configures its lock
table to show the identified subpart in the LOCAL state, and
all non-lock-holding processors configure their lock tables to
show the identified subpart in the REMOTE state. Thus,
rather than replicating one lock table for all processors, the
processors Separately maintain lock tables that are coordi
nated with each other. Importantly, each processor honors its
lock table by refraining from accessing a Subpart of the
shared resource unless the processor's lock table indicates a
LOCAL state for that subpart. In one embodiment, opti
mized for the two processor environment, the messages
exchanged by the processors include lock request, lock
release, and lock grant messages.

52

ADAPTER

CONTROLER

SHARED
RESOURCE

55

Patent Application Publication May 2, 2002 Sheet 1 of 10 US 2002/0052959 A1

TOKEN
GENERATOR

O8

OKEN
GENERAOR

OO

Patent Application Publication May 2, 2002. Sheet 2 of 10 US 2002/0052959 A1

50

52

73
TOKEN

GENERATOR
OCK

54 TOKEN
T GENERATOR

LOCK
ABLE

ADAPTER

74

ADAPTER

SCS BUS

CONTROLLER
CONTROLLER

SHARED
RESOURCE

55

FIG. 1B

Patent Application Publication May 2, 2002 Sheet 3 of 10 US 2002/0052959 A1

FAST-ACCESS
STORAGE

NON WOATE
SORAGE

PROCESSOR

DIGITAL DATA
PROCESSINGAPPARATUS

FIG. 2

FIG. 3

Patent Application Publication May 2, 2002. Sheet 4 of 10 US 2002/0052959 A1

402 4OO
M

404

HOST
ACCESS
REQUEST

?

CONFIGURE
OCKTABLES

BEGINACCESS OF
SHARED RESOURCE,

HONORING OCKTABLES

42

CONTINUE

ANOTHER
ACCESS

422 FIG. 4
RELEASE LOCK

Patent Application Publication May 2, 2002 Sheet 5 of 10 US 2002/0052959 A1

INPUT: MESSAGE: OTHER
HOSTS) ADAPTER ADAPTER

OP LRQ
DONE LG
ABOR RL

FIG. 4A

HOST ADAPTER ABE

ACCESS
RESOURCE

454.

Patent Application Publication May 2, 2002. Sheet 6 of 10 US 2002/0052959 A1

500
NEW (OPx) ARRIVES M

AS INPUT

ENQUEUE (OPX,0)

Cwa) 506

FIG 5
504

600
6O2 (OPXO) ARRMESAN. M

HEAD OF QUEUEX)
604 620
Y

--- REPLACE (OPX,0)
STATE(X) = LOCAL? WITH (OPX,CURRENT(X))

606 GRANT OP (22 GENERATE NEW TOKENW

608
N

60

STATE(X) = REMOTE?
N-62

STATE(X) = REQ?
66

Cwa) 68 FIG. 6

Patent Application Publication May 2, 2002 Sheet 7 of 10 US 2002/0052959 A1

RECEIVE (LRQX,Y)
AS MESSAGE

700
702 1.

74

SEND (LGX,Y)

CURRENT(X): = Y

706

76

708
78

STATE(X) = REMOTE

ENQUEUE (LRQX,Y)
7 O J22

SEND (LGX,CURRENT(X))

FIG. 7

Patent Application Publication May 2, 2002 Sheet 8 of 10 US 2002/0052959 A1

- 800

(LRQX,Y) A HEAD
OF QUEUE(X)

Y
STATE(X) = REQ?

802

806

STATE(X) = FREE?

8O
SEND (LRLX,CURRENT(X))

88

82 N STATE(X) = LOCAL? SEND (LG,X,Y)
820

N
CURRENT(X): = Y

822

8l4 STATEX): = REMOTE

DEQUEUERQ

86

FIG, 8

Patent Application Publication May 2, 2002 Sheet 9 of 10 US 2002/0052959 A1

902

904

908

96

FIG. 9 9 O
98

9. STATE(X) = LOCAL?

OOO
RECEIVE (LRLX,Y) 1 N
AS MESSAGE

OO2

OO4

OO6
O2

(OPXW) ATHEAD OF
QUEUE(X) WITH NONZERO W2

Y

CURRENT(X): = W
N-108

STATEX): = REQ

FIG 10 O4
STATEX): = FREE

Patent Application Publication May 2, 2002 Sheet 10 of 10 US 2002/0052959 A1

A OO
O2 (DONE.X) ARRIVES

AS INPUT

04
DEQUEUE OPATHEAD
OF QUEUEX), IF ANY FIG, 11

O6 STATE(X) - REQ?
N Y

1008 K STATEX) = LOCAL?
N Y Y - 1114

SEND (LRLX,CURRENTX)

2

O -ló
STATE(X): = FREE

STATE(X) = LOCAL?
N Y

MAKE RESOURCE SAFE

208 GENERATE (DONEX)
FIG. 12 AS INPUT

(OPX)
A HEAD OF
QUEUE (X)

US 2002/0052959 A1

METHOD FOR MANAGING CONCURRENT
PROCESSES USING DUAL LOCKING

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention relates to computer systems
with multiple processing units. More particularly, the inven
tion concerns a method for managing access to a shared
resource among competing processing units.
0003 2. Description of the Related Art
0004 Today people are confronted with an astonishing
amount of electronic information to manage. Such manage
ment involves transmitting, receiving, processing, and Stor
ing electronic data. To meet these challenges, many people
choose to computer Systems with multiple processing units.
These Systems enjoy significant computing power by using
Separate computers, microprocessors, processing threads, or
other types of processing. These processing units may also
be known by terms Such as processors, processing elements,
etc.

0005 One recurring challenge to systems with multiple
processors involves the Sharing of resources by the multiple
processors. AS one example, digital data Storage Such as
magnetic "hard’ disk drive Storage is often shared by
multiple Storage “adapters.” Sharing Such a resource is
challenging because of the difficulties in arbitrating access to
the resource. At any given time, which processor Should be
permitted access to the shared resource'? Should other pro
ceSSors be given limited concurrent access? This is further
complicated by the need to plan for possible failure of a
processor or communications between the processors.
0006. One popular approach to sharing computer
resources is called “mutual eXclusion,” which is often
applied at the device level. With this approach, processors
access the resource one-at-a-time. While one processor is
accessing the resource, all other processors are excluded
from that device. Although this approach is attractive in its
Simplicity, Shared computer resources often possess signifi
cantly more input/output (“I/O”) capability than the proces
Sors that manage them. In this case, the full throughput of the
shared resource is wasted when it is being used by one
processor to the exclusion of the other processors.
0007. In the case of storage resources, the system takes
longer to Store and retrieve data when the processors are
confined by one-at-a-time access rules. This is undesirable,
Since slower data Storage and retrieval are frustrating to most
computer users. Furthermore, Slow data access maybe intol
erable in certain data-critical applications, Such as auto
mated teller networks, airline reservation Systems, Stock
brokerage, etc. Furthermore, the use of mutual eXclusion is
complicated by the possibility that a processor with exclu
Sive access to the shared resource experiences a failure,
causing a Severe problem for the excluded processors.
0008 To orchestrate mutual exclusion, competing pro
ceSSors must eXchange messages of Some type. A different
set of problems is thus presented by the possibility that
messages are lost while a device is reserved to one proces
Sor, causing a situation known as “livelock.” A further
difficulty inherent to mutual exclusion Schemes is the need
to fairly allocate access to the shared resource among

May 2, 2002

competing processors, the consequences of misallocation
potentially including "Starvation' of the losing processor.
0009 Consequently, known strategies for arbitrating pro
ceSSor access to shared resources are not completely
adequate for Some applications due to various unsolved
problems.

SUMMARY OF THE INVENTION

0010 Broadly, the present invention concerns a method
and apparatus for managing access to a shared resource
among competing processors. The invention includes fea
tures that are particularly optimized for environments with
two “processors,” also referred to as processing units, pro
cessing elements, nodes, Servers, computers, adapters, etc.
The invention is applied in a System with multiple proces
Sors that commonly access a shared resource, Such as a
digital data Storage. The processors receive and process
acceSS requests originating at one or more hosts.
0011 Each processor separately stores a lock table, list
ing Subparts of the shared resource, Such as memory
addresses, extents, logical devices, or an entire physical data
Storage device. The lock tables are Stored in nonvolatile
Storage. In each lock table, each Subpart of the shared
resource is associated with a "state” Such as LOCAL or
REMOTE. In response to access requests from the hosts, the
processorS eXchange various messages to cooperatively
elect a single processor to have eXclusive access to the
Subparts involved in the access requests. After one processor
is elected, the lock-holding processor configures its lock
table to show the identified subpart in the LOCAL state, and
all non-lock-holding processors configure their lock tables to
show the identified subpart in the REMOTE state. Thus,
rather than replicating one lock table for all processors, the
processors Separately maintain lock tables that are coordi
nated with each other. Importantly, each processor refrains
from accessing a Subpart of the shared resource unless the
processor's lock table indicates a LOCAL state for that
Subpart.

0012. In one embodiment, optimized for the two proces
Sor environment, the messages exchanged by the processors
include lock request, lock release, and lock grant messages.
When a processor SeekS access to a Subpart, but its lock table
indicates a REMOTE state for the lock, the other processor
owns the lock. In this case, the first processor transmits a
lock request to the other processor. The lock-holding pro
ceSSor enqueues the lock request. The lock-holding proces
Sor Sequentially processes queued messages, and upon
reaching the first processor's lock request, the Second pro
ceSSor takes Steps to hand the lock to the first processor. In
particular, the Second processor configures its lock table to
indicate the REMOTE state for the subpart, and then trans
mits a lock grant message back to the first processor. In
response, the first processor configures its lock table to Show
the subpart in the LOCAL state, at which point the first
processor is free to access the requested shared resource
Subpart.
0013 To increase reliability of message exchange, each
message may include a token, where the processors require
matching tokens for corresponding messages, Such as lock
grant and lock release messages. Using tokens increases the
Systems tolerance of lost messages, duplicated messages,
misordered messages, communication faults, etc.

US 2002/0052959 A1

0.014. The subpart states may also include a FREE state,
in which no processor holds a lock on that Subpart. In this
case, a requesting processor's lock request message can be
Satisfied with a prompt lock grant from the other processor.
0.015 Accordingly, in one embodiment the invention may
be implemented to provide a method to manage access to a
shared resource among competing processors. In another
embodiment, the invention may be implemented to provide
an apparatus, Such as an adapter or other processing unit of
a System with multiple processors, programmed to partici
pate in the management of Shared resource access. In Still
another embodiment, the invention may be implemented to
provide a signal-bearing medium tangibly embodying a
program of machine-readable instructions executable by a
digital data processing apparatus to perform method steps
for managing access to a shared resource among competing
processors.

0016. The invention affords its users with a number of
distinct advantages. First, the invention takes advantage of
the high-throughput capability of shared resources by more
efficiently sharing the resources. In the data Storage envi
ronment, for example, the invention Stores and retrieves data
more quickly. Consequently, computer users are more
pleased with their Systems, since they are faster to use. The
invention is especially beneficial for the common configu
ration where two adapters or other processors share acceSS
to a COmmOn reSOurce.

0.017. Furthermore, the invention provides a number of
desirable properties for a dual locking protocol. These
include Safety, liveness, fairness, and efficiency. Safety is
provided because if a lock is in the LOCAL state at one
adapter, then it is in the REMOTE state at the other adapter.
Liveness is provided because the invention guarantees even
tual progreSS in granting locks, Since individual locks are
eventually released (because of completion or timeout), and
because frustrated processors make repeated requests for a
lock. Fairness is provided because each processor makes
eventual progreSS in obtaining a lock without “starving the
other adapter. Efficiency is provided because there is mini
mal overhead involved in maintaining the Status quo when
a lock-holding processor receives multiple local requests for
a lock while the other processor receives none.
0.018. The invention also provides a number of other
advantages and benefits, which should be apparent from the
following description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0019 FIG. 1A is a block diagram of the hardware
components and interconnections of a System with multiple
processors in accordance with the invention.
0020 FIG. 1B is a block diagram of a digital data storage
System employing dual locking in accordance with the
invention.

0021 FIG. 2 is a block diagram of a digital data pro
cessing machine in accordance with the invention.
0022 FIG. 3 shows an exemplary signal-bearing
medium in accordance with the invention.

0023 FIG. 4 is a flowchart depicting an overall opera
tional Sequence for accessing a shared resource using dual
locking in accordance with the invention.

May 2, 2002

0024 FIG. 4A is a partial system diagram showing the
movement and Source of one adapter's messages and input
in a two adapter arrangement, in accordance with the inven
tion.

0025 FIG. 4B is a time-based event diagram illustrating
an exemplary exchange of Signals during the process of
acquiring a lock, in accordance with the invention.
0026 FIG. 5 is a flowchart depicting a sequence per
formed by a processor when a new local request for a lock
(OP) arrives, in accordance with the invention.
0027 FIG. 6 is a flowchart depicting a sequence per
formed by a processor when a queued local request for a
lock (OP) arrives at the head of the queue, in accordance
with the invention.

0028 FIG. 7 is a flowchart depicting a sequence per
formed by a processor when a lock request (LRO) message
arrives, in accordance with the invention.
0029 FIG. 8 is a flowchart depicting a sequence per
formed by a processor when an enqueued lock request
(LRO) arrives at the head of the queue, in accordance with
the invention.

0030 FIG. 9 is a flowchart depicting an sequence per
formed by a processor when a lock grant (LG) message
arrives, in accordance with the invention.
0031 FIG. 10 is a flowchart depicting an sequence
performed by a processor when a lock release (LRL) mes
Sage arrives, in accordance with the invention.
0032 FIG. 11 is a flowchart depicting an sequence
performed by a processor when a completion input (DONE)
arrives, in accordance with the invention.
0033 FIG. 12 is a flowchart depicting an sequence
performed by a processor when an error input (ABORT)
arrives, in accordance with the invention.

DETAILED DESCRIPTION

0034. The nature, objectives, and advantages of the
invention will become more apparent to those skilled in the
art after considering the following detailed description in
connection with the accompanying drawings. AS mentioned
above, the invention concerns the management of access to
a shared resource among competing processors.

Hardware Components & Interconnections

Multiple-Processor System

0035. One aspect of the invention concerns a system with
multiple processors, which may be embodied by various
hardware components and interconnections as shown by the
system 100 of FIG. 1A. The system 100 includes two
processors 102,104 and a shared resource 106. The proces
sors 102,104 may be provided by hardware constructs (e.g.,
microprocessors, Supercomputers, mainframe computers,
computer WorkStations, personal computers, or other Suit
able digital data processing machines), Software (e.g., pro
cesses, processing threads, Software programs, Subroutines,
firmware, etc.), or a combination of hardware and Software.
0036) The shared resource 106 may comprise any
machine with Storage, computing power, or other machine

US 2002/0052959 A1

accessible resource that is Subdivisible into different Sub
components. AS Shown below, one example is a digital data
Storage, Subdivisible into different Storage addresses, ranges
of addresses, address extents, logical devices, physical
devices, etc.
0037. The processors 102, 104 exchange machine-read
able messages with the shared resource 106 over respective
communications linkS 114,116. Inter-processor communica
tion occurs over a communication link 112. The links 112,
114, 116 may be embodied by one or more cables, wires,
backplanes, motherboards, fiber optic lines, infrared links,
telephone line, intelligent communications channel, electro
magnetic or other wireless links, computer networks (Such
as Internet, Intranet, wide area, LOCAL area, etc.), or
another Suitable mechanism for exchanging machine-read
able messages. Furthermore, the link 112 maybe eliminated
completely with the links 114, 116 being interconnected to
provide a link between the two processors 102, 104. As
another approach, the links 114,116 may be eliminated with
the resource 106 coupled to the link 112. Ordinarily skilled
artisan (having the benefit of this disclosure) may recognize
of variety of other approaches as well.
0.038 Each processor 102, 104 exclusively maintains a
respective lock table 108, 110. The lock tables 108, 110 are
contained in storage accessible by the processors 102, 104,
which may be provided by nonvolatile Storage device Such
as battery backed RAM memories, magnetic disk drives,
optical tape, optical disk, magnetic tape, paper punch cards,
or another Suitable machine-accessible Storage. AS explained
further below, each processor maintains in association with
its lock table a queue of shared resource requests that are
awaiting execution by the lock table's processor. For each
subpart of the shared resource, the processors 102, 104
eXchange certain messages to decide which processor will
have eXclusive access to that Subpart.
0.039 Each processor 102,104 also includes or otherwise
has exclusive access to a respective token generator 150,
151. The token generators 150, 151 operate 20 indepen
dently of each other. Each token generator 150, 151 com
prises a mechanism to generate a code, which is used to
increase the Systems tolerance of lost messages. AS dis
cussed below, each message exchanged between the proces
sors 102,104 includes a token. New messages include a new
token of the originating processor, whereas messages
responding to another message must carry that earlier mes
Sage's token to associate the two messages and thereby be
effective.

0040. In the present example, the token generators pro
vide tokens that are binary numbers. Thus, the token gen
erators 150, 151 may compromise respective registers,
memory addresses, counters, etc. A token is generated in this
example by incrementing a token generator. Each of the
token generators 150, 151 provides a new token after one of
its tokens is used or "grabbed.” For instance, if the processor
102 obtains (“grabs”) a token from the generator 151, the
generator 151 then proceeds to generate a new token.
0041. In the illustrated example, tokens of the token
generators 150, 151 are non overlapping. In other words,
each generators tokens never match any tokens provided by
the other generator. Where binary number tokens are used,
this feature may be provided by ensuring that one token
generator's most Significant bit is always Zero, whereas the
other token generator's most Significant bit is always one.

May 2, 2002

0042 Additionally, each token generator is configured to
rarely, if ever, repeat the same token. AS an example, this
feature may be provided by using a binary generator with a
sufficiently high number of bits (e.g., thirty-two bits). A
repeat cycle of about one year may be used Successfully in
many cases.

EXAMPLE

Storage System

0043 FIG. 1B depicts a more particular example of the
multiple processor System of the invention, in the form of a
digital data Storage System 150, in which the shared resource
comprises data Storage. The System 150 includes two Storage
adapters 154,156 and a shared resource 155. The adapters
154, 156 are coupled to one or more hosts 152. The adapters
154, 156 may be coupled to the same host(s), completely
different hosts, or a mix of common and distinct hosts. In
one example, the adapters 154, 156 may comprise printed
circuit boards physically and electrically mounted within the
host(s) 152. As an even more specific example, the adapters
154, 156 may comprise IBM model ServeRAID II adapters.
0044) In this example, each adapter 154, 156 houses a
respective lock table 172,174, stored in nonvolatile storage
aboard the adapter. The nonvolatile Storage may comprise,
for example, random access memory (“RAM”) with backup
battery power, optical Storage, hard drive Storage, etc. The
lock tables may comprise tables, linked lists, ASCII text, or
another data Structure Suitable for Storing information of the
type discussed below.
004.5 Each adapter also includes a respective token gen
erator 171, 173. The structure and operation of the token
generators 171, 173 may resemble the token generators 150,
151, discussed above.
0046) The shared resource 155 comprises some or all of
one or more digital data Storage devices. Such devices may
include magnetic disk drives, optical tape, optical disk,
magnetic tape, paper punch cards, or another Suitable
machine-accessible Storage. A specific example is an IBM
brand RAMAC disk drive storage subsystem. The shared
resource 155 is Subdivisible into “subparts, such as physi
cal devices, logical devices, addresses, address ranges,
extents, cylinders, Sectors, or another unit. In the present
example, the shared resource 155 is illustrated by multiple
storage devices 160, 162, 164, managed by respective
device controllers 166, 168, 170.
0047 A common bus 158 is coupled to the controllers
166, 168, 170 and the adapters 154, 156 alike. In this
example, the buS 158 comprises a Small computer Standard
interface (“SCSI”) bus, and carries communications
between the adapters and the Storage controllers, as well as
between the adapters.

Exemplary Digital Data Processing Apparatus

0048. Another aspect of the invention concerns a digital
data processing apparatus, constituting one of the competing
processors, or a component thereof, Seeking access to a
resource shared with another processor. This apparatus may
be embodied by various hardware components and inter
connections, and may be implemented in one example to
provide the adapters 154, 156 (FIG. 1B).

US 2002/0052959 A1

0049 FIG. 2 shows an example of one digital data
processing apparatus 200. The apparatus 200 includes a
processor 202, Such as a microprocessor or other processing
machine, coupled to a Storage 204. In the present example,
the Storage 204 includes a fast-access Storage 206, as well as
nonvolatile storage 208. The fast-access storage 206 may
comprise RAM, and may be used to Store the programming
instructions executed by the processor 202. The nonvolatile
Storage 208 may comprise, for example, one or more mag
netic data Storage diskS Such as a “hard drive,” a tape drive,
or any other suitable storage device. The apparatus 200 also
includes an input/output 210, Such as a line, bus, cable,
electromagnetic link, or other means for exchanging data
with the processor 202.
0050. Despite the specific foregoing description, ordi
narily skilled artisans (having the benefit of this disclosure)
will recognize that the apparatus discussed above may be
implemented in a machine of different construction, without
departing from the Scope of the invention. As a specific
example, one of the components 206, 208 may be elimi
nated; furthermore, the storage 204 may be provided on
board the processor 202, or even provided externally to the
apparatus 200.

Operation

0051. In addition to the various hardware embodiments
described above, a different aspect of the invention concerns
a method for managing access to a shared resource among
multiple competing processors.

Signal-Bearing Media

0052. In the context of FIGS. 1B and 2, for example,
Such a method may be implemented, for example, by
operating the adapters 154, 156, each as embodied by a
digital data processing apparatus 200, to execute a sequence
of machine-readable instructions. These instructions may
reside in various types of Signal-bearing media. In this
respect, one aspect of the present invention concerns a
programmed product, comprising Signal-bearing media tan
gibly embodying a program of machine-readable instruc
tions executable by a digital data processor to enable the
processor to manage access to a shared resource relation to
a competing processor.
0053. This signal-bearing media may comprise, for
example, RAM (not shown) contained within the adapter
154, 156 (FIG. 1B), as represented by the fast-access
storage 206 (FIG. 2). Alternatively, the instructions may be
contained in another Signal-bearing media, Such as a mag
netic data storage diskette 300 (FIG. 3), directly or indi
rectly accessible by the adapter 154,156. Whether contained
in the adapters 154, 156 or elsewhere, the instructions may
be stored on a variety of machine-readable data Storage
media, Such as direct access Storage (e.g., a conventional
“hard drive” or a RAID array), magnetic tape, electronic
read-only memory (e.g., ROM, EPROM, or EEPROM), an
optical storage device (e.g., CD-ROM, WORM, DVD, digi
tal optical tape), paper “punch” cards, or other Suitable
Signal-bearing media including transmission media Such as
digital and analog and communication links and wireleSS. In
an illustrative embodiment of the invention, the machine
readable instructions may comprise Software object code,
compiled from a language Such as “C.” etc.

May 2, 2002

Overall Sequence of Operation
0054 FIG. 4 shows a sequence 400 to provide an overall
description of the method aspect of the present invention.
For ease of explanation, but without any intended limitation,
the example of FIG. 4 is described in the context of the
hardware environment of FIG. 1B, described above. The
sequence 400 begins in step 402, which may be performed
whenever the system 150 is powered up, rebooted, or
otherwise initiated.

0055. In step 404, the adapters 154, 156 initialize their
respective lock tables 172,174 if needed. Namely, initial
ization is necessary of this is a first time startup, where no
previous lock tables exist. In one embodiment, this may
involve allocating storage for the lock tables 172, 174,
preparing pointers, and performing other Storage tasks to
ready the tables for use. If desired, step 404 may additionally
prepare blank entries in the lock table, where each entry
corresponds to the minimum size of Separately accessible
shared resource Subpart, Such as a single address, partition,
etc.

0056. After step 404, the adapters 154, 156 await shared
resource access requests from the hosts 152 (step 406). In
response to Such a request, which involves one or more
identified subparts, the adapters 154, 156 cooperatively
determine whether there should be any change in the lock
holder (step 407). For instance, if no adapter holds the lock
on the requested Subparts, a change in the lock holder is
needed to give the lock to the adapter that received the
acceSS request. In another example, the processor already
owning the lock may maintain a queue of lock requesting
tasks, including its own and lock requests from the other
processor. Whenever the other processor's lock requests
arrives at the head of the queue, there is a need for a change
in the lock holder, i.e., to provide the lock to the lock
requesting processor.
0057) If no change in the lock holder is needed, the lock
owning adapter begins to conduct the requested access of the
shared resource (step 412). This access operation is the
“current operation. After Step 412, the current access opera
tion continues in steps 418 and 420 until finished. When the
current access operation is finished, Step 426 checks for
receipt of another host access request from the host of the
lock-owing adapter for the same Subpart of the shared
resource. When another host acceSS request for this Subpart
is received, the new operation becomes the current access
operation (Step 424) and then control passes back to Step
412, as discussed above.
0058. On the other hand, if step 426 finds no more access
requests, the lock holding adapter releases the lock (Step
422) and then returns to step 406. Then, step 406 and the
Subsequent Steps are performed as discussed above.
0059. In contrast to the foregoing sequence, whenever
step 407 determines that the lock holder must be changed,
the adapters 154, 156 effectively change the lock holder in
step 408. In the case of two adapters 154,156 (as illustrated),
this involves electing the non-lock-holding adapter to be the
new lock holder. In the case of three or more processors, the
processors may cooperatively elect a new lock holder using
a Suitably fair arbitration Scheme, Such as enqueing adapters'
lock requests and processing the requests Sequentially, etc.
In response to Step 408, the adapters configure their respec
tive lock tables to reflect the newly elected lock holder, as
shown by step 410.

US 2002/0052959 A1

0060. The lock tables are adjusted as follows. The new
lock holder configures its lock table to show the involved
shared resource Subparts in the LOCAL State. In contrast, the
non-lock-holder configures its lock table to show these
subparts in the REMOTE state. Thus, rather than being
replicated, the lock tables 172,174 are “coordinated.” Hav
ing configured their lock tables in Step 410, the adapters then
operate So as to honor contents of the lock tables. Namely,
the lock-holding adapter conducts the access to the exclu
Sion of the non-lock-holding adapter.
0061 The foregoing process continues, with host access
requests being received and processed, and changes in the
lock holder being made when necessary, as shown above.

More Detailed Example
0062) The following discussion, with reference to FIGS.
4A-12, further illustrates the invention by describing a
detailed embodiment. Although the invention may be imple
mented with more adapters, the present example describes
an especially valuable embodiment involving a System with
managed access to shared digital Storage among two adapt
ers. This embodiment is described by disclosing various
routines, which are performed by the adapters 154, 156.

Terminology
0.063. According to the invention, each processor main
tains a lock table with multiple entries, each entry corre
sponding to a Subpart of the Shared resource. In the illus
trated example, each Subpart (a lock table entry) concerns an
address range of the shared Storage, and may vary in size.
0064. Along with each address range (subpart), a lock
table lists its adapter's State for that Subpart, which concerns
the Status of that adapter's possession of a lock on that
Subpart. Each adapter has a certain State for each different
Subpart. AS explained below, an adapter's State may vary
from subpart to subpart. Also, the two adapters 154, 156 may
have the same or a different State regarding the same address
range. When a lock has been granted, the adapter owning the
lock is the “LOCAL adapter, and the non-owning adapter
is the “REMOTE' adapter. The adapter owning the lock has
exclusive access to the relevant Subpart of the shared
resource, on behalf of itself or as a conduit for its attached
host(s). From the perspective of one adapter, the States
include:

0065 1. FREE The lock is presently not granted to
any adapter.

0066 2. LOCAL-The lock has been granted for
use by this adapter. The LOCAL state may be further
divided into various Sub-states if desired.

0067 3. REMOTE The lock has been granted to
the other adapter. The REMOTE state may be further
divided into various Sub-states if desired.

0068 4. REQ-The LOCAL adapter has a request
in progress to the REMOTE adapter for this lock.

0069. As shown in FIG. 4A, the adapters exchange
various “messages, and the hosts Send "inputs to the
adapters. Adapters also Self-generate certain "inputs.” More
Specifically, the “messages” (adapter-to-adapter) include:

0070) 1. LRQ-(Lock Request) This is a request
filed by one adapter for a lock on an associated
shared resource Subpart.

May 2, 2002

0071) 2. LRL-(Lock Release) This is a message
returned by a LOCAL adapter relinquishing its lock
on a shared resource Subpart.

0072 3. LG-(Lock Grant) This is a message
returned by one adapter agreeing that the other
adapter can have the lock, thereby affirmatively
completing the other adapter's lock request (LRO).

0073. There are also various “input', which arise exter
nally from an attached host and/or internally from the
adapter itself. These input include:

0.074) 1. OP-(Host Lock Request Input) This is a
lock request from a host Seeking access to a specified
subpart of the shared resource. The receipt of this
input Signifies the very first Step in the process of an
adapter obtaining a lock on a Subpart.

0075 2. DONE. This input is received by an
adapter (1) from an attached host when the host is
finished using the locked address range of the shared
resource, or (2) from itself when the adapter has
finished processing an ABORT input, as discussed
below.

0076 3. ABORT This self-generated input occurs
when a “timeout' associated with a lock occurs, as
discussed below.

0077. The source and movement of messages and inputs
are shown diagrammatically in FIG. 4A. As explained
below, each adapter's lock table includes a queue for each
Subpart of the shared resource. The queues are used to
Serialize the processing of the inputs and certain messages
applicable to that address range, from the Standpoint of the
adapter associated with that queue.
0078 Certain events constitute “stimuli,” which cause an
adapter to emerge from a “wait' processing State and take
certain action. Various Situations are discussed below in
which processors enter a “wait” state. The stimuli include:

0079) 1. Arrival of a lock request (OP) input from an
attached host.

0080 2. A lock request (OP) input arriving at the
head of the queue.

0081) 3. Arrival of a lock request (LRO) message
from the other adapter.

0082) 4. A lock request (LRO) message arriving at
the head of the queue of a particular shared
resource's Subpart in an adapter's lock table.

0083) 5. Arrival of a lock grant (LG) message from
the other adapter.

0084) 6. Arrival of a lock release (LRL) message
from the other adapter.

0085 7. Receipt of a DONE input from an attached
host.

0086) 8. Receipt of an ABORT input from attached
host.

0087 FIG. 4B shows a time-based event diagram illus
trating an exemplary exchange of Signals during the process
of acquiring a lock that is in FREE State. In this example, the
passage of time is shown along a vertical axis, Such that later

US 2002/0052959 A1

events occur further downward and earlier events occur
further upward in the diagram.

0088. The first event occurs when a host sends a lock
request input (OP) 450 to its adapter. The lock request input
identifies a shared resource Subpart by Specifying a desired
address range (not shown) of the shared resource. In
response to the OP 450, the adapter sends a lock request
(LRO) message 451 to the other adapter, requesting a lock
on the desired address range. In response to the LRO 451,
the Second adapter returns a lock grant message (LG) 452.

0089. When the first adapter receives the LG 452, it
notifies its host that the lock has been granted by Sending the
host an OP GRANT message 453. When the host learns that
its lock is in place, it accesses the shared resource during a
time period 454. When the host finishes accessing the shared
resource, it sends a DONE input 455 to the adapter. The
adapter responds to the DONE input 455 by returning a lock
release (LRL) message 456 to the Second adapter, thereby
relinquishing the lock on the present address range.

0090 The communications protocol described above
involves a minimum number of exchanges between the
adapters, and thereby contributes to efficient System opera
tion. Specifically, the process of one adapter obtaining and
then relinquishing a lock is achieved with three inter-adapter
messages: LRO, LG, and finally LRL.

0.091 Furthermore, the use of the lock release message
provides a number of advantages. First, this message helps
conserve Space in the lock table, the contents of which are
discussed below. Namely, after a lock release operation, the
released address range may be deleted from the lock table
entirely, thereby conserving lock table Space. In addition, the
LRL message is conducive to fault tolerance of the System.
In particular, by releasing locks in this manner, an adapter
that fails is less likely to be holding the lock on an address
range. Thus, recovery is expedited Since it need not involve
the failed adapter.

0092. As another advantage of the foregoing communi
cations protocol, no inter-adapter communications are
required if the Second adapter is not waiting for a lock on the
Subject address range. AS discussed below, the first adapter
need not issue the LRL message if the Second adapter is not
waiting for the lock. In this case, the first adapter can
repeatedly perform the following Sequence: receive OP from
host, issue a GRANT of the OP, permit host to access
resource, and receive DONE input. Thus, no inter-adapter
communications are required at all.

Format of Lock Table

0093 Table 1 (below) shows the various components of
an exemplary lock table associated with one adapter. AS
shown in Table 1, the lock table contains one row for each
address range (Subpart) represented in the table, with each
row listing the lock State, current token, and pending queue
for that address range. The head of the queue in this example
is the leftmost entry, with the end of the queue being the
rightmost entry. If an address range has State FREE, it need
not appear explicitly in the table unless its queue is non
empty. This helps conserve Storage Space.

May 2, 2002

TABLE 1.

Exemplary Lock Table

ADDRESS
RANGE LOCK STATE CURRENT TOKEN QUEUE
X STATE(X) |CURRENT(X) IQUEUE(X)

A1: 10-1024 LOCAL Y1 (LRO, A1, W1)
bytes

A2: 1025-2048 FREE Ole (OP, A2, 0)
bytes

A3: 2049-4096 LOCAL Y2 (OP, A3, Y2),
bytes (OP, A3, 0)

A4: 4097-512O REMOTE W2 (OP, A4, Y3)
bytes

A5: 5121-6144 REO Y4 (OP, A5, Y4)
bytes

A6: 9520-9590 FREE Ole empty
bytes

0094. The “lock state” column expresses the address
range's lock State for the adapter owing the lock table, these
states being FREE, REMOTE, LOCAL, or REQ. The “cur
rent token' column shows a present “token” for the associ
ated address range. The token is a Sequential code, Such as
an alphabetic, alphanumeric, or numeric code. Generally, as
explained in greater detail below, tokens are used to
uniquely identify messages, for example to ensure that a
lock grant is issued specifically in response to a particular
lock request. The "queue” column contains an ordered list of
pending inputs and queued messages concerning the asso
ciated address range.

Perspective
0095 With the foregoing background set forth, the fol
lowing description illustrates a number of different operating
Sequences. Each Sequence is performed by an adapter when
ever that adapter receives certain Stimuli. The adapters have
like construction, and each is capable of performing any of
the Sequences, depending on the received Stimuli. The
following examples are discussed from the perspective of a
“current adapter that is performing the Sequence, where the
remaining adapter is called the “other adapter.

Arrival of OP Input
0096 FIG. 5 describes the sequence 500 that an adapter
performs in response to Stimuli in the form of a host lock
request input (OP). In step 502, the adapter receives a host
lock request input (OP). In the illustrated example, the input
arrives in the form (OP, X), where “X” identifies the one of
the subparts (address ranges) of shared storage 155. The
message of Step 502 is generated by the adapter in response
to a host request for a lock on the address range "X."
0097. In step 504, the adapter enqueues the input by
Storing it in the adapter's lock table, at the end of the queue
asSociated with the address range "X." This queue may be
called “Queue(X).” The input is enqueued in the format (OP,
X, 0), where OP represents the local lock request input, “X”
identifies the address range, and “0” is a dummy token for
the operation. The use of the dummy token is explained in
greater detail below.
0098. If there is no table entry for the address range X,
step 504 creates the necessary table entry. After step 504, the
adapter waits (step 506) for new stimuli.

US 2002/0052959 A1

OP Input Arrives at Head of Queue
0099 FIG. 6 describes the sequence 600 that an adapter
performs in response to Stimuli in the form of a local lock
request input (OP) arriving at the head of the queue for a
particular address range. In step 602, the operation (OP, X,
0) arrives at the head of the queue for the address range “X,”
i.e., Queue(X). This operation will reside at the head of the
queue for the address range X until the adapter receives a
DONE or an ABORT input for the same address range X.
0100. After step 602, the adapter asks whether the state of
the address range X is LOCAL (step 604). If so, then the
current adapter already owns the lock on the requested
address range. In this case, Step 620 replaces the operation's
dummy token with the “current token.” The current token
for the address range X is obtained from the adapter's lock
table; in the present example, each address range's current
token is listed in the column “Current(X).”
0101. After step 620, with the adapter owning the lock on
the address X, the adapter grants the local operation in Step
622, meaning that the requesting host is given access to the
address range X. (This is also shown by the operation 453
in FIG. 4B.) After step 622, the routine 600 progresses to
Step 624, where the adapter enters a wait State 624, awaiting
another one of the prescribed Stimuli.
0102) In contrast to the foregoing description, if step 604
finds that the state of address range X is not LOCAL, then
the current adapter does not own the lock on the requested
address range. Namely, the State of address range X is either
FREE, REMOTE, or REQ. In this event, step 606 is per
formed rather than step 620. Step 606 generates a new token,
referred to as “W.” After generating the new token W, step
608 replaces the dummy token of the operation at the head
of the queue with the new token W. Thus, (OP, X, 0) is
replaced by (OP, X, W). Next, in step 610 the adapter sends
a lock request to the other adapter So that the current
operation (OP, X, W) can be completed. The lock request has
the form (LRO, X, W).
0103). After step 610, step 612 asks whether the state of
the address range X is REMOTE. If so, step 612 advances
to the wait State 624, where the current adapter proceeds to
wait for the other adapter to grant the requested lock. If Step
612 finds that the state of the address range X is not
REMOTE, the only remaining states are FREE and REQ. In
either event, Step 614 updates the address range X's entry in
the lock table to reflect the new token W. After the table is
updated to show Was Current(X), step 616 asks whether the
address range X's State is REQ. If So, control advances to the
wait state 624. If the address range's state is not REQ, the
only remaining state is FREE. In this event, step 618
changes X's state from FREE to REQ, and then progresses
to step 624.

Arrival of LRO Message
0104 FIG. 7 describes the sequence 700 that an adapter
performs in response to Stimuli comprising receipt of a lock
request message (LRO) from the other adapter. In step 702,
the adapter receives a lock request message in the form
(LRO, X, Y). This message comprises a lock request,
concerning the address range X, and includes the token Y.
0105. After step 702, step 704 asks whether the state of
the identified address range at the current adapter is FREE.

May 2, 2002

If So, Step 714 grants the lock request to the other adapter by
Sending the lock grant message (LG, X, Y). This message
includes a token (Y) matching the lock request's token. After
step 714, step 716 updates the current token shown in the
Sending adapter's lock table (Current(X)), to reflect the
token Y used in the lock request and grant messages.
Following step 716, step 718 performs the internal book
keeping necessary for the adapter to Surrender the lock on
the address range X. Namely, step 718 updates the adapter's
lock table to show the state of address range X as REMOTE.
After step 718, the routine 700 ends, with the adapter going
into a wait State 722, pending arrival of the next Stimuli.
0106. In contrast, if the state of the address range X is not
FREE, steps 706 and 708 proceed to ask whether the state
is REO or LOCAL. If the state is REO, this means that the
current adapter already has a request in progreSS for a lock
on the address range X. In this case, both adapters are
Seeking locks on the same address range. Accordingly, Step
712 performs arbitration to decide between the two adapters.
The arbitration of step 712 may be achieved utilizing any
mechanism having a fixed, unambiguous outcome that both
adapters can reach without any intercommunication. AS an
example, the arbitration may be performed by permanently
designating one adapter as the “winner,” and the other as the
“loser.

0.107) If the adapter performing step 700 is the loser, step
714 grants the lock to the other adapter, updates the current
token, and sets the state of the address range X to REMOTE,
as discussed above in steps 714, 716, and 718. On the other
hand, if the adapter performing step 700 is the winner, step
712 proceeds to step 720, which enqueues the other adapt
er's lock request. This is performed by entering (LRO, X, Y)
in the queue column corresponding to the address range X.
In the present example, operations are enqueued by placing
them at the tail of the queue. However, enqueuing may
alternatively be achieved by placing LRO operations at the
number-two position in the queue, the number-three posi
tion, or another predesignated position. Insertion at the
number-one position (head of the queue) is avoided to
prevent thrashing.

0108). If step 708 finds that the state is LOCAL, step 720
enqueues the received lock request messages by Storing
(LRO, X, Y) in the lock table row corresponding to the
address range X. After Step 720, the adapter proceeds to Step
722, where it awaits further stimuli.
0109) If step 708 finds that the state is not LOCAL, steps
704 and 706 dictate that the state must be REMOTE, such
that the other adapter owns the lock on the address range X.
In this case, the two adapters are confused as to which
adapter owns the lock on the address range X. In this event,
step 710 grants the lock to the other adapter by sending (LG,
X, Current(X)). Following step 710, the routine 700 ends,
with the adapter going into a wait State 722, awaiting the
next Stimulus.

LRO Arrives at Head of Queue

0110 FIG. 8 describes the sequence 800 that an adapter
performs in response to Stimuli comprising arrival of an
enqueued lock request message (LRO) at the head of the
queue. In Step 802, the lock request message (LRO, X, Y)
originating from the other adapter arrives at the head of the
queue in the current adapter's lock table. In response, Step

US 2002/0052959 A1

804 asks whether the state of the address range X is REQ.
If So, the current adapter already has its own request for the
lock in progreSS, So the adapter waits in Step 806 to give its
own request time to complete.

0111) If the state is not REQ, step 808 asks whether the
state is FREE. If so, step 818 grants the lock to the other
adapter, by Sending a lock grant message (LG, X, Y).
Following step 818, step 820 sets the lock table to show Y
as the current token for the address range. Step 822 then Sets
the lock table to show REMOTE as the state of the address
range X. Following step 822, step 814 removes the lock
request message from the queue, and then the adapter waits
for further stimuli in step 816.
0112) In contrast, if the state is neither REQ nor FREE,
the state must be REMOTE or LOCAL. In either case, step
808 advances to step 810, which sends the other adapter a
lock release message (LRL, X, Current(X)). Following Step
810, step 812 asks whether the state of the address range X
is LOCAL. If so, the current adapter owns the lock on the
address range X. In this case, the adapter proceeds to
relinquish the lock to the other adapter. This is performed to
ensure fair access to the address range X between the two
adapters, preventing the local adapter from continually
monopolizing the lock. More particularly, after an affirma
tive answer to Step 812, the adapter grants the lock, updates
the token, and marks its own state as REMOTE. These tasks
are performed in steps 818, 820,822, the details of which are
discussed above.

0113) If the address range X's state is not REQ, FREE, or
LOCAL, it must be REMOTE, by the process of elimina
tion. Therefore, the other adapter already owns the lock on
the address range X, and the enqueued lock request id in
error. In this event, step 812 proceeds to step 814, which
deletes the lock request (LRO, X, Y) from the current
adapter's queue, and proceeds to wait for the next Stimulus
in step 816.

Arrival of LG Message

0114 FIG. 9 describes the sequence 900 that an adapter
performs in response to Stimuli comprising the receipt of a
lock grant message (LG) from the other adapter. Namely, in
Step 902, the current adapter receives a lock grant message
(LG, X, Y). Step 904 asks if the state of the address range
X is LOCAL. If So, the lock grant is meaningleSS, Since the
current adapter already owns the lock. In this case, the lock
grant message is in error, and the current adapter proceeds
to wait for the next stimulus in step 906.
0115) If the state is not LOCAL, step 908 asks if a request

is in progress, i.e., the State is REQ. If no request is in
progress, the lock is unneeded, and this situation may have
arisen due to lost or misordered messages. In this case, the
current adapter relinquishes the lock already granted. Spe
cifically, step 910 returns a lock release message (LRL, X,
Y) to the other adapter. After step 910, the current adapter
goes into a wait state 912.
0116. On the other hand, if step 908 finds a request in
progreSS, Step 914 asks whether the token of the lock request
matches the current token (Current(X)) for the address range
X. If So, the current adapter's lock request has been properly
granted. In this case, the adapter in Step 916 grants the
operation at the head of the queue. In other words, the host

May 2, 2002

Source of the operation (OP) is given access to the address
range X (as in step 622). After step 916, step 918 sets the
state of the address range X to LOCAL, and then enters the
wait state in step 912.

Arrival of LRL Message
0117 FIG. 10 describes the sequence 1000 that an
adapter performs in response to Stimuli comprising receipt
of a lock release message (LRL) from the other adapter. In
Step 1002, the current adapter receives a lock release mes
Sage (LRL, X, Y), originating from the other adapter. In
response, step 1004 asks whether the state of the address
range X is REMOTE, the only state within which the adapter
would expect to receive a lock release message. If the State
is not REMOTE, then the lock release is discarded, and the
adapter proceeds to the wait state 1006.
0118. On the other hand, if the state is REMOTE, then a
lock release is expected, but it is still necessary to Verify that
the lock releases token matches the address range's current
token. In this case, step 1008 asks whether the token Y of the
received (LRL, X, Y) matches Current(X). If not, step 1010
grants the lock to the other adapter by sending it (LG, X,
Current(X)). This LG will prompt the other adapter to send
(step 910) a matching (LRL, X, Current(X)) in case the
non-matching LRL is the result of lost messages and the
other adapter does not have X in state LOCAL. This is an
example of a response designed to recover from and tolerate
intermittent communication failures. After step 1010, the
routine 1000 proceeds to the wait step 1006.
0119) If the tokens match, however, step 1012 asks
whether the operation pending at the head of the address
range X's queue contains a local lock request with a valid,
non-dummy token. If not, then there is no local operation
awaiting the lock and the lock release message (LRL) results
in freeing of the address range. Specifically, the adapter Sets
the address range's state to FREE in step 1014. If the head
of the address range X's queue does contain a local lock
request with a valid token, step 1018 updates the current
adapter's current token to match the queued local lock
requests token. In this example, the host's lock request is
(OP, X, W), and the current token is updated to token W.
Since the current adapter presumably had sent (LRO, X, W)
in step 610, steps 1018 and 1020 prepare the adapter to
receive the matching (LG, X, W) that will be sent by the
other adapter in step 818 when (LRO, X, W) reaches the
head of its queue for X (Queue(X)). After step 1018, step
1020 sets the address range's state to REQ, and then
proceeds to wait in step 1016.

Receipt of DONE Condition
0120 FIG. 11 describes the sequence 1100 that an
adapter performs in response to Stimuli comprising arrival of
a DONE input. In step 1102, the adapter receives an input
(DONE, X). This input arrives from the host when it
completes its current operation on the address range X, or it
is generated by the current adapter because of a timeout or
another condition requiring an operation in progreSS to
abort.

0121. After step 1102, step 1104 deletes local lock
request (OP) at the head of the address range X's queue.
Then, step 1106 asks whether the address range's state is
REQ. If so, the current adapter in step 1114 sends the other

US 2002/0052959 A1

adapter a lock release message (LRL, X, Current(X)), sets
the address range's state to FREE (step 1116), and enters the
wait state 1110.

0122) If the address range X's state is not REQ, step 1108
asks whether the state is LOCAL. If the state is LOCAL,
Step 1112 asks whether the queue for the address range X is
empty. If the queue is not empty, the Sequence 1100 enters
the wait state 1110. If the queue is empty, however, the
current adapter Sends the other adapter a lock release mes
sage (LRL, X, Current(X)) (step 1114), sets the address
range's state to FREE (step 1116), and enters the wait state
1110. This method allows the current adapter to perform
multiple operations on the same address range without the
need to exchange any messages with the other adapter.
0123. In contrast to the foregoing description, if steps
1106, 1108 find that the state is neither REO nor LOCAL,
then the operation has already completed and this DONE is
redundant. In this case, the sequence 1100 waits in step 1110.

Receipt of ABORT Condition
0124 FIG. 12 describes the sequence 1200 that an
adapter performs in response to Stimuli comprising arrival of
an abort input. In Step 1202, the adapter receives an
(ABORT, X) input, originating from one of the adapter's
hosts. The ABORT input may result from various conditions,
Such as a timeout, failure of an adapter, failure of inter
adapter communications, loSS of power, etc. After Step 1202,
step 1206 asks whether the received abort input is directed
at the local lock request operation (OP) at the head of the
queue. If not, the adapter generates a DONE input in step
1208. Otherwise, step 1204 asks whether the address range
X’s state is LOCAL. If so, step 1206 takes steps to make the
shared resource 155"Safe, e.g., consistent, complete, etc. In
the case of a data Storage resource, Step 1206 may complete
the operation in progreSS, reverse Stored data back to a
previous State, calculate parity, etc. After Step 1206, Step
1208 generates (DONE, X) as input.
0125 If step 1204 finds a state other than LOCAL, then
the operation to be aborted has not started and cannot have
placed the resource in an unsafe (incomplete) condition. In
this case, the routine 1200 generates (DONE, X) as input in
step 1208.

Additional Features Supporting Liveness
0.126 The invention may also provide various features to
help ensure the “liveness” of the processing System. Live
neSS refers to the System's robust resistance to hanging up or
otherwise becoming inoperative due to a failure of a Sub
component. AS shown below, these liveneSS features include
a “retry” facility and a “timeout' facility.
0127. The retry facility may be implemented by various
measures to ensure that lock requests are eventually
repeated. AS one example, the adapters may be programmed
to review their lock tables for address ranges that are in the
REQ or REMOTE state, and have an OP input with a valid
token at the head of the queue. This situation indicates that
the pending OP input is waiting for the lock. The lock table
review may be conducted periodically, whenever a new OP
input is received, or on another Sufficiently frequent basis.
AS another alternative, each adapter may associate a timer
with each LRO message Sent. In this embodiment, the
adapter resends the LRO message if the lock is not granted
before the timer expires.

May 2, 2002

0128. In contrast to the retry facility, the timeout facility
is provided to help tolerate failures in host-adapter interac
tion. Such failure Situations may arise from a failed host, a
failed shared resource, etc. The timeout facility associates a
timer with each new host lock request input (OP). The timer
may be initiated, for example, as part of step 504 (FIG. 5).
The timer is satisfied (and thus removed) whenever the OP
message completes to fruition (marked by the host Submit
ting a DONE input). Removal of the timer may occur, for
instance, in step 1104 (FIG. 11). If the timer runs out before
completing Successfully, the timer causes an ABORT input
to be issued. This prevents Starving of the other adapter and
its hosts due to an unresponsive adapter, host, or address
range.

Other Embodiments

0.129 While the foregoing disclosure shows a number of
illustrative embodiments of the invention, it will be apparent
to those skilled in the art that various changes and modifi
cations can be made herein without departing from the Scope
of the invention as defined by the appended claims. Fur
thermore, although elements of the invention may be
described or claimed in the Singular, the plural is contem
plated unless limitation to the Singular is explicitly Stated.

What is claimed is:
1. A method for managing access to a shared resource in

a computing System, including multiple processors each
coupled to the shared resource, the processors being coupled
to one or more hosts, the method comprising operations of:

each processor Separately Storing a corresponding lock
table listing one or more Subparts of the Shared
resource, where each lock table also lists in association
with each Subpart a State Selected from a State group
including a LOCAL state and a REMOTE state;

in response to an acceSS request one of the hosts, the
acceSS request identifying one or more Subparts of the
shared resources, the processors awarding a lock on all
identified Subparts by electing a single processor to
have eXclusive access to the identified Subparts,

in response to the election, at a first time all non-lock
holding processors configuring their lock tables to
show the identified subparts in the REMOTE state, and
no earlier then the first time the lock-holding processor
configuring its lock table to show the identified Subpart
in the LOCAL state; and

each processor refraining from accessing a Subpart of the
shared resource unless the processor's lock table indi
cates a LOCAL state for that subpart.

2. The method of claim 1, the lock-holding processor
configuring its lock table to Show the identified Subpart in
the LOCAL state after the first time.

3. The method of claim 1, each processor Storing its
corresponding lock table in non-volatile Storage.

4. The method of claim 1, the shared resource comprising
one or more digital data Storage devices.

5. The method of claim 1, the processors of the system
being two in number.

6. The method of claim 1, the processors of the system
being two in number, and including first and Second pro
ceSSors, the electing operation including:

US 2002/0052959 A1

responsive to the first processor receiving a request to
access a particular Subpart, where the first processor's
lock table indicates a REMOTE state for that subpart,
the first processor transmitting a lock request message
to the Second processor,

responsive to receipt of a lock request message concern
ing the Subpart, the Second processor configuring its
lock table to indicate the REMOTE state for the iden
tified Subpart and then transmitting a lock grant mes
Sage to the first processor, and

responsive to receipt of a lock grant message concerning
the Subpart, the first processor configuring its lock table
show a LOCAL state for the identified subpart.

7. The method of claim 6, where each message is accom
panied by a token, and the operations further comprise:

the first processor determining whether tokens of the lock
request and lock grant messages match, and if not,
aborting the operation of configuring the first proces
Sor's lock table show a LOCAL state for the subpart.

8. The method of claim 1, where the state group further
includes a FREE state.

9. The method of claim 8, where the electing operation
further includes:

responsive to a processor completing access to a Subpart
of the shared resource, the processor transmitting a lock
release message to the other processors, and then each
processor configuring its lock table to indicate the
FREE state for the subpart.

10. The method of claim 9, where the configuring of the
lock table to indicate the FREE state comprises the proces
Sor removing representation of the Subpart from the lock
table.

11. The method of claim 8, the processors of the system
being two in number, and including first and Second pro
ceSSors, the electing operation comprising:

the first processor transmitting a lock request message to
the Second processor, the lock request naming the
identified Subpart of the shared resource;

the Second processor consulting its lock table to determine
the State of the identified Subpart, and in response to the
lock table indicating a FREE state of the subpart, the
Second processor transmitting a lock grant message to
the first processor, and then configuring the Second
processor's lock table to show a REMOTE state for the
identified Subpart; and

the first processor receiving the lock grant message, and
in response configuring the first processor's lock table
to show a LOCAL state for the identified subpart.

12. The method of claim 1, the processors of the system
being two in number, and including first and Second pro
ceSSors, the electing operation including:

responsive to the first processor receiving a request to
access a particular Subpart, where the first processor's
lock table indicates a REMOTE state for that subpart,
the first processor transmitting a lock request message
to the Second processor,

responsive to the first processor failing to receive a lock
grant message within a predetermined time, the first
processor retransmitting the lock request message to
the Second processor.

May 2, 2002

13. The method of claim 1, the processors of the system
being two in number, and including first and Second pro
ceSSors, the electing operation including:

responsive to the first processor receiving a request to
access a Subpart, where the first processor's lock table
indicates a REMOTE state for that subpart, the first
processor transmitting a lock request message to the
Second processor;

responsive to the lock request message, the Second pro
ceSSor representing the lock request in a queue;

the Second processor Sequentially processing the queued
messages, and upon reaching the queued lock request,
the Second processor configuring its lock table to
indicate the REMOTE state for the subpart and then
transmitting a lock grant message to the first processor,
and

responsive to receipt of a lock grant message concerning
an identified Subpart, the first processor configuring its
lock table show a LOCAL state for the identified
Subpart.

14. The method of claim 1, the processors being two in
number, and including first and Second processors, the
operations further comprising:

responsive to the first processor receiving a host request
to access a first Subpart of the shared resource while the
lock table of the first processor shows the first subpart
in the REMOTE state, the first processor transmitting a
lock request message to the Second processor in asso
ciation with the first subpart.

15. The method of claim 14, further comprising:
the first processor retransmitting the lock request to the

Second processor according to a predetermined Sched
ule until the Second processor grants the requested lock
on the first subpart.

16. The method of claim 14, where:

each processor maintains a queue of pending operations,
and

responsive to the lock request, the Second processor
places a representation of the lock request in the queue
of the Second processor.

17. The method of claim 1, where:

the processors maintain respective queues of pending
operations, and where each processor is responsive to
host requests to access a Subpart of the Shared resource
while the lock table of the processor shows the subpart
in the REMOTE state by sending a lock request mes
Sage to the other processor, and

the electing operation comprises, responsive to a proces
Sor's receipt of an access request from one of the hosts
involving a first Subpart of the shared resource, deter
mining whether the lock table of the processor lists the
Subpart in the LOCAL State and the processor's queue
is free from any lock requests from the Second proces
Sor, and if So, the processor proceeding to Satisfy the
host acceSS request without Sending any messages to
the other processor.

US 2002/0052959 A1

18. The method of claim 1, further comprising:
in response to a processor receiving a host access request,

the processor Setting a timer, Satisfied by completion of
the host acceSS request; and

responsive to unsatisfied expiration of the timer, the
processor aborting the host acceSS request.

19. The method of claim 1, where:
the processors maintain respective Sequential queues of

pending operations,

the processors are two in number, and include first and
Second processors, one of the processors being predes
ignated as a winner and the other being predesignated
as a loser; and

responsive to each processor receiving a lock request
from the other processor, where each processor has sent
an unsatisfied lock request to the other processor, the
loser processor granting a lock on the Subpart to the
winner processor, and the winner processor waiting for
the lock grant and enqueing the loser processor's lock
request.

20. A signal-bearing medium tangibly embodying a pro
gram of machine-readable instructions executable by a digi
tal data processing machine to perform operations to manage
one processor in a multiple processor computing System, the
processors having access to a shared resource, the operations
comprising:

the processor Storing a lock table listing one or more
Subparts of the shared resource, the lock table also
listing in association with each Subpart a State Selected
from a State group including a LOCAL State and a
REMOTE state;

in response to an access request from one of the hosts, the
acceSS request identifying one or more Subparts of the
shared resource, the processor cooperating with the
other processors to award a lock on all identified
Subparts by electing a single processor to have exclu
Sive access to the identified Subparts,

in response to the election,
if the processor is not elected, the processor configuring

its lock table to show the identified subpart in the
REMOTE state;

if the processor is elected, the processor configuring its
lock table to show the identified subpart in the
LOCAL state; and

the processor refraining from accessing a Subpart of the
shared resource unless the processor's lock table indi
cates the LOCAL state for that subpart.

21. The medium of claim 20, the processor Storing its lock
table in non-volatile Storage.

22. The medium of claim 20, the shared resource com
prising one or more digital data Storage devices.

23. The medium of claim 20, the processors of the system
being two in number.

24. The medium of claim 20, where the state group further
includes a FREE state.

25. A multiple processor computing System, comprising:

a shared resource having multiple Subparts, and

May 2, 2002

multiple processors coupled to one or more hosts, each
processor being coupled to the shared resource, where
the processors are programmed to perform operations
to cooperatively utilize the resource, the operations
comprising:
each processor Separately storing a corresponding lock

table listing one or more Subparts of the shared
resource, where each locktable also lists in associa
tion with each Subpart a State Selected from a State
group including a LOCAL state and a REMOTE
State,

in response to an access request from one of the hosts,
the processors awarding a lock on all identified
Subparts by electing a Single processor to have
exclusive access to the identified Subparts,

in response the election, at a first time all non-lock
holding processors configuring their lock tables to
show the identified subparts in the REMOTE state,
and no earlier then the first time the lock-holding
processor configuring its lock table to show the
identified subpart in the LOCAL state; and

each processor refraining from accessing a Subpart of
the shared resource unless the processor's lock table
indicates a LOCAL state for that subpart.

26. The system of claim 25, the lock-holding processor
configuring its lock table to Show the identified Subpart in
the LOCAL state after the first time.

27. The System of claim 25, each processor Storing its
corresponding lock table in non-volatile Storage.

28. The system of claim 25, the shared resource compris
ing one or more digital data Storage devices.

29. The system of claim 25, the processors of the system
being two in number.

30. The system of claim 25, the processors of the system
being two in number, and including first and Second pro
ceSSors, the electing operation including:

responsive to the first processor receiving a request to
access a particular Subpart, where the first processor's
lock table indicates a REMOTE state for that subpart,
the first processor transmitting a lock request message
to the Second processor,

responsive to receipt of a lock request message concern
ing the Subpart, the Second processor configuring its
lock table to indicate the REMOTE state for the subpart
and then transmitting a lock grant message to the first
processor, and

responsive to receipt of a lock grant message concerning
an identified Subpart, the first processor configuring its
lock table show a LOCAL state for the identified
Subpart.

31. The system of claim 30, where each message is
accompanied by a token, and the operations further com
prise:

the first processor determining whether tokens of the lock
request and lock grant messages match, and if not,
aborting the operation of configuring the first proces
Sor's lock table show a LOCAL state for the subpart.

32. The system of claim 25, where the state group further
includes a FREE state.

33. The system of claim 32, where the electing operation
further includes:

US 2002/0052959 A1

responsive to a processor completing access to a Subpart
of the shared resource, the processor transmitting a lock
release message to the other processors, and then each
processor configuring its lock table to indicate the
FREE state for the subpart.

34. The system of claim 33, where the configuring of the
lock table to indicate the FREE state comprises the proces
Sor removing representation of the Subpart from the table.

35. The system of claim 32, the processors being two in
number, and including first and Second processors, the
electing operation comprising:

the first processor transmitting a lock request message to
the Second processor, the lock request naming the
identified Subpart of the shared resource;

the Second processor consulting its lock table to determine
the State of the identified Subpart, and in response to the
lock table indicating a FREE state of the subpart, the
Second processor transmitting a lock grant message to
the first processor, and then configuring the Second
processor's lock table to show a REMOTE state for the
identified Subpart; and

the first processor receiving the lock grant message, and
in response configuring the first processor's lock table
to show a LOCAL state for the identified subpart.

36. The system of claim 25, the processors of the system
being two in number, and including first and Second pro
ceSSors, the electing operation including:

responsive to the first processor receiving a request to
access a particular Subpart, where the first processors
lock table indicates a REMOTE state for that subpart,
the first processor transmitting a lock request message
to the Second processor,

responsive to the first processor failing to receive a lock
grant message within a predetermined time, the first
processor retransmitting the lock request message to
the Second processor.

37. The system of claim 25, the processors being two in
number, and including first and Second processors, the
electing operation including:

responsive to the first processor receiving a request to
access a Subpart, where the first processor's lock table
indicates a REMOTE state for that subpart, the first
processor transmitting a lock request message to the
Second processor;

responsive to the lock request message, the Second pro
ceSSor representing the lock request in a queue;

the Second processor Sequentially processing the queued
messages, and upon reaching the queued lock request,
the Second processor configuring its lock table to
indicate the REMOTE state for the subpart and then
transmitting a lock grant message to the first processor,
and

responsive to receipt of a lock grant message concerning
an identified Subpart, the first processor configuring its
lock table show a LOCAL state for the identified
Subpart.

38. The system of claim 25, the processors being two in
number, and including first and Second processors, the
operations further comprising:

May 2, 2002

responsive to the first processor receiving a host request
to access a first Subpart of the shared resource while the
lock table of the first processor shows the first subpart
in the REMOTE state, the first processor transmitting a
lock request message to the Second processor in asso
ciation with the first subpart.

39. The system of claim 38, the operations further com
prising:

the first processor retransmitting the lock request to the
Second processor according to a predetermined Sched
ule until the Second processor grants the requested lock
on the first subpart.

40. The system of claim 38, where:
each processor maintains a queue of pending operations,

and

responsive to the lock request, the Second processor
places a representation of the lock request in the queue
of the Second processor.

41. The system of claim 25, where:
the processors maintain respective queues of pending

operations, and where each processor is responsive to
host requests to access a Subpart of the Shared resource
while the lock table of the processor shows the subpart
in the REMOTE state by sending a lock request mes
Sage to the other processor, and

the electing operation comprises, responsive to a proces
Sor's receipt of an access request from one of the hosts
involving a first Subpart of the shared resource, deter
mining whether the lock table of the processor lists the
Subpart in the LOCAL State and the processor's queue
is free from any lock requests from the Second proces
Sor, and if So, the processor proceeding to Satisfy the
host acceSS request without Sending any messages to
the other processor.

42. The system of claim 25, the operations further com
prising:

in response to a processor receiving a host access request,
the processor Setting a timer, Satisfied by completion of
the host acceSS request; and

responsive to unsatisfied expiration of the timer, the
processor aborting the host acceSS request.

43. The system of claim 25, where:
the processors maintain respective Sequential queues of

pending operations,

the processors are two in number, and include first and
Second processors, one of the processors being predes
ignated as a winner and the other being predesignated
as a loser; and

responsive to each processor receiving a lock request
from the other processor, where each processor has sent
an unsatisfied lock request to the other processor, the
loser processor issuing a lock on the Subpart to the
winner processor, and the winner processor waiting for
the lock grant and enqueing the loser processor's lock
request.

