a2 United States Patent

Byron et al.

US010366116B2

ao) Patent No.: US 10,366,116 B2
45) Date of Patent: *Jul. 30,2019

(54) DISCREPANCY CURATOR FOR
DOCUMENTS IN A CORPUS OF A
COGNITIVE COMPUTING SYSTEM

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Donna K. Byron, Petersham, MA (US);
Elie Feirouz, Lexington, MA (US);
Ashok Kumar, Bedford, MA (US);
William G. O’Keeffe, Cambridge, MA
(US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 41 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 15/800,851
(22) Filed: Nowv. 1, 2017

(65) Prior Publication Data
US 2018/0067950 Al Mar. 8, 2018

Related U.S. Application Data

(63) Continuation of application No. 14/993,538, filed on
Jan. 12, 2016, now Pat. No. 9,842,161.

(51) Imt.CL
GO6F 16/35 (2019.01)
GO6F 1727 (2006.01)
(Continued)
(52) US. CL
CPC GO6F 16/355 (2019.01); GOGF 16/335

(2019.01); GO6F 16/338 (2019.01); GO6F
17/2725 (2013.01); GO6N 20/00 (2019.01)

(58) Field of Classification Search
CPC ... GO6F 17/3071; GO6F 17/30696; GO6F
17/30699; GO6F 17/2725; GO6N 99/005
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,313,515 B2 12/2007 Crouch et al.
7,461,047 B2 12/2008 Masuichi et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2013125286 Al 8/2013

OTHER PUBLICATIONS

Source Forge; “The Lemur Project”, retrieved on Feb. 7, 2017 from
https://sourceforge net/p/lemur/wiki/Indexer File Formats.

(Continued)

Primary Examiner — Fariba Sirjani
(74) Attorney, Agent, or Firm — Robert H. Frantz;
William J. Stock

(57) ABSTRACT

Curation of a corpus of a cognitive computing system is
performed interactively by reporting on user interface device
to a user a parse tree illustration of discrepancies and
corresponding assigned confidence factors detected between
at least a portion of a first document and a second or more
documents in the corpus. Responsive to a user selection of
an illustrated discrepancy in the parse tree, a drill-down
dialog is prepared and displayed which shows at least a text
string for the portion of the first document and at least one
conflicting text string from the second or more documents,
and which provides at least one user-selectable administra-
tive action option for handling the detected discrepancy.
Responsive to receipt of user selection of an administrative
action option, the computing system performs the action to
handle the detected discrepancy.

18 Claims, 9 Drawing Sheets

800

Trecs

ClusterA (TopicA}

-DocA
- - NewTrecl Trecs Conflict < [~

-DocB
- - NewTrec2 Trecs Similar «-—

- NewTrec3 New Trec for Topic

ClusterB {TopicB)

|
|
{
|
|
|
{-DocC
|
|
|
1
|
f

804

_ View conflicts and take appropriate course g1
of action to resolve them
Check GTT to ensure the mapped answer 802
T s stilt the best answer, add additional
answers etc...
803

Add Ground Truth and train if appropriate

US 10,366,116 B2

Page 2

51) Int. CL 2017/0199929 Al* 7/2017 Byron GO6F 16/334
(51) v

GO6N 20/00 (2019.01) 2018/0001470 Al* 1/2018 RUSU ...ccoovvvvvevvrnrnne B25J9/163

GO6F 16/335 (2019.01) 2018/0260860 Al* 9/2018 Devanathan GOG6F 17/2785

GO6F 16/338 (2019.01)

OTHER PUBLICATIONS

(56) References Cited Stack Overflow; “Where does one find the TREC Document format

U.S. PATENT DOCUMENTS

8,370,275 B2 2/2013 Bhattacharya et al.
8,560,300 B2 10/2013 Ferrucci et al.
9,015,098 Bl 4/2015 Crosley
9,842,161 B2* 12/2017 Byron GO6N 20/00
10,146,858 B2* 12/2018 Byronc........ GO6F 16/35
10,176,250 B2* 1/2019 Byronc....... GO6F 16/334
2002/0127521 Al 9/2002 Fegan
2013/0138425 Al* 5/2013 Luke ...cccoovveennn. GOG6F 17/2705
704/9

2014/0006557 Al
2014/0046947 Al*

1/2014 Lindgren et al.
2/2014 Jenkins GOGF 17/2881
707/740
2014/0120513 Al
2014/0172139 Al
2014/0172756 Al
2014/0172878 Al
2014/0172880 Al
2014/0172882 Al
2014/0172883 Al
2015/0026106 Al

5/2014 Jenkins et al.
6/2014 Clark et al.
6/2014 Clark et al.
6/2014 Clark et al.
6/2014 Clark et al.
6/2014 Clark et al.
6/2014 Clark et al.
1/2015 Oh et al.

2015/0142418 Al* 5/2015 Byron ... GO6F 17/2785
704/9

2015/0286977 Al* 10/2015 Schneeman GO06Q 10/06393
705/7.39

2015/0324350 Al* 11/2015 Bufe ... GO6F 17/28
704/9

2016/0148114 A1* 5/2016 Allencccoe.... G16H 10/60
706/11

2017/0177675 Al* 6/2017 GO6F 16/90332

2017/0193174 Al* 7/2017 GO6F 17/2765

specification?”, retrieved on Feb. 7, 2017 from http://www.
stackoverflow.com.

Stack Overflow; “What is the TREC format?”; retrieved on Feb. 7,
2017 from http://www.stackoverflow.com.

Wikipedia; “Text Retrieval Conference”, retrieved on Feb. 7, 2017
from https://www.wikipedia.com.

Yuan, Michael J.; “Watson and Healthcare”, Apr. 12, 2011, retrieved
on Dec. 3, 2015 from http://www.ibm.com/developerworks/library/
os-ind-watson/.

High, Rob; “The Era of Cognitive Systems: An Inside Look at IBM
Watson and How it Works”, 2012, retrieved on Dec. 3, 2015 from
www.redbooks.ibm.com/redpapers/pdfs/redp4955.pdf.

Temperley, Davy, et al.; “Link Grammar”, retrieved on Nov. 30,
2015 from http://www.link.cs.cmu.edu/link/.

Byron, Donna K., et al; “Utilizing a Dialiectical Model in a
Question Answering System”; U.S. Appl. No. 14/722,862, filed
May 27, 2015.

Ferrucci, D. A., et al.;“This is Watson”, IBM Journal of Research
and Development, vol. 56, No. 3/4, May/Jul. 2012.

Ferrucci, David, et al.; “The Al Behind Watson—The Technical
Article”; 2010, retrieved on Nov. 12, 2015 from http://www.aaai.
org/Magazine/Watson/watson.php.

IBM; “Watson—A System Designed for Answers”, Feb. 2011.
Kelley III, Joe. E.; “Computing, cognition and the future of know-
ing”, Copyright 2015 by IBM Corporation.

Budnik, Tom, et al.; “High Throghput Computing on IBM’s Blue
Gene/P”.

U.S. Appl. No. 14/993,538, filed Jan. 10, 2016, US20170199882A1.
U.S. Appl. No. 14/722,862, filed May 27, 2015, US20160350279A1.
U.S. Appl. No. 14/966,568, filed Dec. 11,2015,US20170169017A1.

* cited by examiner

US 10,366,116 B2

Sheet 1 of 9

Jul. 30, 2019

U.S. Patent

rAs‘\!OZ\w
ey w15¢ ;
-oyjeAnsddy 3aKg :
N ,/EEE\ MmN pagdely
S3A
157 |
» Epaiisieg
SHEI0Y DI 9L ON i Aauedaiasig
MaN 15a80 ~ -

e

{Syosramuiayy o
S {9y pue

pue {Sumishs DHOMIEN ‘BIRG)
Suneisdo S5IELISIUY

SLsLg
UoIIRIRG
Auedadsicy

nug
103530044 {eIIUS])

NISEITDSH

7BSeaT a5y
TISBTTAsMY
{23113 UEUI0Q

Om N ey
HOIRYISaXg
W wu«w>m Loipeisi 1asn
Comummw u _ feiTtiar=1> LHHTEE o Te]
Axuedsiasiq

US 10,366,116 B2

Sheet 2 of 9

Jul. 30, 2019

U.S. Patent

{shndihg
PuUspYUSI
PUE JaMSUY

A

Supiuey
pue BuiBen jeuts

SIIPON
pauiel]

Buasg

Bu00g
sauapiAg dsag

BIUBPIATY SIS84FO0AH

902
: s0esUPY
51534 00AN

{EASIIRY SOUDPIAS
Suipoddng

ot

i Jesodwodag AlRND e

107

{shinduj uonsent

507

07

. GoRLIBII0Y &
I asmsuy aiepiple)

Uoieas Aavlitig

5854108
jeuaaixg

Do,

NmN ngiod

Jamsuy

U.S. Patent Jul. 30, 2019 Sheet 3 of 9 US 10,366,116 B2

300

Cluster ID: clustl
Documents
i DOCA

3 DOCB
- DocC

o Cluster 1D: clustl_subl

- DOCB

3 Trecl
3 Trech
-t Trec8

- DocC

- Trec’
-3 Trec9

Fig. 3

U.S. Patent Jul. 30, 2019 Sheet 4 of 9 US 10,366,116 B2

oy
o
(e}

Main

Clusters

-3 Cluster 1D clustl

Questions

Do you sell iPhones?
What model iPhones are available?

Are iPhones the only mobile devices that Apple manufactures?

------------- + Cluster 1D; clustl_subl
Questions

- How can | charge my iPhone using a car charger?
How do | charge my iPhone using a wall charger?
How do § charge my iPhone using a USB cable?

----- 3 Cluster 1D: clust2

Questions

H
H

H

H

fomen B

oo Cluster 101 clust2_subl

Questions

Fig. 4

U.S. Patent Jul. 30, 2019 Sheet 5 of 9 US 10,366,116 B2

(93]
Q

201 |john Doe|died|March 26th atjUMass Medical Center ffrom|Stage 4 Cancer

' t * *

|
202 Person Date Location, Hospital Disease, Cancer
203 lohn Doe |leaving a|wife alchild] died at|UMass|

b //’//:/»//v o >
/ T 7 /
; L /’(!;;;’!—’/’/ . /// /,/

504 Person Temporal, Date Location, [Hospital| College]

Fig. 5

U.S. Patent Jul. 30, 2019 Sheet 6 of 9 US 10,366,116 B2

601 leaving a [wife] alchild] died [March 27th|at|UMass]|
g, 4 4
/‘ o ;’/’r///' 7 - / -~
/M////// ///’/ ///
802 person Temporal,/Date Location, [Hospital|College]

Fig. 6

U.S. Patent Jul. 30, 2019 Sheet 7 of 9 US 10,366,116 B2

1 lohn Doe died|March 26% y.
702 John Doe died[March 27

~d

: Conflict, 100% confidence, temporal entities do not match 705

703 John Doe died AtIUMass Medical Center |,

. Conflict, 20% confidence, location types may not match 706

704 John Doe died at e

U.S. Patent

Jul. 30, 2019

lusterB {TopicB)

Trecs
ClusterA {TopicA}
: -DocA
[--NewTrecl Trecs Conflict <~
l
{-DocB
} - - NewTrec2 Trecs Similar + |
l
}-DocC
!
| - NewTrec3 New Trec for Topic«
|
C
jo.e
f..
Jo

Sheet 8 of 9

o0
Q

View conflicts and take appropriate course

of action to resolve them

Check GTT to ensure the mapped answer g
"~ is still the best answer, add additional

answers etc...

Fig. 8

- Add Ground Truth and train if appropriate

US 10,366,116 B2

ivel
o
ey

o
N

o0
(V8]

U.S. Patent

905

Jul. 30, 2019 Sheet 9 of 9

900

US 10,366,116 B2

Conflicts

New Trec : NewTrecl

Text | Annotated I Parse Treef

John Doe died March 26t ===

Confidence: 100%

Remove | Replace | Edit | Ignore | ...

Existing Trec : DocA

John Does died March 28th

ILO
O
w

Prev Next 904

Fig. 9

US 10,366,116 B2

1
DISCREPANCY CURATOR FOR
DOCUMENTS IN A CORPUS OF A
COGNITIVE COMPUTING SYSTEM

This is a continuation application of U.S. patent applica-
tion Ser. No. 14/993,538, filed on Jan. 12, 2016, by Donna
K. Byron, et al., now under Notice of Allowance. This
invention relates generally to methods to align and reconcile
documents in a cognitive computing system corpus of for
which differences and contradictions have been found
amongst other documents and information elements in the
corpus.

INCORPORATION BY REFERENCE

U.S. patent application Ser. No. 14/722,862, filed on May
27, 2015, by Donna K. Byron, et al., and non-patent litera-
ture publication “This is Watson”, by D. A. Ferruci, et al., in
the IBM Journal of Research and Development, Volume 56,
Number 3/4, May/July 2012, are incorporated by reference
in their entireties, including drawings.

BACKGROUND

Approximately 80% of online and digital data today is
“unstructured data”, such as news articles, research reports,
social media posts, and enterprise system data. Unlike
“structured data”, e.g., databases, configuration tables, etc.,
which is readily useable by traditional computing process-
ing, unstructured data is not directly compatible with tradi-
tional computer processes.

Understanding and interpreting unstructured data, such as
electronic documents expressed in Natural Language (NL),
is beyond the capacities of traditional search engines. Tra-
ditional search engines find keywords, and rank their find-
ings according to the number of appearances of each key-
word and their proximities to each other. In order to
effectively use a keyword-based search engine, a user must
input the most effective keywords. But, if the user does not
know the correct keywords, the search engine may be of
little use.

Further, keyword-based search engines have no ability to
assign “right” or “wrong” to their results because they do not
interpret their findings, and thus cannot detect disagreements
between two or more search findings. For example, if a user
is searching for a likely cause of a particular abdominal
malady, he or she may input the symptoms (abdominal pain,
nausea, etc.) as keywords into a keyword-based search
engine. Two documents may be found by the search engine,
each of which has similar quantities of appearances of the
keywords (references to the symptoms) and thus are ranked
similar to each other. However, the documents may depart
radically from each other in their explanations of the poten-
tial cause (allergy, food poisoning, cancer, etc.) of the
symptoms. The user must now try to make sense of these
documents and determine which is correct, if either.

SUMMARY OF THE INVENTION

Curation of a corpus of a cognitive computing system is
performed interactively by reporting on user interface device
to a user a parse tree illustration of discrepancies and
corresponding assigned confidence factors detected between
at least a portion of a first document and a second or more
documents in the corpus. Responsive to a user selection of
an illustrated discrepancy in the parse tree, a drill-down
dialog is prepared and displayed which shows at least a text

10

15

20

25

30

35

40

45

50

55

60

2

string for the portion of the first document and at least one
conflicting text string from the second or more documents,
and which provides at least one user-selectable administra-
tive action option for handling the detected discrepancy.
Responsive to receipt of user selection of an administrative
action option, the computing system performs the action to
handle the detected discrepancy.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures presented herein, when considered in light of
this description, form a complete disclosure of one or more
embodiments of the invention, wherein like reference num-
bers in the figures represent similar or same elements or
steps.

FIG. 1 illustrates a specialized document ingestion system
which, in one embodiment, incorporates a computing core or
customized logical circuit for processing logic which per-
forms a logical process, such as by executing program
instructions.

FIG. 2 sets forth one potential embodiment of the present
invention relative to a cognitive computing system.

FIG. 3 shows a clustering structure of documents in a
general manner.

FIG. 4 illustrates one particular example of clustered
documents as shown in FIG. 3

FIGS. 5 and 6 illustrate entities extracted from example
text strings using natural language processing.

FIG. 7 depicts discrepancy detection and assignment of
confidence factors to each discrepancy according to the
nature and type of conflict between the text strings.

FIG. 8 provides an example user interface for a top-level
view of any conflicts within a newly-ingested document
relative to the documents already contained in the corpus.

FIG. 9 shows an example user interface for a drill-down
view of a user-selected conflict in which a user can see the
linked conflicting text and perform one of several reconcili-
ation functions within the corpus.

DETAILED DESCRIPTION OF
EMBODIMENT(S) OF THE INVENTION

Problems Recognized

The present inventors have realized that certain newer
computing technologies may be combined, modified and
operated in novel ways to improve upon the state of the art
in search engines as described in the Background. By
leveraging cognitive computing technology, inclusion of
new electronic information sources in Natural Language can
be improved by automatically interpreting the new docu-
ment so that it can be compared to existing documents
already within a domain of knowledge. Through this inter-
pretation, a search computer system can detect disagreement
between the new document and one or more documents
already within the search systems purview.

Cognitive Computing and Deep Search Engines. Cogni-
tive computing systems employ Natural Language Process-
ing (NLP) to understand unstructured data, as well as
machine learning processes which adapt and grow as addi-
tional unstructured language documents are ingested into a
corpus of the cognitive computing system. An information
corpus refers to a collection of unstructured data, such as a
collection of digital or digitized literature, encyclopedias,
dictionaries, thesauri, user’s manuals, press releases, legal
texts, medical reference materials, news articles, academic
text books, electronic messages, web logs (“blogs™), and
social media postings.

US 10,366,116 B2

3

These types of unstructured information items are usually
expressed in various forms of natural language, some of it
being more formally formatted (e.g., grammatically correct
sentences and paragraphs, usage of proper terminology and
definitions according to linguistic dictionaries, etc.), and
some of it being more informally formatted (e.g., sentence
fragments, use of time-dependent terminology such as slang,
etc.).

International Business Machine Corporation’s (IBM’s)
Watson™ platform is one such example of a cognitive
computing system. Google’s DeepMind™ and HP’s
Autonomy™ may also be viewed by some as a cognitive
computing systems. Some subject-matter-specific cognitive
computing systems have been proposed, such as DeepLis-
tening’s automated personality analysis that operates on a
short-message corpus for a single or group of messaging
service users, and others such as TheySay, Lexalytics, etc.

Such systems typically employ combinations of NLP,
artificial intelligence (Al) and machine learning (ML) to
provide Deep Semantic Analysis of large corpuses of
unstructured data. Many are provided as a platform, such as
a networked computing service (e.g., on-demand comput-
ing, cloud computing, etc.) which can be engaged by other
computer systems and users via an application programming
interface (API).

Cognitive computing systems go far beyond typical key-
word-based search engines by allowing users (human users
and other computer processes) to ask complex questions. In
response to a natural language query, a cognitive computing
system analyzes the unstructured data in its corpus using
NLP to understand grammar and context of each information
item, and it presents candidate answers and/or solutions to
the user ranked by certainty of correctness.

Before attempting to answer any questions for a user, a
cognitive computing system must “learn” a new subject. It
does so by loading or “ingesting” a plurality of unstructured
language documents, electronic messages, web pages, etc.,
into the corpus, and question and answer pairs are added to
train the system on the subject. As new unstructured lan-
guage information becomes available, it may also be
ingested into the corpus to expand the knowledgebase for
future answers.

After an initial corpus is built and the system has been
trained on the subject, when a user asks a new complex
question of the system, it searches the corpus to find a
plurality of potential answers. It also collects evidence
within the corpus, such as how many sources agree on a
particular possible answer, and rates the quality of the
evidence according to a scoring process. Finally, potential
answers which meet a threshold of confidence of being
correct are ranked against each other and presented or
returned to the user.

Referring to FIG. 2, one available embodiment of the
present invention is integrated as a document ingestion
pre-processor (250) of the corpus-building and textual
resource acquisition function of a cognitive computing sys-
tem, such as the functions described in the “Content Acqui-
sition” section of “The Al Behind Watson—The Technical
Article” by David A. Ferrucci, et al., (Association for the
Advancement of Artificial Intelligence), and also described
in “This is Watson”, by Ferrucci, et al. (IBM Journal of
Research and Development, Volume 56, Number 3/4, May/
July 2012, see especially pages 4:1-4:11), both of which are
incorporated by reference into the present disclosure. Other
configurations and architectures may be produced by other
cognitive computing systems, to which embodiments of the
present invention may equally well provide improvement.

10

15

20

25

30

35

40

45

50

55

60

65

4

The exemplary improved cognitive computing system
(200) is comprised of a computing system having one or
more computer-readable memory devices, microprocessors,
appropriate power supplies, computer network interfaces,
and an operating system with application programs. One or
more functions within the operating system and/or applica-
tion programs implement machine logic functions (202-
211).

Prior to handling input questions, corpus content (252) is
acquired usually through a combination of manual and
automatic steps. Example questions representative of the
problem space (i.e., knowledge domain) are analyzed to
produce a description of the kinds of questions that must be
answered and a characterization of the application domain.
Analyzing example questions may be manually performed,
and domain analysis may be informed automatically by
statistical analyses, such as the lexical answer type (LAT)
analysis. For example, when IBM prepared its Watson
cognitive computing system to play the Jeopardy game
against human contestants, a corpus of information was
prepared by ingesting a wide range of digital encyclopedias,
dictionaries, thesauri, newswire articles, literary works, etc.
(251).

After a baseline corpus (252) is established, an automatic
corpus expansion process engages having four high-level
steps:

(1) identifying seed documents and retrieving related
documents from the networked storage servers such as
web servers;

(2) extracting self-contained text fragments from the
retrieved documents;

(3) scoring the fragments based on whether they are
informative relative to the original seed document; and

(4) merging the most informative fragments into the
information corpus.

During runtime, the cognitive computing system receives

a question or query input (201), analyzes (202) the question
and decompose (203) it. A primary search (204) on the
corpus is performed, and candidate answers are correlated
(205) and provided to a hypothesis generator (206). Option-
ally, evidence to support or discredit each hypothesis may be
used to score (207) the candidate answers against the one or
more candidate answers. Synthesis (208) and final merging
and ranking (209) using trained models of the knowledge
domain yield one or more outputs (210) which may be
human readable (e.g., an answer to a question in a game
show or a possible answer to a medical mystery, etc.),
machine readable (e.g., via an API), or both.

Recognition of Benefits of Early Detection of Conflicting
Information. The present inventors have realized that, during
corpus initialization, some documents may be ingested
which disagree with or are contradictory with some of the
previously-ingested documents. Thus, they have discovered
an opportunity to detect, flag and resolve these contradic-
tions early in the corpus building process, thereby relieving
and enhancing future search and classification steps. Some
embodiments of the present invention will be realized as a
document ingestion pre-processor (250) as shown in FIG. 2,
although other embodiments may integrate the machine
logic functions according to the invention in other points of
a cognitive computing system architecture.

Exemplary embodiments of this invention relate to docu-
ment ingestion (250) into a corpus for an information
retrieval system, especially for cognitive computing systems
such as but not limited to the IBM Watson™ computing
system. In information retrieval systems, documents from
which answers and information are retrieved form the cor-

US 10,366,116 B2

5

pus. The accuracy of the information in the corpus is
important, and the present inventors have recognized that it
is desirable to have an ingestion tool that can automatically
detect discrepancies between documents in a corpus.
Embodiments according to the present invention include a
discrepancy engine that can flag documents with discrepan-
cies using a multi-phased process. A first phase is to map
potential or previously asked questions to documents, sub-
document, document sections, document fragments, and
micro-documents, such as those identified by the National
Institute of Standards and Technology Text Retrieval Con-
ference Workshops referred to as TREC documents
(TRECs) based on the source of an answer. In a second
phase, the questions and corresponding documents are orga-
nized into categories using available document clustering
techniques. In a third phase, when a new document is
ingested into the existing corpus, it will be assigned to one
or more of the existing categories, and fourth, the questions
associated with that category are turned through the system
again to find changes to the corpus caused by the addition of
the new document.

Fifth, the corpus changes are used to identify documents
with potential discrepancies among themselves, and sixth,
an entities extraction process is used to generate individual
statements for comparison by an ingestion engineer.

Example Usage and Operation. Multiple documents are
ingested into a cognitive computing system to form a corpus
as discussed in the previous paragraphs. Additional docu-
ments may be added to the corpus at a later time. During the
ingestion process, with current technology (i.e., without an
embodiment of the present invention), the user is not
informed of any discrepancies that might exist among docu-
ments which have been ingested into the corpus. During
runtime after corpus initialization, when an event is devel-
oping, or a long-term story is evolving in which causality
and opinions differ, the present inventors have recognized
the value of linking corpus documents or document sections
based on whether they corroborate or disagree with each
other and a hypothesis. Thus, the enhanced output of the
cognitive computing system not only would include the
candidate answers and their rankings, but also a set of linked
documents which support each candidate answer and which
controvert each candidate answer.

There are a variety of discrepancies that can be detected,
such as material facts might differ (person/place/date), attri-
bution of causality, and subjective factors such as sentiment,
etc. The present inventors have realized that this could be
valuable as a discovery tool to enrich the presentation of
complex topics, such as presenting developing news events
along a timeline, or in doing sociological analysis, or
attributing the spin given to a story by different stakeholders,
or in an enterprise scenario in identifying elements in
conflict from various enterprise departments or across time.
For example, in today’s online news industry, there is a high
degree of time pressure to get stories and reports published
before the facts relating to them can be sufficiently validated.
There might be a fact that comes out initially that is
subsequently changed or discovered to be false. But, that
change is interesting from analytical perspective such as
characterizing the ‘initial blame’ versus final determination
of the actual responsible party for a story or event.

In another example usage case, multiple versions of a
product manual may include a lot of similar information, but
may also present a small amount of different information. It
can be difficult for human readers of such manuals to discern
the differences between the two versions. For example, an
Apple iPhone4™ user manual may be superseded by an

10

15

20

25

30

35

40

45

50

55

60

65

6

iPhone 5 user manual, but it is not clear due to the vast
amount of similarity between the two what is actually
changed or different. Using a cognitive computing system,
one may ask “what is different between the iPhone 4 and 5
user manuals?”’, and the output results may show the user
only the things that are nearly the same yet have some
differing detail: such as a button moved or process is
unexpected.

Still other workflows for an administrator managing the
ingestion of new documents and document fragments into a
cognitive computing system corpus is determining whether
or not detected differences are really false or meant as
humor, whether a particular source of information perhaps
should be blocked from ingestion due to consistently incor-
rect or offensive information, and whether there are multiple
versions of truths that could be promoted to an expert group
for review or to an open discussion forum online such as a
“wiki” group for further consideration and determination
regarding which points are accurate.

First Example Embodiment: A Discrepancy Detection
Engine The document ingestion pre-processor (250) in the
present example embodiment would be added to a cognitive
computing system as shown and discussed with respect to
FIG. 2. Upon addition of a document or user-selection of an
analyze option on a user interface, the ingested documents
will be analyzed according to the logical processes and
machine logic described herein, such as using a machine
logic process shown in FIG. 1.

This particular embodiment is realized using a computing
core (e.g., CPU 290, system memory 291, various commu-
nication and user interfaces 293, and one or more operating
systems and optional embedded firmware 292) which per-
forms a logical process (253-259), such as by executing
program instructions, operating specialized integrated cir-
cuits, or a combination of executing instructions and oper-
ating circuits.

An ingested “document”, for the purposes of the present
disclosure, shall include one or more of each of the follow-
ing: monolithic documents, large multi-section text docu-
ments, individual sections of a text, and micro-documents
(e.g., tweets, instant messages, etc.).

The automated logical processes will typically include
receiving a new document (big, little or fragment) (e.g.,
TREC documents) (251'), and then traversing all the previ-
ously-ingested documents (252) while searching for discrep-
ancies amongst them relative to a knowledge domain. The
discrepancies to be analyzed (255) may be identified via
user-defined templates (254) for key relations, where a
template might specify particular facts of interest in the
usage-relevant knowledge domain(s) (253), or other criteria
such as frequently cited/searched query terms or relation-
ships. An example of such a template might be Person,
Place, and Date.

The corpus documents (252) are then traversed for each of
the supplied templates. Data from the documents will be
supplied using the appropriate templates and saved for
analysis. Once the data has been traversed and captured in
template format, for example as extracted relationships or
other annotations, it can be analyzed for any discrepancies.
Sections of any documents that deviate from any other
document will be highlighted in the User Interface or
marked up in an electronic output to a non-human user (e.g.,
HTML or XML returned via an API). For each document
that is highlighted as potentially different, the relevant
documents will be identified and the section of the document
will be identified.

US 10,366,116 B2

7

If (256) no discrepancies are detected, the system may
automatically ingest (257) the document, sub-document,
document section, document fragment, or micro-document
(251") into the corpus (252). However, found discrepancies
will be flagged (251") such as by highlighting the discrepant
portions or passages, and displayed or presented to an
administrator for approval (258) to ingest (250) the docu-
ment with the discrepancies.

Optionally (not shown), the links between the discrepant
documents may be recorded into a computer memory struc-
ture such as a database for future use in order to provide a
user the agreeing and dissenting supporting documents in
response to a question which elicits the linked documents.

The general machine logic process for discrepancy detec-
tion during ingestion of a new document, sub-document,
document section, document fragment, or micro-document,
such as a TREC format document, into a cognitive comput-
ing system corpus comprises several phases.

Phase 1. Populate a list of questions that are asked of the
system, that are known to have both high confidence and
highly rated answers, and for which the answers are in the
previously ingested corpus.

(a) Start with a ground truth collection from existing
system which maps existing questions to known good
answers aligned within the corpus that provides those
answers.

(b) Utilize other sources of known-good answers such as
user feedback from running system, where the users
have had a chance to review and validate the answers
produced by the cognitive computing system.

The question-answering pipeline preserves (i) the ques-
tions previously asked, (ii) the answers returned in
response to the previously-asked questions, (iii) the
answer confidences associated with each answer, (iv)
which answers were shown or otherwise provided to
the user, (v) whether or not the evidence was viewed for
each answer, (vi) the user feedback given for each
answer, etc.

Phase 2. The system will align the answered questions
with the document(s), sub-document(s), document section
(s), document fragment(s), or micro-document(s) from
which the correct answer came. A document in this case
could be either an entire document that was ingested, or
individual document sections, or individual tweets, or com-
binations thereof, for example. The cognitive computing
system is capable of mapping the questions to a very fine
level within the corpus at this point.

Phase 3. Organize the questions and document sections
into clusters using a conventional clustering method such as
K-means. Each cluster will be assigned a unique cluster 1D,
and clusters within clusters (sub-clusters) may also be
created by the system.

For an example, refer now to FIG. 3 that shows a structure
of a cluster of documents identified as “clustl”. Within this
cluster are three documents, shown as DocA, DocB and
DocC. Further, DocB is associated with three document
fragments, sections or micro-documents Trecl, Trec5 and
Trec8. Similarly, DocC is associated with two fragments,
sections or micro-documents Trec7 and Trec9. This structure
(300) encapsulates the categorized questions as described in
the previous paragraphs.

A more specific example is shown in FIG. 4 relative to the
previously-discussed iPhone user’s manual differences. The
first cluster Clustl include three questions: Do you sell
iPhones? What model iPhones are available? Are iPhones
the only mobile devices that Apple manufactures. Within the
first cluster Clust 1 is a sub-cluster clustl_sub1 that includes

10

15

20

25

30

35

40

45

50

55

60

65

8

three questions: How can I charge my iPhone using a car
charger? How do I charge my iPhone using a wall charger?
How do I charge my iPhone using a USB cable? There may
be also a second cluster clust2 of questions and a second
sub-cluster, and so forth.

A categorized question may also be a child (member) of
more than one cluster. So, for example, the question “How
do I charge an iPhone using a wall charger” could be a child
or member of a first cluster for “iPhone problems” and also
be a child or member of a second cluster for “charging
problems”, etc. Once the questions have been mapped to
clusters, then the system can assign labels to those clusters.
In the example above, clustl could be assigned a label
“General iPhone questions”, and sub-cluster clustl_subl
could be assigned the label “iPhone charging methods”.

At this point in the initialization of the system, the
questions are mapped to clusters and documents mapped to
clusters. Thus, the questions are associated to the related to
content of the documents in each cluster to which they
belong.

Phase 4. After the corpus has been initialized in the first
three phases, as new documents are ingested, the discrep-
ancy detection steps are taken.

(a) Categorize new documents. When a new document is
ingested, it too will be categorized. Then, the questions
which were previously associated with that topic or category
are searched for conflicts with the content of the new
document. Once the new document is ingested and turned
into Trecs (or other sub-document unit types), and those
Trecs are added to relevant clusters and optionally sub-
clusters, the system applies questions associated with that
cluster of the new Trec files. For example, assume Table 1
represents a simplified state of a corpus before a new
document is ingested:

TABLE 1

Simplified State of a Corpus Before New Document Ingestion

Cluster A Cluster B Cluster C

Doc A, Doc B, Doc C Doc D, Doc E, Doc F Doc G, Doc H, Doc 1
Q1,Q2, Q3 Q4,Q5 Q6, Q7

After ingestion of the new document, the corpus structure
is amended as shown in Table 2:

TABLE 2

Simplified State of a Corpus After New Document Ingestion

Cluster A Cluster B Cluster C

DocA, DocB, DocC, DocD, DocE, Doc F DocG, DocH, Docl,
New Trecl New Trec2

Q1,Q2, Q3 Q4, Q5 Q6, Q7

The Table 2 shows where the new Trecl and Trec2 exist
in the current state of the system for now. So, for new Trecl,
the system queries the questions Q1, Q2 and Q3, while for
the NewTrec2, the system queries the questions Q6 and Q7.

If the cognitive search finds that high confidence answer
is returned for say Q1 when queried of NewTrecl, then the
system declares that NewTrec] is very closely related to any
existing document that previously answered question Q1.
The system can then look up which documents in ClusterA
have correctly answered question Q1 (it may be more than
one document).

US 10,366,116 B2

9

So, for example, assume question Q1 has only been
answered successfully by document DocA. The system can
also ask negatives of the categorized questions, optionally
using a method such as that disclosed in U.S. patent appli-
cation Ser. No. 14/722,862, filed by Byron, et al, which is
incorporated by reference into the present disclosure. High
confidence answers for negative versions of the question
would indicate that the document is possibly in conflict with
the previously-ingested documents within that category or
cluster. Perhaps in this example situation, the negative query
of question Q3 returns a high confidence answer that Q3 is
answered by document DocB.

(b) Identify documents for pairwise comparison. Given
the foregoing example, the system now has identified two
documents to investigate to look for possible conflicts
because one document matched the new document using a
positive question and another document matched the new
document using a negated question from the cluster. The
system will now compare the new document NewTrec1 with
DocA and DocB to resolve this discrepancy, if it exists.

Turning to an example of how the system compares the
new Trecl with document DocA, assume that DocA, per-
haps an electronic medical record, contains the text (501) of
FIG. 5, and further assume that the new Trecl, perhaps an
obituary listing from an electronic newspaper, contains the
text (503). The system can perform entity extraction (502,
504) on the text (of both documents new Trecl and DocA to
yield entities person, dates, locations and causes (i.e. dis-
ease). However, the date “today” in the new Trecl is
relative, not absolute.

It no digital date, such as a date contained in metadata for
Trecl is available, the system can presume that “today”
corresponds to “March 26th” because of the high degree of
matches between the other extracted entities.

If, however, another date, such as a copyright date or a
metadata data associated with new Trecl or another state-
ment found in another document already in the corpus may
controvert the date of March 26th, such as the statement
(601) with the entities (602) as shown in FIG. 6. In such a
case, the system detects and flags this discrepancy.

Similarly, relationship extraction may be performed to
establish natural language relationships between extracted
entities, and discrepancies may be detected and flagged
according to relationship disagreements between newly
ingested documents and documents already in the corpus.

For example, consider two relationships parse tree struc-
tures Eq. 1 and Eq. 2 which may be generated from the
foregoing text examples (501, 503, respectively) using natu-
ral language processing which was produced using the
openly-available Link Grammar Parser by Davy Temperley,
Daniel Sleator and John Lafferty, of Carnegie Mellon Uni-
versity, which is an syntactic parser of English based on
“link grammar”. Given a sentence, the Link Grammar Parser
system assigns to it a syntactic structure, which consists of
a set of labeled links connecting pairs of words, producing
a constituent (noun phrases, verb phrases, etc.) representa-
tion of a sentence:

(S (NP John Doe)
(VP died March 26th
(PP at
(NP UMass Medical Center))
(PP from
(NP Stage 4 Cancer))))
(S (NP John Doe)
(VP , leaving

Eq. 1

Eq. 2

10

15

20

25

30

35

40

45

55

60

65

10

-continued

(NP a wife a child) ,))
(VP died March 27th
(PP at (NP UMass))))

From these extracted relationships using a parser such as
this, for example, the embodiment of the present invention
can establish that subject entity and the date entities are
related by the same action entity values (i.e., died), so the
extracted relationships in these examples can be simplified
as shown in FIG. 7. In the first pairwise comparison of the
dates (701, 702) of the action, a high degree of confidence
of a conflict or discrepancy can be assigned by the system
(705) and reported.

However, in the second pairwise comparison of the loca-
tion entities (703, 704), there is some similarity between the
text strings (e.g., they both contain the sub-string “UMass”),
so the discrepancy may be flagged and given a lower
confidence of being a meaningful conflict (706).

Second Example Embodiment: A Discrepancy User Inter-
face. The forgoing phases of a discrepancy detection engine
embodiment may be combined with a user interface (UI)
embodiment as follows. Those ordinarily skilled in the arts,
however, will recognize that the engine and the Ul embodi-
ments may be realized and found useful separately, as well,
wherein the unifying inventive concept relates to the detec-
tion, flagging and confidence rating advantages of the pres-
ent invention.

Modern word processor application programs allow a user
to compare two versions of the same document, and the user
interface illustrates to a user the most recent changes. For
example, if a phrase is changed in a later version of a
document, the user interface of the word processor may
show the previous version of the phrase with special mark-
ing such as strikethrough text, and may show the next
version of the phrase with special marking such as under-
lining. However, the comparison methods are greatly depen-
dent on the two documents being mostly the same with
minor differences. Comparing two documents which are
structurally different, such as an obituary and a medical
record, would result in one document being entirely shown
as deleted (strikeout text) and the other document’s text as
being inserted (underlining). This is because the word pro-
cessor application program’s comparison routine compares
words and strings literally to each other without regard or
understanding of the semantic or natural language meaning
of the information contained within the compared docu-
ments.

Thus, a user interface according to the present invention
is not well-served by the user interface model of word
processors. The present inventors, therefore, hereby disclose
an inventive user interface such as the example (800)
illustrated in FIG. 8 for display on a computer display. A
generic computer display does not normally provide such a
user interface as described in the following paragraphs, so
the available embodiments of the present invention may be
realized through programming enhancements which are
executed by a computer processor at the application level or
the operating system level, or even embedded within a
graphics display accelerator device, integrated circuit or
chip.

The dialog box (804) is preferably displayed on a portion
of'a computer display in a manner that conveys the topically-
clustered documents, document portions, and micro-docu-
ments as described in the foregoing paragraphs. Color may
be used to visually set apart conflicts (i.e. red), similarities

US 10,366,116 B2

11

with differences (i.e. yellow) and agreements (i.e. green)
between a newly-ingested document and the documents
already in the system’s corpus. Still further, the flagging
declaration text (801, 802, 803) may be selectable or click-
able by a user, such as by manipulation of keys, buttons
and/or pointing device(s), to engage a deeper investigation
of the discrepancies and similarities which were detected
during ingestion processing.

For example, such as in the engine embodiments dis-
closed in the foregoing paragraphs in which links between
agreeing and controverting documents in the corpus were
recorded during ingestion processing, clicking on or select-
ing the text (801) declaring a conflict between existing
DocA in the corpus and the newly-ingested Trecl may lead
to another user information display on the computer display
as shown (900) in FIG. 9. A generic computer display does
not normally provide such a user interface as described in
the following paragraphs, so the available embodiments of
the present invention may be realized through programming
enhancements which are executed by a computer processor
at the application level or the operating system level, or even
embedded within a graphics display accelerator device,
integrated circuit or chip.

In this drill-down dialog (904), two or more conflicting
elements, relationships, or a combination of elements and
relationships may be shown (901, 903), along with one or
more of the confidence ratings (901'), and one or more
commands (902, 905) for user operation to reconcile the
differences within the corpus. For example, the foregoing
date of death discrepancy may be removed from the newly-
ingested Trecl document, replaced with the date value
already found in the corpus, edited manually, ignored,
ignored with specially notation, etc.

Using such a top-level summary user interface (800) with
one or more drill-down user interfaces (900) for each of the
items in the cluster model, an administrator or information
engineer may selectively inspect and optionally resolve
discrepancies in order to prepare the corpus in advance of
querying it by a cognitive computing system.

Optional Tracking of Resolutions. In some embodiments,
such as for applications in which information traceability is
required or desired, each change or correction made via the
user interfaces to elements and relationships detected as
discrepancies can be tracked and recorded into a data
structure in a computer memory. In implementation, such
change tracking functions may resemble the “undo” list
commonly found in word processor application programs
and in database monitoring systems.

Computer Program Product Embodiments. The present
invention may be a system, a method, and/or a computer
program product at any possible technical detail level of
integration. The computer program product may include a
computer readable storage medium (or media) having com-
puter readable program instructions thereon for causing a
processor to carry out aspects of the present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory

40

45

12

(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the

US 10,366,116 B2

13

instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

Conclusion. The terminology used herein is for the pur-
pose of describing particular embodiments only and is not
intended to be limiting of the invention. As used herein, the
singular forms “a”, “an” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
“comprises” and/or “comprising,” when used in this speci-
fication, specify the presence of stated features, steps, opera-
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, steps,
operations, elements, components, and/or groups thereof,
unless specifically stated otherwise.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the

20

40

45

55

14

invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.
It should also be recognized by those skilled in the art that
certain embodiments utilizing a microprocessor executing a
logical process may also be realized through customized
electronic circuitry performing the same logical process or
processes.
It will be readily recognized by those skilled in the art that
the foregoing example embodiments do not define the extent
or scope of the present invention, but instead are provided as
illustrations of how to make and use at least one embodiment
of the invention. The following claims define the extent and
scope of at least one invention disclosed herein.
What is claimed is:
1. A method for curating an information corpus of a
cognitive computing system, the method comprising the
steps of:
producing on a user interface device of a computing
system a parse tree illustration of one or more discrep-
ancies and confidence factors previously detected
between at least a portion of a first document and a
second or more documents in the information corpus,

wherein the portion and the second or more documents
comprise unstructured information items,

wherein the parse tree illustration comprises a structure of

a cluster of documents encapsulating categorized pre-
viously-asked questions about the information corpus,
and
wherein the confidence factors are previously-assigned
corresponding to the questions and the documents;

responsive to receipt, by a computing system, from the
user interface device, of a selection of an illustrated
discrepancy in the parse tree,

displaying on the user interface device, a drill-down

dialog which shows at least one of the previously-
detected discrepancies; and

responsive to receipt, by a computing system, from the

user interface device, of an administrative action
option,

performing by the computing system the administrative

action to curate the information corpus.

2. The method as set forth in claim 1 further comprising,
responsive to the handling of the discrepancy, recording by
a computing system, the administrative action performed so
that the discrepancy may optionally be suppressed from
future display or reviewed on the user interface device in the
future.

3. The method as set forth in claim 1 wherein the
displaying of the drill-down dialog comprises accessing one
or more recorded links between the first and the second or
more documents and creating a graphical user display
according to the links.

4. The method as set forth in claim 1 wherein the
discrepancies reflect conflicting answers provided by the
first and the second or more documents when queried using
a question associated with a category to which the first and
second or more documents are assigned.

5. The method as set forth in claim 1 wherein the
administrative action option comprises one or more actions
selected from the group consisting of flagging the first
document, removing the first document, replacing the first
document, editing the first document, ignoring the discrep-
ancy, flagging the second or more document, removing the
second or more document, replacing the second or more
document, and editing the second or more document.

US 10,366,116 B2

15

6. The method as set forth in claim 1 wherein at least one
of the first, second or more documents comprise a fragment
of a document.

7. A computer program product for a user to curate an
information corpus of a cognitive computing system com-
prising:

a computer-readable memory device which is not a propa-

gating signal per se; and

program instructions embodied by the computer-readable

memory device which, when executed, cause a proces-

sor to perform steps of:

produce, on a user interface device of a computing
system a parse tree illustration of one or more
discrepancies and confidence factors previously
detected between at least a portion of a first docu-
ment and a second or more documents in the infor-
mation corpus,

wherein the portion and the second or more documents
comprise unstructured information items,

wherein the parse tree illustration comprises a structure
of a cluster of documents encapsulating categorized
previously-asked questions about the information
corpus, and

wherein the confidence factors are previously-assigned
corresponding to the questions and the documents;

responsive to receipt, from the user interface device, of
a selection of an illustrated discrepancy in the parse
tree, display, on the user interface device a drill-
down dialog which shows at least one of the one or
more discrepancies; and

responsive to receipt, from the user interface device, of
an administrative action option, perform the admin-
istrative action to curate the corpus.

8. The computer program product as set forth in claim 7
wherein the program instructions further comprise program
instructions for, responsive to the handling of the discrep-
ancy, recording the administrative action performed so that
the discrepancy may optionally be suppressed from future
display or reviewed on the user interface device in the
future.

9. The computer program product as set forth in claim 7
wherein the program instructions for displaying of the
drill-down dialog comprises program instructions for
accessing one or more recorded links between the first and
the second or more documents and creating a graphical user
display according to the links.

10. The computer program product as set forth in claim 7
wherein the discrepancies reflect conflicting answers pro-
vided by the first and the second or more documents when
queried using a question associated with a category to which
the first and second or more documents are assigned.

11. The computer program product as set forth in claim 7
wherein the administrative action option comprises one or
more actions selected from the group consisting of flagging
the first document, removing the first document, replacing
the first document, editing the first document, ignoring the
discrepancy, flagging the second or more document, remov-
ing the second or more document, replacing the second or
more document, and editing the second or more document.

12. The computer program product as set forth in claim 7
wherein at least one of the first, second or more documents
comprise a fragment of a document.

20

30

35

40

45

16

13. A system for a user to curate an information corpus of
a cognitive computing system comprising:

a computing system having a processor;

a computer-readable memory device which is not a propa-

gating signal per se; and

program instructions embodied by the computer-readable

memory device which, when executed, cause the pro-

cessor to perform steps of:

produce, on a user interface device of a computing
system, a parse tree illustration of one or more
discrepancies and confidence factors previously
detected between at least a portion of a first docu-
ment and a second or more documents in the infor-
mation corpus,

wherein the portion and the second or more documents
comprise unstructured information items, wherein
the parse tree illustration comprises a structure of a
cluster of documents encapsulating categorized pre-
viously-asked questions about the information cor-
pus, and

wherein the confidence factors are previously-assigned
corresponding to the questions and the documents;

responsive to receipt, from the user interface device, of
a selection of an illustrated discrepancy in the parse
tree, display on the user interface device, a drill-
down dialog which shows at least one of the one or
more discrepancies; and

responsive to receipt, from the user interface device, an
administrative action option, perform the adminis-
trative action to curate the information corpus.

14. The system as set forth in claim 13 wherein the
program instructions further comprise program instructions
for, responsive to the handling of the discrepancy, recording
the administrative action performed so that the discrepancy
may optionally be suppressed from future display or
reviewed on the user interface device in the future.

15. The system as set forth in claim 13 wherein the
program instructions for displaying of the drill-down dialog
comprises program instructions for accessing one or more
recorded links between the first and the second or more
documents and creating a graphical user display according
to the links.

16. The system as set forth in claim 13 wherein the
discrepancies reflect conflicting answers provided by the
first and the second or more documents when queried using
a question associated with a category to which the first and
second or more documents are assigned.

17. The system as set forth in claim 13 wherein the
administrative action option comprises one or more actions
selected from the group consisting of flagging the first
document, removing the first document, replacing the first
document, editing the first document, ignoring the discrep-
ancy, flagging the second or more document, removing the
second or more document, replacing the second or more
document, and editing the second or more document.

18. The system as set forth in claim 13 wherein at least
one of the first, second or more documents comprise a
fragment of a document.

#* #* #* #* #*

