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Figure 31
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Figure 32

Figure 33
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Figure 34A
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Figure 34B
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Figure 35B
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Figure 38
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METHODS AND SYSTEMS FOR LOW
LATENCY GENERATION AND
DISTRIBUTION OF TRADING SIGNALS
FROM FINANCIAL MARKET DATA

Cross-Reference and Priority Claim to Related
Patent Applications

This patent application claims priority to U.S. provisional
patent application Ser. No. 62/847,641, filed May 14, 2019,
and entitled “Methods and Systems for Low Latency Gen-
eration and Distribution of Trading Signals from Financial
Market Data”, the entire disclosure of which is incorporated
herein by reference.

This patent application is also related to PCT patent
application serial no. PCT/US2020/032972, designating the
United States, filed May 14, 2020, and entitled “Methods
and Systems for Low Latency Generation and Distribution
of Trading Signals from Financial Market Data” which
claims priority to U.S. provisional patent application Ser.
No. 62/847,641, filed May 14, 2019, and entitled “Methods
and Systems for Low Latency Generation and Distribution
of Trading Signals from Financial Market Data”, the entire
disclosures of each of which are incorporated herein by
reference.

INTRODUCTION

Financial market participants use a wide variety of infor-
mation to perform their roles in the marketplace. The
primary pieces of information are the current prices for
financial instruments, such as the most recent price at which
an instrument traded, the highest price of limit orders to buy
the instrument (the bid), and the lowest price of limit orders
to sell the instrument (the offer). This pricing data, along
with other pieces of information that dictate the terms under
which a financial instrument may be bought or sold, is
referred to as “financial market data” (or more simply,
“market data”). As used herein, a “financial instrument”
refers to a contract representing equity ownership, debt or
credit, typically in relation to a corporate or governmental
entity, wherein the contract is saleable. Examples of “finan-
cial instruments” include stocks, bonds, commodities, cur-
rency traded on currency markets, etc. but would not include
cash or checks in the sense of how those items are used
outside financial trading markets (i.e., the purchase of gro-
ceries at a grocery store using cash or check would not be
covered by the term “financial instrument” as used herein;
similarly, the withdrawal of $100 in cash from an Automatic
Teller Machine using a debit card would not be covered by
the term “financial instrument” as used herein).

The generation, delivery, and processing of market data
has evolved dramatically along with financial markets. As
the trading of financial instruments has moved from humans
negotiating prices verbally to electronic markets with fully
automated trading systems, market data has expanded from
printing closing prices in newspapers to distributing real-
time messages via computer networks. FElectronic financial
exchanges now publish one or more real-time feeds of
market data, where the messages in these feeds have struc-
tured formats with defined data fields. These feeds may be
consumed directly by financial market participants, such as
exchanges, brokers, market makers, principal traders, and
asset managers. These firms tend to be the most sophisti-
cated and largest firms that rely on speed, as well as the
ability to consume and process multiple feeds of real-time
market data from one or more financial markets, to perform
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2

at least one of their roles in the marketplace. For example,
a principal trading firm may use low latency market data to
identify and execute profitable trading opportunities. As
another example, an exchange or Alternative Trading Sys-
tem (ATS) may use low latency market data to ensure that
they are complying with regulations such as Regulation
National Market System (Reg NMS) that requires them to
execute trades at the current best price or route the order to
a market with the best price.

Systems that enable these firms to consume, process, and
distribute market data feeds at high speed (low latency) and
high capacity are essential and invaluable. Examples of
systems and techniques for consuming, processing, and
distributing financial market data feeds at low latency and
high throughput are described in U.S. Pat. Nos. 7,840,482,
7,921,046, 8,768,805, 9,047,243, 10,037,568, 10,121,196,
and 10,229,453, the entire disclosures of each of which are
incorporated herein by reference.

Market data feeds may also be consumed by intermedi-
aries that process, summarize, and distribute the data to
financial market participants. These intermediaries are pri-
marily financial technology and services vendors who
deliver data to recipients that are less sensitive to data
latency. Examples include trading firms who hold positions
for more than a fraction of a second, regulatory compliance
and risk management systems, retail brokers such as Fidelity
and Vanguard, media outlets such as cable television net-
works, and Internet search engines such as Yahoo and
Google.

For the purposes of discussion, we define tiers of financial
market participants based on their data speed requirements.
We define Tier 1 to be market participants that require
real-time data delivered with maximum speed (minimum
latency). These firms typically consume market data feeds
directly from financial exchanges, co-locating their elec-
tronic trading systems in the same data center as the elec-
tronic exchange systems. These firms may also employ
wireless network links to minimize the latency of market
data transfers between data centers. Note that Tier 1 market
participants include firms that hold positions in financial
instruments for extremely brief periods of time (microsec-
onds to seconds), as well as firms that hold positions for
much longer periods of time. These latter firms still require
low latency data to achieve predictable prices when buying
or selling large positions, commonly referred to as “maxi-
mizing execution quality” or “minimizing slippage.”

We define Tier 2 to be market participants that require
real-time data, but they lack the minimum data latency
requirement. These firms may also prefer to take summa-
rized or delayed data throughout the trading day in order to
minimize data consumption resources and costs.

We define Tier 3 to be market participants that prefer to
operate on summary data, typically delivered at the conclu-
sion of each trading session or day. Additional summariza-
tion periods, such as weekly, monthly, quarterly, or annually,
are common.

Tier 2 and 3 represent a significant proportion of financial
market participants, especially firms representing the “buy
side” of the market that invest capital, either their own or
outside investors, with the goal of increasing their value (i.e.
achieving returns) while taking acceptable risk. Examples of
Tier 2 and 3 market participants on the buy side include
hedge funds, asset managers, and “actively managed”
mutual funds.

In addition to using market data, market participants at
each tier use additional information to perform their function
in the marketplace. Trading signals are types of additional
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information that can be used in this regard. As used herein,
a “trading signal” refers to derived information that provides
an estimation or an inference about an aspect of market
conditions, where such an aspect is not directly reported
within the financial market data, and where the estimation or
inference can be used as a factor by a market participant to
make a trading decision with respect to the financial mar-
kets. Tier 1 market participants are especially interested in
trading signals that predict short-term events for financial
instruments, especially changes in liquidity (the amount of
an instrument that may be readily purchased or sold), the
number of outstanding orders, and prices of outstanding
orders. Tier 2 and Tier 3 market participants are more
broadly interested in trading signals that represent more
sustained price movements (i.e. trends) over various time
periods, as well as macro-economic events that may impact
the price and liquidity of many financial instruments.

There are a wide variety of sources of trading signals.
Financial market data is a primary source, especially for Tier
1 market participants that respond to instantaneous move-
ments in prices. Some trading signals may be able to be
generated from normalized market data messages, while
other trading signals may require access to the raw (or
native) format of market data messages from exchanges.
Other sources for trading signals are generally referred to as
“alternative data.” Such alternative data may include: credit
card transaction data, weather forecasts, sentiment analysis
of social media updates, and geospatial image analysis to
count cars in the parking lots of retail stores or the number
of container ships moving goods along known shipping
routes. These sources tend to be more useful to Tier 2 and 3
market participants based on their lower operating speeds
and the longer time horizons of their trading opportunities.

In general, there are two classes of trading signals that
may be extracted from real-time market data—logical sig-
nals and estimators.

Logical signals are generated from one or more features
of financial market data that represent a condition or com-
bination of conditions in the stream of real-time market data
messages. These logical signals and the conditions that
define them are typically based on expert knowledge of the
way in which specific markets operate or specific financial
instruments are traded. As noted above, some logical signals
may be able to be generated from normalized market data
messages, while other logical signals may require access to
the raw (or native) format of market data messages from
exchanges. For example, the number of messages that an
exchange packages into a packet for transmission over a
network may be one of the conditions of a logical signal.

Estimators are trading signals that predict future field
values or conditions, typically employing some form of
statistical method, regression analysis, machine learning, or
“artificial intelligence.” An estimator may predict when a
price is going to change, what direction a price will move,
or the number of shares that may be successfully sold in a
defined time window. Most estimators are computed by first
computing many features of the financial market data and
then combining the outputs of the feature computations to
produce an estimate. Expert knowledge is typically used to
define features that may be helpful in producing the desired
estimate. Once features are defined, a number of machine
learning (ML) or artificial intelligence (Al) techniques can
be employed to automate the exploration of possible com-
binations of features to produce an accurate estimator. For
example, the resulting estimator can take the form of a
probability value that a defined event will occur within a
defined time period. In another example, this probability
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value can be converted into a Boolean value by choosing a
threshold for the probability that defines a true or false
estimate, and the estimator can take the form of the Boolean
value.

Due to the computationally intensive task of generating
trading signals and the state of conventional computer
technology, they are primarily used by Tier 2 and 3 market
participants. This is particularly the case for estimators.
While Tier 1 market participants strongly desire estimators
for the immediate-term market dynamics that dictate their
trading performance, they face the technical challenges of
generating estimators fast enough and synchronizing the
estimates with their current view of market data. Accord-
ingly, the inventors believe there is a need in the art for
technical innovations that enable the generation of trading
signals in the same or similar amount of time required to
process financial market data (e.g., less than a few micro-
seconds) and that present trading signals synchronously with
market data to trading applications.

The inventors have developed technically innovative
solutions that compute trading signals with low latency and
high throughput, making them useful to latency-sensitive
Tier 1 market participants. This represents a significant
technical advance in the art because conventional computer
systems have been unable to produce trading signals at
sufficiently low latency and high throughput to make them
useful for satisfying the demands of Tier 1 market partici-
pants. These technical innovations are achieved by identi-
fying and leveraging opportunities for functional parallelism
and data parallelism within the trading signal computations
and then engineering the trading signal computations to be
performed by highly parallelized compute resources such as
integrated circuits, reconfigurable logic devices, graphics
processor units (GPUs), multi-core general purpose proces-
sors, and/or chip multi-processors (CMPs). These types of
compute resources can serve as coprocessors to which
trading signal computations are offloaded. Such compute
resources permit fine-grained parallelism with respect to the
different operations that the compute resource performs,
thereby providing the compute resource with the ability to
generate trading signals at speeds that are orders of magni-
tude faster than would be possible through conventional
software execution on a general purpose processor. More-
over, by leveraging such fine-grained parallelism, process-
ing tasks for generating trading signals can be intelligently
engineered into processing pipelines that include paral-
lelized processing logic deployed on such a compute
resource. With such a pipeline, downstream pipeline logic
can perform a processing task on data that was previously
processed by upstream pipeline logic while the upstream
pipeline logic is simultaneously performing other processing
tasks on new data, thereby providing tremendous throughput
gains.

As used herein, the term “general-purpose processor” (or
GPP) refers to a hardware device having a fixed form and
whose functionality is variable, wherein this variable func-
tionality is defined by fetching instructions and executing
those instructions, of which a conventional central process-
ing unit (CPU) is a common example. Examples of GPPs
include an Intel Xeon processor and an AMD Opteron
processor. As used herein, the term “reconfigurable logic”
refers to any logic technology whose form and function can
be significantly altered (i.e., reconfigured) in the field post-
manufacture. This is to be contrasted with a GPP, whose
function can change post-manufacture, but whose form is
fixed at manufacture. Thus, with a reconfigurable logic
device, the gate level logic and interconnections between
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gate level logic can be reconfigured in the field to effectively
“hard wire” the reconfigurable logic device to perform a
desired operation. An example of a reconfigurable logic
device is a field programmable gate array (FPGA). The gate
level logic of a reconfigurable logic device can be recon-
figured by loading firmware onto the reconfigurable logic
device. The term “firmware”, as used herein, refers to data
processing functionality that is deployed on reconfigurable
logic or other processing devices, wherein firmware may be
used to change or define the form of the device on which it
is loaded. By contrast, the term “software” refers to data
processing functionality that is deployed on a processing
device but does not change or define the form (e.g., gate
level logic and interconnections) of the device on which it is
loaded. GPPs, GPUs, and CMPs can have their data pro-
cessing functionality defined via software, while reconfig-
urable logic devices have their data processing functionality
defined via firmware.

In example embodiments discussed in greater detail
below, the inventors show how trading signals can be
computed and transmitted by a dedicated signal plant that
operates on streaming financial market data.

In additional example embodiments, the inventors also
show how trading signals can be computed by extending the
architecture of a ticker plant that consumes, normalizes,
aggregates, and distributes streaming financial market data.
For example, the processing stages of a ticker plant pipeline
can be extended to compute one or more features that are
later combined to generate an estimator. This allows the
estimator to be computed with minimal additional process-
ing time and resources, as the incremental feature compu-
tations use the readily available fields and intermediate
computation results of the data normalization and aggrega-
tion computations.

In yet additional example embodiments, the inventors
show how trading signals can be computed within a trading
application server.

As noted above, these innovative computations of trading
signals can use both functional and data parallelism to
achieve previously unattainable levels of speed and through-
put. Computations can be sub-divided into two or more
pipeline stages, where each pipeline stage operates in par-
allel to the other pipeline stages. Two or more pipelines of
computations can then operate in parallel on two or more
independent data streams. In some embodiments, the output
of multiple pipelines can be combined to produce aggre-
gated trading signals and estimators. As noted, these solu-
tions can be implemented with a variety of parallel process-
ing technologies that include, general purpose processors
that contain multiple Central Processing Unit (CPU) cores
(e.g., CMPs), application-specific firmware logic in FPGAs,
and GPUs that contain numerous compute cores.

Accordingly, the accelerated market data appliances that
are positioned at the head of electronic trading platforms are
capable of generating trading signals in real time, where
excess processing capacity in compute resources such as
CPUs, FPGAs, GPUs, CMPs, etc. allow the trading signals
to be delivered in real time and synchronicity with normal-
ized market data. With such example embodiments, trading
signal generation does not impede the delivery of real-time
market data. For example, normalized market data and
trading signals can be delivered consistently with single-
digit microsecond latency.

Further still, the inventors have also developed solutions
that present trading signals synchronously with market data
to trading applications. In an example embodiment, trading
signals can be delivered in the payload of the financial
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market data messages to downstream consumers (where
such downstream consumers may take the form of auto-
mated trading applications). Thus, a trading signal payload
may be appended to market data messages, such that con-
sumers of the market data message receive trading signals
and estimators relevant to the market data, e.g. referencing
the same financial instruments. In another example embodi-
ment trading signal messages (such as trading signal mes-
sages that contain only trading signals) may be distributed to
consumers for downstream synchronization at the consumer
with an independent stream of market data updates. The
inventors disclose the creation and use of an innovative
synchronization identifier for this purpose. This allows new
trading signal solutions to be introduced into an existing
trading infrastructure without changing the mechanisms that
consume, normalize, enrich, and distribute financial market
data.

Examples of trading signals that can be computed at low
latency and high throughput using the techniques described
herein include (1) a liquidity indicator that indicates a
presence of a reserve order for a symbol, (2) a liquidity
estimation that estimates an amount of hidden liquidity for
a symbol, (3) a quote price stability estimation that estimates
a duration of time for which a price quote for a symbol will
be valid, and/or (4) a quote price direction estimation that
estimates the direction of change in the next quote price for
a symbol. It should be understood that these are merely
examples of trading signals that can be computed using the
techniques described herein. Other trading signals can be
computed as may be desired by a practitioner using the
techniques discussed below. Furthermore, example embodi-
ments can compute these different types of trading signals in
parallel with each other with respect to each relevant stream-
ing market data event, all without adding latency to stream-
ing normalized financial market data delivered to consuming
applications that would detract from the ability of those
consuming application to implement trading or other activi-
ties.

Furthermore, trading signals for Tier 2 and 3 market
participants can be generated by summarizing low latency
trading signals that are generated for Tier 1 market partici-
pants. These derivative trading signals may be delivered at
various time intervals, such as every minute throughout a
trading session for a Tier 2 market participant or once per
day after the conclusion of a trading session for a Tier 3
market participant. The appropriate summarization interval
may be determined by the frequency requirements of the
market participant and the useable life of the derivative
signal.

As an example, consider a Tier 3 market participant that
seeks to observe large trades of “natural investors.” These
investors include active managers and corporate insiders
who value stocks based on fundamental valuations. They
also price in the impact of anticipated events and changes in
macro conditions. A Tier 3 market participant can use this
information to follow the movements of natural investors,
take contrary positions to natural investors, or simply use the
information as one of many inputs to more sophisticated
predictive models.

To get information on natural investor transactions, Tier 3
market participants may scour Form 13F13F and Form 4
regulatory filings; for example by performing computerized
searches of 13F of the Electronic Data Gathering, Analysis,
and Retrieval (EDGAR) system of the United States Secu-
rities and Exchange Commission (SEC). Given the timing
requirements of these regulatory disclosures—days to
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months after the transaction—this information is often stale
and un-actionable for use as a trading signal.

Attempting to more quickly identify executions of large
institutional orders by monitoring trade reports from market
data feeds or end of day summaries is technically difficult—
even though they represent 30% of daily volume. First, these
sophisticated investors use various techniques to minimize
information leakage and market impact. Execution algo-
rithms developed in-house or by brokers slice large “parent”
orders, then schedule and route the “child” orders to various
trading venues. Alternatively, many trading venues offer
various hidden or “dark” order types that attempt to achieve
the same goals. Pile on the rapidly changing bids and offers
from electronic market makers and high-frequency traders
and it becomes extremely difficult to pick up the “signal”
from the noise.

Reserve orders are the most prevalent hidden or “dark”
order type offered by trading venues. They continue to be
used widely by institutional traders to prevent information
leakage and minimize market impact. A derivative signal for
Tier 2 and 3 market participants can be generated by
summarizing the reserve orders detected within the trading
session. Since this daily information represents a faster and
more complete summary of institutional trading activity than
is otherwise available weeks later from regulatory filings
(e.g. Form 4 and 13F filings), Tier 2 and 3 market partici-
pants can use this information to improve their ability to
identify market trends and predict longer term price move-
ments. They may use the derivative signal information
directly or they may include it as an additional input to
predictive machine learning models to improve their per-
formance and/or broaden their utility.

Such derivative trading signals are predicated on the
ability to predict or detect market dynamics with each
market data update event. Example embodiments disclosed
herein include the ability to generate derivative trading
signals for Tier 2 and 3 market participants by consuming
and summarizing the output of trading signals computed at
low latency for Tier 1 market participants. The efficiency of
this approach allows for a wide range of time intervals for
delivery of derivative signals.

These and other features and advantages of the present
invention will be described hereinafter to those having
ordinary skill in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example signal generation pipeline
where the signal generate stage is interposed between a data
receive stage and a signal transmit stage, where the transmit
stage sends signal messages to downstream consumers.

FIG. 2 shows an example signal generation pipeline
where the signal generate stage is interposed between a data
receive stage and a transmit stage, where the transmit stage
sends both signal messages and data messages to down-
stream consumers. Signal generation occurs in parallel to
transmitting data messages to downstream consumers.

FIG. 3 shows an example signal generation pipeline
where the signal generate stage is interposed between a data
receive and a transmit stage, and operates in parallel to a data
normalize stage. The transmit stage sends both normalized
data messages and signal messages to downstream consum-
ers.

FIG. 4 shows an example signal generation pipeline
where the signal generate stage is interposed between pro-
cessing steps by the data normalize stage. The transmit stage
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sends both normalized data messages and messages con-
taining both normalized data and signal data to downstream
consumers.

FIG. 5 shows an example signal generation pipeline
where the signal generate stage is interposed between a data
normalize stage and a transmit stage, where the transmit
stage sends both signal messages and normalized data
messages to downstream consumers. Signal generation
occurs in parallel to transmitting normalized data messages
to downstream consumers.

FIG. 6 shows an example signal generation pipeline with
two independent signal generate stages. The first signal
generate stage is optionally interposed between processing
steps by the data normalize stage. The second signal gen-
erate stage is interposed between the data normalize stage
and a transmit stage and it operates in parallel to transmitting
messages output from the data normalize stage to down-
stream consumers. The transmit stage sends normalized data
messages, signal messages, and messages containing both
normalized data and signal data to downstream consumers.

FIG. 7 shows multiple example independent signal gen-
eration pipelines operating in parallel, processing indepen-
dent data streams. The transmit stage delivers messages
from each pipeline to downstream consumers, where a given
consumer may receive messages from one or more pipelines.

FIG. 8 shows an example data aggregate stage consuming
the output of multiple independent pipelines. A signal gen-
erate stage is optionally interposed between processing steps
by the data aggregate stage. Another signal generate stage is
interposed between the data aggregate stage and a transmit
stage and it operates in parallel to transmitting messages
output from the data aggregate stage to downstream con-
sumers.

FIG. 9 shows an example of a normalized data message
for financial market data.

FIG. 10 shows an example of a normalized data message
with appended aggregated data for financial market data.

FIG. 11 shows an example of a normalized data message
with appended aggregated data and appended signal data for
financial market data. It also shows an example of an
independent signal message for financial market data.

FIG. 12 shows an example of generating a synchronize
identifier (ID) from fields of a normalized market data
message.

FIG. 13 shows an example estimator pipeline generating
an estimate from messages in an input data stream. Features
are computed in parallel by multiple instances of pipelines
that include a field select stage and a feature compute stage.

FIG. 14 shows an example financial market data, signal,
and estimator pipeline that produces and distributes normal-
ized data, signals, and estimates. It is comprised of multiple
independent pipelines for data normalization, feature gen-
eration, and signal generation, as well as a data aggregate
stage and at least one estimate generate stage.

FIG. 15 shows an example embodiment of a financial
market data and signal pipeline that uses a combination of
Network Interface Cards (NICs), FPGAs, software on com-
modity CPUs, and GPUs.

FIG. 16 shows an example embodiment of a financial
market data, signal, and estimator pipeline that uses a
combination of NICs and FPGAs. In this embodiment, most
market data messages are processed in firmware logic only.

FIG. 17 shows an example embodiment of a financial
market data, signal, and estimator pipeline that uses a
combination of NICs, FPGAs, and GPUs. In this embodi-
ment, most market data messages are processed in firmware
logic or GPU logic only.
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FIG. 18 shows an example embodiment of an automated
trading pipeline that uses a combination of NICs, FPGAs,
and software on commodity CPUs. In this embodiment,
some fast path trading decisions are processed in firmware
logic only.

FIG. 19 shows an example embodiment of a trading
application pipeline that consumes messages that were gen-
erated by a ticker plant and contain both normalized market
data and signal data. The application parses the message
format used by the ticker plant to extract desired message
fields.

FIG. 20 shows an example embodiment of a trading
application pipeline that consumes messages that were gen-
erated by a signal plant and contain signal data. The appli-
cation also consumes market data feeds, normalizes market
data messages, and synchronizes normalized market data
messages to signal messages.

FIG. 21 shows an example embodiment of a trading
application pipeline that consumes messages that were gen-
erated by a ticker plant and contain both normalized market
data and signal data. An Application Programming Interface
(API) parses the message format used by the ticker plant to
extract desired message fields and delivers them to the
application.

FIG. 22A shows an example embodiment of a trading
application pipeline that consumes messages that were gen-
erated by a ticker plant and contain normalized market data,
as well as messages that were generated by a signal plant
that contain signal data. An Application Programming Inter-
face (API) parses the message format used by the ticker
plant, parses the message format used by the signal plant,
synchronizes normalized market data messages to signal
messages, extracts desired message fields, and delivers them
to the application.

FIG. 22B shows an example embodiment of a trading
application pipeline that consumes messages that were gen-
erated by a ticker plant and contain normalized market data,
as well as messages that were generated by a signal plant
that contain signal data, using a NIC FPGA. Firmware
deployed on the NIC FPGA parses the message format used
by the ticker plant, parses the message format used by the
signal plant, synchronizes normalized market data messages
to signal messages, and delivers the synchronized messages
to an Application Programming Interface (API). The API
updates local cache records, extracts desired message fields,
and delivers them to the application.

FIGS. 23A-C show example embodiments of a signal
generate stage which includes parallelized processing logic
that tests a number of conditions against the message data to
determine whether a conclusion should be drawn that a
reserve order is present.

FIG. 24 shows a distribution of companies in the S&P 500
index by percentage of daily volume executed via reserve
orders detected by the liquidity indicator trading signal.

FIG. 25 shows how various exchanges differ in terms of
percentage of total volume by reserve orders via the liquidity
indicator trading signal.

FIG. 26 shows a chart of market share of all detected
reserve order executions across NMS exchanges for a
sample data set.

FIG. 27 shows a ranking of exchanges by concentration
ratio.

FIGS. 28A and 28B provide an example list of trading
signals that can be generated based on the detection of
reserve orders in a market data feed.

FIG. 29A shows an example embodiment of a signal
generate stage which includes parallelized processing logic
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uses a supervised machine learning model to compute an
estimate of the size of a reserve order that has been detected.

FIG. 29B shows an example embodiment of the steps
used to build and maintain a supervised machine learning
model.

FIG. 30 shows a frequency of reserve orders at different
order sizes.

FIG. 31 shows a frequency of reserve orders executed at
different notional value intervals.

FIG. 32 breaks down the accuracy of an example embodi-
ment for the hidden liquidity size estimation trading signal
for different buckets of notional value.

FIG. 33 plots the accuracy of an example embodiment for
the hidden liquidity size estimator trading signal at 30
minute intervals throughout a typical trading day.

FIG. 34A shows a distribution of National Best Bid price
durations for a studied set of securities on a particular
trading day.

FIG. 34B shows a distribution of National Best price
durations per market for a number of different exchanges.

FIG. 35A shows a distribution of price durations and
opportunity capture with respect to an example embodiment
of the Quote Fuse trading signal, where the prediction
threshold is 50%.

FIG. 35B shows accuracy, opportunity capture, and
median observed price durations for trading activity from a
particular trading day for a wide range of prediction thresh-
old values.

FIG. 36 shows a distribution of price durations and
opportunity capture with respect to an example embodiment
of the Quote Fuse trading signal, where the prediction
threshold is 68%.

FIG. 37 shows a distribution of price durations and
opportunity capture with respect to an example embodiment
of the Quote Fuse trading signal, where the prediction
threshold is 32%.

FIG. 38 provides accuracy metrics for short and long fuse
predictions by an example embodiment for the Quote Fuse
signal for each permutation of bid and offer tick direction.

FIG. 39 plots the percentage of traded volume in US
equities versus the time at which the trades occur (measured
as the time until the next change in NBBO price).

FIG. 40A shows an example of Quote Fuse signaling
where the user has selected 55% as the prediction threshold.

FIGS. 40B and 40C present accuracy and opportunity
capture metrics for a wide range of prediction threshold
values in two perspectives with reference to an example
Quote Fuse signal embodiment.

FIG. 41 shows an example of Quote Vector signaling
where the user has selected 70% as the threshold for
predicting up price changes.

FIG. 42 shows a diagram that illustrates the concepts of
accuracy and opportunity capture with respect to an example
embodiment of the Quote Vector signal.

FIG. 43 is a chart that provides three performance metrics
using sample trading data from dates with both volatile and
nonvolatile days.

FIG. 44 plots the relationship of average spread to pro-
portion of improving to crumbling quotes for tickers with
greater than 1000 quotes.

FIG. 45 provides examples that demonstrate how net
price improvement can be quantified for different trading
scenario examples with respect to an example embodiment
of the Quote Vector signal.

FIG. 46 plots “purse per share” (PPS) relative to average
spread traded over one day for an example embodiment of
the Quote Vector signal.
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FIG. 47 shows an example embodiment of a derivative
signal generator that consumes messages that were gener-
ated by a ticker plant and contain both normalized market
data and signal data.

FIG. 48 provides a comparison between an example
embodiment for derivative trading signal generation with
respect to conventional techniques for inferring the behavior
of natural investors.

FIG. 49 provides an example embodiment where two
users choose a different prediction threshold value for pre-
dicting if the bid and offer prices represent short fuse quotes
that will change in less than the defined target time value.

FIG. 50 provides an example embodiment where two
users choose a different prediction threshold value for pre-
dicting the direction of the next change to the bid and offer
prices.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

FIG. 1 shows in a basic form, an example embodiment of
a signal generation pipeline. The pipeline produces an output
stream of signal messages derived from the input data
stream. When the input data stream is financial market data,
an exemplary output signal message is an indication that a
reserve order to buy an unknown quantity of shares of IBM
stock is resting at the best bid price on the New York Stock
Exchange (NYSE). This signal may be used by an auto-
mated trading application to make a trading decision and
generate a trade order (e.g., sell a larger quantity of IBM
stock on the NYSE than indicated by the size (or number of
shares) of the best bid in the most recent quote message).
Another exemplary output signal message is an estimator
that gives a probability that the next update to the best offer
price for AAPL stock will be higher than the current best
offer price. When the probability exceeds a chosen threshold
value, this signal may be used by an automated trading
application to make a trading decision and generate a timely
trade order (such as a trade order to buy the available shares
of AAPL stock now before the price increases).

While we focus our discussion on producing trading
signals and estimators from financial market data, it should
be understood that the technology described herein can be
applicable to other use cases. For example, when the input
data stream is supply chain data from suppliers and sales
data from retailers, an exemplary output signal message is an
estimator of the probability of supply not meeting demand
for a product. Nevertheless, for the purpose of explanation,
the signals generated by example embodiments discussed
below will be trading signals with respect to financial
instruments.

In the embodiment of FIG. 1, a signal generate stage is
interposed between a data receive stage and a transmit stage.
Each stage operates in parallel, allowing multiple items from
the data stream (e.g. messages) to be processed in parallel.
This functional parallelism significantly increases the capac-
ity or throughput of the signal generation computation.
Consider the simple case where each pipeline stage pro-
cesses one message per second. The total time required to
process a message is three seconds, however the pipeline is
able to sustain a computation rate of one message per
second.

The data receive stage offloads the signal generate stage
from the computing tasks of receiving data from a data
stream. Exemplary tasks include performing network pro-
tocol stack processing such as copying a packet into a buffer,
verifying the correctness of packet contents using a Cyclic
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Redundancy Check (CRC), resequencing packets that arrive
out of order, and requesting retransmissions of missing
packets from the sender. The data receive stage may also
parse the input data stream to extract specific data fields that
are required by the signal generate stage. The data receive
stage may sub-divide its work into pipeline stages, as well
as parallel pipelines, in order to maximize its throughput.
The above-referenced and incorporated U.S. Pat. Nos.
7,921,046, 8,768,805, and 10,121,196 describe examples of
how financial market data can be processed as part of the
data receive stage.

The signal generate stage operates on one or more fields
from the input data stream to produce a trading signal. The
signal generate stage computes on or more signals belonging
to the classes of logical or estimator signals. We describe
below several example embodiments of signal generate
stages. The signal generate stage produces signal messages
and passes them to the transmit stage.

The transmit stage sends signal messages to downstream
consumers. The transmit stage can distribute messages to
consumers using solutions that achieve a variety of reliabil-
ity, latency, throughput, and efficiency goals. One example
embodiment of a transmit stage sends signal messages using
a broadcast network that delivers all signal messages to all
consumers. Another example embodiment of a transmit
stage sends signal messages using one or more multicast
channels that allow consumers to select a subset of signal
messages by consuming the appropriate channels. For
example, signal messages associated with stocks whose
symbols begin with the letter ‘A’ can be transmitted on the
first multicast channel, signal messages associated with
stocks whose symbols begin with the letter ‘B’ can be
transmitted on the second multicast channel, etc. A con-
sumer interested in signal messages for AAPL stock only
can consume the first multicast channel only, discarding
signal messages for other stocks whose symbols begin with
‘A’. Another example embodiment of a transmit stage only
sends signal messages to a consumer when the consumer
subscribes to (or registers interest in) a specific set of signal
messages. The transmit stage uses a unicast connection to
each consumer. For each consumer, it transmits a copy of
signal messages that they have subscribed to and it filters
signal messages that they have not subscribed to. The
transmit stage may use a reliable unicast protocol to ensure
that subscribed to messages are delivered to each consumer.
Example protocols include Transport Control Protocol
(TCP) and Remote Direct Memory Access (RDMA) Reli-
able Connection (RC). The transmit stage may sub-divide its
work into pipeline stages, as well as parallel pipelines, in
order to maximize its throughput. The above-referenced and
incorporated U.S. Pat. Nos. 7,921,046 and 10,121,196
describe examples of how financial market data can be
processed as part of the transmit stage (see also the above-
referenced and incorporated U.S. Pat. No. 9,047,243).

In an example embodiment, the throughput of the data
receive, signal generate, and transmit stages are equivalent
to ensure that a stage does not impose a bottleneck in the
pipeline. Note that the amount of computation performed by
a stage may differ for various types of input data. Buffers can
be used at the inputs or outputs of pipeline stages to prevent
data loss when the instantaneous processing rate differs
among stages.

In another example embodiment, a combination of signal
messages with the input data stream can be propagated to
downstream consumers, as shown in FIG. 2. This can be
referred to as a “bump in the wire” architecture and it
delivers several benefits for some use cases. It allows signal
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messages to be distributed over the same network as data
messages, and it typically minimizes changes to an existing
data processing and distribution infrastructure. It also mini-
mizes or entirely eliminates delays in data message delivery
to consumers that benefit from the lowest possible latency of
data message delivery. These consumers may not consume
signal messages. Alternatively, they may perform some
actions immediately upon receipt of a data message and then
perform subsequent actions upon receipt of a signal mes-
sage.

For example, an automated currency (i.e. foreign
exchange) trading application that performs market making
may immediately cancel its order to buy a given currency
when it receives a data message that a trade occurred at a
lower purchase price (i.e. currency exchange rate) on a
different market. This immediately removes the risk that the
market maker purchases the currency at an inferior price in
the marketplace. It may then use a signal message that
estimates the movement of the best bid price on its market
to send a new order to buy the currency at a revised price.
This estimate may allow the market maker to post a superior
price before other market participants, and thus capture the
trading opportunity.

In the FIG. 2 embodiment, a signal generation pipeline
contains a signal generate stage interposed between a data
receive stage and a transmit stage. The data receive stage
passes data to both the signal generate stage and the transmit
stage. The transmit stage sends both signal messages and
data messages to downstream consumers. Signal generation
occurs in parallel to transmitting data messages to down-
stream consumers.

In another example embodiment, a signal generation
pipeline sends both normalized data messages and signal
messages to downstream consumers as shown in FIG. 3. A
signal generate stage is interposed between a data receive
and a transmit stage and operates in parallel to a data
normalize stage. There are a wide variety of use cases where
data normalization is desirable. The above-referenced and
incorporated U.S. Pat. Nos. 7,921,046 and 10,121,196
describe examples of how financial market data can be
normalized. Other examples include normalizing credit card
transaction data reported by multiple credit card processing
firms. An example consumer of the normalized transaction
data is an analytics application that is written once for a
common message format that aggregates retail data and
predicts future consumer behavior.

The embodiment of FIG. 3 further reduces the relative
overhead of the signal generate stage by the amount of time
required by the data normalize stage. If the signal generate
stage completes its processing in the same amount of time or
less than the data normalize stage, then signal messages can
be delivered at the same time or sooner than the associated
normalized data message. In this embodiment, the signal
generate stage consumes input data in its native format from
the data stream. In many cases, this means that the signal
generate stage will also perform message parsing and field
extraction operations on the message data.

In another example embodiment, the signal generate stage
is interposed between processing steps by the data normalize
stage, as shown in FIG. 4. This allows the signal generate
stage to use the results of intermediate processing steps and
cache records retrieved from memory by the data normalize
stage. This allows the combination of data normalization and
signal generation to be performed efficiently without redun-
dant message parsing, field extraction, and cache record
maintenance by independent pipeline stages.
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Consider a financial market data example. On some
financial markets, it is possible to detect via inference the
presence of a reserve order by observing an order execution,
followed by an order addition at the same price within the
same network packet. A reserve order allows a market
participant to hide the total number of shares to be bought or
sold. It instructs the market to expose a small portion of the
order, and when that portion is executed, immediately
expose the next small portion of the order, and so on until all
shares are executed or the remainder of the order is canceled.
Detecting the presence of a reserve order resting at a given
price in a market can be valuable information for a variety
of market participants. Accordingly, an example of a trading
signal that can be generated by the signal generate stage
includes a liquidity indicator that indicates a presence of a
reserve order for a symbol. For example, it may encourage
a market participant to increase the size of an order to
execute against the price with a reserve order, allowing a
large trade to be completed more quickly and with more
certainty as to the trade price (i.e. it reduces the risk of price
“slippage”.) Example embodiments regarding how a trading
signal that indicates the presence of a reserve order can be
used are discussed below.

The transmit stage sends both normalized data messages
and messages containing both normalized data and signal
data to downstream consumers. For consumers interested in
normalized data only, the unwanted signal data may be
removed by the transmit stage. It may also be removed by
an application programming interface (API) layer at the data
consumer, or simply ignored by the consumer. For consum-
ers interested in both normalized data and signal data,
delivering both data payloads in a single message can yield
greater efficiency and lower data transfer latency. Typically,
the transaction rate of network interface devices is signifi-
cantly lower than the bandwidth (or bit rate) of network
links. Because of this, it is more efficient to send a signal
message of size X+Y over a computer network compared to
sending two messages of sizes X and Y. There is also
processing overhead for sending and receiving a message
that is amortized when combining payloads into a single
message, resulting in lower total latency.

In another example embodiment, the signal generate stage
is interposed between a data normalize stage and a transmit
stage, allowing signals to be generated from normalized
data, as shown in FIG. 5. This minimizes the computational
resources required to implement some types of signals by
leveraging the message parsing, data type conversions, and
other processing steps performed by the data normalize
stage. The transmit stage sends both signal messages and
normalized data messages to downstream consumers. For
data consumers exclusively interested in normalized data
messages, the data normalize stage sends output messages
directly to the transmit stage, in addition to the signal
generate stage. This eliminates any additional data latency
contribution from the processing time of the signal generate
stage.

In another example embodiment, the signal generation
pipeline contains two independent signal generate stages, as
shown in FIG. 6. The first signal generate stage can be
interposed between processing steps by the data normalize
stage. The second signal generate stage is interposed
between the data normalize stage and a transmit stage. This
second signal generate stage generates additional signals
from the normalized data received from the data normalize
stage. It may also use signal data that was generated by the
first signal generate stage and appended to the normalized
data message. For example, the second signal generate stage
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can produce an estimate of the size of a reserve order. The
inputs to this estimate are a reserve order indicator trading
signal produced by the first signal generate stage as previ-
ously described, as well as normalized market data fields
produced by the data normalize fields. Examples of fields
used by the reserve order size estimator may include the
price and size of the portion of the reserve order that was
executed and the price and size of the next portion of the
reserve order that is now visible in the marketplace.

The signal generate stage may also compute and maintain
state fields in memory that enable it to produce an estimate
of reserve order size. Example state fields may include (1)
the sum of reserve order portions that have been executed
since the reserve order indicator was enabled for the given
symbol on the given market and (2) the average size of
reserve orders that have been executed on the given symbol
in the given market. Logic in the signal generation stage can
update and store these state fields, preferably in parallel to
generating and passing a signal message to the data transmit
stage. Example embodiments for estimating reserve order
size are discussed below.

The transmit stage sends normalized data messages, sig-
nal messages, and messages containing both normalized
data and signal data to downstream consumers. As described
above, the transmit stage is able to deliver data produced by
the data normalize stage and first signal generate stage. This
minimizes data latency for data consumers that have not
registered interest in the output of the second signal generate
stage.

In another example embodiment, multiple independent
signal generation pipelines operate in parallel, as shown in
FIG. 7. This increases data throughput when processing
multiple input data streams. Note that this embodiment can
also be used when a single input data stream is partitioned
into multiple data streams. For example, a financial market
data feed may transmit updates for one thousand financial
instruments on a single UDP multicast channel. This feed
may be partitioned into multiple data streams based on the
financial instruments to which the update messages apply.
For example, the feed may be partitioned into eight data
streams where each data stream has an update rate of
approximately one eighth of the feed. If the multiple input
data streams of FIG. 7 have the same data rate, then this
embodiment achieves a throughput that is N times higher
than the embodiment of FIG. 6. The above-referenced and
incorporated U.S. Pat. No. 10,121,196 describes examples
of how feeds can be partitioned in such a fashion.

The transmit stage delivers messages from each pipeline
to downstream consumers, where a given consumer may
receive messages from one or more pipelines. The above-
referenced and incorporated U.S. Pat. No. 7,921,046 and
10,121,196 describe examples of how such transmission and
processing may occur. As described above, the transmit
stage for this example extends that work by allowing data
consumers to also specify the set of signals that they are
interested in consuming.

In another example embodiment, a data aggregate stage
consumes the output of multiple independent pipelines, as
shown in FIG. 8. One example of data aggregation for
financial market data is the computation of the National Best
Bid and Offer (NBBO)—the highest price of all resting
orders to buy and lowest price of all resting orders to sell a
given security on any market in the National Market System
(NMS). As described earlier, the NBBO are the reference
prices that dictate compliance with Regulation NMS for
broker-dealers of securities subject the regulation. Fast com-
putation of changes to the NBBO prices have high value for
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a wide variety of market participants that trade securities
subject to Reg NMS. When transacting trades, exchanges,
dark pools, and Alternative Trading Systems (ATS) must
either match or improve those prices or route the orders
away to a market with a superior price. Similarly, arbitrage
trading strategies must be able to identify superior and
inferior prices across multiple markets in order to identify
profitable trading opportunities. The above-referenced and
incorporated U.S. Pat. Nos. 7,921,046 and 8,768,805
describe how market data messages can be aggregated and
enhanced, such as by computing aggregate pricing views
such as the NBBO at high speed and throughput, as well as
further explanations of their value. (See also the above-
referenced and incorporated U.S. Pat. No. 10,229.453). Note
that the computation of aggregate pricing views and the
value of fast computations and predictive signals applies to
any fungible financial instrument that trades across multiple
markets. Examples include currencies (i.e. the FX market),
some fixed income instruments such as on-the-run treasury
bonds, as well as stocks and options in the United States,
Canada, Europe, and Japan.

In the example of FIG. 8, a signal generate stage is
interposed between processing steps by the data aggregate
stage. Like the previous examples of interposing signal
generate steps between processing steps of a data normalize
stage, this embodiment allows signals to be efficiently
generated from results of data aggregation operations. An
example includes computing to total number of identified
reserve orders to both buy and sell a stock across all markets
upon which it trades. Similarly, the total estimated size of
reserve orders to both buy and sell a stock can be efficiently
computed by this signal generate stage.

FIG. 8 shows another signal generate stage that is inter-
posed between the data aggregate stage and a transmit stage.
This allows signals to be produced from the messages output
from the data aggregate stage, as well as any signal data
appended to those messages. An example includes a signal
that indicates the alignment or divergence of price direction
predictions for an underlying stock and option contracts to
buy or sell the stock at future times. In this example, the data
aggregate stage computes the NBBO and its parallel signal
generate stage produces price direction predictions. The
output messages contain both NBBO price updates and price
direction predictions. The downstream signal generate stage
maintains a lookup table of records that contain the most
recent price direction predictions for the NBBO of under-
lying stocks. A record is retrieved by mapping option
contract symbols to their underlying stock symbol. When the
downstream signal generate stage receives a normalized
message that contains an update for the NBBO prices of an
option contract and the associated price direction predictions
in the signal data, it retrieves the record containing the most
recent price direction predictions for the NBBO of the
underlying stock. It compares the price direction predictions
and, if they differ, it appends indicators for divergent pre-
dictions on the bid price direction, offer price direction, or
both price directions to the signal data portion of the
message.

The stages of FIGS. 1-8 can be deployed in parallelized
processing logic on at least one of a reconfigurable logic
device, GPU, and/or CMP as noted above.

Example Message Formats and Synchronization
FIG. 9 shows an example of a representative message

format for normalized financial market data. A group of
header fields typically contain data fields useful for message
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routing and delivery, such as a Source ID, and data fields
useful for ensuring the timeliness and completeness of
received data by consumers, such as a timestamp and
sequence number. FIG. 10 shows an example of a represen-
tative normalized message for financial market data with
appended aggregate data. As previously discussed, append-
ing aggregate data to the normalized data in a financial
market data message can yield greater efficiency for both the
data generator and transmitter, as well as data routers and
receivers. In the example of FIG. 10, aggregate data fields
include a best price (such as a National Best Bid), a total size
at the best price that is the sum of the sizes of orders at the
best price on all markets, and a count of venues containing
at least one order at the best price. The above-referenced and
incorporated U.S. Pat. No. 8,768,805 describe examples of
how financial market data messages can be enhanced with
aggregate data (see also the above-referenced and incorpo-
rated U.S. Pat. Nos. 7,840,482 and 10,229,453).

FIG. 11 shows an example of a representative message
format for normalized financial market data, aggregate data,
and signal data. As previously discussed, appending signal
data to the financial market data payload can yield the same
efficiency benefits mentioned above. It also greatly simpli-
fies the presentation of normalized financial market data and
associated signal data to consuming trading applications at
the same time. Specifically, it removes the possibility that
the market data (e.g. the current prices for the financial
instrument) and a trading signal (e.g. a prediction of price
movement) fall out of synchronization whereby signal data
generated from an event with sequence number X is used by
the trading application when using market data from the
event with sequence number Y. Appending signal data to the
message containing the associated normalized market data
also removes any computations required by the consuming
application to synchronize market data and signal data to
prevent the aforementioned scenario.

Appending signal data to market data messages does
mean that data consumers will be utilizing market data that
flows through the signal generating device. There are a
number of reasons why this may not be desirable. Market
data infrastructure is typically viewed as mission-critical by
trading firms. Firms may be interested in incorporating new
trading signals into their trading strategies without disrupt-
ing their existing market data infrastructure. Similarly, ven-
dors producing new trading signals want to minimize the
obstacles to delivering new signals to customers. Requiring
trading firms to swap out their market data infrastructure
may slow down or eliminate opportunities to win new
customers. Accordingly, a technical solution is desirable
where trading signals can be integrated into the trading
firm’s existing market data infrastructure with minimal
disruption and modifications of such market data infrastruc-
ture.

For such reasons, there exists a need for efficient tech-
niques of synchronizing real-time market data messages
with real-time signal messages that were generated from, or
are correlated to, the market data messages. A desirable
example solution to this problem does not require any
changes to the devices that process and deliver market data
or the format of normalized market data messages. Further-
more, a desirable example solution would not require that a
full copy of the normalized market data message be trans-
mitted along with the signal data to consuming applications.
This would consume a significant amount of data transmis-
sion capacity of the signal generator, network bandwidth for
the signal data distribution network, data reception capacity
and processing resources of the data consumers.
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In some cases, market data feed sources or market data
normalizers assign a unique sequence number to each mar-
ket data message for a given financial instrument. In these
cases, the signal generator can simply include the market
data message sequence number in the signal message as a
synchronize identifier (ID) to link the market data and signal
data. However, more typically, a unique sequence number
per message is not available; and a synchronize ID would
need to be generated by some other means. FIG. 12 shows
an example embodiment for solving this synchronization
problem. The signal generator produces a synchronize 1D
from a subset of fields in the normalized data message,
where this subset of fields, in combination, uniquely identify
the market data message. In the example of FIG. 12, the
processing logic performs a hash function using the market
data message fields as input. Hashing techniques such as
those described in the above-referenced and incorporated
U.S. Pat. No. 7,921,046 can be used for the hashing func-
tion, albeit where the hashing function of FIG. 12 maps input
data to a synchronization ID rather than a ticker symbol or
memory address.

The subset of fields that uniquely identify a market data
message may vary by feed source or market data normal-
ization source. The fields selected for inclusion in the hash
function can depend on the specified source. In the example
of FIG. 12, the subset of fields includes the sequence
number, timestamp, instrument 1D, update type, and price.
This hash function is performed by the signal generator and
the resulting synchronize ID is included as a field in the
signal message transmitted to consuming applications. Con-
suming applications compute the same hash function on the
same subset of fields when processing market data mes-
sages. The applications then compare the computed Syn-
chronize ID for the market data messages with the Synchro-
nize ID field in the signal message to find correspondences
therebetween to align market data messages with signal
messages. As examples, this functionality in downstream
applications is shown by the Message Synchronize logic
blocks in FIG. 20 and FIGS. 22A-22B.

Estimator Trading Signal Computation

Trading signals that provide estimates have high value
and broad applicability to trading applications. A wide
variety of artificial intelligence (Al) and machine learning
(ML) techniques can be used to build estimators. Real-time
financial market data imposes constraints and requirements
that narrow the scope of applicable methods. The first and
most challenging requirement is to minimize latency such
that estimator signals can be included in the decision-
making of a trading application without inducing delays that
prevent it from capturing profitable opportunities. Closely
related is the requirement to compute estimators at high
throughput, desirably at the same throughput that market
data is normalized and distributed. Also, regulations require
some market participants, such as broker-dealers, to docu-
ment the algorithms they use for managing customer orders
and to attest that they have the ability monitor and control
those algorithms. These regulations may preclude estimation
methods with opaque or non-deterministic computations
such as the broad class of unsupervised learning methods.

By contrast, supervised learning methods such as logistic
regression can meet the regulatory standard of transparency
and determinism. One can engineer example embodiments
of'these supervised learning methods to meet the low latency
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and high throughput requirements of generating estimators
from real-time market data. Supervised learning methods are
generally developed by:

1. Building a set of features that are likely to be correlated

and predictive of the target variable

2. Identifying combinations of features that are correlative

and predictive of the target variable

3. Evaluating the accuracy of features and combinations

of features for predicting a target variable by using a
cost function

4. Selecting the set of features and combinations of

features, relative weight of each selected feature or
combination, and coefficients (for combining the
weighted features into a probability) such that the cost
function is optimized

5. Regularizing the weights to reduce the risk of overfit-

ting the model to the training data.

Supervised learning methods use training data and known
outcomes, or data labels, to perform the task of evaluating
the accuracy of features and combinations of features for
predicting a target variable. The efficacy of a specific set of
parameters resulting from training is evaluated by using
these parameters on test data sets that differ from the training
data set, also known as out of sample testing. Regularization
produces a set of penalties to apply to each weight. This
provides a smoothing or damping of the models’ response to
out of sample inputs. For example, [.2 and L1 regularization
can be performed to achieve a suitably parsimonious model
(e.g., the fewest number of features that yields a near-
optimal predictive power and avoids over-fitting the model).

FIG. 29A shows sample processing logic for computing
an estimate of the size of a detected reserve order. As
discussed above, Al and ML techniques can be used for
computing estimates, such as supervised learning, to
develop a model that estimates the probability of a detected
reserve order having a particular size. The supervised learn-
ing model can be used as part of a neural network to compute
the estimator trading signals. Additional examples of the use
of machine learning models to estimate quote price duration
and quote price direction are discussed in greater detail
below.

FIG. 29B shows an example embodiment for the steps
used in the creation of these supervised machine learning
models. In this explanation, we use the equity (stock)
markets in the United States as an example, but it should be
understood that the steps can be applied to develop estima-
tors for other regional markets and asset classes.

Stepl: Data Preparation

Historical normalized market data is collected in
machine-readable format where the market data contains
quote and trade event data from all markets contributing to
the National Best Bid and Offer (NBBO) and the NBBO
quote event data. The data files go through a cleansing and
preprocessing step that ensures that all data fields are
normalized, events are listed in sequential order according to
a selected field (e.g. a timestamp), and so on.

Step 2: Feature Engineering

The feature engineering step is where base features are
identified and created. Base features are field values or the
result of a mathematical computation or combinatorial logic
operation on multiple field values that are likely to be
correlated and predictive of the target variable, yet uncor-
related to one another. The notional value of a detected
reserve order being less than $25,000 is one example of a
target variable. The development of these base features is
typically based on domain knowledge, such as the micro-
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structure of financial markets and the protocols of electronic
trading. Examples of base features include:

Moving average over a 2 minutes window of volume of
reserve order shares executed since the reserve order
was detected

Moving average over a 120 minutes window of volume of
reserve order shares executed since the reserve order
was detected

Moving average over a 5 days window of volume of
reserve order shares executed since the reserve order
was detected

Count of exchanges with reserve orders at the same price

Step 3, Model Building

The example of FIG. 29A uses an Adjacent-Category

model where @, represents the model’s estimated probabil-
ity for the ith observation and jth ordinal category (ordinal
levels). The probability estimates are formed from a regres-
sion model that includes intercept terms a; for each of the
j=1 to L-1 sub-ranges (of the notional value range); x,, is the
feature value for the ith observation and the rth feature,
along with weights p, for each r=0 to m-1 predictive
features. In this example, note that the intercept and weights
for the j=0 component are always 0. To compute the weights
used by the model, a logistic regression technique can be
used that samples training data from diverse periods of
market dynamics.

Step 4, Model Assessment

The resulting model solution is applied to out-of-sample

historical market data, where the out-of-sample data are
forward in time versus training data. For example, the
training data can be sampled from a selected time period
(e.g., August-November 2018) whereas the testing data
comes from any date after this time period. The scored
output of test data is benchmarked against key performance
indicators such as precision, recall, F1, Brier scores, Mat-
thews Correlation Coeflicient, etc. A model that passes
out-of-sample testing undergoes back testing. Back testing
applies the model to many years of historical market data to
ascertain its efficacy over multiple market cycles. The back
testing dates can encompass both training and testing dates.
Step 5, Production Assessment
The model solution is deployed into production usage as
an estimator in a signal generator using an embodiment as
described herein. An automated model quality monitoring
system produces daily performance reports to validate the
efficacy of the estimators against production data, also called
forward testing. LLive models are monitored for decay or for
material change in any key performance indicators (KPI).
Each KPI allows for either objective or subjective determi-
nation of performance decay or material change. In the
example of FIG. 29B, the decision to retrain is a human
decision, but this may be automated. As the model is
re-trained with additional, newly available labeled data, the
performance accuracy of the model can improve over time.
An embodiment of a real-time estimate generate stage that
uses supervised learning methods and can meet the latency
and throughput requirements of real-time market data is
shown in FIG. 13. In this example, an estimator trading
signal is generated by computing a set of N features, then
combining the features, assigning a weight to each combi-
nation, and accumulating the weighted results. The estima-
tion result can be delivered directly, such as a probability
value (e.g., a probability value that the next price move will
be in a positive direction). The estimation result may also be
delivered in a summarized fashion as a Boolean signal (e.g.,
by comparing the probability value to a threshold value in
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order to compute a Boolean signal, such as a TRUE/FALSE
signal that the size of a reserve order is greater than 10,000
USD in notional value).

As shown in FIG. 13, market data messages are delivered
to one or more field select stages. These stages select the
fields from the input market data messages that are used as
inputs for the associated feature computations. U.S. Pat. No.
8,374,986, the entire disclosure of which is incorporated
herein by reference, describes examples of field selection
modules that can serve as the field selection stages. The
selected fields are passed to one or more feature compute
stages, some of which may maintain state variables such as
a moving average of field values for a specified time
window.

Examples of feature computations that can be performed
by different ones of the feature compute stages include:

Time since the previous bid price shift

Time since the previous offer price shift

Time since the maximum bid size was posted for the

current bid price

Time since the maximum offer size was posted for the

current offer price

Moving average of bid price durations for the past ten bid

price changes

Moving average of offer price durations for the past ten

offer price changes

As an example, these features can be used to support the
computation of a trading signal that is an estimate of a
duration of a current best bid price for symbol across one or
more markets, examples of which are discussed in greater
detail below. However, it should be understood that the list
of features above is merely an example, and other features
may be computed if desired by a practitioner.

The outputs of feature compute stages can be delivered to
both a derivative features compute stage and a feature
weight and combine stage. The derivative features compute
stage produces one or more combinations of the results of
one or more upstream feature computations, as specified by
the training parameters. Similarly, the features weight and
combine stage assign weights to each of the feature results
and derivative features results and accumulated the weighted
results to produce an estimate.

In an example embodiment, each computational stage
reflected in FIG. 13 is performed in a parallel path such that
both functional and data-level parallelism is exploited. For
example, each stage may be implemented as an integrated
circuit, interconnected to its upstream and downstream
stages, and deployed on a reconfigurable logic device such
as an FPGA. Alternatively (or additionally), each stage may
be implemented in a compute core of a GPU that contains
thousands of interconnected compute cores. Other example
embodiments may include software implementations on
GPPs whereby stages are computed in sequence with the
intermediate results from stages being stored in memory.

It should be understood that practitioners may choose to
include more, fewer, or different parallel paths as part of a
signal generate stage than those shown by FIG. 13. Simi-
larly, more, fewer (including none), or different derivative
feature compute stages may be included as part of the signal
generate stage than those shown by FIG. 13.

When integrating the computation of estimators with the
normalization of market data, significant efficiencies can be
gained when distributing the computation of features as
shown in FIG. 14. As previously described with regard to
signal generate stages, feature generate stages may be
optionally interposed in message processing by data nor-
malize and data aggregate stages. This allows feature gen-
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erate stages to leverage the message parsing and intermedi-
ate processing results of the data normalize and data
aggregate stages, eliminating redundant processing by the
feature generate stages. Similar to signal data, feature data
may be appended to messages flowing through the pipeline
to be delivered to the derivative features compute and
features weight and combine stages within the estimate
generate stage. In the example of FIG. 14, the estimate
generate stage is interposed between the data aggregate and
data transmit stages. This arrangement enables estimates to
be generated from normalized aggregate data such as esti-
mating next price direction for NBBO prices.

Example Implementations in Ticker Plants and
Trading Application Servers

FIG. 15 shows an example embodiment of a ticker plant
that includes both financial market data and signal pipelines.
The embodiment uses a high-performance server platform
with a combination of Network Interface Cards (NICs),
FPGAs, software on commodity CPUs, and GPUs. Each of
these components are widely available from multiple ven-
dors and may be assembled in a variety of form factors. In
this embodiment, a NIC containing an FPGA is connected to
a computer network that provides access to one or more
market data feeds. The data receive processing is performed
by firmware deployed on the FPGA device hosted on the
NIC card. Market data messages are passed to one or more
data normalize stages that are implemented in software and
executed on one or more general purpose processing cores.
The output messages from the data normalize stages are
passed to both a transmit stage and a signal generate stage.
The transmit stage is implemented in software and executed
on one or more general purpose processing cores. One or
more signal generate stages can be implemented in an
FPGA. Alternatively (or additionally), one or more signal
generate stages can be implemented in a GPU. The output
messages from the signal generate stages are passed to the
transmit stage. The output messages from the transmit stage
are delivered by a NIC to data consumers through a nor-
malized market data and signal distribution network. The
same NIC may provide network connectivity for monitor-
ing, management, and control of the ticker plant.

The advantages of the FIG. 15 embodiment are its flex-
ibility and scalability. The speed and capacity of market data
normalization can be increased or decreased by allocating
more or fewer general-purpose processing cores to the data
normalize stages, respectively. By implementing the signal
generate stages in a separate FPGA or GPU card, the speed
and capacity of signal generate stages can be tuned without
impacting data normalization performance. Furthermore,
consumers of normalized market data only can experience
no relative performance impact from signal generation. The
above-referenced and incorporated U.S. Pat. No. 7,921,046
describes examples of how data can be streamed from one
compute resource to another at low latency and high
throughput (see also U.S. Pat. No. 7,954,114, the entire
disclosure of which is incorporated herein by reference).

For consumers of normalized market data and signal data,
the latency of signal data is primarily determined by the
computational time in the FPGA or GPU, as well as message
transfer time across the system interconnect from host to
device (FPGA/GPU) and device to host. The one-way
transfer time can be optimized to be a few hundred nano-
seconds in current server platforms, but for some trading
applications, this becomes a considerable portion of their
overall data latency budget.
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FIG. 16 shows an example embodiment that eliminates
these data transfer latencies for signal generation. In this
embodiment, the data normalize stages are incorporated in
the FPGA hosted on the input NIC. Furthermore, feature
generate stages can be interposed by the data normalize
stages. Note that these may also be signal generate stages as
previously described. Output messages are passed directly to
a second FPGA hosted on the output NIC. The messages are
delivered to both the transmit stage and a data aggregate
stage. The data aggregate stage may interpose a feature
generate stage. Note that this may also be a signal generate
stage as previously described. The output messages of the
data aggregate stage are passed to the transmit stage as well
as an estimate generate stage. The transmit stage has the
ability to deliver messages to consuming applications that
contain normalized market data, aggregate data, signal data,
or any combination thereof. In this embodiment, a separate
NIC is used to provide monitoring, management, and control
access. Note that this traffic may also be handled by the
output NIC that contains an FPGA device.

The advantages of this embodiment are the reduction in
data latency by performing all data normalize, data aggre-
gate, and signal generate operations in firmware hosted on
FPGAs. This typically comes with higher development costs
to produce more sophisticated firmware designs, as well as
higher implementation costs as more or larger FPGA devices
may be needed to provide sufficient logic gate capacity for
the more sophisticated firmware designs.

FIG. 17 shows an example alternative embodiment that
implements the estimate generate stage in a GPU. This
allows for more flexibility in the estimate implementation
and reduces the required logic gate capacity of the FPGA in
the output NIC. The latency of normalized data messages is
identical to that of the embodiment in FIG. 16. The relative
latency of the signal data may be higher due to the data
transfer latencies to and from the separate GPU. This may be
deemed acceptable due to the aforementioned cost reduction
and flexibility gains.

When a ticker plant delivers both normalized market data
and signal data in the same messages, the synchronous
presentation of market data and signal data is greatly sim-
plified. FIG. 19 shows an example embodiment of a trading
application pipeline that consumes messages that were gen-
erated by a ticker plant and contain both normalized market
data and signal data. The application receives messages via
a network interface and parses the message format used by
the ticker plant to extract desired message fields. Some
applications maintain a local cache containing records of the
current state of financial instruments for which it subscribes
to updates from the ticker plant. In this case, the message
fields are used to update the retrieved record from the cache.

The trading logic of the application can receive messages
in a variety of ways. In one embodiment, a callback function
is executed. The trading application specifies the actions to
be performed upon receipt of a message within the callback
function. This includes retrieval of one or more fields from
the normalized market data in the message, signal data in the
message, or market data or signal data in the cache record.
In another embodiment, the application actively checks the
occupancy of a receive buffer and processes the message at
the head of the receive buffer when the occupancy is not
empty. The above-referenced and incorporated U.S. Pat. No.
10,037,568 describes how trading logic can be distributed
across multiple types of compute resources.

Orders generated by the trading logic are passed to the
pre-trade risk check stage. The pre-trade risk stage ensures
that the actions resulting from the orders do not violate a
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variety of policies defined by regulations, account margins,
open positions, etc. The above-referenced and incorporated
U.S. Pat. No. 8,374,986 describes an example architecture
for a rules engine that can implement pre-trade risk check
logic. The order gateway stage transmits orders to the
appropriate receiver at the trading venue and it passes
messages from the trading venue back to the trading appli-
cation.

FIG. 21 shows an example embodiment where the trading
application server includes an Application Programming
Interface (API) that abstracts the trading application from
the message parsing and cache updating operations. This
simplifies the task of developing new trading applications. It
also enables new market data and fields, as well as new
signals and fields to be added to messages without impacting
existing trading applications that do not use the new content.

When trading applications consume market data from a
separate source, signal generation is performed by a signal
plant that delivers signal messages, as shown in FIG. 20. In
this embodiment, market data feeds are delivered to both the
signal plant as well as the trading application host machine.
The trading application performs the data receive and data
normalize steps locally to minimize market data latency. It
synchronizes market data messages to signal messages by
computing a synchronize ID from a subset of market data
fields as described above in connection with FIG. 12 (see
Message Synchronize logic in FIG. 20). Depending on its
trading strategy and the relative latency of signal messages
to normalized market data messages, the trading application
may choose to act on some market data messages without
determining its synchronized signal message (and vice
versa).

FIG. 22A shows an example embodiment where separate
ticker plant and signal plant devices are used. As previously
discussed, this embodiment is useful when a trading firm
desires to add a signal plant to an existing trading infra-
structure with a ticker plant. The Application Programming
Interface (API) abstracts the trading application from the
data receive message parsing, message synchronize, and
cache updating operations. This provides trading applica-
tions with the same benefits of more rapid development and
testing, as well as insulation from changes to market data
and signal data content that are not applicable to the trading
strategy.

FIG. 22B shows an example embodiment that reduces the
latency and increases the capacity of the data receive mes-
sage parsing and message synchronize operations. Firmware
deployed on a NIC FPGA parses the message format used by
the ticker plant, parses the message format used by the signal
plant, synchronizes normalized market data messages to
signal messages, and delivers the synchronized messages to
the Application Programming Interface (API). If broadcast
or multicast protocols are used by the Ticker Plant or Signal
Plant to distribute normalized market data messages or
signal data messages, then the firmware deployed on the
NIC FPGA may also perform a filtering function whereby
only the desired messages are delivered to the API. The API
updates local cache records, extracts desired message fields,
and delivers them to the application. By implementing these
functions in firmware on a NIC FPGA, the trading applica-
tion receives synchronized market data and signal data
faster. Furthermore, it reduces the consumption of compu-
tational resources required on the trading application host
server.

Market participants that require the fastest speeds seek to
eliminate any and all contributors to data latency from their
electronic trading infrastructure. The data latency through a
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ticker plant and across a normalized market data distribution
network have become too large for some market partici-
pants, such as electronic market makers. To eliminate these
contributors to data latency, market data feeds are delivered
directly to the machine that hosts the trading application.
The market data processing is implemented on the same host
machine, as well as the order handling to transmit orders to
buy and sell back to the trading venue. For the purpose of
this discussion, we refer to this as an integrated trading
platform.

FIG. 18 shows an example embodiment of an integrated
trading platform that includes trading signal and estimator
generators. Similar to the ticker plant embodiment in FIG.
16, the data receive, data normalize, feature generate, data
aggregate, and estimate generate stages are implemented in
firmware and deployed on an FPGA hosted by the NIC.
Additional processing stages complete the data path of the
integrated trading platform—a fast path trade logic stage, a
pre-trade risk check stage, and an order gateway stage. Note
that such a platform may be focused on a single market or
subset of instruments such that the capacity requirements for
the platform are far less than a ticker plant. This allows the
market data processing and signal generation stages to be
implemented for lower throughput and thus consume fewer
logic gates. This in turn enables the additional stages for
trading logic and order handling to be hosted in the same
FPGA.

The fast path trade logic stage implements a subset of
latency-critical operations to add, modify, and cancel orders
as specified by the trading application. The remainder of
trading decisions are performed by trading application logic
implemented in software and hosted on one or more cores in
the GPP of the host machine (see, for example, the above-
referenced and incorporated U.S. Pat. No. 10,037,568). With
FIG. 18, for the fast path logic stage, the trading application
specifies a set of logical conditions and the resulting order
action. For example, the trading application may specity that
pending sell orders be modified to increase the price by one
tick increment when a message contains a signal that esti-
mates an increase in best offer price in the marketplace.
Orders generated by the fast path trade logic are passed to
the pre-trade risk check stage and a notification is passed to
the trading application. As noted above, the pre-trade risk
stage ensures that the actions resulting from the orders do
not violate a variety of policies defined by regulations,
account margins, open positions, etc.; and the order gateway
stage transmits orders to the appropriate receiver at the
trading venue and it passes messages from the trading venue
back to the trading application.

Reserve Order Detection (Liquidity Lamp)

As discussed above, an example of a trading signal that
can be generated by an example embodiment is a liquidity
indicator that indicates a presence of a reserve order for a
financial instrument. Such a liquidity indicator can be
referred to as a “liquidity lamp”.

In order to attract liquidity, particularly large blocks of
liquidity, to their markets, many exchanges offer an order
type known as a reserve order. Such reserve orders are also
known as icebergs. Reserve orders allow traders to minimize
the market impact (on price) of a large order by hiding the
total size of the order, without taking on the complexity of
slicing their own order into smaller orders and choosing
when and where to send the smaller orders for execution.
Reserve orders specify the size (number of shares) to expose
while the order is resting on the order book. When the
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exposed size is filled, the next chunk of the reserve order is
exposed; and this process repeats itself until the full size of
the reserve order has been filled (or the remainder of the
order has been canceled). The size of each chunk may be
fixed or variably sized to further disguise the presence of the
reserve order (e.g., by randomizing the sizes of each exposed
chunk).

Detecting the presence of a reserve order resting at a given
price in a market can be valuable information for a variety
of market participants as this indicates the presence of
hidden liquidity in the market for the subject financial
instrument. For example, detection of a reserve order may
encourage a market participant to increase the size of an
order to execute against the price with the reserve order,
allowing a large trade to be completed more quickly and
with more certainty as to the trade price (i.e. it reduces the
risk of price “slippage”). However, the ability to detect the
existence of reserve orders is a technical challenge given the
speed and volume of order activity on exchanges and the
intentional hiding of reserve orders by exchanges. This
technical challenge is further amplified when one also
factors in that it is desirable to detect the existence of such
reserve orders at sufficiently low latency that allows a trader
to take advantage of knowledge about the reserve orders.

As part of a solution to this problem, the signal generate
stage can deploy parallelized processing logic on compute
resources such as reconfigurable logic devices (e.g.,
FPGAs), GPUs, multi-core GPPs, and/or CMPs, where such
parallelized processing logic is configured to detect condi-
tions with financial market data messages that indicative of
the presence of a reserve order. For example, on some
financial markets, it is possible to detect via inference the
presence of a reserve order by observing an order execution,
followed by an order addition at the same price within the
same network packet.

FIG. 23A shows an example of parallelized processing
logic 2302 that can be implemented in a signal generate
stage 2300 in order to detect reserve orders. In this example,
the signal generate stage 2300 cooperates with a data
normalize stage 2304, where the data normalize stage
updates cache records and generates normalized output
messages. The data normalize stage can parse incoming
packets that are received from a market data feed into
individual messages, parse these messages into fields, and
convert the field values into standard data types (e.g., see the
above-referenced and incorporated U.S. Pat. No. 7,921,046).
These normalized field values for each message can then be
copied into standard locations in the normalized message
buffer 2306 (c.g., sece Packet Messages 1-3 in FIG. 23A.

The parallelized processing logic 2302 can then test a
number of conditions against features derived from the
streaming financial market data (e.g., field values buffer
message data from buffer 2306) to determine whether a
conclusion should be drawn that a reserve order is present.
This logic 2302 can include (1) logic that tests whether two
of'the messages are from the same single network packet, (2)
logic that tests whether these two messages represent (i) an
order deletion due to an execution (trade fill) of a symbol at
price P followed by (ii) an order addition for the same
symbol at the same price P. The outputs of these logic tests
also serve as features derived from the streaming financial
market data. When these conditions are detected, the signal
generate stage 2300 can generate a trading signal which
indicates that a reserve order is resting at price P on the
market for the subject symbol. The outputs of the individual
tests for these conditions can be combined via AND logic
2330 so that the existence of a reserve order can be detected
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when all of the conditions are satisfied. The state of this
trading signal can then be appended to the normalized
market data message output from the data normalize stage
(see field 2320 for the messages in buffer 2306).

FIG. 23B shows another example of parallelized process-
ing logic 2352 that can be implemented in a signal generate
stage 2300 in order to detect reserve orders. In this example,
the signal generate stage 2300 cooperates with a data
normalize stage 2304 in a manner that does not necessitate
“store and forward” processing (which induces extra
latency). With the example of FIG. 23B, the detection and
flagging of reserve orders can be perform in a “cut through”
manner whereby signal generate stage 2300 remembers field
values for reserve order candidates that have already been
processed and forwarded on. As noted above, the data
normalize stage 2304 can parse incoming packets that are
received from a market data feed into individual messages,
parse these messages into fields, and convert the field values
into standard data types. These normalized field values for
each message can then be used to update a cache record
retrieved from the Cache Record Memory as described in
the above-referenced and incorporated U.S. Pat. No. 7,921,
046. The normalized field values can also be passed to the
signal generate stage that contains parallelized processing
logic 2352 to detect reserve orders.

The parallelized processing logic 2352 first determines if
the current message represents a new candidate to detect
reserve orders by checking whether the normalized field
value for the message type comprises an order fill condition.
If so, it saves selected field values into a Reserve Order
Candidates register or buffer 2354. The register/buffer 2354
serves to record temporary state data that tracks message
data representing order activity that qualifies as a reserve
order candidate. In parallel, the logic 2352 can then test a
number of conditions against the message data from the
current contents of the Reserve Order Candidates register/
buffer 2354 to determine whether a conclusion should be
drawn that a reserve order is present. This logic 2352 can
include (1) logic that tests whether two of the messages are
from the same single network packet, and (2) logic that tests
whether these two messages represent (i) an order deletion
due to an execution (trade fill) of a symbol at price P
followed by (ii) an order addition for the same symbol at the
same price P. When these conditions are detected, the signal
generate stage 2300 can generate a trading signal which
indicates that a reserve order is resting at price P on the
market for the subject symbol. The outputs of the individual
tests for these conditions can be combined via AND logic
2356 so that the existence of a reserve order can be detected
when all of the conditions are satisfied. The state of this
trading signal can then be provided to the data normalize
stage 2304 and appended to the normalized market data
message output from the data normalize stage. The state of
this trading signal can also be saved in the cache record
associated with the Order ID. Note that additional summa-
rized cache records, such as a record of the aggregate
volume at the price P, may store the state of the trading
signal.

For ease of illustration, FIG. 23B shows parallelized
processing logic 2352 for only message 1 in packet
736189101 (as a previously received Reserve Order Candi-
date) and message 3 in packet 736189101 as the current
message. However, it should be understood that this paral-
lelized processing logic 2352 can be replicated for other
pairs of messages comprised of additional Reserve Order
Candidates and the current message. This allows each mes-
sage to be simultaneously tested for the detection of a
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possible reserve order against multiple reserve order candi-
dates that were previously received.

FIG. 23C shows another example embodiment of a signal
generate stage 2300 which includes parallelized processing
logic 2362 that tests a number of conditions against the
message data to determine whether a conclusion should be
drawn that a reserve order is present. The example of FIG.
23C extends the logic 2362 to detect the presence of a
reserve order in a manner that accounts for conditions that
may cause the order add message that represents the next
portion of a reserve order being exposed to be contained in
a separate packet from the preceding order execution mes-
sage that represents an exposed portion of a reserve order
being executed. This condition may arise for a plurality of
reasons, including congestion within the exchange infra-
structure that generates the market data feed as well as
deliberate actions by an exchange to obscure the presence of
reserve orders.

In the example of FIG. 23C, the parallelized processing
logic 2362 is extended to perform a lookup of parameter
values based on the market associated with the current
message. Parameters can be set that govern which packets
are deemed sufficiently close to each other in sequence
and/or time to be candidates for a possible continuation of
activity for a reserve order. For example, a difference in
packet sequence number and/or packet timestamp can be
used to judge whether a given packet qualifies as a “near”
packet that might contain messages that represent additional
activity for a reserve order. These parameters can be
exchange-specific as indicated by parameter table 2364 of
FIG. 23C. In this example, table 2364 defines a first param-
eter that bounds a maximum difference in packet sequence
numbers for packets containing the messages to be assessed
for potential reserve order status. Table 2364 also defines a
second parameter that bounds a maximum difference in
timestamps associated with packets containing the messages
containing the messages to be assessed for potential reserve
order status. Thus, the logic 2362 can use the parameter
values from table 2364 for the applicable exchange to judge
whether a given message is part of a packet that is suffi-
ciently “near” a packet that contained a previous reserve
order candidate message.

In the example of FIG. 23C, a reserve order candidate (i.e.
an order execution message) and the current order add
message are shown, where both are from the same NASD
market. The parameters in table 2364 for the NASD market
specify the bounds for the “Near Packet” logical test. In this
example, the difference between packet sequence numbers
for the two messages is 2 (the difference between 736189101
and 736189103), which is less than the maximum sequence
distance value in the lookup table 2364 for the NASD
exchange (which is a maximum value of 3). Also, the
difference in timestamps for the two messages is 62 (which
is the difference between 24389841 and 24389903), which
is less than the maximum time distance value in the lookup
table 2364 for the NASD exchange (which is a maximum
value of 70). Therefore, the Near Packet logic test is satisfied
for the message under consideration. The remaining logic
tests for reserve order detection shown by logic 2362 operate
as discussed above in connection with FIG. 23B.

For ease of illustration, FIGS. 23A-C show parallelized
processing logic 2302/2352/2362 for only assessing reserve
order status as between only two messages. However, it
should be understood that the parallelized processing logic
2302/2352/2362 can be replicated for other pairs of mes-
sages in the streaming data (such as the pair (Packet Mes-
sage 1, Packet Message 2) and the pair (Packet Message 2,
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Packet Message 3), and so on with reference to FIG. 23A).
This allows each message from the normalized stream to be
simultaneously tested for the detection of a possible reserve
order.

Also, while FIGS. 23A-C show the computed liquidity
indicator being fed back to the data normalize stage to
augment the outgoing normalized messages, it should be
understood that this need not be the case. For example, the
signal generate stage 2300 can generate its own liquidity
indicator trading signal as output as shown by embodiments
such as FIGS. 1-3 and 5.

The liquidity indicator trading signal is able to identify
reserve orders when they rest at the top of book. Once
identified, the individual order can be tagged as a reserve
order in the system or appliance cache and tracked over its
lifecycle. This implies that reserve orders may be tracked at
multiple levels of the order book as the market price moves
away from the reserve order price before the reserve order
is completely executed. This reserve order indication may
also be provided in other summary views of the order book,
such as the price aggregated book and top-of-book Best Bid
and Offer (BBO) quote.

It is believed that the value for the liquidity indicator
trading signal will be particularly strong for liquidity-seek-
ing trading strategies of the liquidity indicator trading signal
is not only effective at detecting reserve orders but also that
the execution of reserve orders represents a significant
percentage of the trading activity in major US stocks.

In order to determine this, we back-tested multiple days of
normalized trading data to compute liquidity indicators for
that trading data. This analysis was focused on the securities
comprising the S&P 500 index. For each security in the S&P
500 index, we asked “what percentage of the daily volume
was executed as part of a reserve order that was detected by
the liquidity indicator trading signal. The results are
reflected in FIG. 24. On average, there were 90 companies
with 10% or more of their daily volume being executed as
reserve orders detected by the liquidity indicator trading
signal. For example, the histogram of FIG. 24 shows that 52
companies had reserve orders account for 7.5% to 10.0% of
the daily volume for the subject time period. Further sup-
porting the validity of the liquidity indicator trading signal,
we observed 209 unique companies from the S&P 500 that
had at least one day in which 10% or more of their volume
was executed as reserve orders detected by the liquidity
indicator trading signal.

Thus, FIG. 24 indicates that reserve orders can represent
a significant proportion of the executed order types for a
given security. Next we ask if identifying a reserve order that
rests at the top of the order book begets a concentration of
execution activity. In order to quantify this phenomenon, we
define a new metric—concentration ratio—to be the per-
centage of daily volume executed via reserve orders detected
by the liquidity indicator trading signal compared to the
percentage of trading session time that the liquidity indicator
trading signal is “lit” (e.g., a detected reserve order rests at
the top of the book). For example, if 10% of the daily
volume is executed via reserve orders and the liquidity
indicator trading signal is “lit” for 1% of the trading session
time, then the concentration ratio is 10:1.

In aggregate across the S&P 500 securities during the
studied period, the liquidity indicator trading signal detected
reserve orders resting at the top of the book for 1.78% of the
trading session time while accounting for 11.39% of the
daily volume or a 6:1 ratio. Furthermore, we noted that the
concentration ratio can be as high as 23:1 in the case of the
Bats EDGA exchange. See the first table of FIG. 27 for a
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ranking of exchanges by concentration ratio. This supports
our assertion that reserve orders form the epicenter of
concentrations of trading activity, and thus the liquidity
indicator trading signal is an effective signal that a burst in
executions will occur.

As we examined the concentration ratio data, we noted
that the bursts of execution activity did not evenly distribute
volume across the exchanges comprising the National Mar-
ket System (NMS). Specifically, five of the exchanges
accounted for more than 90% of all reserve order executions
detected by the liquidity indicator trading signal. As shown
in FIG. 25 below, over 56% of all reserve order executions
happened on the two largest listing markets—the NYSE and
Nasdagq. Specifically, almost one-third of the total volume on
the Nasdaq market were reserve order types detected by the
liquidity indicator trading signal.

The significant imbalance in the distribution of reserve
order executions underscores the value of the liquidity
indicator trading signal being generated and delivered on a
per-symbol, per-market basis. Liquidity-seeking applica-
tions, such as Smart Order Routers (SORs), can leverage the
per-symbol, per-market precision of the liquidity indicator
trading signal to aggressively interact with hidden liquidity
pools on specific markets while retaining standard slicing
and routing logic for other markets.

Similarly, we examined the reserve order “market share”
of the NMS exchanges, e.g., the distribution of all reserve
order executions across the exchanges. As shown in FIG. 26,
the NYSE had the largest share of the total reserve order
volume for the subject period (at approximately one-third).
The Bats Z and EDGX exchanges accounted for the next
third of the market share during the subject period. When
designing trading logic to interact with reserve orders, the
knowledge that can be derived from the liquidity indicator
trading signal helps to understand where reserve orders are
routed (and where they are not).

FIG. 27 shows a set of tables that rank exchanges on
various criteria relating to detected reserve orders over the
course of the time period applicable to FIGS. 25-27. It can
be seen that the exchange rankings for 3 of the 4 tables have
the same top 5 constituents—alphabetically: ARCA, BZX,
EDGX, NASDAQ, and NYSE. These top 5 exchanges: (1)
account for 94% of all detected reserve order executions on
an absolute basis, (2) have the largest concentration of
detected reserve orders (e.g., 18.02% of Bats Z volume are
detected reserve orders, and (3) occupy the largest share of
time spent at top of book by detected reserve orders during
a trading session. This leads to a conclusion that trading
algorithms that are seeking to interact with reserve orders
may want to target these 5 exchanges.

Accordingly, it should be understood that the concentra-
tion ratio quantifies the clustering of trades around the
detection of a reserve order. The larger the concentration
ratio, the stronger the correlation of execution activity
occurring when the liquidity indicator trading signal indi-
cates that a reserve order is resting at the top of the book.
With reference to FIG. 27, the concentration ratio suggests
that when the liquidity indicator trading signal is “lit” at the
EDGA exchange, the probability of getting a larger propor-
tion of reserve orders is higher than at NASDAQ. Though
the absolute volume may be higher on NASDAQ, EDGA
may provide better fill rates when the liquidity indicator
trading signal is “lit”.

Furthermore, as users consider designing trading logic to
leverage the liquidity indicator trading signals, it is natural
to ask, “how long do we have to respond?” In this regard,
embodiments disclosed herein are capable of generating the
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liquidity indicator trading signals and delivering them syn-
chronously with normalized market data with virtually no
latency impact. If the liquidity indicator trading signals
exhibit a short duration that would require trading logic to
respond in microseconds, the value of liquidity indicator
trading signals might be limited to a small subset of high-
frequency and/or high-speed trading use cases. However, we
were surprised to find that the median duration of a given
liquidity indicator trading signal staying “high” was 14.8
seconds. While “first mover advantage” likely applies, this
time period opens the door for a wide variety of agency
execution and smart order routing (SOR) applications that
can leverage the liquidity indicator trading signals.

We have also found that the reserve orders detected by the
liquidity indicator trading signals can be effective signals of
large, natural traders in the marketplace.

Examples of use cases for the manners by which the
liquidity indicator trading signals can be advantageously
used include the following:

EXAMPLE USE CASE 1: Smart Order Router (SOR)
applications may use the hidden liquidity indications to
improve fill rates and execution quality by selectively
routing orders based on the detection of reserve orders
via the liquidity indicator trading signal. Accordingly,
the liquidity indicator trading signal enables more
aggressive slicing and routing strategies by identifying
opportunities to execute larger slices of orders at pre-
ferred venues. The aggressiveness of the algorithm may
be dynamically tuned using the hidden order execution
metrics—Tfor example, orders may be sliced more finely
as the executed hidden volume at the price approaches
the average reserve order size.

EXAMPLE USE CASE 2: Liquidity seeking algorithms
that target multiple levels of a price book can operate
more aggressively, with lower risk, if they operate
based on detection of and greater visibility into hidden
liquidity present at multiple price levels. This includes
visibility and tracking of hidden liquidity as the market
moves away from reserve orders before the full amount
is executed.

EXAMPLE USE CASE 3: Traders can use the presence
and execution of reserve orders as a proxy to gauge the
interest of natural investors and as a leading indicator
of price direction and momentum.

Further still, it should be understood that the liquidity
indicator trading signal can be computed for both the
bid-side and ask-side of an order book, in which case the
signal generate stage 2300 can generate bid liquidity indi-
cators and ask liquidity indicators. Moreover, the signal
generate stage 2300 can be configured to generate a fuller set
of liquidity indicator data that not only indicates the pres-
ence of a reserve order but also quantifies additional aspects
of the detected reserve order, such as detected volumes for
the reserve orders, detected fills for the reserve orders, etc.
These additional data values can be computed via aggrega-
tion from various fields of the message’s data fields (such as
size fields and the like). FIGS. 28A and 28B provide an
example list of trading signals that can be generated based
on the detection of reserve orders in a market data feed.

The liquidity indicator data set can be delivered as value-
added, normalized data fields via an interface such as a client
API. Upon detection of a reserve order, the signal generate
stage can set a Boolean value to true (e.g., “lighting the
liquidity lamp”). This Boolean value can remain true until
one of the following conditions renders the liquidity indi-
cator trading signal false: (1) the detected reserve order is
exhausted (at the top of the book) when either the quoted
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price changes inferiorly (a lower bid or higher ask), or (2)
the reserve order size is completely executed.

When a reserve order is detected, the liquidity indicator
trading signal tracks the order at the price book level, e.g.,
after detecting an iceberg order at $10.09 bid, a higher bid
subsequently arrives and pushes the iceberg order to the
second price book level. The liquidity indicator trading
signal tracks the iceberg indefinitely until either the order is
cancelled or it returns to the top of book where it can be
executed. Thus, a liquidity indicator trading signal can and
will be true at multiple levels, on both sides of the book,
allowing market participants to target multiple layers of
hidden liquidity. Furthermore, FIGS. 28A and 28B show
examples of additional contextual data that further quantifies
aspects of detected reserve orders. These fields can be
passed as outputs via a client API or the like.

Hidden Liquidity Size Estimation (Searchlight)

As discussed above, an example of an estimator trading
signal that can be generated by embodiments disclosed
herein is an estimate that is indicative of the size of a
detected reserve order, which can be referred to as a hidden
liquidity size estimation. Thus, if the purpose of the liquidity
indictor trading signal discussed above is to signal market
conditions that beget concentrations of execution activity,
then the hidden liquidity size estimation trading signal can
serve as a useful companion signal that enables customers to
respond to the liquidity indicator trading signal with high
efficacy and low risk.

As discussed above, FIG. 29A shows example processing
logic for computing an estimate of the size of a detected
reserve order. Al and ML techniques can be used for
computing such estimates, such as supervised learning as
shown in FIG. 29B to develop a model that estimates the
probability of a detected reserve order having a particular
size.

The first step in developing the model is to build a large
set of features that are likely to be correlated and predictive
of the target variable—the notional value of the reserve
order that has been detected, where the notional value
represents the estimated number of shares encompassed by
the reserve order multiplied by the subject price. The devel-
opment of these features can be based on knowledge of
financial markets and trading mechanics. For example, the
features used for computing the hidden liquidity size esti-
mation can represent a cumulative volume of reserve orders
for the financial instrument or a market for the order data
and/or a volume of orders executed as part of a currently
detected reserve order for the financial instrument. In this
regard, example features can include:

Moving average over a 2 minutes window of volume of
reserve order shares executed since the reserve order
was detected

Moving average over a 120 minutes window of volume of
reserve order shares executed since the reserve order
was detected

Moving average over a 5 days window of volume of
reserve order shares executed since the reserve order
was detected

Count of exchanges with reserve orders at the same price

Feature creation logic 2902 shown by FIG. 29 can be
configured to compute and/or extract these features from the
message data fields.

In this example of predicting reserve order size, accuracy
is assessed by whether or not the model correctly predicts
the notional values of the reserve orders. Rather than
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attempting to predict a specific notional value, this example
divides the range of possible notional values into ordered
sub-ranges. After evaluating the accuracy across each sub-
range, a partition point is selected between two sub-ranges
such that the sum of the accuracies for the sub-ranges on
either side of the partition are approximately balanced. This
allows the model to make a binary estimate of predicting
whether or not a detected reserve order is larger or smaller
in notional value than the value associated with the partition.

Example embodiments of the hidden liquidity size esti-
mation trading signal produce high accuracy (e.g., correct
predictions of liquidity pool size around 75-80% of the time)
with tight variances (e.g., around 2% standard deviation) for
the vast majority of symbols and across the venues where the
liquidity indicator trading signal is available.

Our studies have shown that reserve orders are not
dominated by huge trades as measured by share quantity, but
rather reserve orders are commonly used for trades with
quantities ranging from 100-500 shares. FIG. 30 shows the
frequency of reserve orders at each order size.

Thus, as indicated by FIG. 30, our aim to distinguish and
alert our customers of opportunities to engage with large
pools of liquidity would not be well served by a target
variable of an arbitrary “large quantity”, e.g. a 1000 share
prediction for a stock priced at $5.00 is materially different
from a stock priced in the $100’s. Thus, we concluded that
using the notional value of a reserve order would be more in
line with determining the size of liquidity pools available
rather than absolute quantities of shares. When exposing the
hidden liquidity size estimation trading signal via a client
API, we have the ability to supply data values that represent
the estimated notional value, estimated share count, or both,
as the hidden liquidity size estimation.

FIG. 31 shows the frequency of reserve orders executed
at notional value intervals. We observe that 81% of all
reserve orders have a notional value under $25,000. We also
see a dramatic drop off in the frequency of reserve orders
exceeding the $50,000 notional value interval. Our target
variable can be trained to distinguish the rare “Large”
liquidity pools from the “Small to Middle” (SMID) liquidity
pools. This partitions the notional value range, top third vs
bottom two thirds, according to the historically observed
reserve order values.

Our partitioning of the notional value range into the top
third and bottom two thirds permits the development of a
binary predictive model driven by machine learning tech-
niques as discussed above. This approach enables the hidden
liquidity size estimation signal to achieve consistently high
accuracy results. FIG. 32 breaks down the scoring of accu-
racy of the example embodiment for the hidden liquidity
size estimation trading signal discussed above by Overall,
Large (top third of notional value), and SMID (bottom two
thirds of notional value), where the hidden liquidity size
estimations were computed from a sample set of trading
activity over approximately one-month for the S&P 500 and
Russell 2000.

Based on these results, we observe the following:

Consistently High Accuracy: The ability of the hidden
liquidity size estimation trading signal to predict with
high precision for both Large and SMID liquidity pools
enables alpha-secking trading strategies to operate in
diverse market conditions.

Little Volatility in a Volatile Market: The hidden liquidity
size estimator was tested during days of low and high
market volatility, and it proves to remain highly pre-
dictive with a tight range of accuracy. The model’s
overall range of 4.2% had a peak to trough accuracy of
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80%-75.8%. This consistency was observed for pre-
dicting both Large and SMID liquidity pools.

High Opportunity with Low Risk: The hidden liquidity
size estimator does not suffer from seasonality due to
volatility in the marketplace as evidenced by the tight
standard deviation of only 1.9%. This allows alpha-
seeking trading strategies to minimize the risk of being
too conservative or too aggressive when targeting hid-
den liquidity pools.

We further note that the hidden liquidity size estimation
trading signal remains suitably consistent under the various
trading conditions that occur throughout a typical day. FIG.
33 plots the accuracy of the hidden liquidity size estimator
at 30 minute intervals throughout a typical trading day. FIG.
33 also plots the accuracy of predicting Large and SMID
liquidity pools independently. These plots are interposed on
the histogram of liquidity events (both Large and SMID) at
each 30 minute interval. This indicates that the accuracy of
the hidden liquidity size estimator remains consistent
through opening auctions, mid-day announcements, and
closing auctions. We expect this to reduce the complexity of
designing trading strategies that leverage the hidden liquid-
ity size estimation trading signal to interact with available
liquidity pools.

Quote Price Duration Estimation (Quote Fuse)

Another example of an estimator trading signal that can
be generated by embodiments disclosed herein is an estimate
that predicts when the current NBBO prices will change for
a symbol. This can be referred to as an estimation of quote
price duration or stability. In a first embodiment, price
duration can be defined as the elapsed time from the posting
of a new best price to a change in that price, regardless of
changes in the orders supporting that price level. In the case
of NBBO, price duration is also independent of changes in
the attribution of the best price (i.e., the exchange attributed
as setting that best price). The quote price duration estima-
tion trading signal can be referred to as a Quote Fuse signal,
and the Quote Fuse signal can predict if a quote (e.g., the
best price in the NMS for a US security) will change faster
(e.g., a “short fuse”) or slower (e.g., a “long fuse”) than a
defined threshold T (e.g., 2 milliseconds, 50 milliseconds,
other values, etc.) relative to the time that the quote was
posted. This price duration estimation can be computed in
real-time using a predictive model driven by supervised
machine learning techniques, and it can be delivered syn-
chronously with normalized market data as discussed above.

The model used for computing the price duration estima-
tion can be computed like that discussed above for FIG.
29A-B with respect to the hidden liquidity size estimator,
albeit with different features and weights. FIG. 13, discussed
above, shows an example of processing logic in this regard,
and the features used for quote price duration estimation can
be features that represent timing data for current quote price
durations and size data for order activity with respect to the
quote. In this regard, an example set of features for the price
duration estimation can include:

Time since the previous bid price change

Time since the previous offer price change

Difference between the current bid size and the maximum

bid size posted for the current bid price

Difference between the current offer size and the maxi-

mum offer size posted for the current offer price

Logarithm of the elapsed time since the most recent offer

price change that occurred during the current bid price
duration
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Logarithm of the elapsed time since the most recent bid
price change that occurred during the current offer price
duration

As discussed above for the hidden liquidity size estimator,
the supervised machine learning model for the price duration
estimate can use logistic regression, sampled training data
for a variety of market conditions where the data is labeled
with the measured price duration for each quote, regular-
ization (e.g., L1 and 1.2 regularization) to develop weights
for the model and achieve a suitably parsimonious model
(e.g., fewest number of features that yields near-optimal
predictive power and avoids over-fitting the model). Fur-
thermore, the model can be re-trained based on additional
training data that is labeled with the known price duration
for quotes to improve the performance accuracy of the
model over time.

An example embodiment of the Quote Fuse signal can
deliver a pair of probabilities—the probability of a short fuse
bid price and the probability of a short fuse offer price. It
should be understood that other example embodiments of
the Quote Fuse signal can deliver the probability of a long
fuse bid price and the probability of a long fuse offer price.
Still other combinations are possible. The probability of a
long fuse quote is simply the complement of the short fuse
quote—namely, one minus the short fuse probability.

We will now discuss the relationship between signal
accuracy and “opportunity capture” (which is also known as
recall). Signal accuracy is the percentage of predictions that
are correct, while opportunity capture is the percentage of
price durations in the market that are correctly predicted as
short or long fuse (see also FIG. 42 discussed below, where
the principles described below in connection with the Quote
Vector signal vis a vis the relationship between accuracy and
opportunity capture is also relevant to the Quote Fuse
signal). For example, consider a series of 40 quote price
updates, 10 of which are short fuse and 30 of which are long
fuse. Of the 10 short fuse quotes, assume the Quote Fuse
signal predicts six short fuse quotes. Of the 30 long fuse
quotes, assume the Quote Fuse signal predicts two short fuse
quotes. Accuracy and opportunity capture of short fuse
quotes for this example would be 80% (6 of 8) and 60% (6
of 10), respectively. Accuracy and opportunity capture of
long fuse quotes for this example would be 87.5% (28 0f32)
and 93% (28 of 30), respectively.

We also describe how applications can select a prediction
threshold to strike an optimal tradeoff among accuracy and
opportunity capture for a given use case. The prediction
threshold can be the lower limit of probability used to
predict a short fuse quote price. For example, an application
with a high tolerance for false positive predictions of short
fuse prices may choose a threshold that delivers an accuracy
of 53% (where 47% of predictions are false positives) and
allows it to correctly identify 41% of the short fuse prices
that occur in the market (over 500,000 opportunities in a
single trading day). Conversely, an application with a low
tolerance for false positive predictions of short fuse prices
can select a prediction threshold that delivers 72% accuracy,
but this allows it to correctly identify approximately 9% of
the short fuse prices that occur in the market (over 160,000
opportunities in a single trading day).

FIG. 49 shows an example embodiment where a quote
message contains bid and offer prices of $34.59 and $34.63,
respectively. The Quote Fuse probabilities generated by the
Features Generate and Estimate Generate stages produce
short fuse probabilities for the bid and offer prices of 34%
and 62%, respectively. The output normalized quote mes-
sage 4902 contains both the prices and short fuse estimates,
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and this message 4902 is delivered to two different users
(computer systems 4904 and 4906). User 1 chooses a short
fuse probability threshold of 60%. The User 1 trading
application compares the short fuse estimates in the normal-
ized quote message 4902 to its selected short fuse probabil-
ity threshold. The comparisons result in a prediction of a
short fuse offer price that will change sooner than the
specified target time. This signal is used by the trading logic
to make a trading decision prior to the predicted offer price
change. User 2 chooses a short fuse probability threshold of
33%. The User 2 trading application compares the short fuse
estimates in the normalized quote message to its selected
short fuse probability threshold. The comparisons result in a
prediction of a short fuse bid price and a short fuse offer
price that will change sooner than the specified target time.
These signals are used by the trading logic to make a trading
decision prior to the offer price changes.

Long fuse accuracy and opportunity capture are far less
sensitive to the selection of a prediction threshold. For the
full range of prediction thresholds that we studied, accuracy
ranges from 73% to 82% and opportunity capture ranges
from 68% to 99% (3.4 to 4.5 million opportunities in a single
trading day). For applications able to leverage from reliable
predictions of stable prices, the Quote Fuse signal delivers
unprecedented accuracy and millions of opportunities per
trading day to profit.

We have designed an example embodiment for the Quote
Fuse signal to serve as an optimizing input to market
makers, execution algorithms, smart order routers, and order
management systems. We envision multiple scenarios where
the ability to assess the duration of NBBO prices can be
leveraged for better trading results:

Matching—Optimize matching engine performance with
aproactive view of route-away requirements and future
movements of mid-point pricing in dark pools and
alternative trading systems (ATSs)

Sweeping—FEnable aggressive execution strategies that
minimize market impact by selecting either dark or lit
venues based on the stability of NBBO pricing.

Posting—FEnable discretionary order types that protect
passive orders from unfavorable price movements and
seize price improvement opportunities when available.

Routing—Maximize fill rates by differentiating prices as
stable or stale.

Furthermore, while the Quote Fuse signal shares similari-
ties to other known techniques of identifying unstable NMS
prices, these are important differences and advantages that
the example embodiments of the Quote Fuse signal
described herein provide relative to such conventional tech-
niques of identifying unstable NMS prices due to its low
latency/high  throughput MIL-based design. Notable
examples of such distinctions include:

The Quote Fuse signal can deliver equivalent accuracy on

both “crumbling” and “improving” price changes.

The Quote Fuse signal can deliver probabilities on every
NBBO price change, rather than firing Boolean signals
on just a subset of NBBO price changes.

The Quote Fuse signal can be made directly available to
user applications (rather than enabling specific order
types on a single market)

The Quote Fuse signal can be generated from proprietary
(direct) exchange feeds or the Securities Information
Processor (SIP) feeds, enabling users to minimize
associated market data fees from exchanges. For
example, as disclosed in the above-referenced and
incorporated patents, hardware-accelerated logic can
synthesize quote data from direct market data feeds for
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each protected market in the NMS. This quote synthesis
can deliver a faster view of the NBBO relative to SIP
feeds by reducing data propagation delays and perform-
ing NBBO computations via hardware-acceleration.

We have found from an analysis of NBBO price durations
for major US stock indexes, the S&P 500 and Russell 2000,
as well as a selection of major Exchange Traded Funds
(ETFs) that price duration consistently has a bimodal dis-
tribution. FIG. 34A shows the distribution of National Best
Bid prices for studied set of securities on a particular trading
day. This bimodal distribution has a median 99.5 millisec-
onds. In addition to the consistent bimodal distribution, we
also noted a consistent cluster of price durations around 20
milliseconds. To gain a better understanding of this artifact,
we partitioned the data based on the exchange attributed as
setting the National Best price. The per-exchange distribu-
tions are shown in FIG. 34B.

A practitioner has a number of options for setting the
defined threshold T that defines the length of the “fuse”. For
example, an example embodiment for the Quote Fuse signal
can be configured to predict if a new quote price would have
a price duration shorter (short fuse) or longer (long fuse)
than the median of the applicable bimodal distribution. Such
an embodiment can employ a binary model with a fixed
prediction threshold of 50%. At the instance of a price
change, if the probability was greater than 50% that the price
duration would be shorter than the median, then the model
predicts a short fuse. We found that such a model correctly
predicted the price duration of quotes, either short fuse or
long fuse, 66% of the time. Over the study period, the
accuracy ranged from 65.5% to 66.7% with a standard
deviation of only 0.4%. This level of accuracy remained
stable as the time between the training data set and target
data set increased. The short fuse signal fired on 45.4% of
the price changes, resulting in an opportunity capture of
30.64% of the short fuse quote instances.

However, some users may desire a Quote Fuse signal that
exhibits more consistency of the median price duration
across symbols, markets, and time. To facilitate this, we
quantified the range of movement of the median price
duration across these factors. After exploring solutions to
this issue, for another example embodiment of the Quote
Fuse signal, we selected a fixed time point as the boundary
between short fuse and long fuse price durations. This
removes variability in the meaning of the signal and allows
users to more easily design applications and trading infra-
structure to take advantage of it. Data propagation delays are
generally consistent, thus the fixed boundary approach pro-
vides applications with a consistent window of time to
respond to the Quote Fuse signal.

We then selected a boundary point to maximize the utility
of the Quote Fuse signal. First, we considered the data
propagation delays between the data centers that host the US
securities exchanges that comprise the NMS. Depending on
networking technology, the propagation delays between data
centers range from 100 to 500 microseconds. Round trip
time (RTT) is at least double that. Assuming that most “fast”
algorithmic trading applications will respond to new prices
in less than one millisecond suggests that the boundary
between short and long price durations be set at two milli-
seconds or less. In the description below, we consider use
cases where lower boundary points (e.g. 200 microseconds
or lower) may have utility.

For exchanges that exhibit odd price duration behavior for
time periods (e.g., a study has shown that the Nasdaq PSX
and Chicago Stock Exchange may exhibit odd price duration
behavior that is concentrated between 10 and 20 millisec-
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onds—see FIG. 34B). In order to insulate the Quote Fuse
signal from these market dynamics, the boundary should not
be set in this time range.

Setting the boundary at two milliseconds results in
approximately one third of the observed NMS quotes being
defined as short fuse with the remaining two thirds defined
as long fuse. FIG. 35A shows the price duration distribution
in grey (3500) with a two millisecond boundary shown as a
vertical divider. It also shows the correct predictions (oppor-
tunity capture) in blue (3502) when using this boundary
definition and a prediction threshold of 50%. In our descrip-
tion below, we elaborate on the selection of a prediction
threshold and its impact on signal frequency, accuracy, and
opportunity capture.

First, we walk through a potential use case to illustrate the
potential power of the Quote Fuse signal—where the use
case involves maximizing fill rates by identifying stale
quotes. One challenge faced by a number of agency execu-
tion businesses is the issue of “stale” quote prices. We define
“stale” to mean new NBBO prices that the executing broker
would not be able to capture if they sent an order to
exchange(s) with the posted best price. The order(s) setting
the price are modified or canceled before an order from the
broker is executed against them.

When a new NBBO price is posted, the Quote Fuse signal
delivers a new set of probabilities that the bid and offer
prices are short fuse quotes. As described below, the broker
algorithm can select a prediction threshold that strikes the
right balance of accuracy and false positives. A conservative
algorithm may choose a low prediction threshold of 34%.
This selection allows it to correctly identity 54% of the short
fuse quotes that it would not be able to capture, significantly
improving its fill rates and overall execution quality. This
selection also allows it to correctly identify 76% of the long
fuse quotes. We note that the high degree of long fuse quote
accuracy may be particularly valuable as it allows a trading
algorithm to act immediately on those prices with a high
degree of confidence that the posted prices are stable. In this
regard, the Quote Fuse signal can further improve execution
qualify by removing other less reliable mechanisms for
defending against stale quotes.

Optimizing fill rates of agency execution algorithms is
just one example of a use case for the Quote Fuse signal. As
noted above, an example embodiment of the Quote Fuse
signal can deliver a pair of probabilities—the probability of
a short fuse bid price and the probability of a short fuse offer
price. Users can determine if a price is predicted to be short
or long fuse by comparing a probability value to a chosen
threshold. For example, if the application chooses a predic-
tion threshold value of 32% and the short fuse probability is
25%, then the prediction is a long fuse price. Assume that the
new short fuse probability triggered by the next price update
is 43%. The prediction now is a short fuse price. Note that
the probability values for the bid and offer prices are
independent. Applications can select unique thresholds for
bid and offer predictions if their use case benefits from this
approach.

Selection of a prediction threshold determines the accu-
racy (percentage of predictions that are correct) and oppor-
tunity capture (the percentage of price changes that are
correctly predicted as short or long fuse). As reflected in
FIG. 35B (which shows accuracy, opportunity capture, and
median observed price durations for trading activity from a
particular trading day for a wide range of prediction thresh-
old values, where the defined threshold T is 2 milliseconds),
accuracy increases as the prediction threshold is raised. A
prediction threshold of 70% delivers an accuracy of over
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72% for short and long fuse quotes. As accuracy increases,
opportunity capture decreases. If a user desires increased
certainty that a short fuse prediction is correct, then the
number of short fuse predictions shrinks.

As noted, the probability of a long fuse price is the
complement of the short fuse probability. Raising the pre-
diction threshold for short fuse predictions increases the
accuracy of short fuse predictions and decreases the accu-
racy of long fuse predictions. Note from FIG. 35B that the
accuracy of short fuse predictions leads the prediction
threshold by 11% to 15%. For the 40% range of prediction
thresholds, there is a concomitant 52.7% range in short fuse
prediction accuracy. For long fuse predictions, the accuracy
range is much tighter at <10%. This reduced sensitivity to
the prediction threshold is because approximately 72% of
the events (quote price durations) are defined as long fuse
(longer than two milliseconds). This allows applications to
dial-in the desired accuracy and concomitant opportunity
capture for short fuse predictions with less impact to the
accuracy and opportunity capture for long fuse predictions.

The false positive rate is the complement of accuracy.
Note the relationship between false positive predictions and
opportunity capture shown by FIG. 35B. As applications
decrease the prediction threshold in order to increase oppor-
tunity capture, false positive rates also increase. Applica-
tions seeking to take advantage of additional opportunity
will thus need to tolerate a larger number of false positive
predictions.

FIG. 36 shows the price duration distribution in grey
(3600) and the correct predictions in blue (3602) for an
example where the prediction threshold is increased from
50% to 68%. When compared to FIG. 35A at the 50%
prediction threshold, we note a number of substantial dif-
ferences:

Opportunity capture for short fuse quotes has decreased

by 16.9 to 9.0% of quotes

False positive predictions of short fuse quotes (the portion
of the distribution 3600 to the right of the two milli-
second partition) has decreased by 11.61% (comple-
mentary to the increase in accuracy)

Opportunity capture for long fuse quotes has only
increased by 5.55% to a near-perfect 98.65%

False positive predictions of long fuse quotes (the visible
portion of the distribution 3600 to the left of the two
millisecond partition) has also increased by 2.84%

Increasing the prediction threshold to 68% results in a
short fuse accuracy of approximately 72%, however only
3.6% of events exceed the threshold. This allows an appli-
cation to leverage a correct prediction of a short fuse quote
on 9.0% of the quotes (opportunity capture). By identifying
prices that may not be captured by sending orders to public
markets, this may represent a meaningful edge to improve
fill rates and increase price improvement rates for execution
algorithms and matching engines in ATSs and dark pools.

Decreasing the prediction threshold increases opportunity
capture for short fuse quotes, but also increases the false
positive predictions. When the prediction threshold is
reduced to 32% (see FIG. 37), the results approximate a
random guess as to whether or not a new NMS quote price
will have a short or long fuse. Accuracy is approximately
50% (and thus, so is the false positive rate) and opportunity
capture is approximately 25%. This scenario is represented
in FIG. 37.

A benefit of Quote Fuse signal is its ability to predict the
duration of NBBO quote prices regardless of the direction of
the next tick. It is conceptually easier to envision a machine
learning algorithm predicting a price degradation, or a
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“crumbling quote”. For example, a National Best Bid price
only degrades (or crumbles) when all of the available
liquidity at all NMS markets at that price is taken (or
canceled). When this occurs, the next best price at one or
more markets sets the new National Best Bid. Prior to this
occurring, the algorithm is able to observe the taking or
canceling of liquidity at the markets supporting the National
Best Bed price.

Conversely, it only requires a single order submitted to a
single NMS market to improve an NBBO price. This is
conceptually more difficult to predict. Two market dynamics
that makes prediction possible are momentum and consis-
tency of the spread between the bid and offer. The machine
learning algorithm employed to compute the Quote Fuse
signal is able to leverage these market dynamics, among
others, to predict price improvements just as accurately as
“crumbles.” FIG. 38 provides accuracy metrics for short and
long fuse predictions for each permutation of bid and offer
tick direction.

In an example embodiment, a change in NBBO price can
trigger the generation of a new Quote Fuse signal event that
provides short fuse probabilities for the bid and offer prices.
In addition, the Quote Fuse signal event can include the
following fields that enable users to correlate the signal to
real-time market data: Symbol (the unique identifier for the
security), Reference Feed Sequence Number (the sequence
number of the event from the feed that triggered the update
to the NBBO price), and Reference Feed Identifier (the
unique identifier of the feed that triggered the update to the
NBBO price).

As another example for choosing a value for the defined
threshold T, we note that a value of 50 milliseconds can be
useful. Our research shows that approximately two-thirds of
the daily volume traded in US equities occurs during the 50
millisecond prelude to an NBBO price change. This is
shown by FIG. 39 which plots the percentage of traded
volume in US equities versus the time at which the trades
occur (measured as the time until the next change in NBBO
price). Note that the x-axis in FIG. 39 is logarithmic.

FIG. 39 answers the question, “what % of trades occur
during the prelude to an NBBO price change™? The dashed
vertical line in FIG. 39 is the 50-millisecond prelude that
defines the target of the Quote Fuse prediction. As shown in
FIG. 39, 66% of the Traded Volume occurs in the 50-mil-
lisecond prelude to an NBBO price change.

The solid vertical line in FIG. 39 is the median duration
of the Quote Fuse signal when a 50% accuracy threshold is
selected by the user. This is the time measured from when
the Quote Fuse probability exceeds a 50% accuracy thresh-
old (i.e. the signal “fires”) and the next NBBO price change.
We view this median duration as the typical reaction time for
users to perform an action triggered by the Quote Fuse
signal. As shown in FIG. 39, the median duration for a 50%
accuracy threshold is 785 microseconds. Approximately
40% of the Traded Volume occurs in the median duration
prelude to an NBBO price change.

Consider the data propagation delays between the data
centers that host the US securities exchanges that comprise
the National Market System (NMS). Depending on network-
ing technology, the propagation delays between data centers
range from 92 to 181 microseconds (through fiber). Round
trip time is at least double that, meaning it is desirable to
give customers at least 400 microseconds to react to short-
fuse predictions. A selection of a 50 millisecond target
accomplishes this goal.

Furthermore, new Quote Fuse signals can be delivered
with every normalized quote event. FIG. 40A shows an
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example price series for successive quote events coordinated
with the Quote Fuse signal where the user has selected 55%
as the prediction threshold for short fuse price changes. For
FIG. 40A, the Quote Fuse signal will thus “fire” when the
Quote Fuse probability crosses the user-selected prediction
threshold. The first instance of a probability crossing the
user-selected prediction threshold is the “first fire” instance
in FIG. 40A.

In the example of FIG. 40A, we begin with an NBBO
quote 1 of 500 shares bid at $10.02 and 300 shares offered
at $10.04. At the time this quote was delivered, the Quote
Fuse probabilities of the next price change for the bid and
offer occurring in less than 50 milliseconds are 53% and
31%, respectively. Again, these probability values can be
delivered synchronously with the normalized quote event
fields via a Client API. The time to compute these Quote
Fuse probabilities adds less than a microsecond to the
normalization and distribution latency of the quote event.

As noted, for this example, we assume that the user has
selected 55% as the threshold for imminent (short-fuse)
price predictions. By extension, any probability values
below the 55% threshold predict stable prices that will not
change within the next 50 milliseconds. For Quote 1, the
Quote Fuse probabilities for the NBB and NBO do not cross
the thresholds for next price change predictions, and indeed
the quote prices remain stable for 1.3 seconds until the next
quote event arrives.

The next NBBO quote 2 for this instrument increases the
number of shares bid to 700. Note that NBB and NBO prices
have not changed, but both bid and offer Quote Fuse
probabilities are updated to 71% and 43%, respectively. In
this intuitive example, increased support for the NBB price
increases the probability that more buyers will arrive with
equal or better bids. The new Quote Fuse probability for the
NBB exceeds the user-selected threshold, thus a “short-
fuse” signal fires for the first time—the “first fire” instance
in FIG. 40A. Note that in our performance analysis of Quote
Fuse, we include metrics for the first fire accuracy (see FIG.
40C). We expect that many algorithms will take decisive
action on the first signal of an imminent price change.

The next NBBO quote 3 presents a price change for the
NBB to $10.03, but no price change for the NBO. In this
example, Quote Fuse correctly predicted that the next NBB
price change would occur in less than 50 milliseconds (as
quote 3 arrives 34 milliseconds after quote 2). With this new
quote come new Quote Fuse probabilities of 39% and 57%
for the NBB and NBO, respectively. Again, for the sake of
intuition, this example shows that since the NBB price
changed, as of this quote, the probability that the next NBB
price change will be in less than 50 milliseconds is reduced
until more data arrives to predict the next change. The Quote
Fuse probability for NBO has increased, however, showing
that the model predicts the offer price to change as a result
of the rising bid price.

The example of FIG. 40A continues on to show a subse-
quent quote that only updates sizes, but results in a new
Quote Fuse probability for the NBO that exceeds the user-
selected threshold and fires a short-fuse prediction. That
prediction is strengthened by a subsequent quote 4 that
arrives just 0.8 milliseconds ahead of the NBO price change.

As a final note on this example, we refer to the sequence
of quotes that retain the current price, but update the size and
attribution (i.e. venue setting the best price) as a price series.
A price series ends when the price changes. We treat the
NBB and NBO independently, such that a quote that changes
the NBO price but retains the current NBB price begins a
new NBO price series and continues the current NBB price
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series. As mentioned above, the Quote Fuse probabilities for
both the NBB and NBO are updated with every quote. In
general, the accuracies of the Quote Fuse probabilities
improve with each quote that is added to a price series. The
new information delivered with each quote, e.g. adding
share size to the NBO, provides the underlying machine
learning model with more fuel to generate an accurate
prediction.

As reflected by FIGS. 40B and 40C, accuracy increases as
the prediction threshold is raised. A prediction threshold of
70% (and a defined threshold T of 500 milliseconds) delivers
an accuracy 74.8% for short fuse quotes and 90.8% for
long-fuse quotes. As accuracy increases, opportunity capture
decreases. If a user desires increased certainty that a short-
fuse prediction is correct, then the number of short-fuse
predictions shrinks.

Note that the probability of a long-fuse price is the
complement of the short-fuse probability. Raising the pre-
diction threshold for short-fuse predictions increases the
accuracy of short-fuse predictions and decreases the accu-
racy of long-fuse predictions. FIGS. 40B and 40C present
the accuracy and opportunity capture metrics for a wide
range of prediction threshold values in two perspectives;
“Overall” metrics is inclusive of every quote prediction
whereas “First Fire” are metrics derived from only the first
quotes to meet or exceed the threshold per price series.

Note, there is no opportunity capture metric for First Fire
since the numerator and denominator would equal. The
denominator would equal the population of the first quote in
a price series that exceeded the threshold and were less than
50 milliseconds from a price change (which equals the
numerator). Notice that the accuracy of short-fuse predic-
tions leads the prediction threshold at every threshold where
the delta of accuracy minus threshold shrinks as the thresh-
old increases. The false positive rate is the complement of
accuracy. Note the relationship between false positive pre-
dictions and opportunity capture. As applications decrease
the prediction threshold in order to increase opportunity
capture, false positive rates also increase. Applications seek-
ing to take advantage of additional opportunity will need to
tolerate a larger number of false positive predictions.

Quote Price Direction Estimation (Quote Vector)

Another example of an estimator trading signal that can
be generated by embodiments disclosed herein is an estimate
that predicts the direction of the next price change of the
NBBO for a security. This quote price direction estimation
trading signal can be referred to as a Quote Vector signal.

Thus, when paired with the Quote Fuse signal discussed
above, not only can example embodiments predict a dura-
tion for the current price (via the Quote Fuse signal), but
example embodiments can also predict whether the next
price for the subject quote will be up or down (via the Quote
Vector signal). Furthermore, example embodiments can pre-
dict the next price direction for every quote for a listed
security, which means that embodiments can provide over
500 million Quote Vector signals per trading day without
impeding the flow of market data to consumers.

The quote price direction estimation can be computed in
real-time using a predictive model driven by supervised
machine learning techniques, and it can be delivered syn-
chronously with normalized market data as discussed above.

The model used for computing the price direction esti-
mation can be computed like that discussed above for FIGS.
29A-B with respect to the hidden liquidity size estimator,
albeit with different features and weights. FIG. 13, discussed
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above, shows an example of processing logic in this regard,
and the features used for quote price direction estimation can
be features that represent (1) previous direction changes in
price for the quote, and (2) indications of updates to the
quote since a most recent price change for the quote. In this
regard, an example set of features for the price direction
estimation can include:

For the bid price estimator, the direction of the most

recent bid price change: —1=down, O=no change, 1=up

For the offer price estimator, the direction of the most

recent offer price change: —1=down, 0=no change,
1=up

For the bid price estimator, the direction of the second

most recent bid price change: —1=down, 0=no change,
1=up

For the offer price estimator, the direction of the second

most recent offer price change: —1=down, O=no change,
1=up

For the bid price estimator, the direction of the most

recent offer price change: —1=down, 0=no change,
1=up

For the offer price estimator, the direction of the most

recent bid price change: —1=down, O=no change, 1=up

For the bid price estimator, the direction of the second

most recent offer price change: —1=down, O=no change,
1=up

For the offer price estimator, the direction of the second

most recent bid price change: —1=down, 0=no change,
1=up

For the bid price estimator, the count of the number of bid

quote updates since the most recent price change

For the offer price estimator, the count of the number of

offer quote updates since the most recent price change

As discussed above for the hidden liquidity size estimator
and the price duration estimator, the supervised machine
learning model for the price direction estimate can use
logistic regression, sampled training data for a variety of
market conditions where each quote event is labeled with the
known direction of change for the bid and offer prices,
regularization (e.g., L1 and [.2 regularization) to develop
weights for the model and achieve a suitably parsimonious
model (e.g., fewest number of features that yields near-
optimal predictive power and avoids over-fitting the model).
Furthermore, the model can be re-trained based on addi-
tional training data that is labeled with the known price
directions for quotes to improve the performance accuracy
of the model over time.

With an example embodiment, a trading application can
choose a probability threshold that controls when the Quote
Vector signal is “fired”—when a directional prediction is
made because the probability is greater than the chosen
threshold value. The description below provides an analysis
of prediction accuracy that highlights how an application
developer can manage the tradeoffs between signal accuracy
and frequency.

For the Quote Vector signal, the “signals” delivered with
every new NBBO quote event can be two probability values:
the probability that the next change to the bid price will be
up and the probability that the next change to the offer price
will be up. It should be understood that other example
embodiments of the Quote Vector signal can deliver the
probability that a next change to the bid price will be down
and the probability that a nest change to the offer price will
be down. Still other combinations are possible. The prob-
abilities that the next change to the prices will be down are
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simply the complement of the “up” probabilities. Note that
these probability values change, even when the bid and offer
price do not change.

For example, FIG. 41 shows an example of Quote Vector
signaling where the user has selected 70% as the threshold
for predicting up price changes. By extension, the threshold
for predicting down price changes is 30%, and the Quote
Vector signal “fires” when the probability crosses the user-
selected threshold.

In the example of FIG. 41, we begin with an NBBO quote
1 of 500 shares bid at $10.02 and 300 shares offered at
$10.04. At the time this quote was delivered, the Quote
Vector signal probabilities of the next price change being up
for the bid and offer are 63% and 25%, respectively. Again,
these probability values can delivered synchronously with
the normalized quote event fields via a client APIL. The time
to compute these Quote Vector signal probabilities adds less
than a microsecond to the normalization and distribution
latency of the quote event.

As noted above, for this example, we assume that the user
has selected 70% as the threshold for up price predictions
(which translates to a threshold of 30% for predicting down
price changes). For Quote 1, the Quote Vector probabilities
for the NBB and NBO do not cross the thresholds for next
price change predictions.

The next NBBO Quote 2 for this instrument increases the
number of shares bid to 700. Note that NBB and NBO prices
have not changed, but both bid and offer Quote Vector
probabilities are updated to 71% and 31%, respectively. In
this intuitive example, increased support for the NBB price
increases the probability that more buyers will arrive with
equal or better bids. If (or when) the bid price moves, it is
likely that the consistency of the spread will be maintained,
and the offer price will likewise increase (but perhaps not on
the next price changing NBBO quote event). The new Quote
Vector probability for the NBB exceeds the user-selected
threshold, thus an up-prediction signal fires, as indicated by
FIG. 41.

The next NBBO Quote 3 presents a price change for the
NBB to $10.03, but no price change for the NBO. In this
example, the Quote Vector signal correctly predicted that the
next NBB price change would be up. With this new quote
come new Quote Vector probabilities of 39% and 57% for
the NBB and NBO, respectively. Again, for the sake of
intuition, this example shows that since the NBB price
changed, as of this quote, the probability that the next NBB
price change will be up is reduced until more data arrives to
predict the next change. The Quote Vector probability for
NBO has increased, however, showing that the model pre-
dicts the offer price to increase as a result of the rising bid
price.

The example continues on to show a subsequent quote
that only updates sizes, but results in a new Quote Vector
probability for the NBO that exceeds the user-selected
threshold and fires and up price change prediction, as shown
by FIG. 41.

As a final note on this example, we refer to the sequence
of quotes that retain the current price, but update the size and
attribution (i.e. venue setting the best price) as a “price
series”. A price series ends when the price changes. We treat
the NBB and NBO independently, such that a quote that
changes the NBO price but retains the current NBB price
begins a new NBO price series and continues the current
NBB price series. As mentioned above, the Quote Vector
probabilities for both the NBB and NBO are updated with
every quote. In general, the accuracies of the Quote Vector
probabilities improve with each quote that is added to a price
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series. The new information delivered with each quote, e.g.
adding share size to the NBO, provides the underlying
machine learning model with more fuel to generate an
accurate prediction.

FIG. 50 provides another example embodiment where a
quote message contains bid and offer prices of $34.59 and
$34.63, respectively. The Quote Vector probabilities gener-
ated by the Features Generate and Estimate Generate stages
produce up tick probabilities for the bid and offer prices of
41% and 52%, respectively. In this example, the down tick
probabilities are the complement of the up tick probabilities,
resulting in bid and offer down tick probabilities of 59% and
48%, respectively. The output normalized quote message
5002 contains both the prices and up tick estimates, and this
message 5002 is delivered to two different users (computer
systems 5004 and 5006). User 1 chooses a prediction
probability threshold of 51%. The User 1 trading application
compares the up tick and complementary down tick esti-
mates in the normalized quote message to its selected
prediction probability threshold. The comparisons result in a
prediction of the next bid price being a down tick and the
next offer price being an up tick—i.e. a widening spread.
These signals are used by the trading logic to make a trading
decision prior to the predicted offer price change. User 2
chooses a prediction probability threshold of 70%. The User
2 trading application compares the up tick and complemen-
tary down tick estimates in the normalized quote message to
its selected prediction probability threshold. The compari-
sons results in no prediction—i.e. a signal does not “fire” for
either the bid or offer price. Note that the trading logic may
make a trading decision without incorporating a directional
prediction of quote price movement.

We will now explore the performance of an example
embodiment of the Quote Vector signal. To facilitate this
analysis, we define the following terms:

Accuracy: Quote Vector accuracy refers to the proportion
of correct predictions relative to the total number of
predictions. That is, when the Quote Vector signal
“fires” (because the probability is above the chosen
threshold), what percentage of the “fires” were correct?

Opportunity Capture: Quote Vector opportunity capture
refers to the proportion of events that were correctly
predicted (given a chosen threshold). That is, how
many of the up-price changes were predicted to be up?

Response Time: Quote Vector response time refers to the
median amount of time from a prediction (the Quote
Vector signal “firing”) until the next price change event
occurs.

FIG. 42 provides a visual guide to these definitions. All
the dots shown by FIG. 42 represent quote events; the dots
in the box of FIG. 42 to the left of dividing line 4200 are true
events (up price changes), while dots to the right of dividing
line 4200 represent false events (down price changes). The
circle 4202 represents predictions of up price changes
(where the probability exceeded the chosen threshold). FIG.
42 shows that 7 dots are correct predictions (of up price
changes—see the 7 dots within circle 4202 to the left of line
4200), whereas there are 3 dots that represent wrong pre-
dictions (the 3 dots within circle 4202 to the right of line
4200).

In this example, the accuracy is 70.0%-7 out of 10
predictions are correct. The opportunity capture is 63.6%-7
out of 11 up price changes were correctly predicted. Note
that quotes with up price changes are to the left of line 4200,
and there are 4 missed opportunities to the left of line 4200
that fall outside circle 4202.
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To gain an intuition about the impact of the chosen
threshold, imagine the size of the circle 4202 shrinking as
the threshold increases. As a result, the number of dots that
fall inside the prediction circle 4202 is reduced. This results
in higher accuracy but fewer opportunities to use correct
predictions. Tuning the balance between accuracy and
opportunity capture is a primary point of customization and
control for application developers.

The Quote Vector signal’s performance metrics are best
understood from the perspective of “improving” vs “crum-
bling” quotes rather than “up” or “down” quotes. Crumbling
quotes are price changes which move away from the mid-
point or expand the spread (bid price down or offer price up)
whereas improving quotes are the inverse, price changing
quotes that collapse the spread or move towards the mid-
point (bid up or offer down). Instead of, “did the quote
correctly predict an up or down move” we ask, “did the
model correctly predict a quote moving towards the mid-
point or away from the midpoint”. The mechanical proper-
ties of a crumbling quote are the same whether it’s a bid or
offer quote; the total number of displayed shares must be
eroded before the next price level becomes the new best
price. Although the mechanics are the same, the direction of
the move is opposite for the bid and the offer. An improving
quote likewise has opposite directional moves (bid up and
offer down) but the mechanics are the same; it takes just one
market participant to cut the spread or take out an entire
price level. FIG. 43 explains three metrics and the charac-
teristics we can derive from the viewpoint.

In this regard, FIG. 43 shows our three primary perfor-
mance metrics using sample trading data from dates with
both volatile and nonvolatile days from December 2018
through February 2019. For reference, FIG. 43 also provides
the Cboe Volatility Index (VIX) for each test day. FIG. 43
show metrics for a 50% threshold.

FIG. 43 shows that accuracy and opportunity capture
results are incredibly consistency across all test days regard-
less of volatility (VIX). The average accuracy of 66.7%
when quotes are improving has a standard deviation of
0.6%. The miniscule variability in the day-to-day accuracies
and opportunity capture allows applications to use the Quote
Vector signal with a high degree of confidence in all market
conditions.

We note that FIG. 43 also shows that accuracies for
“Improving” quotes are consistently higher than the “crum-
bling” quotes by 4%-8%. Also, the opportunity capture for
improving quotes is significantly higher than that for crum-
bling quotes—78.1% for improving versus 46.6% for crum-
bling. The differences are attributed to features of the Quote
Vector machine learning model that measure the tendency of
quotes to resume their normal spread after undergoing
expansion and compression. It should be appreciated that the
flexibility provided by the machine learning model for
computing the Quote Vector signal enables a practitioner to
track and update the Quote Vector machine learning model
as the efficacy of individual features strengthens and weak-
ens. Furthermore, the ability to track and quantify the
performance of the features and weights used for the
machine learning model over time also provides a benefit in
that it allows a practitioner to support customers who may be
subject to order handling disclosures to regulators. In this
regard, the Quote Vector signal (as well as other trading
signals discussed herein) can be useful for execution algo-
rithms and matching engines in addition to market making
and proprietary trading strategies.

The response time (measured in microseconds, is) results
provide further insight into the dynamics of underlying
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features. Notice that the response times for crumbling quotes
are much faster than those for improving quotes. A plausible
explanation is the erosion of displayed liquidity speeds up
during the final moments of the price series. In contrast, an
improving price that cuts into the spread (perhaps chasing
the opposite side price change) is slower in responsiveness.
Another explanation of the Quote Vector signal’s tendencies
to call more “improving” quotes is simply because there are
more of them. FIG. 44 plots the relationship of average
spread to proportion of improving to crumbling quotes for
tickers with greater than 1000 quotes, and it illustrates a
positive linear relationship of individual security’s spread to
the proportion of “improving quotes”. FIG. 44 shows that as
spreads widen (x axis) for stocks (dots) the proportion of
quotes that cut the spread (“improving”) increases.

We expect the accuracy of the Quote Vector signal will
improve with price series position (i.e. as we approach the
point in time when the price changes), and our analysis
indicates that the final quartile of the price series position has
both the highest number of accurate predictions and there is
increasing accuracy with price series position.

The Quote Vector signal’s ability to predict the direction
of the next price change of the NBBO has value to a wide
variety of use cases. For example, the Quote Vector signal
can be used to improve the price of every trade from the
perspective of both liquidity providers and liquidity takers.
Liquidity providers can use the Quote Vector signal to
decide to post now at the best price (as the price will degrade
on the next change) or to post (or wait to post, depending on
your strategy) at the next (better) price (as the price will
improve on the next change). Liquidity takers can use the
Quote Vector signal to decide to take now at the best price
(as the price will degrade on the next change) or to wait to
take at the next (better) price (as the price will improve on
the next change).

We define the sum of the traded value of all price
improvements to be the Net Price Improvement (NPI), or
“purse” for short. Our analysis shows that the daily value of
the purse for US listed equities over the past two years
ranges from $6.5 million to $14.2 million. Over the past 12
months, the total purse is over $2.3 billion. This represents
an enormous opportunity for improved trading that can be
aided by the Quote Vector signal. FIG. 45 provides examples
that demonstrate how we can determine the contribution to
NPI for a given trade.

The assumptions underlying FIG. 45 include the follow-
ing: (1) available liquidity at NBB or NBO price exceeds
trade size, (2) we do not consider market impact, queue
positioning, or market data latency, and (3) assume trading
application selects a 50% threshold for Quote Vector signal
predictions.

Example 1 from FIG. 45 represents a rising price where
the trade under consideration is 100 shares at the offer price
of $10.39. For this example:

The probability of the offer price rising is 54.4%, thus the

Quote Vector signal fires an up price prediction.
Quote Vector’s correct prediction of a rising offer price
benefits both the liquidity taker and provider.
The liquidity taker should take before the price rises
The liquidity provider should wait to post at the next
(better) price.

The next offer rises $0.04 to $10.43, thus the prediction

was correct.

Acting on this correct prediction by the Quote Vector

signal causes a positive credit to the purse of:
$4.00=volumexA quote.
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Example 2 from FIG. 45 represents a falling price where
the trade under consideration is 2000 shares at the offer price
of $10.41.

The probability of the offer price falling is 59.6%
(1-40.4%), thus the Quote Vector signal fires a down
price prediction.

Quote Vector’s prediction of a falling offer price benefits
both the liquidity taker and provider.

The liquidity taker should wait for a lower price.

The liquidity provider should stay their order at the
current price or post now.

The next offer falls $0.01 to $10.40, thus the prediction
was correct.

Acting on this correct prediction causes a positive credit
to the purse of: $20.00=volumexA quote.

Example 3 from FIG. 45 represents an incorrect predic-
tion, where the trade under consideration is 1500 shares at
the offer price of $10.45.

The probability of the offer price rising is 57.8%, thus the

Quote Vector signal fires an up price prediction.

Quote Vector’s prediction of a rising offer price negatively
impacts both the liquidity taker and provider.

The liquidity taker should have waited for a lower
price.

The liquidity provider should have stayed their order at
the current price or posted at the $10.44.

The next offer price falls $0.01 to $10.44, thus the
prediction was incorrect.

Acting on this incorrect prediction causes a negative
credit to the purse of: —$15.00=volumexA quote.

Example 4 from FIG. 45 represents a midpoint trade,
where the trade under consideration is a midpoint trade of
1000 shares that the pre-vailing mid-point price of $10.29.

The probability of the BID UP outcome and OFFER UP
outcome are both over 50%

The Quote Vector signal’s prediction of a rising midpoint
price benefits both the liquidity taker and provider.
The liquidity taker should buy at a lower price or wait

to sell at a higher price

The liquidity provider should either wait to sell at a
higher price or stay their current midpoint buy order.
Should they wait to sell, they could modify the order
or wait to post.

The next offer price rises to $10.31 and causes the
midpoint to rise by a half-cent.

Acting on this correct prediction causes a positive credit
to the purse of: $5.00=volumexA quote.

For our analysis, 50% of the purse credit is allocated
each to the “Bid” purse and “Offer” purse respec-
tively.

We note that the value of the “purse” on any given day is
inherently dependent on trade volume, and strong correla-
tions exist between the daily purse value, volatility, and
traded volumes. While these relationships indicate the value
of the Quote Vector signal, we further note that the Quote
Vector signal also has accessible value if the positive per-
formance remains consistent as we make the analysis more
granular. First, we examined the daily purse over the past
twelve months and found that the purse was positive every
day—the Quote Vector signal never had a down day for the
studied period. This result holds when we allocate the daily
purse between trades occurring at the bid or offer.

We believe that the Quote Vector signal is most broadly
applicable if the available purse for each symbol is consis-
tently positive. This would allow simple trading strategies to
be profitable when only considering current quote prices and
Quote Vector probabilities for a single symbol at a time.
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During out study of 12-months of trading data, we found that
94.7% 10 96.4% of the symbols had a positively valued purse
on each trading day. Yielding a positive purse for approxi-
mately 95% of symbols is an extraordinary achievement of
consistency. Next, we wondered about the variability in
purse value of each symbol on a per trade (or per share)
basis. We note that a symbol like SPY that typically trades
with a penny spread has an expected price change of one
penny increments, whereas a high priced stock like Berk-
shire Hathaway can have a significantly larger price change
between sequential NBBO quotes and trade events. Since
the purse is calculated as the quote price difference (delta)
multiplied by the size of the trade, we can calculate a new
metric: “Purse per Share” (PPS). PPS can be calculated for
each trade and averaged daily for each symbol. For each
symbol in our test universe, FIG. 46 plots PPS relative to its
average spread traded over one day.

Accurately predicting the direction of the next NBBO
price change can deliver extraordinary improvements to a
wide variety of trading strategies. For illustration, we high-
light a few use cases for advantageous use of the Quote
Vector signal, ranging from market making to execution
management. These example use cases can be considered in
the context of FIG. 41 discussed above.

One example use case is for market makers—who can
increase spread capture. For example, a market maker with
an open long position at $10.03 (see Quote 3 in FIG. 41) and
a resting offer order at $10.04 needs to close this position to
capture the spread. A 100% capture of the spread will net the
market maker $0.01 per share. The Quote Vector signal
predicts the offer price will move up at Quote 4. In response,
the market maker modifies his offer order $0.01 higher and
receives a favorable queue position before others join his
price. She closes the trade at $10.05 for a $0.02 per share
spread capture, or double the original opportunity.

Another example use case is for proprietary traders—who
can allocated capital more profitably. For example, a pro-
prietary trader using mid-frequency or high-frequency strat-
egies needs to allocate capital to the most profitable trading
opportunities. The Quote Vector signal allows the trader to
select liquid names with large Purse-per-Share (PPS) oppor-
tunity. For example, consider Stock A and B that are priced
at $18.50 and $14.75, respectively, and Stock A and B have
PPS values are $0.03 and $0.01, respectively. While Stock
A requires 8.5% more capital commitment per share, the
trader can capture 3x more profit per share by using the
Quote Vector signal. With limits on available capital to trade,
the trader chooses to trade Stock A, making the most of
Quote Vector’s ability to drive profitable trades.

Another example use case is for brokers—who can
improve execution quality. For example, an agency broker
identifies several opportunities to improve execution quality
with market microstructure predictions:

Opportunistically cross the spread when it is tight or the

market is moving in the same direction as our trading.

Remove the order from the market if the market trades

have significant adverse selection or the market is
moving in the opposite direction as our trading

Step into the spread to improve fill probability while still

capturing the spread
The Quote Vector Signal Makes these Opportunities a Reli-
able Reality.

Yet another example use case is for matching engines—
which can attract liquidity with Al-driven order types. An
operator of trading venue (exchange, dark pool, or ATS)
attracts more order flow by providing order types that
improve execution quality. The matching engine also wins
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more direct market access business by offering order types
that incorporate tactical trading logic. A discretionary
pegged order can use Quote Vector predictions of NBBO
price movements to manage the magnitude of the discre-
tionary offset. Instead of mitigating slippage, the matching
engine’s customers consistently receive price improve-
ments.

Derived Summaries of Trading Signals

As discussed above, another class of trading signals that
can be generated by embodiments described herein are
summaries of real-time trading signals. For example, the
trading signals generated for Tier 1 market participants can
be aggregated and summarized for use by Tier 2 or Tier 3
market participants. These summaries can be referred to as
derivative (or derived) trading signals, and they can be
delivered to consumers on a periodic basis, such as hourly,
daily, etc.

FIG. 47 shows an example embodiment of a derivative
signal generator that consumes messages that were gener-
ated by a ticker plant and contain both normalized market
data and trading signal data. Derivative signal summary
logic processes the messages to generate derivative trading
signals that are delivered on a periodic basis to Tier 2 and 3
trading applications. These derivative trading signals repre-
sent summaries of the real-time, low latency, trading signal
data that are included in the messages as a result of upstream
processing. These derivative trading signals can be aggre-
gated into derivative trading signal files that are periodically
reported to the Tier 2/3 trading applications (e.g., see the
Tier 2/3 Trading Application Host Server shown by FIG. 47
as consuming derivative trading signal files periodically
output by the Derivative Signal Generator. Tier 2 and 3
trading applications may use predictive models that con-
sume the derivative trading signal files along with market
data, historical market data, and other internal signals. The
predictive model drives trading logic that places buy and sell
orders for financial instruments at lower frequency than Tier
1 trading applications.

As an example of derivative signal summary logic, con-
sider a summary file delivered after the conclusion of the
trading session that summarizes reserve order trading activ-
ity. Specifically, the summary file can provide for each
security traded any or all of the following: the total reserve
buy orders detected, the total reserve sell orders detected, the
Volume Weighted Average Price of total buy orders detected,
the Volume Weighted Average Price of total sell orders
detected, the notional value of total buy orders detected, and
the notional value of total sell orders detected. As discussed
above, this information can be used by a Tier 3 market
participant to understand changes in the positions of natural
traders. The Tier 3 market participant may use this infor-
mation directly to make investment decisions or feed this
information to a predictive model to improve its ability to
predict future price movements or quantify risk to their
portfolio.

In this example, the derivative signal summary logic can
process the liquidity indicator signals associated with the
market data messages can aggregate the liquidity indicator
trading signal data discussed above for the Liquidity Lamp
signal as well as hidden liquidity estimation trading signal
data discussed above for the Searchlight signal to compute
the values that would populate the summary file. For
example, the derivative summary logic can include count
logic that accumulates counts of how many buy and sell
reserve orders are detected by the liquidity indicator trading
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signal. Similarly, the derivative summary logic can include
summation logic can be sums the computed notional values
all of the buy-side and sell-side reserve orders that are
detected.

As shown in FIG. 47, the output of the derivative signal
summary logic is delivered periodically by periodic transmit
component. The component may be configured to transmit a
given derivative signal at multiple intervals, such as different
scheduled intervals (e.g., every minute, hourly, daily, etc.).
As an example, returning to the summary of reserve order
trading activity, the periodic transmit component may be
configured to deliver summaries covering one minute inter-
vals on a multicast channel A, summaries covering thirty
minute intervals on a multicast channel B, and a summary of
the full day trading session via file transfer.

The format of derivative signals may use a plurality of
formats. Examples include messages with self-describing
format such as the Financial Information eXchange (FIX)
format, as well as files using comma-separated values
(CSV), Extensible Markup Language (XML), or JavaScript
Object Notation (JSON) formats.

As shown in FIG. 47, the example Tier 2/3 trading
application can use predictive models that consume deriva-
tive signal summaries along with market data, historical
market data, and other internal signals. Note that the market
data in this example may be provided by a market data feed
consolidator that uses centralized or regional infrastructure
to aggregate and distribute market data at slower speeds and
lower cost to Tier 2 and 3 market participants. The predictive
model drives trading logic that places buy and sell orders for
financial instruments at lower frequency than Tier 1 trading
applications.

As discussed above, the ability to generate derivative
trading signals from the real-time, low latency, trading
signals provides significant technical benefits in the form of
dramatically reduced latency. As discussed above for the use
of case of detecting the trading activities of natural investors,
the conventional approach has been to source Form 13F and
Form 4 regulatory filings via computerized searches of the
Electronic Data Gathering, Analysis, and Retrieval (ED-
GAR) system of the United States Securities and Exchange
Commission (SEC) to glean so-called “smart money” move-
ments by large, natural investors. However, this conven-
tional approach typically brings extremely stale data to
traders, as indicated by FIG. 48 (which shows an example
where daily “Signum” files which represent derived sum-
maries of low latency liquidity indicator trading signals that
reflect reserve order activity, as compared to much slower
searches/analysis of regulatory databases). By contrast with
conventional approaches, the use of derivative summaries of
liquidity indicator trading signals provides traders with a
mechanism for inferring trading activity by natural investors
within much shorter time frames (e.g., hourly, daily, etc.)
relative to the conventional approach.

While the invention has been described above in relation
to its example embodiments, various modifications may be
made thereto that still fall within the invention’s scope. Such
modifications to the invention will be recognizable upon
review of the teachings herein.

What is claimed is:

1. A system for accelerated processing of streaming
financial market data to derive trading signals at low latency,
the system comprising:

at least one member of the group consisting of (1) a

reconfigurable logic device, (2) a graphics processor
unit (GPU), (3) a chip multi-processor (CMP), and (4)
a multi-core general purpose processor (GPP); and
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the at least one member configured to (1) receive stream-
ing financial market data and (2) process the streaming
financial market data through parallelized processing
logic, wherein the streaming financial market data
comprises a plurality messages, wherein each of a
plurality of the messages comprises a plurality of fields
of financial market data;

wherein the parallelized processing logic comprises (1) a

plurality of parallel paths and (2) combinatorial logic
downstream from the parallel paths;

wherein each of a plurality of the parallel paths comprises

logic configured to compute a feature of the streaming
financial market data based on one or more of the fields
of the messages so that a plurality of different parallel
paths operate on different fields of the messages to
compute a plurality of different features; and

wherein the combinatorial logic is configured to generate

trading signals for the streaming financial market data
based on the features computed by the parallel paths.

2. The system of claim 1 wherein the logic within each of
a plurality of the parallel paths comprises:

field selection logic; and

feature computation logic downstream from the field

selection logic;

wherein the field selection logic is configured to filter

which fields of the messages that the downstream
feature computation logic in that parallel path will
process, wherein the field selection logic in a plurality
of different parallel paths are configured to select
different sets of the fields of the messages, wherein the
different sets share one or more of the fields in common
with each other; and

wherein the feature computation logic is configured to

compute a feature for the streaming financial market
data based on the financial market data in the filtered
fields from the upstream field selection logic in that
parallel path, wherein different feature computation
logic in a plurality of different parallel paths are con-
figured to compute different features.

3. The system of claim 2 wherein the feature computation
logic in at least one of the parallel paths comprises (1) first
feature computation logic and (2) second feature computa-
tion logic downstream from the first feature computation
logic, wherein the second feature computation logic is
configured to compute a derivative feature that is derived
from a feature computed by the first feature computation
logic.

4. The system of claim 1 wherein the combinatorial logic
is further configured to generate the trading signals as a
weighted combination of the computed features.

5. The system of claim 4 wherein the weighted combi-
nation uses a plurality of weights for the features that are
derived according to a supervised machine learning model.

6. The system of claim 1 wherein the at least one member
further comprises state memory configured to store state
data for use by the parallel paths to compute the features
over time.

7. The system claim 1 wherein the at least one member is
further configured to transmit data for delivery to a consum-
ing application, wherein the transmitted data comprises the
generated trading signals and the financial market data.

8. The system of claim 7 wherein the at least one member
is further configured to normalize the streaming financial
market data, and wherein the transmitted financial market
data comprises the normalized financial market data.

9. The system of claim 7 wherein the transmitted data
comprises a plurality of trading signal-augmented messages,
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each trading signal-augmented message comprising a plu-
rality of fields, wherein the fields include (1) a plurality of
fields for financial market data applicable to that message
and (2) at least one field for a generated trading signal
applicable to that message to thereby provide synchrony in
the transmitted data between the generated trading signals
and the financial market data corresponding to those gener-
ated trading signals.

10. The system of claim 9 wherein at least one member is
further configured to normalize the streaming financial mar-
ket data, and wherein the financial market data within the
transmitted data comprises normalized financial market
data.

11. The system of claim 7 wherein the transmitted data
comprises the generated trading signals in synchrony with
the financial market data from which the generated trading
signals were derived.

12. The system of claim 1 wherein the trading signals
include a liquidity indicator that indicates a presence of a
reserve order for a symbol.

13. The system of claim 12 wherein the features used for
generating the liquidity indicator trading signal include
features that represent a plurality of conditions with respect
to the streaming financial market data, the conditions com-
prising (1) a first condition that a message exists in a
network packet for the streaming financial market data that
represents an order execution at a price for the symbol, and
(2) a second condition that another message exists in the
same network packet or a near network packet that repre-
sents an order addition at the same price for the same
symbol.

14. The system of claim 1 wherein the trading signals
include a liquidity estimation that estimates an amount of
hidden liquidity for a symbol.

15. The system of claim 14 wherein the features used for
generating the liquidity estimation trading signal include
features that represent a cumulative volume of reserve
orders for the financial instrument or a market and/or a
volume of orders executed as part of a currently detected
reserve order for the financial instrument.

16. The system of claim 14 wherein the liquidity estima-
tion comprises a probability that the hidden liquidity amount
is larger or smaller than a defined threshold, and wherein the
at least one member is further configured to apply a plurality
of the features to a supervised machine learning model to
compute the probability for each of a plurality of symbols.

17. The system of claim 1 wherein the trading signals
include a quote price stability estimation that estimates a
duration of time for which a quote price for a symbol will
remain unchanged.

18. The system of claim 17 wherein the quote price
stability estimation comprises a probability that indicates the
likelihood that the quote price will remain unchanged for a
duration defined by a threshold value.

19. The system of claim 18 wherein the probability
comprises (1) a short fuse indicator that indicates an esti-
mation that the quote price will remain unchanged for less
than the defined threshold duration and/or (2) a long fuse
indicator that indicates an estimation that the quote price
will remain unchanged for longer than the defined threshold
duration.

20. The system of claim 18 wherein the at least one
member is further configured to apply a plurality of the
features to a supervised machine learning model to compute
the probability for each of a plurality of symbols.

10

15

20

25

30

35

40

45

50

55

60

65

54

21. The system of claim 20 wherein the supervised
machine learning model is trained with labeled training data
indicative of known durations for previous quotes.

22. The system of claim 1 wherein the trading signals
include a quote price direction estimation that estimates
whether a next quote price for a symbol will be higher or
lower than a current quote price for a symbol.

23. The system of claim 22 wherein the features include
features that represent timing data for current quote price
durations and size data for order activity with respect to a
quote, and wherein the combinatorial logic is further con-
figured to compute the quote price direction estimation for
the streaming financial market data based on the timing data
features and the size data features.

24. The system of claim 22 wherein the quote price
direction estimation comprises a probability that the next
quote price for the symbol will be higher or lower than the
current quote price for the symbol, wherein the combinato-
rial logic is further configured to compute the probability
based on the features in combination with a plurality of
weights applicable to the features, and wherein a selection of
which features to use for computing the probability and what
values to use for the weights are derived from a supervised
machine learning model.

25. The system of claim 24 wherein the supervised
machine learning model is trained with labeled training data
indicative of known price direction changes for quotes.

26. The system of claim 1 wherein the parallelized
processing logic is further configured to generate a plurality
of different types of trading signals in parallel, wherein the
trading signal types include at least two members of the
group consisting of (1) a liquidity indicator that indicates a
presence of a reserve order for a symbol, (2) a liquidity size
estimation that estimates an amount of hidden liquidity for
a symbol, (3) a quote price stability estimation that estimates
a duration of time for which a quote price for a symbol will
remain unchanged, and (4) a quote price direction estimation
that estimates whether a next quote price for a symbol will
be higher or lower than a current quote price for that symbol.

27. The system of claim 1 wherein the generated trading
signal comprises a probability about an estimation with
respect to future financial market data relating to a symbol,
the system further comprising:

a computer system configured to (1) receive the probabil-
ity, (2) compare the received probability with a defined
probability threshold, and (3) in response to a determi-
nation that the received probability exceeds the defined
probability threshold, trigger an action associated with
the symbol linked to the received probability.

28. The system of claim 27 wherein the defined probabil-

ity threshold is adjustable.

29. The system of claim 1 wherein the at least one
member comprises the reconfigurable logic device.

30. The system of claim 29 wherein the reconfigurable
logic device comprises a plurality of reconfigurable logic
devices.

31. The system of claim 1 wherein the at least one
member is further configured to normalize financial market
data in a plurality of the fields to generate streaming nor-
malized financial market data for delivery to a plurality of
consuming applications; and

wherein the parallelized processing logic is configured to
generate the trading signals from the streaming finan-
cial market data for delivery of the trading signals to the
consuming applications in coordination with the
streaming normalized financial market data with less
than ten microseconds of latency.
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32. The system of claim 1 wherein the generated trading
signals comprise estimators.
33. The system of claim 32 wherein the estimators com-
prise probabilities about whether a predicted future value or
condition will occur. 5
34. The system of claim 1 wherein the generated trading
signals comprise logic signals.
35. A method for accelerated processing of streaming
financial market data to derive trading signals at low latency,
the method comprising: 10
streaming financial market data through at least one
member of the group consisting of (1) a reconfigurable
logic device, (2) a graphics processor unit (GPU), (3) a
chip multi-processor (CMP), and (4) a multi-core gen-
eral purpose processor (GPP), wherein the streaming 15
financial market data comprises a plurality messages,
wherein each of a plurality of the messages comprises
a plurality of fields of financial market data; and

the at least one member processing the streaming financial
market data through parallelized processing logic, 20
wherein the parallelized processing logic comprises (1)
a plurality of parallel paths and (2) combinatorial logic
downstream from the parallel paths; and

wherein the processing step comprises (1) logic within the

parallel paths computing a plurality of different features 25
of the streaming financial market data based on a
plurality of the fields of the messages so that a plurality

of different parallel paths operate on different fields of
the messages to compute the different features and (2)
the combinatorial logic generating trading signals for 30
the streaming financial market data based on the fea-
tures computed by the parallel paths.
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