(19) (19 DE 697 27 906 T2 2005.02.03

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 0 864 964 B1 1) Intcl”: GO6F 3/12

(21) Deutsches Aktenzeichen: 697 27 906.5
(96) Europaisches Aktenzeichen: 97 116 646.7
(96) Europaischer Anmeldetag: 24.09.1997
(97) Erstverdffentlichung durch das EPA: 16.09.1998
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 03.03.2004
(47) Veroffentlichungstag im Patentblatt: 03.02.2005

(30) Unionsprioritat: (74) Vertreter:
816978 13.03.1997 us Schoppe, Zimmermann, Stéckeler & Zinkler, 82049
Pullach
(73) Patentinhaber:
Hewlett-Packard Co. (n.d.Ges.d.Staates (84) Benannte Vertragsstaaten:
Delaware), Palo Alto, Calif., US DE, FR, GB
(72) Erfinder:
Snyders, Lawrence M., Boise, Idaho 83702, US

(54) Bezeichnung: Geschalteter Druckertreiber in Windows-Betriebssystem

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 697 27 906 T2 2005.02.03

Beschreibung
Gebiet der Erfindung

[0001] Diese Erfindung bezieht sich auf ein System fiir ein Drukkertreiberschalten innerhalb einer Compu-
ternetzwerkumgebung, wie beispielsweise eines Windows-Betriebssystems, um Druckauftrage von einer ein-
zigen Druckanforderung innerhalb einer Anwendung an eines oder mehrere ungleiche Gerate zu richten.

Hintergrund der Erfindung

[0002] Es sind zentralisierte und dezentralisierte Computernetzwerke mit einer breiten Vielfalt von Periphe-
riegeraten erhaltlich, die miteinander verbunden sind, so daf} dieselben miteinander kommunizieren kénnen.
Fir Anwendungen, die die Ausgabe von Daten von einem Computersystem erfordern, sind eines oder mehrere
Ausgabegerate in der Form eines Monitors, eines Druckers, eines Plattenlaufwerks oder eines anderen Peri-
pheriegerats bereitgestellt. Fir den Fall von Computernetzwerken kann die Anzahl und Vielfalt von erhaltlichen
Ausgabegeraten ziemlich grof3 sein, was in Datentransferinkompatibilitatsproblemen resultiert.

[0003] Ein Problem, das aktuellen Computernetzwerkumgebungen zugeordnet ist, besteht darin, dal diesel-
ben das automatische Senden von elektronischem Material von einer Anwendung zu ungleichen Bestim-
mungsorten von einer einzigen Quellanwendung oder einem Dokument nicht ermdglichen. Zum Beispiel er-
moglichen gegenwartige Fenstertreiberldsungen nicht, daf3 ein Operator automatisch einen Druckauftrag von
einem Drukkertreiber zu einem jeglichen von mehreren Empfangsgeraten oder Druckern sendet. Anstelle des-
sen mul der Operator das System rekonfigurieren, um eine Ausgabe zu einem spezifischen Drucktreiber eines
ausgewahlten Ausgabegerats zu liefern.

[0004] Bei gegenwartigen Fenstertreiberlésungen bildet jeder Drukker ein Ausgabegerat, das eine zweckge-
bundene Druckmaschine aufweist, die ein zweckgebundenes Codieren fiir den zugeordneten Druckprozessor
erfordert. Zum Beispiel erzeugt ein Druckprozessor eine Datei von Zeichnungsbefehlen fur einen konfigurier-
ten Drucker. Normalerweise ist eine permanente Verbindung zwischen der Anwendung (z. B. einem Textver-
arbeitungsprogramm), der Zwischenzeichnungsdatei und einem einzigen zweckgebundenen Ausgabegerat
bereitgestellt. Optional kann der Benutzer eines von mehreren zweckgebundenen Ausgabegeraten uber ein
fensterbasiertes Menl auswahlen. Eine derartige Konfiguration ist jedoch zu einer Verwendung mit einem Aus-
gabegerat formatiert, das der Benutzer ausgewahlt hat, und bleibt zu einem derartigen Gerat zweckgebunden,
bis dieselbe manuell rekonfiguriert wird.

[0005] Das Dokument US 5,511,156 lehrt ein Druckauftragverteilungssystem, bei dem Druckdateien in einem
PostScript-Dateiformat beschrieben sind, wobei die PostScript-Druckdatei zu einem parallelen Ubersetzungs-
verarbeiten durch mehrere Computer in unabhangige Abschnitte geteilt ist.

[0006] Daher existiert ein Bedarf nach einem System, das Druckauftrage von einem Computer, der innerhalb
einer Computernetzwerkumgebung wirksam ist, zu einem jeglichen von mehreren ungleichen Ausgabegeraten
von einer einzigen Druckanforderung innerhalb einer Anwendung verteilt.

[0007] Ein anderes Problem, das aktuellen Computernetzwerkumgebungen zugeordnet ist, ist die Unfahig-
keit, ausgehende Quelldaten mehrere Male zu mehreren Ausgabegeraten zu senden. Zum Beispiel ermagli-
chen aktuelle Fenstertreiberldsungen es nicht, daf’ ein Operator die Quelldaten mehrere Male parst bzw. syn-
taktisch analysiert, um die notwendigen Codierungen fir jedes Ausgabegerat zu erhalten. Anstelle dessen
muf der Operator das System rekonfigurieren, um jede Lieferung einer Ausgabe zu jedem spezifischen Druck-
treiber jedes ausgewahlten Ausgabegerats durchzufihren.

[0008] Diese Erfindung bezieht sich auf eine Informationsverteilungsvorrichtung und ein Verfahren, das die
obigen Nachteile Gberwindet. Die Informationsverteilungsvorrichtung dieser Erfindung verbessert eine Vertei-
lung von Quellauftragen fiir eine Ausgabe zu einem jeglichen von mehreren ungleichen Ausgabegeraten. Die
Informationsverteilungsvorrichtung dieser Erfindung verbessert auch eine Verteilung von Quellauftragen zu
mehreren empfangenden Ausgabegeraten von einer/einem einzigen Quellanwendung/-dokument.

Zusammenfassung der Erfindung

[0009] Gemal einem Aspekt dieser Erfindung ist die allgemein in Fig. 1-5 gezeigte Informationsverteilungs-
vorrichtung innerhalb einer Computernetzwerkumgebung wirksam. Die Informationsverteilungsvorrichtung ge-

2/47

DE 697 27 906 T2 2005.02.03

manR der Erfindung ist in dem beigefigten unabhangigen Anspruch 1 definiert.

[0010] Gemal einem anderen Aspekt dieser Erfindung implementiert die allgemein in Fig. 1-5 gezeigte Infor-
mationsverteilungsvorrichtung ein Verfahren zum Wirksamsein innerhalb einer Computernetzwerkumgebung,
wie es in dem beigefligten unabhangigen Anspruch 13 definiert ist.

[0011] Andere Aufgaben, Merkmale und Vorteile werden aus der unten gegebenen detaillierten Beschreibung
der Vorrichtung und des Verfahrens dieser Erfindung und Ausflihrungsbeispielen von Systemen ersichtlich, die
die Vorrichtung und das Verfahren dieser Erfindung eingliedern.

Beschreibung der Zeichnungen

[0012] Fig. 1 ist ein konzeptionelles Blockdiagramm einer Computernetzwerkumgebung zum Implementieren
des Druckertreiberschaltmechanismus und -verfahrens dieser Erfindung, das einen Entwurf einer Mehrzahl
von Computern und Ausgabegeraten zeigt, die innerhalb der Netzwerkumgebung konfiguriert sind, gemaR ei-
nem Ausfuhrungsbeispiel dieser Erfindung.

[0013] Fig. 2 ist ein schematisches Blockdiagramm, das die Struktur und Operationen des Druckertreiber-
schaltmechanismus von Fig. 1 darstellt, wobei ein mehrfaches Parsen des ausgehenden Dokuments in ein
Format fir eine Einfach-TeilprozeR-Spool-Lieferung eines Quellauftrags zu mehreren Bestimmungsorten ge-
zeigt ist.

[0014] Fig. 3 ist ein schematisches Blockdiagramm, das die Struktur und Operation des Druckertreiberschalt-
mechanismus von Fig. 1 darstellt, wobei ein mehrfaches Parsen des ausgehenden Dokuments in ein Format
fur eine Mehrfach-TeilprozeR-Spool-Lieferung eines Quellauftrags zu mehreren Bestimmungsorten gezeigt ist.

[0015] Fig. 4 ist ein schematisches Blockdiagramm des ersten Ausflihrungsbeispiels eines Geratetreiber-
schaltmechanismus wahrend einer ersten Durchgangsoperation von einem urspriinglichen Gerat/Treiber zu
Spool-verbesserten Metadateidaten zu einem Speicher.

[0016] Fig. 5 ist ein schematisches Blockdiagramm des ersten Ausfuhrungsbeispiels eines Geratetreiber-
schaltmechanismus wahrend einer zweiten Durchgangsoperation fiir ein ausspulmafliges Drucken (Despoo-
ling) von Druckauftrags- und Druckerinformationen Gber einen Druckprozessor zu einem neuen Geratetreiber.

[0017] Fig. 6 ist ein schematisches Blockdiagramm eines ersten Ausflihrungsbeispiels eines Geratetreiber-
schaltmechanismus wahrend einer Mehrfach-Durchgang-Druckauftrag-Verteilung.

[0018] Fig. 7 ist ein FluRdiagramm, das die Sequenz von Schritten darstellt, die bei einem automatischen Im-
plementieren eines Mechanismus zu einem Druckertreiberschalten in Windows-Betriebssystemen verwendet
wird, um eine Verteilung von Druckauftragen auf mehrere ungleiche Auftrage innerhalb einer Druckanforde-
rung innerhalb einer Anwendung zu ermdglichen, bei einem Ausflihrungsbeispiel der vorliegenden Erfindung.

[0019] Fig. 8 ist ein FluRdiagramm, das eine erste Operation darstellt, die durch den Druckprozessor von
Fig. 7 implementiert ist.

[0020] Fig. 9 und 10 stellen ein FluRdiagramm dar, das eine zweite Operation zeigt, die durch den Druckpro-
zessor von Fig. 7 implementiert ist.

[0021] Fig. 11 ist ein FluRdiagramm, das eine dritte Operation darstellt, die durch den Druckprozessor von
Fig. 7 implementiert ist.

Detaillierte Beschreibung der Erfindung

[0022] Fig. 1 zeigt einen Computer 10, der als ,Computer A" etikettiert ist und zu einer Verteilung von Infor-
mationen innerhalb einer Computernetzwerkumgebung 12 konfiguriert ist. Der Computer 10 kann elektroni-
sches Material in der Form eines Quelldokuments oder -auftrags an mehrere Empfangsgerate innerhalb der
Netzwerkumgebung senden. Das Quelldokument wird ansprechend darauf erzeugt, da eine Anwendung auf
einem Betriebssystem des Computers 10 betrieben wird. Genauer gesagt stellt eine Mehrzahl von Ausgabe-
geraten 14, 16 und 18, die als ,Ausgabegerat A", ,Ausgabegerat B" bzw. ,Ausgabegerat C" etikettiert sind, die
Empfangsgerate zu einem Empfangen von Ausgabebefehlsdateien und zum Erzeugen einer Ausgabe bereit.

3/47

DE 697 27 906 T2 2005.02.03

Zusatzlich ist der Computer 10 mit anderen Computern 20 und 22 verbunden, die dhnliche zugeordnete Aus-
gabegerate (nicht gezeigt) aufweisen. Der Computer 10 ist zu einem Senden eines Quelldokuments zu einem
jeglichen dieser Ausgabegerate in der Lage. Der Computer 10 ist zu einer Signalkommunikation mit jedem der
Ausgabegerate 14, 16 und 18 Uber eine jeweilige Kommunikationsverbindung 24 zusammen verbunden oder
verbunden. Auf eine ahnliche Weise ist der Computer 10 zu einer Signalkommunikation mit anderen Compu-
tern 20 und 22 Gber eine jeweilige Kommunikationsverbindung 26 zusammen verbunden oder verbunden. Die
Verbindungen 24 und 26 kdnnen aus einer jeglichen einer Anzahl von gegenwartig erhaltlichen Draht- oder
drahtlosen Signalverbindungen gebildet sein, die bei einem Bilden von Computernetzwerkverbindungen ver-
wendbar sind. Eine derartige Verbindung ist durch ein Festverdrahten jeweiliger Komponenten des Netzwerks
12 miteinander gebildet.

[0023] Gemal der Netzwerkumgebung 12, die in Fig. 1 dargestellt ist, ist klar, daR die Ausgabegerate 14, 16
und 18 und die Computer 10, 20 und 22 zweckgebundene Prozessoren zum Durchflihren von Verarbeitungs-
und Kommunikationsbedurfnissen aufweisen, wenn Quellauftrdge und Ausgabebefehle zwischen Geraten des
Netzwerks Ubertragen werden. Die Computer 10, 20 und 22 weisen ein Windows 95 Betriebssystem und einen
kundenspezifischen Druckprozessor dieser Erfindung zu einer Verwendung mit Windows 95 auf. Die Ausga-
begerate 14, 16 und 18 weisen den gleichen kundenspezifischen Druckprozessor auf, was ein Drucken direkt
von einer Anwendung, die auf dem Betriebssystem des Computers 10 lauft, zu einem jeglichen der Ausgabe-
gerate 14, 16 oder 18 ermdoglicht.

[0024] Der Computer 10 enthalt vorzugsweise ein Windows 95 Betriebssystem. Ein ,Betriebssystem" ist ein
Satz von Computerprogrammen, die spezifisch durch einen Computer zu einem Verwalten der Betriebsmittel
desselben verwendet werden. Das Betriebssystem steuert alle Betriebsmittel des Computersystems, ein-
schliellich einer Kommunikation zwischen einem Benutzer und dem Computer. Mehrere exemplarische Be-
triebssysteme umfassen DOS, Windows, OS/2, UNIX und das MaclIntosh-System. Vorzugsweise umfal3t das
Windows 95 Betriebssystem ferner die ,Microsoft Windows 95 Device Driver Developers Kit" (Microsoft Win-
dows 95 Geratetreiberentwicklerausriistung), die von Microsoft Corporation durch ein Bestellen von ,Microsoft
Developer Network Professional Subscription" derselben erhalten werden kann. ,Microsoft Developer Network
Professional Subscription" umfal’t CDROMs mit einem Muster-Quellcode und einer Dokumentation, die be-
schreibt, wie Anwendungen und Geratetreiber zu entwickeln sind. Eine Komponente der Driver Developers Kit
(DDK) (Treiberentwicklerausristung) schildert genau, wie Drucksystemkomponenten zu entwickeln sind. Ein
Druckprozessor ist eine Drucksystemkomponente, die in der Treiberentwicklerausristung dokumentiert ist.
Das Abonnement umfal3t alle Dokumentationen hinsichtlich wie die Entwicklerausriistung zu verwenden ist.

[0025] Gemal der Implementierung dieser Erfindung wird eine Anwendung auf dem Betriebssystem des
Computers 10 betrieben, wie es in Fig. 1 gezeigt ist. Eine ,Anwendung" ist ein Computerprogramm, das kon-
figuriert ist, um bei einem Durchfiihren einer bestimmten Art einer Arbeit zu unterstitzen. Im Gegensatz dazu
betreibt ein Betriebssystem einen Computer, ein Hilfsprogramm fihrt eine Wartung oder allgemeine Arbeiten
durch und eine Sprache wird verwendet, um Computerprogramme zu erzeugen. Basierend auf dem speziellen
Entwurf derselben kann eine Anwendung Text, Graphik, Zahlen oder eine Kombination dieser Elemente mani-
pulieren.

[0026] Das Betriebssystem des Computers 10 und des Netzwerks 12 umfalit eine Anwendungsprogrammie-
rungsschnittstelle (API = application programming interface). Eine API weist einen definierten Satz von Funk-
tionen auf, die durch das Betriebssystem zu einer Verwendung durch eine Anwendung bereitgestellt sind. Die
Schnittstelle existiert in der Form eines definierten Satzes von Funktionen zu einer Verwendung, wo es not-
wendig ist, dald proprietare Anwendungsprogramme mit einer Kommunikationssoftware sprechen oder kon-
form zu Protokollen von einem Produkt eines anderen Verkaufers sind. Eine API stellt ein standardisiertes Ver-
fahren von vertikalen Kommunikationen innerhalb und auRerhalb des Computernetzwerks bereit.

[0027] Fur den Fall, bei dem die Ausgabegerate 14, 16 und 18 Drukker sind, weist jeder Drucker einen Dru-
ckertreiber auf. Ein ,Druckertreiber” ist ein Softwareprogramm, das es ermoglicht, dal® andere Programme mit
einem speziellen Drucker arbeiten, ohne sich mit den Spezifika der Hardware und internen Sprache des Dru-
ckers zu befassen. Jeder Drucker erfordert einen spezifischen Satz von Codes und Befehlen, um ordnungs-
gemal wirksam zu sein und einen Zugriff auf spezielle Merkmale und Fahigkeiten bereitzustellen. Wo alterna-
tiv das Ausgabegerat kein Drucker ist, weist das Ausgabegerat einen Geratetreiber auf, der wie ein Drucker-
treiber wirkt.

[0028] Ein ,Treiber", wie bei einem Geratetreiber oder einem Drukkertreiber darauf Bezug genommen wird,
ist ein Programm oder Teilprogramm, das beschrieben ist, um entweder ein spezielles Hardwaregerat oder

4/47

DE 697 27 906 T2 2005.02.03

eine andere Softwareroutine zu steuern. Der Ausdruck ,Treiber" stammte von dem Konzept von Trabrenntrei-
bern oder Automobiltreibern, die die Résser oder Autos derselben auf Herz und Nieren pruiften, um die Fahig-
keiten derselben zu messen. Die allgemeinsten Beispiele eines Hardwaretreibers, einer, der eine Hardware
steuert, sind diejenigen, die zu speziellen Marken und Modellen von Druckern gehdren, die an Personalcom-
putern angeschlossen sind. Zum Beispiel ermdglicht es ein spezifischer Drukkertreiber, daf® ein Textverarbei-
tungsprogramm mit einem Punktmatrixdrucker oder einem Laserdrucker eines speziellen Modells kommuni-
Ziert.

[0029] Ein anderer wichtiger Aspekt betrifft den Bedarf nach einer Software in der Form einer Druckertreiber-
software zu einem Unterstiitzen von Ausgabegeraten. Bis zu diesem Punkt wurden lediglich die mechanischen
Aspekte eines Druckers detailliert geschildert. Auf einem anderen Pegel wird das Problem durch die grol3e
Vielfalt von Druckern mit allen Arten von speziellen Merkmalen komplexer gemacht, die durch eine breite Viel-
falt von Herstellern hergestellt werden.

[0030] Bei der friihen Entwicklung von Druckern war die Situation ziemlich einfach. Die erhaltlichen Drucker
sprachen auf ASCII-Text- und -Steuerschriftzeichen an. Fir jedes zu dem Drucker gesendete Schriftzeichen
wurde ein Buchstabe erzeugt. Eine Vorbewegung zu der nachsten Zeile eines Texts wurde mittels eines Wa-
gen-Riickkehr- und Zeilenzufuhr-Schriftzeichens vorgenommen. Falls ein Uberdrucken fiir fettgedruckte Wir-
kungen bendtigt wurde, wurde lediglich ein Wagen-Rickkehr-Schriftzeichen gesendet und die Zeile wurde wie-
der gedruckt. Schreibmaschinenahnliche Drucker waren ebenfalls erhaltlich, die auf ein Rickwarts-
schritt-Schriftzeichen ansprachen, so dal ein Fettdrucken und Unterstreichen ohne weiteres erzielt wurden.

[0031] In dem Malde wie eine Druckertechnologie mit der Entwicklung von Punktmatrixdruckern fortschritt,
wurde die Fahigkeit fur Schriftartdnderungen und graphische Optionen machbar. Das Ergebnis dieses Fort-
schritts bestand darin, da Textverarbeitungsprogramme einen Satz einer Software fir jeden verfigbaren Dru-
cker bendtigten, da jeder Hersteller seine eigenen Gedanken hatte, welche Merkmale nitzlich sein kénnten,
jeder Hersteller dieselben auf eine unterschiedliche Weise implementierte. Mit jeder neuen Druckerausfiihrung
oder jedem Modell wurde ein neuer Satz einer Software bendtigt, die als Treibersoftware bezeichnet wird. Folg-
lich war ein mi3liches Problem sowohl fiir den Benutzer des Textverarbeitungsprogrammdruckers als auch fur
Textverarbeitungsprogrammverkaufer erzeugt.

[0032] In dem Male wie der Bedarf nach komplizierteren Druckfahigkeiten wuchs, hat sich eine Anzahl von

Lésungen entwickelt. Das Hauptproblem war ein Entscheiden, wohin die ,Intelligenz" fur den Druckprozel® zu

setzen ist. Es gibt drei Moglichkeiten:
1. In das Textverarbeitungsprogramm selbst. Das Textverarbeitungsprogramm wird etwas schwierig zu ver-
wenden, wenn keine schnelle CPU und keine gute Schnittstelle verfiigbar sind. Unter anderem fihrt dies
zu einem proprietdrem Dateiformat fiir das Textverarbeitungsdokument. Es wird schwierig, stark formatierte
Dokumente zwischen unterschiedlichen Plattformen oder Textverarbeitungsprogrammen zu bewegen,
wenn nicht ein gemeinsames Datenformat verwendet werden kann, wie beispielsweise RTF oder DCA.
Falls keine gemeinsame formatierte Datenstruktur gefunden werden kann, ist es eventuell mdglich, die Da-
teien in einem ,generischen" Format zu tUbertragen, bei dem eine Wagenruiickkehr/Zeilenzufiuihrung lediglich
an dem Ende eines Absatzes verwendet wird. Es wird dann nétig, die Datei umzuformatieren.
2. In den Drucker. Dies fuhrt zu dem, was als Seitenbeschreibungssprachen (PDLs = Page description lan-
guages) bekannt ist. Die haufigste derselben ist eine, die als PostScript bekannt ist. Der Drucker enthalt
einen Prozessor und ein Programm, um die Befehle zu interpretieren, die in der PostScript-Ausgabedatei
enthalten sind. Die PostScript-Ausgabedatei ist eine ASCII-Textdatei, die falls nétig manuell editiert werden
kann. Es sind auch andere proprietare Seitenbeschreibungs- und Steuersprachen erhaltlich, wie beispiels-
weise dieselben in der Hewlett-Packard Linie von Laserdruckern. Die PostScript-Implementierung wird
durch ein Kaufen und Installieren eines PostScript-Sprachchips flir den Drucker aktiviert.
3. Eine andere Alternative. Eine letzte Alternative, zwischen diesen zwei, ist ein Schriftsetzprogramm, wie
beispielsweise TeX, das eine Datei erzeugt, die die Schriftsatzbefehle enthalt. Diese Datei wird dann in ein
gerateunabhangiges Format umgewandelt, das durch ein Treiberprogramm flir den speziellen Drucker ge-
leitet werden mul3.

[0033] Zusatzlich zu einer Plazierung der Intelligenz ist eine Graphikunterstiitzung auf zwei allgemeine Wei-
sen implementiert:
1. Im wesentlichen eine Graphik-,Abladung" des Textverarbeitungsbildschirms. Der notwendige Drucker-
treiber wird wiederum fir den verwendeten Drucker bendtigt. Es ist auch mdglich, das Werk innerhalb des
Dokuments selbst einzubetten, wie beispielsweise bei Microsoft Word.
2. Eine ,verkapselte" PostScript-Datei. Dies enthalt den durch das Zeichnungsprogramm erzeugten Code

5/47

DE 697 27 906 T2 2005.02.03

in einem Format, das interpretiert werden soll. Eine verkapselte PostScript-Datei kann ferner ein Vorschau-
bild des Bilds in einem Rasterformat, wie beispielsweise TIFF, oder einem Vektorformat, wie beispielsweise
einer Windows-Metadatei fiir eine einfache aber direkte Bildschirmmanipulation des Bilds enthalten.

[0034] Welches Verfahren gewahlt wird, ist wiederum eine Frage einer persdnlichen Praferenz und der spe-
ziellen erhaltlichen Implementierung. Zu Implementierungszwecken des Gerats und des Verfahrens von
Fig. 1-11 der Anmelderin wird ein kundenspezifischer Druckprozessor zu einer Verwendung mit einem Be-
triebssystem, wie beispielsweise Windows 95, mit einem Druckertreiber fur das Betriebssystem verwendet,
das ein Erzeugen von verbesserten Windows-Metadateien unterstitzt.

[0035] Fig. 2 und 3 stellen Weisen zu einem Liefern eines Quellauftrags 28 zu einem oder mehreren Bestim-
mungsorten 30, 32 und 34 dar, wobei ein Beispiel eines Bestimmungsorts die Ausgabegerate 14, 16 und 18
(von Fig. 1) sind. Ein anderes Beispiel eines Bestimmungsorts kdnnten die Computer 20 und 22 sein. Derzei-
tige Windows-Treiberldsungen ermoglichen kein Senden von einer Anwendung zu mehreren Bestimmungsor-
ten. Der Treiber muR jedoch in der Lage sein, elektronisches Material zu mehreren Empfangsgeraten von ei-
ner/einem einzigen Quellanwendung/-dokument zu senden, um wirksam zu sein. Dies erfordert ein Sichern der
ausgehenden Dokumentdaten oder des Quellauftrags 28 in einem Format, das mehrere Male geparst werden
kann, um die erwiinschten Codierungen zu erhalten, wie es in Fig. 2 gezeigt ist. Falls das Quelldokument oder
der Quellauftrag 28 mehrere Seiten ist, dann muf der Mechanismus zu einem Senden ein Senden aller Seiten
eines Bestimmungsorts vor einem Ubergehen zu dem néachsten Codiertyp unterstiitzen, wie es in Fig. 3 ge-
zeigt ist. Ein Mehrfach-Teilprozel3-Lieferungsmechanismus ist notwendig um die Quellauftragslieferung zu
mehreren Bestimmungsorten zu implementieren, wie es in Fig. 3 gezeigt ist.

[0036] Wie es in Fig. 2 und 3 gezeigt ist, bestehen mehrere Optionen zu einem Liefern eines Quellauftrags
28 zu mehreren Bestimmungsorten 30, 32 und 34. Das Folgende ist eine Zusammenfassung der Optionen zu
einem Senden:
1) Alle Seiten eines Auftrags kdnnen zu einem speziellen Bestimmungsort vor einer Lieferung zu anderen
Bestimmungsorten gesendet werden. Diese Option wird als eine Seriell-Lieferung zu einem Bestimmungs-
ort zu einer Zeit Uber eine Einfach-TeilprozeR-Spool-Lieferung bezeichnet. Eine derzeitige Windows-Trei-
berarchitektur verwendet eine derartige Einfach-Teilprozef3-Spool-Lieferung.
2) Eine Lieferung kann als eine Seite zu einer Zeit zu jedem (allen) Bestimmungsort(en) vor einem Uberge-
hen zu der nachsten Seite des Quellauftrags implementiert sein. Probleme kdnnen jedoch eine Lieferung
verzogern, was bedeutet, dal dasselbe oft keine gute Lieferungswahl ist.
3) Es kann ein Teilprozel fir jeden Bestimmungsort vorgesehen sein (Mehrfach-Teilprozel}), wobei der ge-
samte Auftrag durch jeden Teilprozel} geliefert wird. Auf diese Weise kdnnen alle Teilprozesse simultan lau-
fen, was in einer parallelen Ausfiihrung resultiert. Dies erfordert ein Andern von Windows-Despooling-Me-
chanismen, aber bietet die beste Lieferung zu allen Empfangern.

[0037] Die Implementierung eines Zwischendateiformats, vorzugsweise in einer Form als eine verbesserte
Metadatei (EMF = enhanced metafile) ausgefiihrt, wiirde die mehreren notwendigen Durchlaufe ermdglichen,
um die oben erwahnten Lieferungsmerkmale von Fig. 2 und 3 zu implementieren. Eine verbesserte Metadatei
wird jedoch typischerweise Uiber einen Spooler zu einem Speicher geschrieben und eine Spooler-Wiedergabe
einer verbesserten Metadatei ermoglicht keine Mehrfach-Durchlauf-Lieferung von dem Speicher. Eine verbes-
serte Metadatei (EMF) ist ein verbessertes Dateiformat, das eine Reihe von graphischen Operationen in einem
gerateunabhangigen Datenformat auf hoher Ebene beschreibt.

[0038] Um ein derartiges Zwischendateiformat zu implementieren, wird ein spezifischer Druckprozessor ei-
nes Entwurfs der Anmelderin dieses Problem durch ein Kopieren der verbesserten Metadatei |6sen. Wie es
unten mit Bezug auf Fig. 4-6 gezeigt und beschrieben wird, wird ein derartiger kundenspezifischer Druckpro-
zessor ermoglichen, daly mehrere Durchlaufe von einem Speicher liber einen Spooler/Despooler geliefert wer-
den, um einen Quellauftrag zu mehreren Bestimmungsorten Uiber die Lieferungsschemata zu liefern, die oben
mit Bezug auf Fig. 2 und 3 offenbart sind. Ein ,Spooler" ist eine Komponente, die eine anwendungserzeugte
Ausgabe, die fir einen Drucker bestimmt ist, nimmt und dieselbe temporar auf einer Platte speichert. Ein ,Des-
pooler" ist eine Systemkomponente, die fiir Daten in Spool-Dateien und ein Ubergeben derselben zu der Soft-
ware verantwortlich ist, die zu einem Schreiben derselben zu einem Ausgabegerat verantwortlich ist.

[0039] Um dies jedoch zu machen, bendtigt das Gerat dieser Erfindung eine zweckgebundene Spool-Auf-
trag-Kopfblock-Datei, um die Bestimmungsorte und aufbereiteten Codierungen fiir jeden Bestimmungsort zu
beschreiben. Wenn eine Despool-Operation implementiert ist, sendet eine Graphikgeratschnittstelle (GDI =
Graphics Device Interface) graphische Funktionen innerhalb eines Geratekontexts (DC = device context) durch

6/47

DE 697 27 906 T2 2005.02.03

den Druckertreiber zu dem Spooler. Eine ,GDI" ist eine Graphikgeratschnittstelle (GDI = Graphics Device In-
terface), die Komponente von Windows, die zu einem Implementieren der graphischen Funktionen verantwort-
lich ist, wie beispielsweise einem Linienzeichnen und einer Farbverwaltung. Eine GDI ist eine DLL (Dynamic
Link Library = dynamische Verknupfungsbibliothek), die alle der graphischen Anwendungsprogrammierungs-
schnittstellen (APIs) in Windows umfaft. Ein Geratekontext (DC) ist eine GDI-Datenstruktur, die den aktuellen
Zustand eines Gerats oder einer Zeichnungsoberflache beschreibt, ein logisches Objekt, das auf der Anwen-
dungsebene zu finden ist. Genauer gesagt ist ein Geratekontext eine Struktur, die intern in einer GDI zu dem
Zweck eines Anzeigens der graphischen Daten (Malen auf dem Bildschirm oder Drucken von Seiten) beibe-
halten wird. Ein jeglicher Anwendungsentwickler, der sich mit einem Drucken befalt, ist mit dem Konzept eines
Geratekontexts vertraut. Eine dynamische Verknipfungsbibliothek (DLL) ist eine Bibliothek von gemeinschaft-
lich verwendeten Funktionen, mit denen sich Anwendungen zu einer Ausfiihrungszeit verbinden, im Gegen-
satz zu einer Kompilierzeit. Eine einzige speicherinterne Kopie der dynamischen Verknlpfungsbibliothek (DLL)
befriedigt Anforderungen von allen rufenden Teilnehmern.

[0040] Bei Quelldokumenten, die lediglich eine Seite in einer Lange sind, ist es moglich, anstelle der verbes-
serten Metadatei (EMF) alternativ Rohdaten zu verwenden, die in die Sprache des Druckers formatiert sind. In
diesem Fall ist es jedoch notwendig, dal} alle Bestimmungsorte die gleiche Codierung unterstitzen und wah-
len. Um dies zu machen, wird eine Unterstitzung der verbesserten Metadatei in einer GDIINFO-Struktur mar-
kiert.

[0041] Die Vorrichtung und das Verfahren dieser Erfindung liefern Daten zu Geraten, einschliel3lich Ausgabe-
geraten, wie beispielsweise Drucker, Scanner und Plotter, in einer Verteilungsliste. Die Verteilungsliste ist eine
Liste von Geraten, die eine Ausgabe empfangen kénnen. Eine Verteilungsliste kann durch eine getrennte An-
wendung gesteuert sein, mit der der Druckprozessor kommuniziert. Die getrennte Anwendung kénnte eine jeg-
liche einer Anzahl von Geraten sein, die innerhalb einer Computernetzwerkumgebung vorhanden sind. Der
Druckprozessor verwendet dann die Liste von Geraten bei einem Implementieren einer Operation eines Trei-
berschaltens gemafl dem Gerat und dem Verfahren dieser Erfindung.

[0042] Die Anmelderin hat die Operation des Treiberschaltens gemaf dieser Erfindung durch ein Betreiben
des Programms und der Datei, die in Tabelle 1 unten bereitgestellt sind, getestet. Weitere Details der Imple-
mentierung werden unten mit Bezug auf Fig. 4-6 und das Flulddiagramm von Fig. 7-11 erdrtert. Die Anmelde-
rin betrieb einen derartigen Test auf einem Windows 95 System. Ein EMF-Auftrag wurde in eine Warteschlange
mit finf Treibern gegeben, dann wurden die Treiber durch eine Benutzerschnittstelle (Ul = user interface) zu
einem Bitabbildungstreiber geschaltet. Der resultierende Quellauftrag wurde verarbeitet, geschaltet und frei-
gegeben, wobei der Druckauftrag ordnungsgemaR zu einer Datei druckt.

[0043] Das unten in Tabelle 1 aufgelistete C-Code-Programm liefert einen ,kundenspezifischen Druckprozes-
sor zu einem Treiberschalten" gemaR dieser Erfindung. Dieser Code, wie derselbe in den Fluf3diagrammen von
Fig. 7-11 genau geschildert ist, ermdglicht das Schalten von Komponenten in der Form von Ausgabegeraten
zu einem Empfangen eines Druckauftrags. Das Schalten von Komponenten ist Gber einen kundenspezifischen
Druckprozessor fur Windows 95, einen Treiber, der eine Windows-Bitabbildung erzeugt, und einen Treiber, der
eine HP PCL5-Druckersprache erzeugt, implementiert. Um dies wirksam vorzunehmen, muf} ein Druckertrei-
ber fur Windows 95 oder NT ein Erzeugen von verbesserten Windows-Metadateien (EMFs) unterstutzen. Ein
Operator muR lediglich eine Windows-Anwendung betreiben und mit dem erwiinschten anfanglichen Drucker-
treiber das erwiinschte Druckobjekt auswahlen. Dieser Treiber muf jedoch den kundenspezifischen Druckpro-
zessor aufweisen, der demselben zugeordnet ist. Der Operator, oder das Netzwerk Uber ein gewisses Priori-
tatensetzungsschema, kann dann den Druckauftrag direkt von der Anwendung drucken. Der resultierende
Druckauftrag wird temporar in dem Spooler gespeichert. Wenn der Auftrag zeitplanmaRig drucken soll, ruft der
Spooler den kundenspezifischen Druckprozessor auf, um den Auftrag zu drucken. Der Druckprozessor fragt
das System ab, um zu bestimmen, ob die Treiber existieren. Derselbe 6ffnet dann den durch die Anwendung
ausgewahlten Treiber und erlangt die aktuelle PRINTER.INFo.2-Struktur, um den Treibernamen und andere
Informationen Uber den Drucker zu erlangen.

[0044] Der Druckprozessor andert dann den Treibernamen durch ein Verwenden von ,SetPrinter API" mit der
PRINTER.INFO.2-Struktur und einem neuen Treibernamenfeld in den neuen erwiinschten Namen. Dann er-
langt der Druckprozessor unter Verwendung von ,Document Properties" die DEVMODE-Struktur des neuen
Treibers, so dal dieselbe durch den neuen Treiber verwendet und verstanden wird. Dies wird auch auf der
PRINTER.INFO.2-Struktur gesichert. Das Obige wird alles gemacht, wenn dem Druckprozessor durch den
Spooler befohlen wird, ,den Prozessor zu 6ffnen". Der Prozessor wird dann durch den Spooler angerufen, um
die Daten zu verarbeiten. Der Prozessor ruft die Graphikgeratschnittstelle (GDI) an, um die Daten der verbes-

7/47

DE 697 27 906 T2 2005.02.03

serten Metadatei (EMF) in dem neuen Treiber zu verarbeiten. Am Ende des Auftrags wird der Treiber zu dem
Ursprung rickgesetzt, so dal® dem Benutzer immer die gleichen Informationen vorgelegt werden.

[0045] Um den obigen ProzeR zu implementieren, missen mehrere Beschrankungen angewendet werden.
Erstens kann sich der DEVMODE fur einen jeglichen verwendeten Treiber nicht auf private DEVMODE-Daten
stutzen, wenn nicht alle Treiber die gleichen privaten Daten unterstitzen, wie dieselben in dem Verbesser-
te-Metadatei- (EMF-) Auftrag enthalten sind. Zweitens sollte die Benutzerschnittstelle fur alle Treiber gleich
aussehen, weil der Benutzer jederzeit aufgerufen werden kénnte.

[0046] Um ein Treiberschalten gemaf der Vorrichtung und dem Verfahren dieser Erfindung besser zu verste-
hen, wird ein Schritt-fliir-Schritt-Flul? durch das System, wie es tber den Algorithmus von Tabelle 1 implemen-
tiert ist, mit Bezug auf Fig. 4-6 durchgesehen. Ein grundlegender Vorteil des Treiberschaltens gemal dieser
Erfindung besteht darin, eine Systemwahl eines unterschiedlichen Druckertreibers als dem einen zu ermdgli-
chen, der verwendet wird, um einen Druckauftrag in Windows 95 oder NT zu erzeugen (dies gilt konzeptionell
auch fir den OS/2-Queue Processor (Wartschlangentreiber)). Ein Wahlen eines unterschiedlichen Treibers er-
moglicht, daf’ der einfach-gespoolte Auftrag zu mehreren ungleichen Geraten gesendet wird, wie beispielswei-
se einem HP DeskJet Drucker, einem LaserJet-Drucker oder einem Plotter. Derselbe kann auch mehrere Male
verarbeitet werden, um zu einer Verteilung von Geraten zu senden, wie beispielsweise vernetzte Drucker oder
Internetgerate.

[0047] Eine Analyse des Treiberschaltauftragsflusses, der in Fig. 4-6 dargestellt ist, beginnt mit einer Erst-
durchlauf-Druckanforderung, die Uber eine Anwendung 36 eingeleitet wird. Die Anwendung 36 erzeugt einen
Druckauftrag oder einen Quellauftrag, der zu der dynamischen Verknupfungsbibliothek (DLL) einer Graphik-
geratschnittstelle (GDI) geliefert wird. Die Graphikgeratschnittstelle (GDI) implementiert gemeinschaftlich ver-
wendete Funktionen zu einer Verbindungszeit zwischen der Anwendung 36 und einem urspriinglichen Treiber
38. Die Graphikgeratschnittstelle (GDI) enthalt alle graphischen Anwendungsprogrammierungsschnittstellen
(APIs) in Windows, wobei gespoolte Daten in der Form einer verbesserten Metadatei 42 erzeugt werden.

[0048] Gemal einer Zweitdurchlaufoperation des Treiberschaltens stellt Fig. 5 einen Spooler 46 dar, der tiber
einen Spool-Kopfblock 48 die Speicherung und Wiedererlangung der gespoolten Druckdaten oder der verbes-
serten Metadatei 42 von einem Speichergerat 44 anweist. Der Spooler 46 leitet Druckauftrags- und Drucker-
informationen zu dem kundenspezifischen Druckprozessor 50 dieser Erfindung. Genauer gesagt setzt der
Druckprozessor 50 tiber die Codeimplementierung von Tabelle 1 und Fig. 7-11 den Treiber von dem urspring-
lichen Treiber 38 (von Fig. 4) riick. Eine Registerdatenbank 54 speichert Hardware- und Softwarekonfigurati-
onsinformationen, die durch die Systemanwendungsprogrammierungsschnittstellen (APIs) wiedererlangt und
verwendet werden, um den Druckprozessor 50 bei einem Riicksetzen des Treibers zu unterstitzen. Der Druck-
prozessor 50 weist die Graphikgeratschnittstelle (GDI) an, den Druckauftrag auf einem neuen oder riickgesetz-
ten Treiber zu liefern. Die verbesserte Metadatei (EMF) 42 wird durch die Graphikgeratschnittstelle (GDI) von
dem Speichergerat 44 wiedererlangt, um einen Teil des ,GDI-Abspielen-Spool-Stroms (GDI play spool
stream)" zu bilden. Die Graphikgeratschnittstelle (GDI) weist eine Kommunikation mit den neuen Treiber 56
und einem Tor-Uberwachungs/Druck-Anbieter 58 eines Ausgabegerats 14 an. Das Gerat 14 empfangt nach-
folgend Ausgabebefehle von dem Treiber 56, die von der Ausgabebefehlsdatei umgewandelt sind, die eine
Zeichnungsbefehlsdatei aufweist, die Zeichnungsbefehle enthalt, die von dem Druckprozessor 50 empfangen
werden. Der Druckprozessor 50 flihrt die Ausgabebefehlsdatei basierend auf einem Prioritatensetzungssche-
ma dem Ausgabegeratetreiber 56 zu.

[0049] Ein geeignetes Prioritatensetzungsschema betrifft ein Richten der Ausgabebefehlsdatei von dem
Druckprozessor 50 zu einem des zumindest einen Ausgabegerats basierend auf den Druckfahigkeiten des
Ausgabegerats 14. Eine andere Weise besteht darin, ein Richten der Ausgabebefehlsdatei zu einem Ausga-
begerat auf eine relative Verfligbarkeit des Ausgabegerats 14 und/oder des verwandten Geratetreibers 56 zu
basieren. Zum Beispiel kdnnten ein spezieller Treiber 56 und der Drucker 14 bereits zu viele Druckauftrage in
einer Warteschlange enthalten. Alternativ kdnnten der Treiber 56 und der Drucker 14 kein Papier oder keine
Tinte mehr haben. Des weiteren kdnnten der spezielle Treiber 56 und der Drucker 14 erwiinschte Druckfahig-
keiten nicht aufweisen, wie beispielsweise eine Farbe, ein korrekt proportioniertes Papier, eine Bildauflésung,
etc., was es vernunftiger macht, den Prozessor 50 aufzuweisen, um den Druckauftrag zu einem anderen ge-
eigneteren Treiber und Gerat basierend auf einem oder einem jeglichen einer Anzahl von bekannten Prioritats-
setzungsschemata zu liefern.

[0050] In Anbetracht eines speziellen Treibers 56 und eines Gerats 14, die verwendet werden, hangt die Tat-
sache, wie jedes Verfahren arbeitet, von dem durch das Textverarbeitungsprogramm verwendeten Druckertrei-

8/47

DE 697 27 906 T2 2005.02.03

ber ab. Ein Treiber ist eine Erweiterung zu dem Betriebssystem und ist fir ein spezifisches Stlick einer Hard-
ware mafgeschneidert, wie beispielsweise einen Hewlett-Packard LaserJet Il Drucker oder einer Su-
per-VGA-Anzeige. Der Druckertreiber nimmt die Informationen, die durch den Reihenstrom von Daten oder die
Seitenbeschreibungssprache geliefert werden, und wandelt dieselben in Befehle auf niedriger Ebene um, die
durch den Drucker erkannt werden. (Ein Bildschirmtreiber macht das gleiche mit dem Videoadapter, um Text
auf dem Monitor anzuzeigen.) Durch ein Arbeiten mit unterschiedlichen Treibern kann ein Textverarbeitungs-
programm mit dem gleichen Dokument an einer Vielfalt von Anzeigen und Druckern arbeiten. Eine ,Register-
datenbank" ist eine strukturierte Datei in Windows, die indexierte Informationen speichert, die die Hardware
des Hostsystems, Benutzerpraferenzen und andere Konfigurationsdaten beschreiben. Die Registerdatenbank
dient dazu, die starke Vermehrung von Konfigurationsdateien zu reduzieren, die eine Windows-Maschine st6-
ren kann.

[0051] Fig. 6 stellt ein Treiberschalten zu einem Verteilen von Mehrfachdurchlaufauftragen an eines oder
mehrere Ausgabegerate dar. Der Druckprozessor 50 wird gemaf Schritt ,S7.20", der unten mit Bezug auf
Fig. 9 beschrieben ist, durch den Spooler 46 ,gedffnet", um die urspriingliche verbesserte Metadatei (EMF) 42
zu kopieren, die in dem Speichergerat 44 gespeichert ist. Uber einen Block 50 und einen Schritt ,S7.30" von
Fig. 11 weist der Spooler 46 ferner den Druckprozessor an, das Dokument an dem Druckprozessor zu druk-
ken. Der Operationsblock 50 implementiert eine geschlossene Schleife 62, die zu einem neuen Druckauftrag
64 zeigt, und erlangt die verbesserte Metadatei 42 wieder und schreibt dieselbe zu dem Speicher 44, die Uber
den Druckprozessor einer Lieferung zu jedem einer Reihe von Ausgabegeraten gemal der Schleife 62 und
einem Zeiger 64 wieder wiedererlangt wird.

Logisches Fluf3ddiagramm

[0052] Gemal Fig. 7 ist ein ,Druckprozessor" als ein logisches FluRdiagramm einer ersten Ebene fir das
Programmieren eines Computers zu einem Wirksamsein innerhalb einer Computernetzwerkumgebung offen-
bart, um Druckauftrage zu mehreren Ausgabegeraten aufzubereiten. Tabelle 1 schildert ferner genau die Imp-
lementierung des Druckprozessors, aufbereitet in C-Code-Sprache, wie es oben mit Bezug auf Fig. 5 und 6
gezeigt ist. Der ,,Druckprozessor" bildet ein Gerat, das ein Druckertreiberschalten zu einer Verwendung mit ei-
nem Computer implementiert, der innerhalb einer Computernetzwerkumgebung wirksam ist. Der ,Druckpro-
zessor" kann gemaf dem logischen FluRdiagramm von Fig. 7-11 automatisch implementiert sein. Alternativ
kann der kundenspezifische Druckprozessor HP PCL5 erzeugen. Auf diese Weise unterstutzt der Druckpro-
zessor das Erzeugen von verbesserten Windows-Metadateien (EMFs). Ein Benutzer betreibt eine Win-
dows-Anwendung und wahlt mit einem erwtinschten urspriinglichen Druckertreiber ein erwiinschtes Druckob-
jekt aus. Die Geratetreiber, die in der Computernetzwerkumgebung wirksam sind, missen den kundenspezifi-
schen Druckprozessor aufweisen, der denselben zugeordnet ist. Druckauftrage werden von der Anwendung
gedruckt. Der resultierende Druckauftrag wird Gber den Spooler temporar in einem Speicher gespeichert.
Wenn der Auftrag zeitplanmaRig drucken soll, ruft der Spooler den kundenspezifischen Druckprozessor auf,
den Auftrag zu drucken. Der Druckprozessor fragt das System ab, um zu bestimmen, ob die Treiber existieren.
Derselbe 6ffnet dann den durch die Anwendung ausgewahlten Drucker und erlangt die aktuelle PRINTER.IN-
FO.2-Struktur, um den Treibernamen und andere Informationen Gber den Drucker zu erlangen. Der Druckpro-
zessor andert dann den Druckernamen in einen neuen erwinschten Namen, wie es vorhergehend offenbart
ist.

[0053] Gemal einem Schritt ,S1" werden die Betriebssysteme auf den Computern innerhalb des Computer-
betriebsnetzwerks und die Betriebssysteme und Geratetreiber der Ausgabegerate gestartet. Zum Beispiel star-
tet auf ein Hochfahren jedes Gerats in dem Netzwerk hin das System-BIOS das Betriebssystem und den Spoo-
ler, die verwendet werden kénnen, um das FluRdiagramm von Fig. 7 und 8 automatisch zu initialisieren oder
die Einleitung desselben zu bewirken, was bewirkt, dal} der Computer eine verbesserte Metadatei erzeugt, ur-
springliche Druckertreibergerateinformationen sammelt und den Drucker (oder das Ausgabegerat) zu einem
Empfangen der Metadatei schaltet. Nach einem Durchfiuhren des Schritts ,S1" geht der ProzeRR zu einem
Schritt ,S2" Gber.

[0054] Bei dem Schritt ,S2" leitet die Anwendung, die auf dem Betriebssystem lauft, einen Druckauftrag ein.
Ein Weg besteht darin, automatisch eine Druckanforderung zu erzeugen. Ein anderer Weg besteht darin, daf
ein Benutzer einen Druckauftrag anfordert. Nach einem Durchfuhren des Schritts ,S2" geht der ProzeR zu ei-
nem Schritt ,S3" Uber.

[0055] Bei dem Schritt ,S3" leitet die Anwendung, die auf dem Betriebssystem lauft, den Druckauftrag zu der
Graphikgeratschnittstelle (GDI) weiter, eine Komponente des Windows-Betriebssystems, die fir ein Implemen-

9/47

DE 697 27 906 T2 2005.02.03

tieren der graphischen Funktionen verantwortlich ist, wie beispielsweise ein Linienzeichnen und eine Farbver-
waltung. Die GDI erzeugt Daten in Zwischenzeichnungsbefehlen in der Form von verbesserten Metadateien.
Nach einem Durchfiihren des Schritts ,S3" geht der ProzelR zu einem Schritt ,S6" Uber.

[0056] Bei einem Schritt ,S4" liefert der urspriingliche Druckertreiber Gerateinformationen, die notwendig
sind, um das zugeordnete Peripheriegerat zu betreiben, wie beispielsweise einen Drucker, einen Monitor oder
ein anderes Ausgabegerat. Der Druckertreiber liefert Informationen Gber Fahigkeiten des Gerats, das derselbe
darstellt. Zum Beispiel sind die Grole eines verwendeten Papiers, eine Unterstitzung von Farben,
Schwarz-Weil}, etc. einige der Informationen Uber Geratefahigkeiten, die geliefert werden kénnen. Nach einem
Durchfiihren von Schritten ,S4" und ,S5" geht der Prozel} zu Schritten ,S5" und ,S6" Gber.

[0057] Bei dem Schritt ,S5" Ubertragt die GDI die erzeugten Zwischenzeichnungsbefehle in der Form einer
verbesserten Metadatei, wo dieselbe in einem Speicher gespeichert wird.

[0058] Bei dem Schritt ,S6" weist der Prozel den Spooler an, einen zweiten Durchlauf an dem Druckauftrag
einzuleiten, um den speichergespeicherten Druckauftrag zu einem Ausgabegerat zu senden, wie es durch die
Anwendung bestimmt ist. Nach einem Durchfiihren des Schritts ,S6" geht der Prozel3 zu einem Schritt ,S7"
Uber.

[0059] Bei dem Schritt ,S7" leitet der Prozel3 eine Implementierung des Druckprozessors ein. Der Druckpro-
zessor wird auf eine von drei Weisen implementiert: der Druckprozessor wird tGber eine Operation des in Fig. 8
gezeigten FluRdiagramms initialisiert; der Druckprozessor wird gedffnet, Druckertreiberdetails werden wieder-
erlangt und neue Druckertreibereinstellungen werden in der Systemdatenbank gesichert, um eine Druckpro-
zessordatenstruktur zu erreichen; und der Druckprozessor fiihrt das Drucken (oder die Ausgabe) eines Druck-
auftrags an dem neuen Ausgabegerat Giber einen zugeordneten Geratetreiber aus. Nach einem Durchfiihren
des Schritts ,S7" (eine der Routinen von Fig. 8, 9 und 10 zusammen, oder 11) geht der Prozel3 zu einem Schritt
,38" Uber.

[0060] Beidem Schritt ,S8" bereitet die GDI den Druckauftrag unter Verwendung eines neuen Druckertreibers
auf. Nach einem Durchfiihren des Schritts ,S8" geht der Prozel} zu einem Schritt ,S10" Gber. Ein eingekreistes
Zeichen 1 stellt eine Verbindung zu einem Schritt ,S7.36" zu einem Leiten eines Puffers zu der GDI gemal den
Operationen von Fig. 11 her. Nach einem Durchfiihren des Schritts ,S8" geht der Prozeld zu einem Schritt
,310" Uber.

[0061] Bei einem Schritt ,S9" liefert der durch die Anwendung ausgewahlte neue Druckertreiber Ausgabege-
ratinformationen zu der GDI, was erméglicht, daf’ die GDI den Druckauftrag aufbereitet, um eine Ausgabe des
Druckauftrags uber den Schritt ,S10" zu ermdglichen.

[0062] Bei dem Schritt ,S10" wird der Druckauftrag als ein Dokument gedruckt. An diesem Punkt endet der
ProzeR.

[0063] Gemal Fig. 8 implementiert der Druckprozessor eine erste Operation. GemaR einem Schritt ,S7.10"
initialisiert der Prozel} die Druckprozessorfunktionszeiger und weist einen Speicher zu. Nach einem Durchfiih-
ren des Schritts ,S7.10" geht der Prozel zu einem Schritt ,S7.11" Uber.

[0064] Bei dem Schritt ,S7.11" implementiert der Druckprozessor eine erste Operation. Gemall dem Schritt
»57.10" initialisiert der Prozel3 die Druckprozessorfunktionszeiger und weist einen Speicher zu. Nach einem
Durchfliihren des Schritts ,S7.10" geht der ProzelR zu einem Schritt ,S7.11" Uiber.

[0065] Bei dem Schritt ,S7.11" leitet der Prozef eine Riickkehr zu dem Spooler ein. Nach einem Durchflihren
des Schritts ,S7.11" geht der Prozel’ zu einem Schritt ,S7.12" Uber.

[0066] Bei dem Schritt ,S7.12" endet der Prozel3. Der Prozeld geht dann zu der Implementierung des Fluf3di-
agramms von Fig. 9 und 10 Gber.

[0067] Gemal dem Prozefd von Fig. 9 und 10 implementiert der Prozel3 eine zweite Operation durch den
Druckprozessor. Gemaf einem Schritt ,S7.20" 6ffnet der Prozel3 den Druckprozessor. Nach einem Durchfih-
ren des Schritts ,S7.20" geht der ProzelR zu einem Schritt ,.S7.21" Uber.

[0068] Bei dem Schritt ,S7.21" 6ffnet der Druckprozessor den Drukker. Gemaf dem Schritt ,S7.10" leitet der

10/47

DE 697 27 906 T2 2005.02.03

ProzeR das Offnen lber ,openprinter API" ein. ,Openprinter API" ist der Name der Teilroutine, die der Druck-
prozessor in der ,Microsoft Windows 95 Device Driver Developers Kit" anruft. Die ,openprinter API" existiert in
dem Spooler, um Funktionen durchzufiihren, die durch den Spooler benétigt werden. Nach einem Durchfiihren
des Schritts ,.S7.21" geht der Proze zu einem Schritt ,S7.22" iber.

[0069] Beidem Schritt ,S7.22" erlangt der Druckprozessor Druckerdetails unter Verwendung von ,printerinfo2
structure" wieder. GemaR dem Schritt ,S7.22" werden die Details tUber ,getprinter API" wiedererlangt. ,Getprin-
ter API" ist der Name einer Teilroutine in dem Spooler, die Informationen von dem Spooler wiedererlangt. Nach
einem Durchfilihren des Schritts ,S7.22" geht der Prozel3 zu einem Schritt ,S7.23" Uber.

[0070] Bei dem Schritt ,S7.23" andert der Druckprozessor den Drukkertreibernamen in einer
Lprintinfo2"-Struktur in einen neuen Geratetreiber. Nach einem Durchfiihren des Schritts ,S7.23" geht der Pro-
zel} zu einem Schritt ,S7.24" Uber.

[0071] Bei dem Schritt ,S7.24" sichert der Druckprozessor die neuen Druckerinformationen in der Systemre-
gisterdatenbank. Derartiges wird iber ,setprinter API" implementiert. ,Setprinter API" ist eine Teilroutine, die in
dem Spooler existiert und Informationen iber den Drucker oder das Ausgabegerat sichert, so dal® der Spooler
eine Kenntnis der Informationen aufweist. Nach einem Durchfiihren des Schritts ,S7.24" geht der Prozel} zu
einem Schritt ,.S7.25" Uiber.

[0072] Bei dem Schritt ,S7.25" erlangt der Druckprozessor die Druckerdokumenteigenschaften wieder. Die
Wiedererlangung ist als ,documentproperties API" implementiert. ,Documentproperties API" erhalt Informatio-
nen von dem Spooler iber Dokumente, die erzeugt werden. Nach einem Durchfihren des Schritts ,S7.25" geht
der Prozel} zu einem Schritt ,S7.26" Gber.

[0073] Beidem Schritt ,S7.26" andert der Druckprozessor die Dokumenteigenschaften, um mit neuen Treibe-
reinstellungen ubereinzustimmen. Der Druckprozessor aktualisiert im wesentlichen die devmode-Struktur.
-Devmode structure" ist eine Struktur, die in dem Spooler existiert und die Fahigkeiten der innerhalb der Com-
puternetzwerkumgebung verfiigbaren Druckertreiber beschreibt. Nach einem Durchfihren des Schritts
Schritts ,S7.26" geht der Prozel3 zu einem Schritt ,S7.27" (iber.

[0074] Bei dem Schritt ,S7.27" sichert der Druckprozessor die neuen Druckerdokumenteigenschaften in der
Systemregisterdatenbank. Um dies vorzunehmen, andert der Druckprozessor den Treibernamen unter Ver-
wendung von ,setprinter API" in den neuen erwiinschten Namen. ,Setprinter API" ist eine Teilroutine, die in
dem Spooler existiert und Informationen iber den Drucker oder das Ausgabegerat sichert, so dal® der Spooler
eine Kenntnis der Informationen aufweist. Nach einem Durchfiihren des Schritts ,S7.27" geht der Prozel} zu
einem Schritt ,.S7.28" Uiber.

[0075] Bei dem Schritt ,S7.28" weist der Druckprozessor Prozessordatenstrukturen zu und initialisiert diesel-
ben. Nach einem Durchfiihren des Schritts ,S7.28" geht der Prozel3 zu einem Schritt ,S7.29" Gber.

[0076] Bei dem Schritt ,S7.29" leitet der Druckprozessor eine Rickkehr zu dem Spooler ein. Nach einem
Durchfliihren des Schritts ,S7.29" geht der Proze zu einem Schritt ,S7.291" Gber.

[0077] Bei dem Schritt ,.S7.291" beendet der Druckprozessor die Teilroutine von Fig. 9 und 10 und bewegt
sich vorzugsweise zu einer Implementierung der Teilroutine von Fig. 11 weiter.

[0078] Gemal dem Prozel von Fig. 11 implementiert der Prozel eine dritte Operation durch den Druckpro-
zessor. Gemal einem Schritt ,.S7.30" druckt der Prozel} ein Dokument von der verbesserten Metadatei. Ge-
nauer gesagt richtet der Spooler ein Druckdokument auf den Druckprozessor. Nach einem Durchfiihren des
Schritts ,S7.30" geht der Prozel3 zu einem Schritt ,S7.31" (iber.

[0079] Beidem Schritt ,S7.31" validiert der Druckprozessor eingehende Parameter. Zum Beispiel validiert der
Druckprozessor die Druckerkennung und den Datentyp. Nach einem Durchflihren des Schritts ,S7.31" geht der
Prozel zu einem Schritt ,S7.32" Giber.

[0080] Bei dem Schritt ,S7.32" 6ffnet der Druckprozessor den Drukker. Nach einem Durchflihren des Schritts
,57.32" geht der Prozel zu einem Schritt ,S7.33" Gber.

[0081] Beidem Schritt,,S7.33" setzt der Druckprozessor den Spooler, um zu starten, und liest das Dokument.

11/47

DE 697 27 906 T2 2005.02.03

Genauer gesagt wird die ,startdocprinter API"-Datei implementiert. ,Startdocprinter API" ist eine Funktion, die
in dem Druckprozessor existiert und wiederum durch den Spooler angerufen wird, um dem Druckprozessor
den Start eines Dokuments anzugeben. Nach einem Durchfihren des Schritts ,S7.33" geht der ProzeR zu ei-
nem Schritt ,S7.34" Gber.

[0082] Bei dem Schritt ,S7.34" liest der Druckprozessor einen Puffer einer verbesserten Metadatei. Nach ei-
nem Durchfiihren des Schritts ,S7.34" geht der Prozel3 zu einem Schritt ,S7.36" Gber.

[0083] Beieinem Schritt ,,S7.35" Uibertragt der Druckprozessor die verbesserte Metadatei zu einem Puffer, wo
dieselbe gelesen wird. Nach einem Durchfiihren des Schritts ,S7.35" geht der Prozel® zu dem Schritt ,S7.36"
Uber.

[0084] Bei dem Schritt ,,S7.36" leitet der Druckprozessor den Puffer zu der GDI, um durch den neuen Treiber
aufbereitet zu werden. Die ,,GDlIplayspoolstream API"-Datei wird implementiert. ,GDIplayspoolstream API" ist
eine Teilroutine, die in der GDI existiert. Nach einem Durchfiihren des Schritts ,S7.36" geht der Prozel zu ei-
nem Schritt ,S7.37" Gber.

[0085] Bei dem Schritt ,S7.37" fahrt der Druckprozessor fort, bis derselbe das Ende der Datei erreicht. Nach
einem Durchfilihren des Schritts ,S7.37" geht der Prozel3 zu einem Schritt ,S7.38" Uber.

[0086] Bei dem Schritt ,S7.38" schlie3t der Prozessor den Drucker. Nach einem Durchfiihren des Schritts
,57.38" geht der Prozessor zu einem Schritt ,S7.39" Giber.

[0087] Bei dem Schritt ,S7.39" beendet der Druckprozel die Teilroutine von Fig. 11 und kehrt zu einer Imp-
lementierung der Teilroutine von Fig. 7 zurtick.

[0088] In Ubereinstimmung mit den Vorschriften wurde die Erfindung hinsichtlich struktureller und methodi-
scher Merkmale in einer mehr oder weniger spezifischen Sprache beschrieben. Es ist jedoch klar, da® die Er-
findung nicht auf die spezifischen gezeigten und beschriebenen Merkmale begrenzt ist, da die hierin offenbar-
ten Einrichtungen bevorzugte Formen eines Ausfiihrens der Erfindung aufweisen. Die Erfindung wird daher in
einer jeglichen der Formen oder Modifizierungen derselben innerhalb des ordnungsgemafien Schutzbereichs
der beigefiigten Anspriiche beansprucht, die gemaR der Doktrin von Aquivalenten geeignet interpretiert wer-
den.

12/47

DE 697 27 906 T2 2005.02.03

TABELLE 1

/*Der folgende Code basiert auf einem Musterdruckprozessor,
der durch Microsoft Corporation in der Windows 95 Gerdte-
treiberentwicklerausriustung derselben geliefert wird. Es
wird angenommen, daB der Mustercode zu einer Modifizierung
und Anpassung durch Gerdtehersteller fir Gerdte, die auf
dem Microsoft Windows Betriebssystem verwendet werden sol-
len, frei verfiigbar ist, wenn notwendig. Modifizierungen,
die vorgenommen sind, um den Gedanken eines
DRUCKERTREIBERSCHALTENS zu testen, sind unten mit dem fol-
genden Kommentar vor und nach der Modifizierung angemerkt.
Die Microsoft-Urheberrechtaussage unten gilt nicht fir ei-

nen Code innerhalb der Kommentare.*/

/***>> Modifizierung, um Druckertreiberschalten zu testen.
Beginn/Ende <<***/

/***>> L. Snyders 29.08.96 Copyright 19396 Hewlett-Packard
Company <<***/

/**********************-k*****-k*****************************
*hkhkhkhkhrhdkhkhhkhkkhkk

* *

DIESER CODE UND DIE INFORMATIONEN SIND BEREITGESTELLT “WIE
SIE SIND”, OHNE GARANTIE EINER JEGLICHEN ART ENTWEDER
AUSDRUCKLICH ODER IMPLIZIERT, EINSCHLIESSLICH ABER NICHT

BEGRENZT AUF DIE IMPLIZIERTEN GARANTIEN EINER
MARKTGANGIGKEIT UND/ODER EIGNUNG FUR EINEN SPEZIELLEN
ZWECK. *

X >

*Copyright (C) 1993-95 Microsoft Corporation. Alle Rechte
vorbehalten. *

* *
khkhkkhkhkhhohkhkkhhkhkhkhkhkhkdhhkRhhkhkbhrhrkhkdhhkhkdhkdhkhkhkhhbkrbhdhrhkdrdxhhhrhdhdkxdxx

****************/

13/47

DE 697 27 906 T2 2005.02.03

#define TIMING

#include <windows.h>
#include <wingdi.h>

#include <winspool.h>
#include <winsplp.h>
#include <winuser.h>

#include <winbase.h>

#include “local.h”

#include “winprint.h”

TCHAR FAR *szWinPrint = TEXT (“WinPrint”);
LPTSTR Datatypes[]={“RAW”, “EMF”, O};
LPSTR pSimple = NULL

LPTSTR pFull = NULL;

/***>> Modifizierung, um Druckertreiberschalten zu testen.
Beginn <<***/
/***>> 1,. Snyders 29.08.96 Copyright 1996 Hewlett-Packard
Company <<***/

LPTSTR pNewPrinterName = NULL;
LPDEVMODE pDevMode = NULL;

/***>> Modifizierung, um Druckertreiberschalten zu testen.
Ende <<***x/
/***>> 1,. Snyders 29.08.96 <<***/

HDC WINAPI gdiPlaySpoolStream(LPSTR, LPSTR, LPSTR, DWORD,
LPDWORD, HDC) ;
#define PRINTPROCESSOR_TYPE RAW

ffidefine PRINTPROCESSOR_TYPE EMF
#define PRINTPROCESSOR TYPE NUM

14/47

DE 697 27 906 T2 2005.02.03

$ifdef TIMING
HWND hWndBench = 0;
$endif

BOOL

WINAPI

InitializePrintProcessor (
LPPRINTPROCESSOR pPrintProcessor,
DWORD cbPrintProcessor

char szBuf [MAX PATH];

pPrintProcessor->fpEnumbDatatypes =
WinprintEnumPrintProcessorDatatypes;
pPrintProcessor->fpOpenPrintProcessor =
WinprintOpenPrintProcessor;
pPrintProcessor->fpPrintDocument =
WinprintPrintDocumentOnPrintProcessor;
pPrintProcessor->fpClosePrintProcessor =
WinprintClosePrintProcessor;
pPrintProcessor->fpControlPrintProcessor =

WinprintControlPrintProcessor;
if (LoadString(hlnst, IDS BANNERSIMPLE, szBuf,
sizeof (szBuf)))
pSimple = AllocSplStr(szBuf);
if (LoadString (hlnst, IDS_ BANNERFULL, szBuf,
sizeof (szBuf)))

pFull = AllocSplStr(szBuf);

return TRUE;

15/47

DE 697 27 906 T2 2005.02.03

BOOL
WINAPI
WinprintEnumPrintProcessorDatatypes (
LPTSTR pName,
LPTSTR pPrintProcessorName,
DWORD Level,
LPSTR pDatatypes,
DWORD cbBuf,
LPDWORD pcbNeeded,
LPDWORD pcReturned

DATATYPES INFO 1 FAR *pInfol
*)pDatatypes;

LPTSTR FAR *pMyDatatypes = Datatypes;

DWORD cbTotal=0;

LPBYTE pEnd;

(DATATYPES _INFO_ 1 FAR

*pcReturned = 0;

pEnd = (LPBYTE)pInfol + cbBuf;

while (*pMyDatatypes) {

cbTotal += wcslen(*pMyDatatypes) *sizeof (TCHAR) +
sizeof (TCHAR) + sizeof (DATATYPES INFO 1);

pMyDatatypes++;
}

*pcbNeeded = cbTotal;

if (cbTotal <= cbBuf) {

pMyDatatypes = Datatypes;

16/47

DE 697 27 906 T2 2005.02.03

while (*pMyDatatypes) {

pEnd—=wcslen(*pMyDatatypes)*sizeof(TCHAR) +
sizeof (TCHAR) ;

wcscpy ((LPTSTR) pEnd, *pMyDatatypes) ;
pInfol->pName = (LPSTR)pEnd;

pInfol + +;

(*pcReturned) + +;

pMyDatatypes+ +;

} else {

SetLastError(ERROR_INSUFFICIENT_BUFFER);
return FALSE;
}

return TRUE;

HANDLE

WINAPI

WinprintOpenPrintProcessor (
LPTSTR pPrinterName

PRINTPROCESSORDATA pData;
HANDLE hPrinter=NULL;
HDC hDC=0;

[EEHRSS Modifizierung, um Druckertreiberschalten zu testen.

Beginn <<**x/

17/47

DE 697 27 906 T2 2005.02.03

/***>> 1. Snyders 29.08.96 Copyright 1996 Hewlett-Packard
Company <<***/

DWORD dwBytesNeeded = 0; /* for Get/SetPrinters */
DWORD dwDMBytesNeeded = 0;
DWORD dwModeFlag = DM OUT_ BUFFER;

BOOL DbRetcode = TRUE;

PRINTER INFO 2 *pPrtInfo2 = NULL;
char bur[256]; /*buffer for debug strings */

OutputDebugString ("HPPRINTP: Request to Open
printer:”);

OutputDebugString (pPrinterName) ;

/***>> Modifizierung, um Druckertreiberschalten zu testen.
Ende <<***/
/***>> L. Snyders 29.08.96 <<***/

if (!'OpenPrinter (pPrinterName, &hPrinter, NULL))

{
OutputDebugString (,,HPPRINTP.DLL Open Printer
failed"™);
return FALSE;

/***>> Modifizierung, um Druckertreiberschalten zu testen.
Beginn <<x**/
/***>> L. Snyders 29.08.96 Copyright 1996 Hewlett-Packard
Company <<***/

//
//GetPrinter zuerst aufrufen, um Bytezahlwert zu erlangen,
der fur Puffer bendtigt wird

//

18/47

DE 697 27 906 T2 2005.02.03

GetPrinter (hPrinter, 2, 0, O, &dwBytesNeeded) ;

//
//Speicher fir Drucker-Info-Puffer zuweisen
//
if (/! (pPrtiInfo2 = (PRINTER_INFO 2 *) AllocSplMem (dwBytes-
Needed)))
{
OutputDebugString (“"HPPRINTP.DLL AllocSplMem
failed\n\r”);
return FALSE;
}
//
//GetPrinters Stufe 2
//
bRetcode = GetPrinter (hPrinter, 2, (LPBYTE) pPrtInfo2,
dwBytesNeeded, &dwBytesNeeded) ;
if (bRetcode = = FALSE)
{
OutputDebugString (HPPRINTP.DLL Second GetPrinter
failed\n\r”);
return FALSE;
}
//

// Den Treiber in den Mono-Bitabbildung-Drucker &Andern

//

pPrtInfo2->pDriverName = AllocSplStr (,Mono Bitmap
Driver™); /* New Driver name */
bRetcode = SetPrinter (hPrinter, 2, (LPBYTE) pPrtInfo2,
0;
if (bRetcode = = FALSE)
{
OutputDebugString ("HPPRINTP.DLL SetPrinter
failed\n\r);
return FALSE;

19/47

DE 697 27 906 T2 2005.02.03

//
//Die devmode-Struktur des neuen Druckers einstellen, zu-
erst die GroBe derselben erlangen
//

dwDMBytesNeeded = DocumentProperties (NULL, hPrinter,
pPrinterName, NULL, NULL, O0);

pDevMode = (LPDEVMODE)AllocSplMem(dwDMBytesNeeded) ;

//
// Dann die vorgegebenen devmode-Werte erlangen

//

bRetcode = DocumentProperties(NULL, hPrinter, pPrin-
terName, pDevMode, NULL, dwModeFlag);
if (bRetcode < 0)
{
OutputDebugString(,HPPRINTP.DLL DocProp
Failed\n\r"“);
return (FALSE) ;

//

// Nun vorgegebene Devmode-Werte in Registerdatenbank ein-
stellen

//

pPrtInfo2->pDevMode = pDevMode;
bRetcode = SetPrinter (hPrinter, 2, (LPBYTE) pPrtInfo2,
0}

/***>> Modifizierung, um Druckertreiberschalten zu testen.
Ende <<***/
/***>> L. Snyders 29.08.96 <<x*x/

pData =
(PPRINTPROCESSORDATA)AllocSleem(sizeof(PRINTPROCESSORDATA)
) :

20/47

DE 697 27 906 T2 2005.02.03

pData->cb = sizeof (PRINTPROCESSORDATA) ;
pData->signature =PRINTPROCESSORDATA SIGNATURE;
pData->hPrinter = hPrinter;

pData->semPaused = CreateEvent (NULL, FALSE,
TRUE, NULL) ;

pData->pPrinterName = AllocSplStr(pPrinterName) ;

return (HANDLE)pData;

UINT ValidateDatatype (LPTSTR pDatatype)

LPTSTR FAR *pMyDatatypes=Datatypes;
DWORD uDatatype=0;

while (*pMyDatatypes && wcscmp (*pMyDatatypes,
pDatatype))

{

pMyDatatypes+ +;

uDatatype+ +;

}

return uDatatype;

ValidateBannerType (LPTSTR IpBanner)

{
if (IpBanner && *IpBanner)

{
if (!wcscmp (IpBanner, pFull))
return BANNER FULL;

21/47

DE 697 27 906 T2 2005.02.03

if (!wcscmp (IpBanner, pSimple))
return BANNER SIMPLE;

#ifdef TIMING
if (!wcscmp (IpBanner, “Bench”))

{
hWndBench = FindWindow (“BNCH32PRT", “PRTWIN”) ;

if/hWndBench)
SendMessage (hWindBench, WM USER + 801, 0, 0);

return 0;
}
else
hWndBench = 0
#endif

return BANNER CUSTOM;
}

return O;

WINAPI

WinprintPrintDocumentOnPrintProcessor (
HANDLE hPrintProcessor,
LPPRINTPROCESSORDOCUMENTDATA IpDoc

PRINTPROCESSORDATA pData;
DOC_INFO 2 DocInfo;

DWORD LastError = 0;
DWORD NoRead, NoWritten:;
DWORD iBannerType;

22/47

DE 697 27 906 T2 2005.02.03

BYTE Buffer[4096];
HANDLE hPrinterRead;
HDC hDC = NULL;
LPBYTE pReadBuf;
DWORD cbReadBuf;
DWORD NoLeftOver = 0;
BOOL ret = TRUE;

if(! (pData = ValidateHandle(hPrintProcessor)))
{

SetLastError(ERROR_INVALID_HANDLE);

return FALSE;

}
pData->uDatatype = ValidateDatatype(IpDoc—>pDatatype);
iBannerType = ValidateBannerType(IpDoc—>pSepFile);

if (iBannerType)
InsertBannerPage(pData—>hPrinter, IpDoc->JobId, IpDoc-

>pOutputFile, iBannerType, IpDoc->pSepFile) ;

file

DocInfo.pDocName = IpDoc->pDocumentName ;
DocInfo.pOutputFile = IpDoc->pOutputFile; //the spool

DocInfo.pDatatype = IpDoc->pDatatype;
DocInfo.JobId = IpDoc->JobId;

// Den gleichen Drucker zu einem Lesen der Spooldatei
6ffnen.

if(!OpenPrinter(pData—>pPrinterName, &hPrinterRead,
NULL))

return FALSE;

// Dies 1l&Bt ReadPrinter() die Spooldatei fir uns le-
sen.
DocInfo.dwMode = DI_READ_SPOOL JOB;

23/47

DE 697 27 906 T2 2005.02.03

if(!StartDocPrinter(hPrinterRead, 2,
(LPBYTE) &DocInfo))

{

LastError = GetLastError();

ret = FALSE;

goto Exit 2;

}

if(pData—>uDatatype = = PRINTPROCESSOR_TYPE_RAW)
{
//Direktes Schreiben zu Tor starten
DocInfo.dwMode = DI_CHANNEL WRITE;
if(!StartDocPrinter(pData—>hPrinter, 2,
(LPBYTE) &DocInfo))
{

//SetJob (pData->hPrinter, IpDoc->JobId, 0, NULL,

JOB_CONTROL CANCEL) ;

LastError = GetLastError () ;

ret = FALSE

goto Exit 1;

pReadBuf = (LPBYTE)Buffer;
cbReadBuf = sizeof (Buffer) ;

//Hier wird ReadPrinter () verwendet, um tatsdchlich 4K
//der Spooldatei zu lesen. Diese Daten werden dann
//entweder direkt zu dem Drucker gesendet, falls RAW,
//oder zu der GDI, falls EMF. Bei dem letzteren Fall
//werden die Metadateidaten auf dem Drucker-DC
//wiedergegeben und dann zu dem Drucker gesendet (all
// dies wird vorgenommen durch gdiPlaySpoolStream()).
while (((ReadPrinter(hPrinterRead, pReadBuf, cbRead-
Buf, &NoRead)) s&& NoRead) || NoLeftOver)

{

//gdiPlaySpoolStream spielt nun eine Seite zu einer
//Zeit ab. Somit gibt ein Abspielen von EMF

24/47

DE 697 27 906 T2 2005.02.03

//Gelegenheit, bei jeder Seite anzuhalten.

if (pData->fsStatus & PRINTPROCESSOR_PAUSED)
WaitForSingleObject (pData->semPaused, INFINITE) ;

if (pData->fsStatus & PRINTPROCESSOR_ABORTED)
{
//wir kénnen nicht nur fiir EMF anhalten

//wir missen den DC bereinigen und etc.

if (pData->uDatatype = = PRINTPROCESSOR_TYPE EMF)
gdiPlaySpoolStream (NULL, NULL, IpDoc-
>pSpoolFileName, 0, 0, hDC);

break;

//Uberpriifen, ob RAW oder EMF, und entsprechend zu dem

//richtigen Ort senden.

if (pbata->uDatatype = = PRINTPROCESSOR_TYPE_RAW)
WritePrinter(pData—>hPrinter, Buffer, NoRead,
&NoWritten) ;

else

NoRead + = NoLeftOver;
NoWritten = NoRead;

SetLastError (ERROR_SUCCESS) ;

//hDC ist NULL, wenn man das erste Mal hierher
kommt

//dies ist wo die Metadatei abgespielt wird.
hDC = gdiPlaySpoolStream

pData->pPrinterName, IPDoc->pOutputFile,
Buffer, IpDoc->Jobld, &NoRead, hDC) ;

//Auf eine Riickkehr hin ist NoRead die Anzahl

//von Bytes, die in dem vorhergehenden Puffer

25/47

DE 697 27 906 T2 2005.02.03

//verarbeitet werden. Und dieselbe darf nicht

//groBer als NoWritten sein.

if (hDC && (NoWritten > = NoRead))

{
NoLeftOver = NoWritten - NoRead;

//es kann einen unvollstandigen sp-Block an dem
//Ende geben, der nicht verarbeitet wurde und den

//wir Ubertragen miissen

if (NoLeftOver)
CopyMemory (Buffer, Buffer + NoRead, NoLeft-

Over) ;

PReadBuf = Buffer + NoLeftOver;
cbReadBuf = sizeof (Buffer) - NoLeftOver;
}

else

{

//wir haben versagt

//oder wollen wir die EMF dort belassen und einem
//Benutzer ermoglichen, zu wiederholen 2797
LastError = GetLastError{();

DBGMSG (DBG_ERROR, (“WinprintPrintDoc: gdiPlay-
SpoolStream failed %d\n”, LastError));

//Benutzer zu wiederholen/abbrechen/ok auffor-

dern?
gdiPlaySpoolStream (NULL, NULL, IpDoc-

>pSpoolFileName, 0, 0, 0);
ret = FALSE;

26/47

DE 697 27 906 T2 2005.02.03

break;

if (pData->uDatatype = = PRINTPROCESSOR TYPE RAW)
EndDocPrinter (pData->hPrinter) ;

Exit 1:
EndDocPrinter (hPrinterRead) ;

Exit 2:

ClosePrinter (hPrinterRead) ;

if (LastError)

SetLastError(LastError) ;
#ifdef TIMING

if (hWndBench)

SendMessage (hWndBench, WM _USER + 802, 0, 0);
#endif

return ret;

WINAPIT

WinprintClosePrintProcessor(
HANDLE hPrintProcessor
PRINTPROCESSORDATA pData;

pData = ValidateHandle (hPrintProcessor) ;

if (!pData)
{

27147

DE 697 27 906 T2 2005.02.03

SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}

pData->signature = 0;
/*Jegliche zugewiesene Betriebsmittel freigeben*/

if (pData->hPrinter)
ClosePrinter (pData->hPrinter) ;

CloseHandle (pData->semPaused) ;

if (pData->pPrinterName)
FreeSplStr (pData,->pPrinterName) ;

FreeSplMem(pData, pData->cb):;

return TRUE;

WINAPI
WinprintControlPrintProcessor(
HANDLE hPrintProcessor,
DWORD Command,
DWORD JoblID,
LPTSTR pDatatype,
LPTSTR pSpoolFile

PRINTPROCESSORDATA pData;
PRINTPROCESSORDATA Data;

if (hPrintProcessor)

28/47

DE 697 27 906 T2 2005.02.03

pData = ValidateHandle (hPrintProcessor) ;

else

{

if (Command ! = JOB_CONTROL_CANCEL)
return FALSE;

Data.uDatatype = ValidateDatatype (pDatatype) ;
if (Data.uDatatype > = 0)

pData = &Data;
else
pData = 0;
}
~if (pData)

{

switch (Command)

{
case JOB_CONTROL PAUSE:

ResetEvent (pData->semPaused) ;
pData->fsStatus | = PRINTPROCESSOR PAUSED;
return TRUE;

case JOB_CONTROL CANCEL:

if ('hPrintProcessor)
{
//wir 18schen einen Auftrag, der ein Drucken

//nicht begonnen hat

if(pData—>uDatatype = = PRINTPROCESSOR_TYPE_EMF)
{
return (BOOL)gdiPlaySpoolStream (NULL, NULL,
pSpoolFile, 0, 0, 0);

return TRUE;
}

29/47

DE 697 27 906 T2 2005.02.03

pData->fsStatus | = PRINTPROCESSOR_ABORTED;

/*Durchfallen, um Auftrag freizugeben, falls an-
gehalten*/

case JOB_CONTROL RESUME:
if (pData->fsStatus & PRINTPROCESSOR PAUSED)

{
pData->fsStatus &= ~PRINTPROCESSOR_PAUSED;

SetEvent (pData->semPaused) ;
}
return TRUE;

default:

break;

return FALSE;

WINAPI
WinprintInstallPrintProcessor (
HWND hWnd

return TRUE;

30/47

DE 697 27 906 T2 2005.02.03
//

PRINTPROCESSORDATA
ValidateHandle (
HANDLE hQProc

PRINTPROCESSORDATA pData = (PRINTPROCESSORDATA)hQProc;

if (pData && pData->signature = =
PRINTPROCESSORDATA SIGNATURE)

return{ pData);

return(NULL);

/* Dateiname: local.h */

/**
*hhhkhkkhkhkhkhkhkhkhhkhkhkd ki

* *

* THIS CODE AND INFORMATION IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. *
* *

*Copyright © 1993-95 Microsoft Corporation. Alle Rechte
vorbehalten. *

* *
LR R R R R e R R R R R R T T v A AN VTR A

*******************/

At et
//WINPRINT

#define IDS_ BANNERTITLEL 521
#define IDS BANNERTITLE2 522
#define IDS_ BANNERJOB 523

31/47

DE 697 27 906 T2 2005.02.03

#define IDS_BANNERDATE 524
#define IDS BANNERSIMPLE 526
#define IDS BANNERFULL 527

[
e .
//WINPRINT

#define IDC_STANDBAN 600

#define RT CLIPFILE 601

e
/) e e
//EXTERN VARIABLES

[e e~

#ifdef DEBUG

extern DWORD SplDbgLevel;

VOID cdecl DbgMsg(LPSTR MsgFormat, ..):

/*Diese Flags werden nicht als Argumente zu dem DBGMSG-
Makro verwendet.

*Man muf das hohe Wort der globalen Variable setzen, um zu
bewirken, daB dieselbe anhilt.

*Dasselbe wird ignoriert, falls mit DBGMSG verwendet.
*(Hier hauptsdchlich zu erlauternden Zwecken.)

*/

#define DBG_BREAK ON WARNING (DBG_WARNING << 16)

#define DBG_BREAK_ON_ERROR (DBG ERROR << 16)

32/47

DE 697 27 906 T2 2005.02.03

#define DBG_NONE

#define DBG INFO 1

#define DBG_ TRACE DBG INFO
#define DBG WARING 2
#define DBG_ERROR 4

/*Hierfir werden doppelte Klammern benétigt, z. B.:

*

* DBGMSG (DBG _ERROR, (,Error code %d™, Error));

*

*Dies ist so, weil man keine variablen Parameterlisten bei
Makros verwenden kann.

*Die Aussage wird in einem Nicht-Bereinigungsmodus zu einen
Strichpunkt vorverarbeitet.

*

*Die globale Variable GLOBAL_DEBUG_FLAGS iiber den Bereini-
ger einstellen.

*Ein Setzen des Flag bei dem niedrigen Wort bewirkt, daB
dieser Pegel gedruckt wird;

*ein Setzen des hohen Worts bewirkt ein Anhalten bei dem
Bereiniger.

*Z. B. wird ein Setzen desselben auf 0x00040006 alle Warn-
und Fehlernachrichten ausdrucken und Fehler unterbrechen.

*/

#define DBGMSG (Level, MsgAndArgs) {if {Level > =
SplDbgLevel) {DbgMsg MsgAndArgs; }}

#define DBGBREAK () {DebugBreak () ; }

#define ASSERT(Expr, MsgAndArgs) {if (!Expr) {DbgMsg
MsgAndArgs; DebugBreak () ;}}

VOID SpllnSem(VOID);

VOID SplOutSem (VOID) ;

#else
#define DBGMSG(Level, MsgAndArgs)

#define DBGBREAK ()
#define ASSERT(Expr, MsgAndArgs)

33/47

DE 697 27 906 T2 2005.02.03

#define SpllnSem/()
#define SplOutSem()

#endif

#define AllocSplMem(a) LocalAlloc(LPTR, a)
#define FreeSplMem(a, b) LocalFree(a)

LPVOID

ReallocSplMem (
LPVOID IpOldMem,
DWORD cb0O1d,
DWORD cbNew

) ;

LPTSTR
AllocSplStr(
LPTSTR IpStr

):

BOOL
FreeSplStr(
LPTSTR IpStr

) :

BOOL

ReallocSplStr(
LPTSTR FAR *plpStr,
LPTSTR IpStr

34/47

DE 697 27 906 T2 2005.02.03

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#ifndef UNICODE

LPSTR
mystrstr(
LPSTR cs,
LPSTR ct
)

LPSTR
mystrrchr (
LPSTR cs,

char c¢

17

LPSTR

mystrchr (
LPSTR cs,
char c¢

) :

int
mystrnicmp (

LPSTR cs

LPSTR ct

int n
) ;
#define wcscat (a, b) lstrcat(a, b)
#define wcscmp(a, b) lstrcmp (a, b)
#define wcscpy(a, b) lstrcpy(a, b)

#define wcslen(a) lstrlen(a)

#undef wcsicmp

35/47

DE 697 27 906 T2 2005.02.03

#define wcsicmp(a, b) lstrcmpi(a, b)

#define wcschr(a, b) mystrchr(a, b)
#define wcsrchr(a, b) mystrrchr(a, b)

// #define wcsncmp(a, b, c¢) strncmp(a, b, c)

#undef wcsnicmp

#define wcsnicmp(a, b, c) mystrnicmp(a, b, c¢)
#define wcsstr(a, b) mystrstr(a, b)

#endif // UNICODE // ccteng

Patentanspriiche

1. Eine Informationsverteilungsvorrichtung, die innerhalb einer Computernetzwerkumgebung (12) ver-
wendbar ist und die folgende Merkmale aufweist:
einen Computer (10), der ein Betriebssystem aufweist und konfiguriert ist, um innerhalb der Computernetzwer-
kumgebung (12) wirksam zu sein;
eine Anwendung (36), die konfiguriert ist, um Uber das Betriebssystem auf dem Computer (10) zu laufen, wobei
die Anwendung (36) konfiguriert ist, um einen Quellauftrag (28) in der Form eines Zwischendateiformats zu
erzeugen, das eine Ausgabebefehlsdatei (42) aufweist;
einen Druckprozessor (50) in der Form eines ausfiihrbaren Zwischencodes zu einem Wirksamsein an der Aus-
gabebefehlsdatei (42); und
einen Drucker (14, 16, 18), der einen Druckertreiber (56) aufweist, der konfiguriert ist, um die Ausgabebefehls-
datei (42) in Ausgabebefehle umzuwandeln, die durch den Drucker (14, 16, 18) verwendbar sind, um eine Aus-
gabe zu erzeugen;
wobei der Druckprozessor (50) wirksam ist, um Druckerdetails fir einen identifizierten Druckertreibernamen
von einer Speicherposition in einem Speichergerat (44) des Computers (10) wiederzuerlangen, den identifizier-
ten Druckertreibernamen in einen unterschiedlichen identifizierten Druckertreibernamen zu andern, die Dru-
ckerdetails des unterschiedlichen identifizierten Druckertreibernamens in der Form von neuen Druckerinforma-
tionen in einer Systemregisterdatenbank (54) zu speichern, Druckerdokumenteigenschaften der gespeicher-
ten Druckerdetails von dem Speichergerat wiederzuerlangen, die wiedererlangten Druckerdokumenteigen-
schaften zu verandern, um dieselben an neue Druckertreibereinstellungen anzupassen, die neuen Druckerdo-
kumenteigenschaften in der Systemregisterdatenbank (54) zu speichern und Druckprozessordatenstrukturen
zuzuteilen und zu initialisieren, die verwendbar sind, um einen Druckauftrag (28) auf dem Drucker (14, 16, 18)
auszufiihren.

2. Die Informationsverteilungsvorrichtung gemaR Anspruch 1, bei der die Ausgabebefehlsdatei (42) eine
Zeichnungsbefehlsdatei aufweist, die Zeichnungsbefehle umfaft.

3. Die Informationsverteilungsvorrichtung gemaf Anspruch 1, bei der der Druckertreiber (56) das Zwi-
schendateiformat von Ausgabebefehlen empfangt, um die Befehle zu verarbeiten.

4. Die Informationsverteilungsvorrichtung gemaR Anspruch 1, bei der das Zwischendateiformat eine ver-
besserte Metadatei (42) aufweist.

5. Die Informationsverteilungsvorrichtung gemaf Anspruch 1, bei der der Druckprozessor (50) die Ausga-
bebefehlsdatei (42) dem Druckertreiber (56) des Druckers (14, 16, 18) Uber einen Seriell-Sendevorgang zu-
fuhrt, was ein Aufbereiten der Ausgabebefehlsdatei (42) fir mehrere Ausgabegerate (14, 16, 18) ermdglicht.

6. Die Informationsverteilungsvorrichtung gemaf Anspruch 1, bei der der Druckprozessor (50) die Ausga-
bebefehlsdatei (42) dem Druckertreiber (56) des Druckers (14, 16, 18) Uiber einen Mehrfach-TeilprozeR-Paral-
lel-Sendevorgang zufiihrt, um die Ausgabebefehlsdatei (42) flir mehrere Ausgabegerate (14, 16, 18) aufzube-
reiten.

36/47

DE 697 27 906 T2 2005.02.03

7. die Informationsverteilungsvorrichtung geman Anspruch 1, bei der der Druckprozessor (50) die Ausga-
bebefehlsdatei (42) dem Druckertreiber (56) des Druckers (14, 16, 18) Uiber einen Mehrfach-TeilprozeR in ei-
nem Parallel-Sendevorgang zufiihrt, um die Ausgabebefehlsdatei (42) fir mehrere Ausgabegerate (14, 16, 18)
aufzubereiten.

8. Die Informationsverteilungsvorrichtung gemaf Anspruch 1, die ferner eine Registerdatenbank (54) und
eine Systemanwendungsprogrammierungsschnittstelle (APl = application programming interface) (52) auf-
weist, wobei die Registerdatenbank (54) durch die Anwendungsprogrammierungsschnittstelle (API) (52) an
dem Druckprozessor (50) wirksam ist, um den Drucker (14, 16, 18) zu konfigurieren, um die Ausgabebefehls-
datei (42) zu empfangen.

9. Die Informationsverteilungsvorrichtung gemal Anspruch 1, die ferner ein Speichergerat (44) und einen
Spooler (46) zu einem Nehmen und einem Speichern der anwendungserzeugten Ausgabebefehlsdatei (42)
aufweist.

10. Die Informationsverteilungsvorrichtung gemal Anspruch 9, die ferner eine Graphikgeratschnittstelle
(GDI = graphics device interface) (40) zu einem Implementieren von graphischen Funktionen und einem dyna-
mischen Verbinden einer graphischen Systemanwendungsprogrammschnittstelle (API) (52) mit dem Drucker-
treiber (56) des Druckers (14, 16, 18), das Speichergerat (44) und einen urspriinglichen Druckertreiber (38)
aufweist, der verwendet wird, um die Ausgabebefehlsdatei (42) zu erzeugen.

11. Die Informationsverteilungsvorrichtung gemaR Anspruch 9, die ferner einen Spool-Kopfblock (48) auf-
weist, der durch den Spooler (46) erzeugt und an die Ausgabebefehlsdatei (42) Gbertragen wird, wobei der
Spool-Kopfblock (48) eine Spool-Auftrag-Kopfblock-Datei zu einem Beschreiben der Bestimmungsorte und der
aufbereiteten Daten und/oder codierten Daten fir jeden Bestimmungsort fiir die anwendungserzeugte Ausga-
bebefehlsdatei (42) aufweist.

12. Die Informationsverteilungsvorrichtung gemaf Anspruch 11, bei der die Ausgabebefehlsdatei (42) eine
verbesserte Metadatei (42) aufweist, der Druckprozessor (50) die urspriingliche Kopie der verbesserten Meta-
datei (60) in das Speichergerat (44) kopiert, nachdem der Druckprozessor (50) ansprechend auf den Spooler
(46) ein Druckdokument einleitet, und eine Riickkopplungsschleife (62) mehrere Druckdokumentaufgaben ein-
leitet, die mehrere Durchgangsauftrage (64) zu einer Verteilung aufweisen.

13. Ein Verfahren zu einer Verwendung bei einem System zum Verteilen von Druckauftragen (28) von ei-
nem Computer (10), der verwendbar ist, um in einer Computernetzwerkumgebung (12) wirksam zu sein, von
dem Typ, der ein Betriebssystem; eine Anwendung (36), die zu einem Laufen auf dem Betriebssystem und ei-
nem Erzeugen eines Quellauftrags (28) in der Form eines Zwischendateiformats konfiguriert ist, das eine Aus-
gabebefehlsdatei (42) aufweist; und einen Drucker (14, 16, 18) aufweist, der einen Druckertreiber (56) zum
Empfangen der Ausgabebefehlsdatei (42) zum Erzeugen einer Ausgabe aufweist, wobei das Verfahren folgen-
de Schritte aufweist:

Bereitstellen eines Druckprozessors (50) in der Form eines ausfiihrbaren Zwischencodes zu einem Wirksam-
sein an der Ausgabebefehlsdatei (42);

Wiedererlangen von Druckerdetails fur einen Namen eines identifizierten Druckertreibers (38) von einer Spei-
cherposition in einem Speichergerat (44) des Computers (10);

Andern des Namens des identifizierten Druckertreibers (38) in einen unterschiedlichen identifizierten Drukker-
treiber (56);

Speichern der Details des Druckers (14, 16, 18) des Namens des unterschiedlichen identifizierten Druckertrei-
bers (56) in der Form von neuen Druckerinformationen in einer Systemregisterdatenbank (54);
Wiedererlangen von Druckerdokumenteigenschaften der Details des gespeicherten Druckers (14, 16, 18) von
dem Speichergerat (44);

Verandern der wiedererlangten Druckerdokumenteigenschaften, um dieselben an neue Einstellungen des
Drukkertreibers (56) anzupassen;

Speichern der neuen Druckerdokumenteigenschaften in der Systemregisterdatenbank (54); und

Zuteilen und Initialisieren von Datenstrukturen des Druckprozessors (50), die verwendbar sind, um einen
Druckauftrag (28) auf dem Drucker (14, 16, 18) auszufiihren.

14. Das Verfahren gemaR Anspruch 13, das nach dem Schritt des Initialisierens der Datenstrukturen des
Druckprozessors (50) ferner den Schritt eines Zurlickkehrens zu einem Spooler (46) fur eine Neuinitialisierung
des Systems aufweist, um einen anderen Druckauftrag (28) liber die zuvor erwahnten Schritte neuauszufiih-
ren, um mehrere Durchgangsdruckauftrage (28) fir eine Verteilung auszufihren.

37/47

DE 697 27 906 T2 2005.02.03

15. Das Verfahren gemaf Anspruch 13, bei dem die Ausgabebefehlsdatei in der Form einer verbesserten
Metadatei (42) ausgefuhrt ist, wobei das Verfahren ferner den Schritt eines Bereitstellens eines Spoolers (46)
zu einem Nehmen und Speichern der verbesserten Metadatei (42) von einer Anwendung (36), eines Erzeu-
gens eines Spool-Kopfblocks (48) durch den Spooler (46) und eines Zuweisens des Spool-Kopfblocks (48) an
die verbesserte Metadatei (42) aufweist, wobei der Spool-Kopfblock (48) eine Spool-Auftrag-Kopfblock-Datei
zum Beschreiben der Bestimmungsorte und der aufbereiteten Daten und/oder codierten Daten fiir jeden Be-
stimmungsort fir die durch die Anwendung (36) erzeugte verbesserte Metadatei (42) aufweist.

Es folgen 9 Blatt Zeichnungen

38/47

DE 697 27 906 T2 2005.02.03

Anhangende Zeichnungen

COMPUTER-
NETZWERK-
12 UMGEBUNG

/22

COMPUIER C

20

-
COMPUTER B

\ 14
\\ yd /

A
\ AUSGABE-] 26
GERATA

24 18

ANWENDUNG —~| COMPUTER A AUSGABE-

GERATC
N

AUSGABE-
GERATB

39/47

DE 697 27 906 T2 2005.02.03

0
- FESWMUNGSORH Vi
34
QUELLAUFTRAG ~ | gesmmmungsorre | 1
~ T [BESTIIMUNGSORT3
28
V==
30
o
BESTIMMUNGSORT 1
l
R l
Lz = T 32
o
BESTIMMUNGSORT 2
l
|
L
34
\ e
QUELLAUETRAG BESTIMMUNGSORT 3

L [
T

" | i

40/47

DE 697 27 906 T2 2005.02.03

TREIBERSCHAL TEN:
ERSTER DURCHLAUF
38 —~URSPRINGLICHER
TREIBER GESPOOLTE
1 EMF-DATEN
| 2
ANWENDUNG .
\3 6 \\40 \42
F = a7
TREIBERSCHALTEN:
ZWEITER DURCHLAUF
48
-
SPOOL- 46
KOPFBLOCK SPOOLER
LEITET AUFTRAGS- &
50 " DRUCKERINFORMATIONEN
[»—52 '/54
44 DRUCKPROZESSOR SYSTEM-
! s ~— REGISTER-
i (TREIBER RUCKSETZEN) APIS DATENGANK
T AUFTRAG AUF NEUEM TREIBER DRUCKEN
40
NEUER -
wEgER GO/ GDI-PLAY-SPOOL-STREAM
TORUBERWACHUNGS-
EINRICHTUNG | |— 58
DRUCKANBIETER
GERAT 14 Lz &

41/47

DE 697 27 906 T2 2005.02.03

IREIBERSCHALTEN: MEGHRFACHDURCHLAUFAUFTRAGE

FUR VERTEILUNG
»| DRUCKPROZESSOR | — 50
"OFFEN"
%
~ §7.20
Y
URSPRUNGLICHE | 42
SPOOLER EMF KOPIEREN
46 / 60 / »
4
DRUCKPROZESSOR
| DOKUMENTAUFDRUCK- (~—— UfZTU Rﬁ’gg%ﬂv
PROZESSOR DRUCKEN"
1 [N 64
50 _/ /

S7.30 INTERN ZUR SCHLEIFE SCHALTEN

E_ZQE

42/47

62

DE 697 27 906 T2 2005.02.03

Q START VON SYS TEMEN} S1

[

ANWENDUNG DRUCKT S2
r L~ S4
GDI ERZEUGT DATEN IN .
ZWISCHENZEICHNUNGS- URSPRUNGLICHER
BEFEHLEN (VERBESSERTE < DRUCKERTREIBER LIEFERT
METADATE) GERATEINFORMATIONEN
S3 /
VERBESSERTE
METADATES
y
SPOOLER LEITET ZWEITEN \\ S5
DURCHLAUF ANAUFTRAGEIN, | o
UM ZU AUSGABEGERAT
ZU SENDEN.
Y
DRUCKPROZESSOR | —S7
S9
y /
G%' ,ffgg{gﬁgﬁgﬁ hj\éj %F:\,AG - NEUER DRUCKERTREIBE
NEUEM DRUCKERTREIBER AUF LIEFERT GERATEINFORMATIONEN
S8 S |
GEDRUCKTES DOKUMENT 510
Fr a X

43/47

DE 697 27 906 T2 2005.02.03

DRUCKPROZESSOR- 710
FUNKTIONSZEIGER INITIALISIEREN |—— S7.
UND SPEICHER ZUTEILEN

[o =y
o
acJ‘_‘:"
=3
x 8
O
Z o
xN

44/47

DE 697 27 906 T2

2005.02.03

DRUCKPROZESSOR OFFNEN

—— $7.20

/

DEN DRUCKER OFFNEN
(OPENPRINTER AP))

—— S57.21

[/

DRUCKERDETAILS UNTER
VERWENDUNG VON
PRINTERINFO2-STRUKTUR
ERLANGEN (GETPRINTER AP))

DRUCKERTREIBERNAMEN IN
PRINTERINFO2-STRUKTUR
IN NEUEN TREIBER ANDERN

— S5/7.23

4

NEUE DRUCKERINFO IN DER
SYSTEMREGISTERDATENBANK
SICHERN (SETPRINTER AP))

—

DRUCKER-DOKUMENTEIGENSCHAFTEN

ERLANGEN (DOCUMENT-
PROPERTIES API)

45/47

DE 697 27 906 T2 2005.02.03

DOKUMENTEIGENSCHAFTEN ANDERN,
UM MIT NEUEN TREIBEREIN-
STELLUNGEN UBEREINZUSTIMMEN
(DIE DEVMODE-STRUKTUR
AKTUALISIEREN)

| —— §7.26

Y

NEUE DRUCKER-DOKUMENT-
EIGENSCHAFTEN IN DER SYSTEM:-
REGISTERDATENBANK SICHERN
(SETPRINTER API)

\

DRUCKPROZESSORDATEN-
STRUKTUREN ZUWEISEN
UND INITIALISIEREN

| — S57.28

o
o
55
=38
x A
Lg
> 2
e

46/47

57.29

DE 697 27 906 T2 2005.02.03

$7.30 — DOKUMENT AUF
DRUCKPROZESSOR DRUCKEN
r
EINGEHENDE PARAMETER
5731~ VALIDIEREN: DRUCKERHANDHABUNG,
DATENTYP
57.32 — DEN DRUCKER GFENEN
Y
SPOOLER SETZEN, UM ZU STARTEN
5733 ' UND DAS DOKUMENT 20 LESEN
(STARTDCPRINTER AP))
\/ Y x
EINEN PUFFER EINER
VERBESSERTE METADATEI VERBESSERTEN METADATEI LESEN 1=
Y
$7.36 PUFFER ZU GDI LEITEN, UM NEUEN
O T TREIBER AUFZUBEREITEN.
(GDIPLAYSPOOLSTREAM AP))
] Y
N\
S7.37 — BIS DATEIENDE
4
7.]
5738 = DEN DRUCKER SCHLIESSEN

E.mg /a/4

47/47

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

