017601 A2 I AAF OV A 0 OO R O

0 200

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

26 February 2004 (26.02.2004)

(10) International Publication Number

WO 2004/017601 A2

(51) International Patent Classification’: HO04L 29/06
(21) International Application Number:
PCT/US2003/015188

(22) International Filing Date: 14 May 2003 (14.05.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/150,757 17 May 2002 (17.05.2002) US
(71) Applicant: GROOVE NETWORKS, INC. [US/US]; 100

Cummings Center,, Suite 535 Q, Beverly, MA 01915 (US).

(72) Inventors: ZIRCHER, William, E.; 184 Nashua Road,
Pepperell, MA 01463 (US). OZZIE, Jack, E.; 87 North
Pond Road, Chester, NH 03036 (US). OZZIE, Raymond,
E.; 50 Harbor Street, Manchester, MA 01944 (US).

(74) Agent: KUDIRKA, Paul, E.; Kudirka & Jobse, LLP, One
State Street, Suite 800, Boston, MA 02109 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR CONNECTING A SECURE PEER-TO-PEER COLLABORATION SYSTEM TO

AN EXTERNAL SYSTEM

(57) Abstract: A connection between a secure shared space and an external system is created with a connector tool. The connector
¥ tool code is included in an independent agent called a "bot" that is created by a software developer. Bots run in the background in an
automated and unattended manner in a specialized enterprise integration server. Each bot has a unique identity and runs under an ac-
count assigned to the enterprise integration server. A bot can be invited to a shared space much as another collaborator. Bots can also
invite others to shared spaces. All bots running in the enterprise integration server are administered by a centralized administrative
control. This allows account and identity policies to be established and global behaviors, including authentication settings, startup
options and scope to be determined centrally. The centralized control allows simple installation, configuration and deployment and
administrative control of bot operation and access. It also allows for logging and monitoring of system behavior.



5

10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

METHOD AND APPARATUS FOR CONNECTING A SECURE
PEER-TO-PEER COLLABORATION SYSTEM TO AN EXTERNAL SYSTEM

FIELD OF THE INVENTION
[01] This invention relates to secure peer-to-peer collaboration systems in
which collaboration data is contained in a secure shared space and to methods and
apparatus for securely providing access from the shared space to applications,

services and data that are external to the shared space.

BACKGROUND OF THE INVENTION

[02] Collaboration involves the ability for each member in a group of
members, called "collaborators" to automatically transmit information to, and receive
information from, other collaborators in the group. In order to facilitate such
collaboration, various systems have been developéd that allow such information to be
transmitted between personal computer systems, communication appliances or other
communication devices, including handheld and wireless devices. Collectively, these
devices will be referred to a "computers" in this description.

[03] Computer-based collaboration may occur over a network, such as the
Internet, wherein each of the users is located at a computer connected to the network.
One collaboration model currently in use is a "peer-to-peer” model in which direct
connections are established over the network between each of the collaborator
computers. Information generated by each collaborator is then sent directly to each
other collaborator.

[04] When peer-to-peer collaboration systems send information over the
Internet, additional care must be taken to insure that the communications are secure.
While the Internet is ideally suited for collaboration because it has the ability to
connect widespread users with diverse hardware and software, communication over
the Internet is not generally considered secure because messages sent over the
Internet are typically funneled to third-party infrastructure where communications can
be intercepted and confidences violated. Consequently, in peer-to-peer collaboration
systems that use the Internet, the collaboration data is typically contained within

private shared spaces on each computer. Security is maintained by carefully



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

controlling access to these spaces and checking identities of collaborators and by
encrypting all communications that pass over the Internet between collaborators.

[05] The latter type of collaboration system is described in detail in U.S.
patent application serial no. 09/357,007 entitted METHOD AND APPARATUS FOR
ACTIVITY-BASED COLLABORATION BY A COMPUTER SYSTEM EQUIPPED WITH
A COMMUNICATIONS MANAGER, filed July 19, 1999 by Raymond E. OzZie,
Kenneth G. Moore, Robert H. Myhill and Brian M. Lambert; U.S. patent application
serial no. 09/356,930 entitied METHOD AND APPARATUS FOR ACTIVITY-BASED
COLLABORATION BY A COMPUTER SYSTEM EQUIPPED WITH A DYNAMICS
MANAGER, filed July 19, 1999 by Raymond E. Ozzie and Jack E. Ozzie; U.S. patent
application serial no. 09/356,148 entitled METHOD AND APPARATUS FOR
PRIORITIZING DATA CHANGE REQUESTS AND MAINTAINING DATA
CONSISTENCY IN A DISTRIBUTED COMPUTER SYSTEM EQUIPPED FOR
ACTIVITY-BASED COLLABORATION, filed July 19, 1999 by Raymond E. Ozzie and
Jack E. Ozzie and U.S. patent application serial no. 09/571,851 entitled METHOD
AND APPARATUS FOR MANAGING SECURE COLLABORATIVE TRANSACTIONS,
filed May 12, 2000 by Walter E. Tuvell and Nimisha Asthagiri.

[06] In such peer-to-peer collaboration systems, local data copies are stored
on each collaborator's computers and each collaborator gesture or action is duplicated
in the local object store of each member’s machine. For example, assume that a map
is displayed on all collaborators computer. When one collaborator draws a circle on
the map, that computer sends a message to the other computers to draw the same
circle on the maps in their shared spaces. The system does not need to resend the
entire edited map, but rather only the change to the map.

[07] There is often a need for one or more of the collaborators to access an
application, system or service that is external to the shared space and may reside on
a local device or elsewhere on the network. For example, a collaborator may want to
access a Web page on the Internet. In this case, the collaborator enters a URL into a
Web browser that is part of the collaboration system and submits the information to
the Internet. The collaboration system then sends a message to the other
collaborators to cause them to perform the same action. In this case, each of the

collaborators individually connects to the Web site and downloads the selected Web



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

¢
page directly into his or her shared space. Such an arrangement is called "multi-point
access."

[08] However, in other cases, members of a shared space need access not
to external Web-based information, but rather to internal server-based information
residing in customer relationship management systems, enterprise resource planning
systems, document and knowledge management systems, etc. For example, a
consulting team working together with a collaboration system might need access to
customer history, current pricing schedules, or best practices guidelines. In such a
case, it would be inefficient for multiple members to make independent calls to the
centralized server because the server would have to process the same request and
provide the same result multiple times. In addition, each computer would require an
installed interface with the internal database application and would have to be
configured, potentially with extremely sensitive password information that is generally
considered inappropriate outside of the enterprise firewall.

[09] Another common customer example uses the reverse relationship: the
members of a shared space have created or modified content (e.g., updated a
customer record, amended a best practices document with new knowledge). These
changes now need to be captured, managed and shared centrally by the appropriate
server-based system(s). Again, it would be inappropriate for multiple members of the
space to send the single change.

[10] Thus, it would be useful to be able to connect shared spaces to an
external application, system or service from a single point in the shared space. It
would also be useful to create shared spaces from an external application, system or
service and to be able to move data between the shared space and the external
system either unidirectionally or bi-directionally. However, in all cases, it is important
to insure that such a connection does not compromise the security of the shared
space.

[11] Further, it is also desirable that the mechanism that is used to establish
the connection be operable with different interfaces and protocols. For example, a
connection between a shared space and an external system could be established via
interfaces, such as Microsoft Transaction Server, or Microsoft Message Queue or via
SOAP for systems that expose objects through Extended Markup Language (XML.)
Other protocols such as HTTP or FTP could also be used.

3



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

SUMMARY OF THE INVENTION

[12] Inaccordance with the principles of the invention, a connection between
a shared space and an external system is created with a connector tool. in one
embodiment, the connector tool code is included in independent software agent code
called a "bot" that is created by a software developer. The Bot code runs in the
background in an automated and unattended manner in a specialized "enterprise
integration server." Bots execute tasks from a single point rather than from within the
shared space of each collaborator, an advantage if the task requires resources that
are not available to all devices. In addition, task execution can be distributed over a
cluster of integration servers and devices.

[13] Bots are installed with, or assigned to, a unique identity that is
designated to perform a series of tasks. This identity is called a "service." Services
are housed under a single account assigned to the enterprise integration server called
a "cluster controller" account. A service can be invited to a shared space much as
another collaborator. When a collaborator invites a service identity to a shared space,
the service appears in the collaborator's shared space member list (member presence
information is projected in a manner similar to any standard member provided the
administrator has configured the service accordingly) and the bots housed by the
service perform their assigned tasks. Bots can also invite others to shared spaces.

[14] In still another embodiment, all bots running in the enterprise integration
server are administered by centralized administrative control using a server console
program in the server. This centralized control allows account and identity policies to
be established and global behaviors, including authentication settings, startup options
and scope to be determined centrally. The centralized control allows simple
installation, configuration and deployment and administrative control of bot operation
and access. It also allows for logging and monitoring of system behavior. In
particular, the integration server provides a cluster console through which server
administrators configure and manage a server cluster. A cluster consists of one or
more integration servers (nodes) which host a set of services.

[15] The console, which is installed with the integration server application,

enables administrators to create an integration server cluster account and a password

phrase that can be changed when necessary and to create integration server cluster

4



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

nodes. The console further allows administrators to configure policies to promote
secure cluster account activities. For example, administrators can set policies to
control publication of service contact information and to identify collaboration
components that can be downloaded via these services. The console also permits
administrators to create bot services that house bots which automate interaction
between collaborators and third-party applications, to install and configure bots and to

manage bot activities.

BRIEF DESCRIPTION OF THE DRAWINGS

[16] The above and further advantages of the invention may be better
understood by referring to the following description in conjunction with the
accompanying drawings in which:

[17] Figure1isa block schematic diagram of an illustrative prior art
collaboration system with which the invention can run.

[18] Figure 2 is a more detailed block schematic diagram of the prior art
collaboration system running on a device of one collaborator.

[19] Figure 3 is a block schematic diagram of a multiple point integration
system allowing a plurality of collaborators to access an external system.

[20] Figure 4 is a block schematic diagram illustrating multiple collaborators
accessing an external system by means of an enterprise integration server.

[21] Figure 5 is a block schematic diagram illustrating the overall architecture
of an enterprise integration server constructed in accordance with the principles of the
invention.

[22] Figure 6 is a block schematic diagram illustrating the relationship of

services, bots and shared spaces in an enterprise integration server constructed in

-accordance with the principles of the invention.

[23] Figure 7 is a flowchart illustrating the steps in a process of creating and
configuring an enterprise integration server.

[24] Figure 8 is a block schematic diagram illustrating the internal
architecture of a service cache

[25] Figure 9 is a flowchart illustrating the steps of a process in which an
invitation to join a shared space is accepted and bots are instantiated to provide the

services.



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[26] Figure 10 is a block schematic diagram of the internal architecture of a
bot factory.

[27] Figure 11 is a block schematic diagram of a bot instance descriptor
illustrating the contents.

[28] Figure 12 is a block schematic diagram illustrating the configuration of a
simple archive service.

[29] Figure 13 is a block schematic diagram illustrating the operation of the
simple archive service shown in Figure 12.

[30] Figure 14 is a block schematic diagram illustrating the operation of an
example FAQ bot.

DETAILED DESCRIPTION

[31] Figure 1 illustrates, in a very schematic form, a peer-to-peer
collaboration system 100 in which collaborating computers are connected to each
other by a network 110, such as the Internet. Although various networks can be used
with such a system, in the discussion below, the network 110 is assumed to be the
Internet. In this system, the collaborating computer systems constitute peer units 102-
108, and communications through the Internet 110 can be directed from one peer unit
to another, without intermediaries. Each peer unit 102-108 can be implemented as a
personal computer or other form of network-capable device, such as a set top box or
hand-held device.

[32] Peer-to-peer communications can be made directly between peer units.
For example, peer unit 102 may communicate directly with peer units 104, 106 and
108, as indicated schematically by dotted links 112, 116 and 114, respectively. Ina
similar manner, peer unit 104 can connect to units 108 and 106 via connections 120
and 118, respectively. Finally, units 106 and 108 can communicate over connection
122. A collaboration system such as that shown in Figure 1 is available from Groove
Networks, Inc., 100 Cummings Center, Suite 535Q, Beverly, Massachusetts 01915
and is described in detail in the Groove™ Developer Pack which is available from
Groove Networks, Inc. and on-line on http://www.groove.net. In the discussion below,
the collaboration system will be assumed to be such a system. However, it will be
apparent to those skilled in the art that other collaboration systems could also be used
with the present invention.



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[33] In this collaboration system, a program called an "activity" is resident in
each collaborating computer system, communication appliance or other network-
capable device. The activity allows a shared, focused task, such as, for example, a
“chat’, gaming, or business application, to be performed in collaboration with other,
remotely-located collaborators. This collaboration involves shared and mutual
activities between individuals and small groups in private shared spaces. Each
shared space is an instantiation of one or more activities operable on each of the
collaborating computers of members of that shared space.

[34] In the system, participants or members of a shared space access the
system by opening "accounts” that are associated with "endpoints." Since an
individual collaborator may access the system via more than one device, an endpoint
is defined as a unique combination of an individual and a device. Each endpoint
stores an individual, local copy of the shared space data.

[35] Each activity includes one or more tools, each of which interacts with a
collaborator, for example, by receiving mouse and keyboard events, and initiates data
change requests in response to the interactions. These data change requests are
used locally and sent to other members of the shared space. Each activity also
includes one or more data-change engines, separate from the tools, for maintaining
the local copy of the shared space data pursuant o a common data model. The data
model is, for example, activity-specific, and preferably the same over all members of
the shared space. Each collaborating computer also includes a dynamics manager,
that examines data change requests generated locally and received from other shared
space members and coordinates the execution of the local and other data change
requests and directs the data-change engine to make the requested changes to the
local copy of data.

[36] Figure 2 shows, in more detail, the internal architecture 200 of the
collaboration system as implemented on one of the peer units 102-108, such as, for
example, peer unit 102. The collaboration system on peer unit 102 includes a
framework 202, at least one shared space 204 instantiating one or more activities 205,
and a user interface 206.

[37] The framework 202 can provide a platform for servicing a number of
shared spaces, of which shared space 204 is shown. The framework 402 preferably

is of modular construction, with an application programming interface (API) on which

7



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

the activities run and through which they communicate with framework components.
The framework 202 includes a user interface manager 208, an identity manager 210,
a shared space manager 212, an activity manager 214, a storage manager 216, a
dynamics manager 220, and a communications manager 222.

[38] The user interface (Ul) manager 208 is responsible for managing shared
services for a number of user interface controllers (not separately shown). The Ul
manager 208 manages the graphical layout of activity screen displays within panes of
a display window, and otherwise provides a desired “look and feel” for the user
interface. The Ul manager 208 also manages activity navigation (for example, go to,
next, previous, etc.) and maintains a navigation history.

[39] The identity manager 210 is responsible for maintaining an "identity" for
each shared space member. An identity is the name, and corresponding uniform
resource locator (URL), by which each user is known by others. Individual users may
have one or many identities. The identity manager 210 maintains a record or table, in
the local storage of the identities. The identity manager 210 can also maintain a
record or table of URLs for the shared space members and their corresponding device
URLs. Alternatively, a separate member manager can be implemented.

[40] The shared space manager 212 is responsible for managing each of the
shared spaces 204 that may be opened on the peer unit 102. Each shared space 204
is an instantiation of one or more activities. Each shared space 204 has a
corresponding activity manager 214.

Each activity manager 214 is responsible for (a) adding new activities to a
shared space, (b) opening existing activities in a shared space, and (c) updating
shared space activities. Each activity is defined by an activity "template” that defines
the initial activity configuration for a shared space and is a persistent representation of
the tool and engine components comprising the activity. In order to create an activity
template, a software developer may write a tool or adapt an existing tool and engine
for use within the framework. For example, an activity template can be distributed as
shrink-wrapped software or downloaded over the Internet to peer unit 102 from a
remote server. Activity components can be regarded as Web documents and are
represented persistently via URLs. The activity template itself preferably has a URL,
which allows for tracking activity design changes. The activity template can be a

single activity template or an activity collection template. A single activity template

8



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

pertains to only one activity, such as “chat’. An activity collection template pertains to
a collection of activities, such as "chat and outline”.

[41] To add a new activity, the activity manager 214 is provided by the means
described above with the URL of a template for the new activity. In order to open the
new activity or an existing activity, the activity manager opens the template, extracts
the template information (such as component URLs) and propagates the information
into the shared space. A collaborator may add additional activities to the shared
space 204 as needed. After being added, an activity is “part of” the shared space and
visible to all shared space members and each shared space member has an activity
template for the shared space available on his or her peer unit.

[42] Each shared space, such as shared space 204 has a tag to identify its
corresponding activity manager 214 and to bind the activity manager with data
associated with the activity. Preferably, the data is located in a document in the local
memory and each document has a local registry linked to it with tag names maintained
in the registry to express a mapping (reference pointers or associations) in an
extensible, platform-independent way, between the document and its corresponding
shared space.

[43] Each activity, such as activity 205, includes a tool, such as tool 224 and
an engine, such as engine 226. The tool 224, in conjunction with the user interface
206, allows an activity to interact with a collaborator. For example, the tool may
receive user interface events, such as keyboard or mouse events, generated when the
user interacts with the user interface 206. In response to such user interface events,
the tool 224 may make data change requests to its corresponding engine 226. Tool
224 also implements APIs for interacting with background services.

[44] The engine 226 is responsible for maintaining and changing the data
that supports the shared space 204 and/or results from user interaction obtained
through the tool 224. It responds to data change requests from tool 224 by returning
to the tool 224 commands necessary to implement the data change requests. Under
the direction and control of the dynamics manager 220, the engine 226 can make
changes to the shared space data copy that is stored locally under control of the
storage manager 216. When these changes are made, the engine 226
asynchronously generates data change notifications. The tool 224 can subscribe to



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

the engine 226 to receive these data change notifications so that the tool 224 can
update the user interface asynchronously when the data changes occur.

[45] The dynamics manager 220 receives local data change commands from
the tool 224 and receives data change commands from other collaborating computers,
via communication manager 222 from a network connection 228. Dynamics manager
220 makes decisions on which commands to implement in order to maintain
synchronization among all collaborators and forwards these commands to engine 226
in order to cause engine 226 to make changes to the local data copy.

[46] During operation the collaborative system 200 obtains a member's
identity from the identity manager 210 and opens a shared space manager 212. The
system 400 then requests that the shared space manager 212 open a shared space
identified via a URL and create an activity manager 214. Once created, the activity
manager 214 opens an activity, typically by using the activity’s URL to identify the
activity. Then, the collaboration system 200 is ready for members to use the shared
space to perform the shared, focused tasks offered by the particular activity.

[47] The system illustrated in Figures 1 and 2 has the advantage that access
to the shared space can be controlled by using a security framework that limits access
to the shared space and encrypts all communications passing between collaborators.
Such a security framework is described in detail in the aforementioned U.S. patent
application serial no. 09/571,851. Thus, all data for each application resides
exclusively in the shared space. However, as mentioned previously, there are
circumstances where the capabilities of the collaborative system can be extended by
connecting the shared space to an external system and exchanging data between the
shared space and the external system. In some cases, it may be necessary to
exchange data through a firewall. One method of creating such a connection is shown
in Figure 3.

[48] Figure 3 shows a collaboration system 300 with four collaborating
computers 302-308 that are connected by a network 310. Each of the collaborating
computers 302-308 incorporates a connector tool 312-318 that connects it to an
external system 320. Although the connector tools 312-318 are shown as direct
connections between computers 302-308 and external system 320, the connection
could be accomplished via a network, such as network 310. Each connector tool,

such as tool 312, is constructed like other tools and contains code that connects the

10



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

shared space 300 to an external application or system 320 that may reside on a local
device 302-308 or elsewhere on the network 310.

[49] Connector 312 may be instantiated dynamically as a result of an
interaction within an external application. For example, a new shared space
containing a connector tool can be created as the result of an external application
behavior. In other words, the connector tool can be “context-sensitive.” The
connector 312 can move data in a unidirectional or bi-directional way so that data is
imported to the shared space in support of context for member interaction. The data
exchange with the external application or system can occur dynamically as needed,
either on a one-time basis or ongoing. A connector tool, such as tool 312, can operate
on one or more shared spaces including the shared space in which connector tool
resides. Other shared spaces within an account can “run in the background.”

[50] Connector tools communicate directly with the external application or
system using standard interfaces. These interfaces can include Microsoft Transaction
Server, an application that runs under 1IS and maintains pool of ODBC connections.
Another possible protocol is Microsoft Message Queue, which can integrate with IBM
MQ series. For communication with servers that expose objects through XML, the
SOAP protocol can be used. Another possible protocol is hypertext transfer protocol
(HTTP) protocol.

[61] Connector tools, such as connector tool 312, can be used for
synchronizing a calendar tool in the shared space 300 with an external calendar, such
as a Microsoft Outlook™ calendar or Palm Pilot™ calendar. A connector, such as
connector 312 can also be used to connect the shared space 300 to a knowledge
management archive or to export a collaborative discussion to an external corporate
knowledge management system. A connector tool can also allow a collaborator to
interact with a customer in the shared space, using data imported from a CRM system
and publishing back to CRM on an incident state change.

[52] With connector tools, every member 302-308 of the shared space 300
can move data between the shared space 300 and the external systems 320 because
a connector tool runs at every endpoint. This system works well when the endpoints
retrieve data, for example, from a web server. However, there are certain
inconveniences with such an arrangement. For example, it is essential that each

member have the ability to properly authenticate with the external system and have

11



10

16

20

25

30

WO 2004/017601 PCT/US2003/015188

any necessary rights to perform the desired action (read/write). In addition, there is
high administrative and management resource overhead because necessary drivers
and/or other required software must installed and maintained at each device. Further,
there are heavier loads on external system because multiple contacts are made. In
systems where members write data to the external system, data conflicts at the
external system can exist.

[53] In accordance with the principles of the present invention, the connector
tool and interfaces to the external system are run at a single endpoint. The use of a
single endpoint effectively reduces administrative overhead because only one client
requires access rights to the external system. Since only one endpoint has access to
the data, a single endpoint system minimizes the potential for data conflicts at the
external system.

[54] An illustrative example of a single endpoint system is shown in Figure 4.
In this system each connector tool, such as connector tool 412 is run by an agent
program called a "bot" (not shown in Figure 4). The bots, in turn, run in a specialized
"enterprise integration server" 408 that has access to the shared space 400. The use
of a separate server for the bots allows the bots to be instantiated and configured by a
central administrative console facility.

[55] A high-level view of the internal architecture of the enterprise integration
server 500 is shown in Figure 5. Overall control of the server is provided by the
groove enterprise integration server controller 502. This component initializes system
services and maintains these services for the process lifetime. It also coordinates with
the operating system to enable messaging and logging to take place in the operating
system. The server controller 502 also enables inter-process communications,
allowing calls into server from external processes and provides data upgrade facilities
for cluster node and service definitions. The server controller 502 operates with three
other controllers: the cluster services controller 504, the bot facilitator controller 510
and the component update controller 514.

The cluster services controller 504 implements a server control console which
manages all aspects of server user interface. This component is also responsible for
coordinating the startup and shutdown of each cluster node. The component also
implements a cluster services facility which controls all aspects of cluster nodes and

implements cluster node election services which control resource allocation and

12



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

balancing. The cluster services controller also operates with a bot service cache
controller 506 that maintains all services running in the cluster and coordinates startup
and shutdown of all services. The bot service cache controller 5086, in turn, maintains
a service cache 508 that holds an entry for each service as discussed below.

[56] The bot facilitator controller 510 manages the local contact store 512
and maintains the integrity of an access control list (ACL) that controls access to the
services. The bot facilitator controller 510 also supports bot service publishing
capabilities. Finally, the component update controller 514 provides a facility that
defines node auto-update behavior and enables unattended installation of new
software on cluster.

[57] In order to perform tasks with the enterprise integration server 400,
services are created and one or more bots are assigned to each service. Each
service is the equivalent of a collaboration system member and, therefore, has a
unique identity. In order to interact with the collaborators, services may be invited to
shared spaces, or may invite other collaborators to shared spaces. When a service is
invited to a shared space, the collaborators are made aware of the service, but are not
made aware of the bots that actually implement the service.

[58] Each bot comprises software code that runs in background mode in a
continuous, automated and unattended fashion on the enterprise integration server.
Bots can monitor one or more shared spaces, “work with” specified tools and perform
actions. The bot code can contain connector code for accessing external systems,
applications or services. All bots run under a single enterprise integration server
account in the enterprise integration server. Bots obey the access control framework
of the collaboration system and can initiate or respond to events generated within
either the external system or any shared space with which they operate. Bots use
framework services and the bot code resides on the enterprise integration server,
separate from the shared spaces with which the work.

[59] Bots can perform numerous functions and repetitive tasks. For example,
a bot could watch stock prices and send out instant messages when thresholds are
reached. Another bot could scan a CRM tool in multiple shared spaces for issues that
have not been resolved in a specified time period. Other bots could archive data
stored in a shared space to an external repository or generate part requests when

inventories in back-end systems are depleted. Some bots could automatically invite

13



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

users to shared spaces and create responses to customer questions by matching
frequently asked questions to data using keywords.

[60] There are four classes of bots: scheduled bots, agent bots, tool bots and
bootstrap injector bots. Startup bots comprise a single instance that is instantiated at
a scheduled time, for example, when the server starts. Agent bots require only the
minimal interfaces needed to support bots. An agent bot is the most efficient bot and
uses the least amount of memory, but has access to the fewest services. The tool
bot, while slightly more resource intensive, has access to all features available to
standard tools, including connection points, the component container, etc. The tool
bot is less efficient that the agent bot, it is more efficient than a tool running in the
collaborative framework and requires less system resources. The bootstrap injector
bot is a specialized bot that is initialized by injecting a tool directly into a shared space
and then using the tool initiation code to start the bot on the enterprise integration
server. |

[61] Bots are created by developers and can be written in various languages
including Visual Basic and C++. Various scripting languages, such as JavaScript and
VBScript can also be used. A developer must write the bot code to include the
knowledge of the tool with which the bot is to work, the trigger conditions and the
actions to perform. The developer must then describe the bot by creating a bot
template file (designated by a .tpl extension). This file identifies compiled code
components, if the bot is implemented in a compiled language, or contains script code,
if the bot is implemented in script. The developer must also describe the bot
dependencies and libraries in an osd file that follows the same conventions as a tool
template osd file. For the exemplary collaboration system, these conventions are
explained in detail in the aforementioned GDK document.

[62] Finally, the developer must provide the configuration options that an
administrator can choose when the bot is configured and the developer may also
provide a user interface with which the administrator can interact. These options are
provided in an XML bot configuration file. The options determine what tools the bot is
associated with and, optionally, provide a configuration user interface for the

administrator. A sample XML bot configuration file follows:

<BotInstallations>

14



10

15

20

25

30

35

40

WO 2004/017601 PCT/US2003/015188

<Botlnstallation
SignatureType="0"
Active="1'
Class="1"
AgentTemplateResourceURL="http:/components.groove.net/Groove/
Components/Root.osd?Package=net.groove.Groove.Tools.Business.
Bots.GrooveElizaBot_TPL&amp;Version=2&amp;Factory=Open"
DisplayName="Classic Eliza Chatter Bot 2"
MinScope="2"
MinTelespaceRole="1">
<ActivationDescriptors>
<ActivationDescriptor
Includelnvisible="1"
SignatureType="0"
ToolConnectionType="0"
Signature="http://components.groove.net/Groove/
Components/Root.osd?Package=net.groove.
Groove.Tools.General.Discussion.
DiscussionTemplate_TPL&amp;Version=3&amp;
Factory=Open"
/>
<ActivationDescriptor
Includelnvisible="1"
SignatureType="0"
ToolConnectionType="0"
Signature="http://components.groove.net/Groove/
Components/Root.osd?Package=net.groove.
Groove.Tools.General.Discussion.
DiscussionTemplate_TPL&amp;Version=2&amp;
Factory=Open"
>
</ActivatorDescriptors>
</BotInstallation>
</Botinstallations>

[63] This example illustrates a bot with two tool signatures. If there are
additional implementations of a bot or more than one tool signature, additional
<Botlnstallation> statements can be added.

[64] In the above example, the bot installation "class” specifies the bot class
and takes an integer value, such as: Class=0, Agent; Class=1, Tool; Class=2,
Scheduled; Class=3, Bootstrap. The bot installation "signature type" specifies the
mechanism that will be used to find the tool when a service is invited to a shared

space. In particular, many tools are constructed by means of an XML template

15



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

document that contains information from which the tools inherit their behavior. This
XML template document is called a "template resource" and is identified by a template
resource URL. A template resource may contain one or more XML attributes called
"support types" and may be installed in the shared space with an attribute called
"category".

[65] The signature type takes an integer value, such as:

[66] SignatureType=0, GrooveBotSignatureType PACKAGE, indicates that
the tool should be located by matching the tool template resource URL.

SignatureType=1 GrooveBotSignatureType_CATEGORY, indicates that
the tool should be located by matching the tool by category

SignatureType=2 GrooveBotSignatureType_STARTUP, indicates that no
matching is required. This signature type can be used for startup bots. A
startup bot can be either an agent bot or a tool bot.

SignatureType=3 GrooveBotSignatureType_SCHEDULED, indicates
that no matching is required. This signature type can be used for scheduled
bots.

SignatureType=4 GrooveBotSignatureType_SUPPORTEDTYPE,
indicates that the tool should be located by matching the tool by a supported
type.

[67] The tool signature specifies a value of the specified type that will be
used for matching purposes. For example, if the signature type specifies matching the
tool by resource URL, then the signature should specify the resource URL. The match
is tested using the same rules as those used for tool templates. These rules are
discussed in detail in the Groove Developers GDK set forth above. If the signature
type specifies matching by supported type, then the configuration file specifies the
supported type in the "signature” value. For example, if the tool template contains the
following supported type:

<!-- Supported Type Definitions -->

<g:SupportedTypes>

<g:SupportedType Name="urn:yourcompany.com:YourApp10"/>
</g:SupportedTypes>

then the Botlnstallation section should specify:

16



5

10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

SignatureType="4"
Signature="urn:yourcompany.com:YourApp10"

[68] The MinScope value limits the scope to the specified value and takes an
integer value, such as:

MinScope=0 bot scope includes all shared spaces and tools

MinScope=1 bot scope includes all tools in a shared space

MinScope=2 bot scope includes all components in a tool

MinScope=3 bot scope includes a single component

[69] If a MinScope of 0 is specified, then the service administrator can
choose to have a single instance of the bot that has a scope of all shared spaces and
tools or can specify that multiple instances of the bot should be created, one for each
component or tool. If a MinScope of 3 is specified, the administrator can only specify
multiple instances of the bot, one for each component. The administrator cannot
specify that a single instance of bot will have a scope of greater than a single
component.

[70] Since tools in the aforementioned Groove collaboration system are
hierarchical in nature and a tool can contain other tools or tool sets, it is necessary to
inform the system scanning mechanism whether to just look at the tool container, or
whether it will be necessary to examine the tool container and sub-containers to
discover other tools contained within the tool. This is done by using the bot
connection type value. The ConnectionType value specifies the kind of connection
that the bot makes with the tool and takes an integer value, such as:

ConnectionType=0 connect to the tool’s data model delegate

ConnectionType=1 connect to the tool’s connection delegate

ConnectionType=2 connect to the data model delegate of a subtool specified
through another mechanism

[71] The MinTelespaceRole value specifies the minimum role required for the
bot to be instantiated in a shared space. There are two minimum roles: the bot
service configuration minimum role, which determines whether the bot service accepts
the invitation to the shared space and the bot installation minimum role, which

determines whether the bot service creates an instance of the bot for a tool in the

17



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

shared space. The bot service minimum role is set by the service administrator using
a bot configuration user interface. The bot installation minimum role is set by the bot
developer in the bot installation section of the bot configuration file and can be further
restricted by the service administrator. The MinTelespaceRole takes an integer value,
such as:

MinTelespaceRole=0 may be invited as guest

MinTelespaceRole=1 Must be invited as at least a Participant

MinTelespaceRole=2 Must be invited as a Manager

[72] Bots run under centralized administrative control in the enterprise
integration server so that global policies and behaviors can be defined at this level.
Global behaviors that are defined centrally include authentication settings, auto accept
policies, administrative confirmation behaviors, API confirmation behaviors, startup
options and the scope of bot instances. Centralized control allows simple installation,
configuration and deployment of bots, control of bot operation and access control and
further allows logging and system behavior administration.

[73] Botinstances can also be configured at the centralized enterprise
integration server. In general, the aforementioned XML configuration files are used by
a service administrator to define bot instance behaviors and tool signature(s) and to
monitor activity. At the centralized enterprise |ntegrat|on server, bots can be directly
controlled. This control includes which bot component to instantiate, whether the bot
should be enabled or disabled, the bot instance termination behavior and the software
code class (lightweight to heavy weight.) In order to configure the bots, the
administrator uses the server console interface as described below.

[74] A block schematic diagram of the relationship between the services and
bots in a enterprise integration server is illustrated in Figure 6 and the steps involved
in setting up and configuring the enterprise integration server are illustrated in Figure 7
that begins in step 700. In order to set up an enterprise integration server, one or
more machines are designated to be device servers as shown in step 702. Figure 6
shows the enterprise integration server housed in a single device 600 although
additional devices may be used. The designated devices belong to a virtual "cluster”
and so the next step is to establish a cluster account to which the enterprise

integration server application 602 will be assigned as illustrated in step 704.

18



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[75] Next, in step 706, the services that comprise the enterprise integration
server are created. Figure 6 illustrates two services that comprise enterprise
integration server application 602. These are an archive service 608 and a
knowledgebase service 610. As shown in Figure 6, these services 606 and 610 each
reside in their own service space, 604 and 6086, respectively, within the enterprise
integration server application 602. Although only two services are shown in Figure 6,
more or less services can actually reside in the enterprise integration server
application 602. The archive service 608 provides for automatic backup of shared
space information. The knowledgebase service can connect to external databases in
order to provide information to the shared spaces.

[76] After a service is created, it must be configured as set forth in step 708.
The primary role of a service, besides providing a housing for a set of related bots, is
to accept or decline invitations to shared spaces. Because the bots operate from
within shared spaces, screening shared space invitations is the primary method of
controlling bot usage. Accordingly, the service administrator can select the invitation
acceptance policy. This selection is one of the four following possible actions:

[77] (1) an invitation is automatically accepted. In this case a corresponding
"acceptance message" is automatically generated and routed back to the collaborator
that has issued the invitation.

[78] (2) the invitation is accepted only from local trusted contacts. In this
case, the service controller determines the sender of the invitation message by
extracting the contact information from the message header. A special hash number
called a "fingerprint" is generated from the contact information and a query is made
into a bot facilitator controller 510 for verification. The facilitator controller 510
compares the fingerprint to a list of trusted contacts in the local contact store 512,
which list has been previously established by a service administrator. If a match is
found, the invitation is accepted and a corresponding "acceptance message” is
generated and routed back to the collaborator that has issued the invitation. Ifno
match is found, then service administration personnel are alerted that the invitation
must be manually processed.

[79] (3) the invitation is accepted only from contacts in the access control list
618. In this case, the contact information is extracted from the invitation message

header as before and used to query the access control list 618. The access control

19



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

list can be edited by the service administrator to specify "allowed users" and "denied
users". If an allowed user match is found, the invitation is accepted. If a "denied
match" is fbund, a corresponding "invitation declined" message is created and routed
back to the collaborator issuing the invitation. All other conditions result in the
invitation being left for manual processing by a services administrator.

[80] (4) the invitation is accepted by evoking a custom script. This process
provides a means for a services administrator to write software program code (in the
form of a scripting language or languages) where the resulting action can be
determined programmatically under absolute control of the administrator. This
process enables a services administrator to reference any other means of validation
which may be needed to comply with the current organizational policies.

[81] The service administrator can also specify the minimum role that the bot
service must have in the shared space (as specified in the invitation) in order for the
service to accept a shared space invitation from the collaborator. The role settings
can be guest (review the shared space data), participant (review and modify the
shared space data) or manager (modify the shared space itself.) Role settings
complement the acceptance conditions settings described above. For example, to
specify that a bot service should accept all invitations that assign a role as manager,
the auto-accept condition would be selected as an invitation processing option and
"manager" as a minimum role.

[82] Next, in step 710, bots are installed in each service. This step involves
associating the bot files with the service. One or more bots can be installed in each |
service. For example, in Figure 6, two bots, 612 and 614, have been installed in
archive service 608. The picture archive bot 612 stores backup copies of graphic
images that are part of the shared space information, while the document archive bot
614 stores backup copies of shared space documents. A single bot 616 has been
installed in knowledgebase service 610. Bot 616 is a knowledgebase connector bot
that can connect to an external database and transfer information from that database
to the shared spaces of which it is a part.

[83] In step 612, the bots may be configured. Although the bot code
determines its configuration, the code may allow a service administrator to select
certain options and configuration settings that affect the bot’s behavior for the current

service. For example, a service administrator may be able to specify whether the bot

20



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

is eligible for invocation when the service to which it belongs is invited to a shared
space, the bot shared space role (guest, participant or manager) or who can use the
bot. The process then ends in step 614.

[84] After the services have been created and the bots installed, the services
may be invited join a shared space by collaborators as discussed below. Shared
spaces 620-624 represent shared spaces to which service 608 has been invited and
shared spaces 628 and 630 represent the shared spaces to which service 610 has
been invited. Note that any or all shared spaces, such as shared space 526, may also
invite both services 608 and 610 and other services not shown in Figure 6.

[85] In accordance with the Groove collaboration system previously
described, when an invitation to join a shared space is accepted by a service in the
enterprise integration server, the shared space information is sent from one of the
collaborators to the service. A local copy of the shared space is then replicated in the
enterprise integration server from this information.

[86] In one embodiment of an enterprise integration server, the server itself is
not directly accessible from the shared spaces with which it communicates. In order
for shared spaces to connect to the server, after the services are created in the server
by administrative personnel, the server then broadcasts availability of its services. For
example, collaborators connected to a local area network can access the bot service
from a local area network contacts list which is populated by the bot facilitator
controller 510. It is also possible to notify specific users of a bot service by sending
them the service identity information so that they can add the information to their
personal contacts list.

[87]1 However, the way in which a bot service is accessed and handled also
depends on the coding of its underlying bots. For example, a service could contain a
bot that is programmed to respond to an instant message by creating a shared space
and inviting the sender. The bot code can also determine the shared space role of the
service (such as manager) and the tools that will be supplied in any shared space to
which the service is invited.

[88] Once the availability of the services has been disseminated to
collaborators in shared spaces, the collaborators can then select appropriate services
and invite the services into their shared space by sending an invitation message to the

server. These invitation messages are processed in accordance with the global

21



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

invitation policy as discussed above and instances of previously-installed bots are
deployed based on the results of this processing. The server architecture that
processes an invitation message is shown schematically in Figure 8 and the steps in
the invitation processing are illustrated in the flowchart shown in Figure 9.

As illustrated in Figure 8, each service has an entry, such as entry 802 in service
cache 800 that is maintained by service cache controller 506 (Figure 5.) As previously
mentioned, service cache 800 keeps the services running in the cluster.alive and
coordinates startup/shutdown of the services. Since there can be multiple services in
the server, there may be muitiple entries 802-806 in the service cache 800. These
entries have an identical internal structure so that, for clarity, only the internal structure
of entry 802 is shown in detail.

[89] Each entry, such as entry 802, has a bot service controller that houses a
server console log 808 that logs bot service events, a bot factory facility 810 and a
component connector facility 812. In addition, the bot service controller 802
processes identity messages, maintains and distributes service configurations and
defines service level policies.

[90] The bot factory 810 conducts all bot installation, distribution, and
termination activities and maintains bot installation properties and settings. It also
manages a scheduling framework and controls the bot instantiations by controlling bot
instantiation scope and managing bot instance preferences, persistence and data
models. An important function of the bot factory 810 is maintaining the configuration
tables 814 in the component connector 812 to allow it to scan shared spaces and
select appropriate tools. In particular, as each bot is installed in a service, the bot
factory associated with that service examines the activation descriptors in the bot
installation files submitted by the developer. As discussed above, each activation
descriptor includes information that controls the scanning process. For example, an
activation descriptor determines whether tool components that are invisible to the
collaborators should be scanned and whether the matching should be performed by
URL, category or supported type. Based on this information, the bot factory extracts
the appropriate URL, category or supported type information in the activation
descriptor signature value and composes a pattern of this information which will be
matched by the tool metadata during the scanning process. The bot factory then

sends a subscription to the component connector 812 causing the component

22



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

connector to update its configuration tables 814. In this manner, the bot factory 810
tells the component connector 812 the tools for which it will examine a shared space.
In addition, the bot factory also sends subscriptions to the component connector 812
when a bot is changed to allow the component connector to modify its configuration
tables accordingly.

[91] The component connector 812 houses the bot factory subscriptions in
the form of configuration tables 814 and performs scanning operations on the shared
spaces that have been replicated in the server based on the configuration tables 814.
In particular, it scans each shared space by opening tool containers extracting the tool
metadata therein and decomposing the extracted tool metadata in order to examine
the template resource URL data, the category data or the tool type. It may aiso open
tool sub-containers and extract tool information therein. It then uses the information
obtained to perform pattern matching between the tool metadata and the configuration
tables in order to identify tools with metadata that matches patterns in the
configuration tables.

[92] The processing of an invitation received from a shared space begins in
step 900 and proceeds to step 902 where the global invitation message acceptance
policy discussed above is consulted to decide whether the invitation should be
accepted. As previously mentioned, the invitation decision is determined by a
selection made by a service administrator at the time that the service was created.
The invitation is processed by the components in the service cache entry that
corresponds to the service that was invited to join the shared space. Assume for
purposes of this discussion that this service is represented by entry 802. Thus, the
service controller 802 will determine whether the invitation will be accepted and will
return an appropriate "accept” or "decline" message to the collaborator who generated
the invitation. The result of this consultation is also stored in a record that defines the
appropriate action to be taken later by the bot service controller 802 as described
below.

[93] Assuming that the invitation is accepted in step 902, in step 904, a local
copy of the shared space of the collaborator that issued the invitation is constructed in
the server in accordance with the normal operation of the collaboration system. These

local copies are shown as shared spaces 620-630 in Figure 6.

23



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[94] After a shared space is replicated in the server, it is examined in step
906 by the component connector 812 to detect tools that require a bot to be
instantiated. This information allows bots to be bound to tools in the replicated‘shared
space based on the results of this examination. In particular, the component
connector 814 uses the configuration tables 814, which may be in the form of a binary
map, to look for selected URLs and attributes. Based on subscription information from
the bot factory 810, the map includes configuration rules for each tool that are patterns
of the URLs and attributes that identify tools that require one or more bots to be
instantiated. For each tool that is detected during the scan, the component connector
812 sequentially applies each rule in order to determine whether the tool meet the
configuration rule. When a pattern detected during the scan matches a pattern stored
in the map, the tool is selected and the component connector 812 notifies the bot
factory 810.

[95] The bot factory 810 may also notify other services that a tool has been
detected. However, services also have identities that correspond to account holder
keys so that the system can scan at the account level. In this case, the server
controller 502 determines which service is allowed to see the scan results. Thus, not
every service scans all spaces.

[96] When the bot factory 810 receives a notification from the component
connector 812 that a tool has been detected with a signature that matches one of the
activation descriptor signatures, it makes a decision whether a bot will be instantiated.
This decision is based on a number of factors. One factor is whether there is an
existing instance of the same bot within the predefined bot scope. As discussed
above, the bot scope is determined by a field in the XML bot configuration file. If there
is an existing bot within the appropriate scope, then it is used. Bot scopes determine
the visibility of a bot. For example, a single bot can have visibility of two shared
spaces and thus aggregate data created in each of the spaces. Such a bot can be
used with other bots in the shared spaces to form a "security tree" in which one or
more bots have access to all data in all shared spaces, but other bots can only access
data in the single shared spaces to which they have been invited. A bot can also
cross virtual private network boundaries. Further, a bot can be specified to be a
participant and thus can read data. It can also modify the space and act as a

manager.

24



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[97] If an appropriate bot instance is not already in existence, then, the bot
factory creates a new bot instance. A more detailed illustration of the internal
architecture of a typical bot factory is shown in Figure 10. Each bot factory 1000
includes a bot factory controller 1002 that coordinates the operation of the bot factory
1000 and further includes a cache of running bots that are kept in a container 1004
called a "bot instance descriptor container". This cache 1004 includes a bot instance
descriptor (of which two, 1006 and 1008, are shown) that identifies each bot and
ensures that all active bots continue running. Each bot factory 1000 also includes a
listener 1010 that listens to each bot instance for status changes that may require the
subscription to the component connector to be changed.

[98] The bot factory 1000 further includes a shared space controller for each
shared space that it services. Only one such controller 1002 is shown in Figure 10 for
clarity. The controller 1002 is used to monitor the associated shared space for
changes in the shared space metadata that might be caused for example, by tools
being added or deleted. In the event of such changes, the bot factory 1000 calls the
component connector 812 and provides a new subscription outlining the changes.
The component connector 812 then notifies the bot factory 1000 whether any changes
must be made in the instantiated bots.

[99] Each bot factory 1000 uses installation configuration tables 518 (Figure
5) that contain the information in the XML configuration files that were provided by the
bot developers. These installation configuration tables 518 are created when each bot
is installed in the service. The tables 518 include information concerning how the
instantiation message invitation is handled and bot access control information. The
tables also include information indicating whether there is a service lock at a message
store, whether the bots can interact with centralized control, whether there is an
automatic scan for tools, basic message texts, such as accept/decline message texts,
the number of bot instances, a URL list of all cluster members, a list of bot instances,
the installed bot list and a get pointer to each bot instance and a descriptor housed by
a cache entry.

[100] In particular, the configuration tables 518 include a URL that indicates
the location of the bot software code in a database 516 of agent resource templates.
This URL is also called a "component manager URL." When the bot factory 810

25



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

makes a decision to create a new instance of a bot, the factory retrieves the URL from
the configuration tables in step 908 and uses the URL information find the bot code.

[101] In step 910 of the bot instantiation process, the actual bot code is
obtained from a resource database 516 in the enterprise integration server 500. In
step 912, the bot is instantiated from the bot code and a bot instance descriptor, such
as descriptor 1008, is created by the bot factory controller 1002.

[102] The bot instance descriptor 1008 contains the information shown in
Figure 11. This information includes: an enable/disable flag 1102, a local/remote flag
1104, the URL of the contact that created the bot 1106, a flag 1108 that indicates
whether billing locks are present, a pointer 1110 to the shared space, a pointer 1112
to the tool and the component attached to the tool and the bot GUID 1014 of the bot
type (a GUID is necessary because there can be several bot instances with different
run-time properties.) The enable/disable flag 1102 designates a bot that is active or
inactive when installed. Inactive bots are ignored by the central control. Inactive bots
may be released and may also release the shared space.

[103] In step 914, the bot instance descriptor (1008) is placed in the bot
instance descriptor container 1004 in the corresponding bot factory and the process
finishes in step 916.

[104] The relationship between a bot and the tool it works with depends on the
construction of the tool. For a tool to be "bot-ready”, it needs to implement a data
model delegate. The data model delegate provides the bot with a well-defined
interface to the tool data and events and defines the data structure exposed by the
tool. Such an interface is defined in the aforementioned Groove Developer's GDK. If
a tool does not define a data model delegate, the only way for another tool to access
its data is directly with an engine. However, engines provide general data access
mechanisms and would allow a bot or other component to create data that the tool
cannot understand. For example, it is possible to use a record set engine in a way
that the data stored in each record has different fields. Defining a data model
delegate can ensure that all records have the same fields and that the fields are the
ones that are used by the tool.

[105] In most cases, a bot can perform its functions communicating with the
tool only through the tool’s data model delegate. This provides the best isolation
between the tool and the bot code because the data model delegate is a published

26



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

interface that will not change. This minimizes the possibility that a change to the tool
implementation will impact the bot’s functioning or vice versa. When the bot is
communicating with the tool in the server shared space, any information that is sent
between the bot and the tool is replicated in the other collaborator's shared space
copies in accordance with the normal operation of the collaboration system.

[106] In some cases, bots need additional information about the tool’s context.
For example, if a bot requires knowledge about the members in a shared space, it can
get this information by establishing a connection with the shared space. There are
some cases when the bot initiates direct contact with the tool and there are other
cases in which the tool initiates contact with the bot. An example of this latter case is
a bootstrap bot that is a specialized bot that causes a specified tool to be injected into
a shared space to which the bot has been invited. Typically, when this tool is injected
into the shared space, the injected tool will match a bot activation description specified
in the bot configuration file and will trigger another companion bot to be activated.
Having a tool component in the shared space allows the bot to execute code on the
collaborator's device. A bot may need this code to access local data or to distribute
the bot processing load. Once the companion bot is running on the enterprise
integration server, the companion bot and the tool loaded by the bootstrap bot can
connect with each other. In this manner, the enterprise integration server extends
selected tools without modifying them by using the server code. However, the data
that the code needs is stored outside of the shared space and thus is not accessible in
the shared space. /

[107] In addition to creating bots in response to invitations from shared
spaces, bots may also create shared spaces. As an example, a startup bot referred to
as a "shared space creator" can be used to create shared spaces. When the
enterprise integration server is started, an instance of this bot is created. This bot
instance monitors the transport of an instant messaging system over which the |
collaborators can communicate and evaluates instant messages that are sent to the
server. When an instant message is received at the server requesting the creation of
a shared space, the bot performs simple authentication, creates a new shared space,
adds designated tools, sets the shared space security policies as determined by the
service administrator and, finally, invites the sender of the instant message into the

new shared space with the appropriate access level.

27



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[108] The enterprise integration server comprises an administrative console
program that allows centralized control of the server, services and bots as previously
described. Using the console, an administrator can control the workload of each
server device. Each device can be a cluster member and the devices can load
balance each other. Manual load balancing by an administrator is also possible. The
administrator also has a message area so that when a new tool is detected by the
component connector and the tool is not designated as "trusted”, a message screen
appears and tells the administrator that the tool is there and requests advice as to
whether the system should accept and trust the tool.

[109] Figures 12 and 13 schematically illustrate the use of a simple archive
service 1202 (Figure 12) in an enterprise integration server 1200. Archive service
1202 might correspond, for example, to the archive service 608 as illustrated in Figure
6. In order to use the archive service, the service 1202 and the bot code modules
1204-1212 implementing the service, are first installed in server 1200 as previously
described. The bot code might include document revision archive bot code module
1204, picture archive bot code module 1208, discussion archive bot code module
1208, file archive bot code module 1210 and calendar archive bot code module 1212.
Each bot code module includes code that allows a bot instance instantiated from the
code to transfer information between the bot instance and a backup database 1214.

[110] When the bot code modules 1204-1212 are installed in the archive
service 1202, a bot factory (not shown in Figures 12 and 13) that is associated with
the service 1202 will construct subscriptions from the activation descriptors associated
with each bot code module. These subscriptions are sent to the component connector
for the service (not shown in Figures 12 and 13) and result in scan patterns based on
tool signatures, categories and types being entered into configuration files that the
component connector uses to locate tools for which bot instances will be instantiated.

[111] In operation, a shared space 1222 is first constructed by a group of
collaborators in accordance with the normal operation of a collaboration system used
by the collaborators. As shown in Figure 13, this shared space 1322 illustratively
includes a document share tool 1312, a discussion tool 1314, a files tool 1316 and a
meetings tool 1318 as schematically indicated by arrows 1320, 1324, 1326 and 1328,
respectively. The document share tool 1312 allows each of the collaborators to view

and edit a shared document and produces daily document revisions. The discussion

28



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

tool 1314 allows the collaborators to carry on an on-screen discussion regarding the
document. The files tool 1316 allows the collaborators to retrieve and save files and
the meetings tool 1318 allows the collaborators to schedule meetings.

[112] During the collaboration, one of the collaborators 1220 sends an
invitation to the archive service in server 1200 as indicated schematically by arrow
1218. This invitation would be addressed to the archive service 1202 and would
specify the role in the shared space that the service will have. For example, the
invitation might specify that the archive service can join the shared space as a
participant.

[113] The archive service 1202 receives the invitation and processes it in
accordance with the policies that have been determined by the service administrator
as previously described. In particular, unless the service automatically accepts all
invitations, the collaborator who sent the invitation must be on the list of trusted
contacts or designated as a contact capable of generating such an invitation in the
server access control list. In addition, the service must allow acceptance of an
invitation that allows it to join a shared space as a participant. If all of these conditions
are met, the archive service accepts the invitation and forwards an acceptance
message to collaborator 1220 as schematically illustrated by arrow 1216.

[114] As previously described, the acceptance causes the shared space 1222
to be replicated in the archive service 1202 including the tools (1312-1318.) When the
shared space is created in the archive service 1202, the component connector
associated with service scans the shared space for tools with signature, categories or
types that match its scan patterns stored when the bot code was installed. When a
match is found a corresponding bot instance is either instantiated and linked to the
tool or an existing bot instance linked to the tool.

[115] For example, Figure 13 illustrates the state of the system after the scan
has been conducted and appropriate bots instantiated or linked. lllustratively, four bot
instances have been created. These include the document revision archive bot
instance 1304, the picture archive bot instance 1306, the discussion archive bot
instance 1308 and the file archive bot instance 1310. It should be noted that no bot
instance was instantiated from the calendar archive bot code 1212 because the
shared space did not include a tool that required such a bot to be instantiated.

29



10

15

20

25

30

35

WO 2004/017601 PCT/US2003/015188

Similarly, no bot was instantiated for meeting tool 1318 because the archive service
1302 did not include archive bot code for this tool.

[116] Document share tool 1312 is shown linked to the document revision
archive bot instance 1304 and the picture archive bot instance 1306 as schematically
illustrated by arrows 1330 and 1332. This linking would occur because the installation
descriptors of both bot code modules specified a match for the document share tool.
Similarly, the discussion tool 1314 is linked to the picture archive bot instance 1306
and the discussion archive bot instance 1308 as indicated schematically by arrows
1334 and 1336. Although two separate tools 1312 and 1314 are linked to bot
instance 1306, only a single bot instance is created as specified by the bot installation
code.

[117] Finally, files tool 1316 is linked to file archive bot instance 1310 as
indicated by arrow 1338. At this point, the archive bot instances will automatically
store backup information generated during the operation of the shared space 1322. It
should also be noted that the links between tools 1312-1316 and archive bot instances
1304-1310 are created automatically, and in most cases without knowledge of the
collaborators in the shared space 1322.

[118] Figure 14 illustrates the operation of a FAQ service that, in response to
questions posed during a collaborative discussion, provides responses based on
database information. In order to use the FAQ service, a collaborator who is part of a
shared space, invites the FAQ service into a shared space includes the discussion
tool. For example, as shown in Figure 14, a collaborator in shared space 1430 that
includes discussion tool 1418 might invite the FAQ service 1400 into shared space
1430. FAQ bot code would have been previously installed in the FAQ service 1400.
A sample installation configuration for such a FAQ bot is shown below. This

configuration file specifies a single bot installation with a single activation descriptor:

<BotInstallations>

<Botinstallation

Active="1"

Class="1"

AgentTempIateResourceURL="http://components.yourcompany.com/GDK/
Samples/Bots/FAQ/JavaScript/GrooveFAQBot.osd?Package=
com.yourcompany.GDK.Samples.Bots.FAQ.
JavaScript.GrooveFAQBot_TPL&amp;Version=0,2&amp;Factory=Open"

30



10

15

20

25

30

35

WO 2004/017601 PCT/US2003/015188

DisplayName="FAQBot (JavaScript/Access Integration)"”
MinScope="2"
MinTelespaceRole="1"
<ActivationDescriptors>
<ActivationDescriptor
Includelnvisible="1"
SignatureType="0"
ToolConnectionType="0"
Signature="http://components.groove.net/Groove/Components/
Root.osd?Package=net.groove.Groove.Tools.General.Discussion.
DiscussionTemplate_ TPL&amp;Version=3&amp;Factory=Open"
/>
</ActivationDescriptors>
/>
</Botlnstallations>

[119] Note that the tool signature requires that the discussion tool be present
for a FAQ bot instance to be created. The invitation to a shared space 1430
containing a discussion tool 1418 will result in a FAQ bot instance 1402 being created
or the discussion tool 1418 being linked to an existing FAQ bot instance as described
above.

[120] The FAQ bot instance 1402 will contain code that connects it to an
ODBC data store 1422 that contains a database of FAQ questions. This requires a
data source name (DSN) connection to the database 1422 on the enterprise
integration server (not shown in Figure 14) so that the FAQ Bot instance 1402 can
interact with it.

[121] The discussion tool 1418 exposes a record set interface from its record
set interface as indicated schematically as 1416. This allows the FAQ bot instance
1402 to read new discussion topics through the record set interface 1416. In order to
connect to the data model delegate of the discussion tool 1418, the FAQ bot would

include code such as the following:

function MyCreateBotInstance(i_BotlnstanceDescriptor, i_Newlnstance)
var plDelegateComponent = i_BotinstanceDescriptor.OpenBotinstance(). Component;

ScriptHostComponent.Advise(p!DelegateComponent,
"(72C3A310-46F1-11D4-80BB-0050DA5F08E3}");

31



10

15

20

25

30

WO 2004/017601 PCT/US2003/015188

[122] Since the discussion tool's data model delegate exposes the underlying
record set engine, the call to Advise requests the guaranteed unique ID (GUID) for the
IGrooveRecordSetListener interface.

[123] The discussion topics retrieved by the FAQ bot are provided to a
metadata extraction layer 1412 in the FAQ bot instance 1402 as indicated
schematically be arrow 1428. The metadata extraction layer 1412 parses the topics
and extracts words from a topic subject line. The extracted words are provided to
query creation layer 1408 and data translation later 1406 to the ODBC AP layer 1404
as schematically indicated by arrow 1424.

[124] The query translation layer 1408 uses the extracted words as keywords
to create a generic SELECT statement. In layer 1406, this SELECT statement is
translated into a data-specific form suitable for accessing database 1422. The
SELECT command statement is provided to an ODBC API layer that performs the
query on the database 1422, via a suitable mechanism such as a remote procedure
call (RPC) illustrated schematically by arrow 1420.

[125] The records returned from the database 1422, via the RPC 1420, are
provided to the ODBC API and from there to the data translation layer 1406 where
they are reformatted into a form suitable for use with the record set interface 1416.
The reformatted records are then provided to the record set interface 1416, as
schematically indicated by arrow 1410, so that they generate response topics in the
discussion tool 1418.

[126] A software implementation of the above-described embodiment may
comprise a series of computer instructions either fixed on a tangible medium, such as
a computer readable media, for example, a diskette, a CD-ROM, a ROM memory, or a
fixed disk, or transmittable to a computer system, via a modem or other interface
device over a medium. The medium either can be a tangible medium, including but
not limited to optical or analog communications lines, or may be implemented with
wireless techniques, including but not limited to microwave, infrared or other
transmission techniques. It may also be the Internet. The series of computer
instructions embodies all or part of the functionality previously described herein with
respect to the invention. Those skilled in the art will appreciate that such computer
instructions can be written in a number of programming languages for use with many

computer architectures or operating systems. Further, such instructions may be

32



10

15

20

WO 2004/017601 PCT/US2003/015188

stored using any memory technology, present or future, including, but not limited to,
semiconductor, magnetic, optical or other memory devices, or transmitted using any
communications technology, present or future, including but not limited to optical,
infrared, microwave, or other transmission technologies. It is contemplated that such
a computer program product may be distributed as a removable media with
accompanying printed or electronic documentation, e.g., shrink wrapped software,
pre-loaded with a computer system, e.g., on system ROM or fixed disk, or distributed
from a server or electronic bulletin board over a network, e.g., the Internet or World
Wide Web.

[127] Although an exemplary embodiment of the invention has been disclosed,
it will be apparent to those skilled in the art that various changes and modifications
can be made which will achieve some of the advantages of the invention without
departing from the spirit and scope of the invention. For example, it will be obvious to
those reasonably skilled in the art that, although a peer-to-peer collaboration system
has been illustrated in the detailed description, the inventive concepts also apply to a
collaboration system in which the collaborators exchange information via a server. In
this case, an enterprise integration service could be created on the existing server.
This service could be created via an invitation as described above or, alternatively, the
appropriate bot factories and associated software could be installed on the server
when the collaborative system is initially created. In this latter case, a shared space is
also created in the server when the collaborative system is created and used to
update a file system copy of the shared space. This shared space can then be
examined for tools that require connection to an external system.

[128] What is claimed is:

33



© o ~N o o A~ w0 N =

R U U §
AW N =~ O

WO 2004/017601 PCT/US2003/015188

CLAIMS

A method for connecting a secure peer-to-peer collaboration system to an
external system wherein each collaborating member uses tools within a local
shared space copy to update data therein and collaborating members securely
exchange data between local shared space copies, the method comprising:

(a) installing a service on a server external to all of the local shared space
copies, the service including service code for exchanging data with the
external system and a designated tool;

(b)  causing the service to join the collaboration system as a member so that
the collaboration system replicates a copy of the shared space on the
server;

(c)  scanning the replicated shared space copy to discover tools therein; and

(d)  using the service code to exchange data between the external system
and the designated tool when the replicated shared space copy includes

the designated tool.

The method of claim 1 wherein step (a) comprises installing within the service
at least one agent bot code module having code for exchanging data with the

external system and a designated tool.

The method of claim 2 wherein step (a) comprises installing within the service a
plurality of agent bot code modules, each having code for exchanging data with

the external system and a designated tool.

The method of claim 2 wherein step (d) comprises instantiating a bot instance
from the agent bot code module when the replicated shared space copy

includes the designated tool.
The method of claim 4 wherein step (d) comprises linking the bot instance to

the designated tool to exchange data between the external system and the
designated tool.

34



WO 2004/017601 PCT/US2003/015188

10.

11.

12.

13.

14.

The method of claim 1 wherein step (b) comprises receiving an invitation to join
the collaboration system from one of the collaborating members; and accepting

the invitation based on predetermined criteria.

The method of claim 6 wherein the criteria include whether a role in the
collaboration system specified by the invitation meets a predetermined role and
whether the one collaborating member has been preselected as a member that

can issue an invitation.

The method of claim 6 wherein the predetermined criteria are set by an

administrator using a console program in the server.

The method of claim 1 wherein step (a) comprises creating a map of
information identifying the designated tool.

The method of claim 9 wherein step (c) comprises extracting information from

the replicated shared space copy identifying all tools therein.

The method of claim 10 wherein step (d) comprises comparing the information
extracted from the replicated shared space copy to the map to identify
designated tools in the service.

The method of claim 1 wherein step (d) comprises using the service code to
exchange data between the external system and the designated tool in the

replicated shared space copy.

The method of claim 1 wherein step (a) comprises broadcasting the availability

of the service to at least one of the collaborating members.

The method of claim 1 wherein step (a) comprises broadcasting the availability

of the service to all of the collaborating members.

35



© o N o g AW DN -

i G {
a A~ W N -~ O

WO 2004/017601 PCT/US2003/015188

15.

16.

17.

18.

19.

Apparatus for connecting a secure peer-to-peer collaboration system to an
external system wherein each collaborating member uses tools within a local
shared space copy to update data therein and collaborating members securely
exchange data between local shared space copies, the apparatus comprising:

service software installed on a server external to all of the local shared
space copies, the service software including service code for exchanging data
with the external system and a designated tool;

means for causing the service to join the collaboration system as a
member so that the collaboration system replicates a copy of the shared space
on the server,

a component connector that scans the replicated shared space copy to
discover tools therein; and \

an agent bot instance that uses the service code to exchange data
between the external system and the designated tool when the replicated

shared space copy includes the designated tool.

The apparatus of claim 15 wherein the service software comprises at least one
agent bot code module having code for exchanging data with the external

system and a designated tool.

The apparatus of claim 16 wherein the service software comprises a plurality of
agent bot code modules, each having code for exchanging data with the

external system and a designated tool.

The apparatus of claim 16 wherein the agent bot code module comprises
means for instantiating the agent bot instance from the agent bot code module
when the replicated shared space copy includes the designated tool.

The apparatus of claim 18 wherein the agent bot code module further inciudes

means for linking the bot instance to the designated tool to exchange data

between the external system and the designated tool.

36



- HWwN

HOWwDN

WO 2004/017601 PCT/US2003/015188

20.

21.

22,

23.

24,

25.

26.

27.

The apparatus of claim 15 wherein the means for causing the service to join the
collaboration system comprises means for receiving an invitation to join the
collaboration system from one of the collaborating members; and means for

accepting the invitation based on predetermined criteria.

The apparatus of claim 20 wherein the criteria include whether a role in the
collaboration system specified by the invitation meets a predetermined role and
whether the one collaborating member has been preselected as a member that

can issue an invitation.

The apparatus of claim 20 further comprising a console program in the server

that can be used by an administrator to set the predetermined criteria.

The apparatus of claim 15 wherein the service software comprises means for

creating a map of information identifying the designated tool.

The apparatus of claim 23 wherein the component connector comprises means
for extracting information from the replicated shared space copy identifying all

tools therein.

The apparatus of claim 24 wherein the component connector comprises means
for comparing the information extracted from the replicated shared space copy

to the map to identify designated tools in the service.

The apparatus of claim 15 wherein the agent bot instance comprises means for
exchanging data between the external system and the designated tool in the
replicated shared space copy.

The apparatus of claim 15 wherein the service software comprises means for
broadcasting the availability of the service to at least one of the collaborating

members.

37



O 0w N o a A W N -

A A A A A A A
o oA WN -~ O

AOWON

HwWwN

WO 2004/017601 PCT/US2003/015188

28.

29.

30.

31.

32.

The apparatus of claim 15 wherein the service software comprises means for

broadcasting the availability of the service to all of the collaborating members.

A computer data signal embodied in a carrier wave for connecting a secure
peer-to-peer collaboration system to an external system wherein each
collaborating member uses tools within a local shared space copy to update
data therein and collaborating members securely exchange data between local
shared space copies, the computer data signal comprising:

program code for installing a service on a server external to all of the
local shared space copies, the service including service code for exchanging
data with the external system and a designated tool;

program code for causing the service to join the collaboration system as
a member so that the collaboration system replicates a copy of the shared
space on the server;

program code for scanning the replicated shared space copy to discover
tools therein; and

program code for using the service code to exchange data between the
external system and the designated tool when the replicated shared space
copy includes the designated tool.

The computer data signal of claim 29 wherein the program code for installing a
service comprises program code for installing within the service at least one
agent bot code module having code for exchanging data with the external

system and a designated tool.

The computer data signal of claim 30 wherein the program code for installing a
service comprises program code for installing within the service a plurality of
agent bot code modules, each having code for exchanging data with the

external system and a designated tool.

The computer data signal of claim 30 wherein the program code for using the

service code to exchange data comprises program code for instantiating a bot

38



HOWN W N

-

HOW N

WO 2004/017601 PCT/US2003/015188

33.

34.

35.

36.

37.

38.

39.

instance from the agent bot code module when the replicated shared space

copy includes the designated tool.

The computer data signal of claim 32 wherein the program code for using the
service code to exchange data comprises program code for linking the bot
instance to the designated tool to exchange data between the external system

and the designated tool.

The computer data signal of claim 29 wherein the program code for causing the
service to join the collaboration system comprises program code for receiving
an invitation to join the collaboration system from one of the collaborating

members; and accepting the invitation based on predetermined criteria.

The computer data signal of claim 34 wherein the criteria include whether a role
in the collaboration system specified by the invitation meets a predetermined
role and whether the one collaborating member has been preselected as a

member that can issue an invitation.

The computer data signal of claim 34 further comprising console program code

that can be used by an administrator to set the predetermined criteria.

The computer data signal of claim 29 wherein the program code for installing a
service comprises program code for creating a map of information identifying

the designated tool.

The computer data signal of claim 37 wherein the program code for scanning
the replicated shared space copy comprises program code for extracting
information from the replicated shared space copy identifying all tools therein.

The computer data signal of claim 38 wherein the program code for using the

service code to exchange data between the external system and the

designated tool comprises program code for comparing the information

39



—_

HOWDN

© o ~N o o A~ W N -

J T G U §
AW N -~ O

WO 2004/017601 PCT/US2003/015188

40.

41.

42.

43.

extracted from the replicated shared space copy to the map to identify

designated tools in the service.

The computer data signal of claim 29 wherein the program code for using the
service code to exchange data between the external system and the
designated tool comprises program code for exchanging data between the

external system and the designated tool in the replicated shared space copy.

The computer data signal of claim 29 wherein the program code for installing a
service comprises program code for broadcasting the availability of the service

to at least one of the collaborating members.

The computer data signal of claim 29 wherein the program code for installing a
service comprises program code for broadcasting the availability of the service

to all of the collaborating members.

A computer program product for connecting a secure peer-to-peer collaboration
system to an external system wherein each collaborating member uses tools
within a local shared space copy to update data therein and collaborating
members securely exchange data between local shared space copies, the
computer program product comprising a computer usable medium having
computer readable program code thereon, including:

program code for installing a service on a server external to all of the
local shared space copies, the service including service code for exchanging
data with the external system and a designated tool;

program code for causing the service to join the collaboration system as
a member so that the collaboration system replicates a copy of the shared
space on the server;

program code for scanning the replicated shared space copy to discover
tools therein; and

40



15
16
17

O 00 ~N O g A~ W N -

O O ¢
N =~ O

WO 2004/017601 PCT/US2003/015188

44.

45.

46.

47.

48.

program code for using the service code to exchange data between the
external system and the designated tool when the replicated shared space

copy includes the designated tool.

A method for connecting a collaboration system to an external system wherein
each collaborating member uses tools within a local shared space copy to
update data therein and collaborating members securely exchange data
between local shared space copies over a network, the method comprising:

(a)  scanning a server shared space copy located a server connected to the
network to discover tools which require connection to the external
system in the server shared space copy;

(b)  creating an agent for at least one tool requiring connection discovered in
the server shared space copy;

(c)  associating agents with each tool requiring connection; and

(d)  using each agent to exchange data between the external system and the

tool with which the agent is associated.

The method of claim 44 wherein step (a) comprises creating the server shared
space copy in the server in response to an invitation from one collaborating

member.

The method of claim 44 wherein step (a) comprises creating the server shared

space copy in the server when the collaboration system is created.

The method of claim 44 wherein step (a) comprises scanning each tool
discovered in the server shared space copy to discover tools contained within,

the each tool.
The method of claim 44 wherein step (a) comprises creating a map from

information that identifies each tool that requires connection to the external

system and scanning the server shared space copy to locate tools therein and

41



© 0 ~N O o AW N =

P O ¥
N =~ O

WO 2004/017601 PCT/US2003/015188

49.

50.

51.

52.

53.

comparing information from located tools to the information in the map to

identify tools that require connection to the external system.

The method of claim 44 wherein step (b) comprises creating an agent for each
tool requiring connection and which does not already have an agent associated
with it.

The method of claim 44 wherein step (c) comprises associating a single agent

with a plurality of tools.

The method of claim 44 wherein step (d) comprises linking each agent to the
tool with which the agent is associated in order to exchange data between the

external system and the associated tool.

Apparatus for connecting a collaboration system to an external system wherein
each collaborating member uses tools within a local shared space copy to
update data therein and collaborating members securely exchange data
between local shared space copies over a network, the apparatus comprising:

means for scanning a server shared space copy located a server
connected to the network to discover tools which require connection to the
external system in the server shared space copy;

means for creating an agent for at least one tool requiring connection
discovered in the server shared space copy;,

means for associating agents with each tool requiring connection; and

means for using each agent to exchange data between the external

system and the tool with which the agent is associated.

The apparatus of claim 52 wherein the scanning means comprises means for
creating the server shared space copy in the server in response to an invitation

from one collaborating member.

42



WO 2004/017601 PCT/US2003/015188

54. The apparatus of claim 52 wherein the scanning means comprises means for
creating the server shared space copy in the server when the collaboration

system is created.

55.  The apparatus of claim 52 wherein the scanning means comprises means for
scanning each tool discovered in the server shared space copy to discover

tools contained within the each tool.

56. The apparatus of claim 52 wherein the scanning means comprises means for
creating a map from information that identifies each tool that requires
connection to the external system and means for scanning the server shared
space copy to locate tools therein and means for comparing information from
located tools to the information in the map to identify tools that require

connection to the external system.

57. The apparatus of claim 52 wherein the agent creating means comprises means
for creating an agent for each tool requiring connection and which does riot

already have an agent associated with it.

58. The apparatus of claim 52 wherein the associating means comprises means for

associating a single agent with a plurality of tools.

59. The apparatus of claim 52 wherein the means for using each agent comprises
means for linking each agent to the tool with which the agent is associated in

order to exchange data between the external system and the associated tool.

60. The apparatus of claim 52 wherein the scanning means comprises means for
repeatedly scanning the server shared space copy to locate tools added to the

server shared space copy after an initial scanning.

43



WO 2004/017601

113

PCT/US2003/015188

FIG. 1 (PRIOR ART)



PCT/US2003/015188

WO 2004/017601

2/13

(LYY ¥yoriad)

¢ OIA

\A

HIADOVNVIN
SNOILVIOINNN

o1z m YIOVNYIN
| JOVH0lS /- g

m_mO<Z<_>_
090 mo__>_<z>

oz HIOVNYIN )
ALINLLOY /)

9¢¢

A ANIONS

1001

a

1/&/ \_/

+

HIOVNVYIA
d0VdS d3°VHS

*

HIAOVNVIN
ALILN3IAI

+

HIOVNYI IN - 80¢
A

—— ¢l¢

A
\f/

— 01¢

N
\H

Y

c0¢

JOV4d3LINI

~

N
¥3sn Vm@

—1— S0¢

¥0¢

vee



WO 2004/017601

306

PCT/US2003/015188
3/13
©
®
N
0
. 0
| g |
< Z N\ { DN
© S
(a\]
o |
N :
(ap)
N
i f
! 1 o
) o 1

FIG. 3 (Prior Art)



WO 2004/017601 PCT/US2003/015188

4/13
0
S— | 1
==
N —
"
(e 0]
o
T < _~ /]

(1}
u]
. Bt n

I ﬂ s
g —s
—c3
=
—acea
W et | e
—s

'R : P N
: 3

<3
y Y N

406



PCT/US2003/015188

WO 2004/017601

5/13

§ OI4d

8LG —

— S3Idvl
NOILVANOIANOD

9LG —

J1VIdN3AL
3404N0S3d
1INIOV

VLG ——

J3T10H1INOD
31vadn
1NINOJNOD

q

VG —T1—
J401S
1OVINOD VOO
H3TI0HLNOD
HO1VLIov4
0L —— 104d

q

JHOVD IDIANIS
806 —1=
90% — 1~ 43 T1041INOD
3HOVD JDIANIS
I TIOHLNOD
¥0S — S3DIAYAS
H31SNTO

H

HITTOHLINOD HIAYZS NOILVHOFLINI ISIddd 31N

NOILYDITddY ¥3AYIS NOILYYOILNI ISIHdd3d1INA

c0g

009




PCT/US2003/015188

WO 2004/017601

6/13

9 OIA

0€9 829 929 v29 29 029

819

¢09

009 —

Iovds | | 3ovds | | 3ovds | | 3ovds | | 3ovds| | 3ovds
% 5
19
919 |
108 IAIHONY
| ININN20d
10V 109 HOLO3ANNOD
3SvEIOATIMON
109 IAHONY )
019 JHNLOId k
30IAY3S
35vEIOATTMON 39IAYES IAIHOYY
3OVdS
JOIAY3S ISYEIOATTMONM JOVdS IOIANTS IAIHOHY
|
909 NOILYOINddY ¥IANTS 109

A2IA3d

809

29

¥09



WO 2004/017601 PCT/US2003/015188

713

700 START

DESIGNATE DEVICE

702 — SERVERS
704 | CREATE CLUSTER ACCOUNT
706 —— CREATE SERVICES
CONFIGURE SERVICES
708 —
710 ——
INSTALL BOTS

712——+—  CONFIGURE BOTS

LD B



PCT/US2003/015188

WO 2004/017601

8/13

§ OIAd

N 3OINGES
HATI0HINOD FDINLIS

908

¢ A0INd3S
HITTIOULNOD FDINGLS

|

¥08
3HOVO 30ING3S

S3a1gvl

O14ANOD

dOLO3IANNOD
ININOdJWOD

4

AdO10V4d 104

9071 3T0SNOD
d3IAHES

L 3DINAES
HIATIOHLNOD FOINGES

¢08

142°]

cl8

018

808

008




WO 2004/017601

ACCEPT INVITATION
oop | TI 10
REPLICATE SHARED SPACE
004 — | IN SERVER
EXAMINE SHARED SPACE
AND SELECT TOOLS
906 -
GET AGENT RESOURCE
TEMPLATE URL FROM
908 — 1 CONFIG TABLE
RETRIEVE BOT CODE
910 ——
INSTANTIATE BOT
912
PLACE ENTRY IN BOT
INSTANCE DESCRIPTOR
914 — CONTAINER

9/13

900 START

916 FINISH

PCT/US2003/015188

FIG. 9



WO 2004/017601

10/13

PCT/US2003/015188

1000 , 1010
BOT FACTORY
SHARED SPACE
CONTROLLER LISTENER
1002
o0 BOT INSTANCE DESCRIPTOR CONTAINER
1006 BOT INSTANCE DESCRIPTOR
o
L
o
1008 BOT INSTANCE DESCRIPTOR
1100
1102 1104 1106 1108 1110 1112 1116
ENABLE/ | LOCAL/ BILL | SHARED
pisasLE | REMoTE [CONTACT | ocks| SPACE | o e | S
FLAG | FLAG FLAG | POINTER

FIG. 11




PCT/US2003/015188

WO 2004/017601

11/13

¢l 'OIA

ASvav.iva dNxovd

14T4:

3000108 212
ANHOYY ¥VANI VO /
0Ll
d00 104 IAIHOHY m:&
3d092 1049 80271
- INHOBY zo_meOm_Q
«—7zel
m 3009 U 90z}
\ oLzl 108 m_>__._om< THNLOId
N | 02}
| 3009 108 IAIHOYY
NOHVLIANI Qo_m_im IN3NN00A
_ JONV.Ld300V JOIAYAS FAIHOYY cocl
91Tl _’ EINEIE —— 002}




PCT/US2003/015188

WO 2004/017601

12/13

1001 ONIL3IN

£1 OIA

8icl

001 s34 _

8¢el

JA0VdS d3HVHS

JONV.LSNI
1049 IAIHOYY 114

JONVLSNI 109

JAIHOYY NOISSNOsSId

1001
NOISSNOSId

acel

JONVLSNI

1049 JAIHOYY FdN1OId

0cel .

1001 FHVHS
1IN3INNO0d

ONVLSNI 104 IAIHOY
NOISIATYH LNFNNDO0J

FOING3S FAIHOHY

il

v &

— OLE€L

— 80¢€l

— 90¢}

— ¥0¢l

—1— ¢0€L

clel



PCT/US2003/015188

WO 2004/017601

13/13

30VdS d344VHS

oevl

vl OIA

3J401S
viva 20g8do

7001 NOISSNOsId

—1— 8l¥i

STIOV4Y3LINI 13S A4003d

8crl —

— vivl

NOILOVYHLX3 V1vav.ldN

olvl

A

HIAVT NOILYIHO AH3NO

434

Olvl

HIAVTNOILVISNYYL V1vd

80Vl

0dd 04ddo

Idv 04940

90vl

JONVLSNI LOd OV4

14014”

JDIAH3S OV4

covl

— 00Vl




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

