METHOD FOR INFORMING THE AVAILABILITY OF RECEPTION OF TRAFFICS AND METHOD FOR DETERMINATION OF ACTIVE OR INACTIVE STATE IN WIRELESS COMMUNICATION NETWORKS USING CONTENTION BASED DISTRIBUTED MAC

(a)

<table>
<thead>
<tr>
<th>octets:1</th>
<th>1</th>
<th>1</th>
<th>N(0 to 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element ID</td>
<td>Length(=N)</td>
<td>Interpretation</td>
<td>PCA Availability Bitmap</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>bits:b7-b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>TIM IE Required</td>
</tr>
</tbody>
</table>

Title: METHODS FOR INFORMING THE AVAILABILITY OF RECEPTION OF TRAFFICS AND METHOD FOR DETERMINATION OF ACTIVE OR INACTIVE STATE IN WIRELESS COMMUNICATION NETWORKS USING CONTENTION BASED DISTRIBUTED MAC

Abstract: A method for informing an availability of traffics of a wireless device configuring a wireless network. The method includes: broadcasting one of a first reception mode and a reception mode over the network. In the first reception mode, the wireless device is available or unavailable to receive the traffic depending on an information received by the wireless device during a beacon period; and in the second reception mode, the wireless device is available to receive the traffic regardless of whether the information is received.
Description

METHOD FOR INFORMING THE AVAILABILITY OF RECEPTION OF TRAFFICS AND METHOD FOR DETERMINATION OF ACTIVE OR INACTIVE STATE IN WIRELESS COMMUNICATION NETWORKS USING CONTENTION BASED DISTRIBUTED MAC

Technical Field

The present invention relates to a method for informing the availability of reception of traffics and a method for determination of active or inactive state in wireless devices. More particularly, the present invention relates to a method for informing the availability of reception of traffics and a method for determination of active or inactive state in wireless communication networks using contention-based distributed MAC.

Background Art

A wireless network typically consists of a plurality of wireless devices. The wireless devices of the wireless network transmit and receive data to and from one another. The wireless device has a regulation in order to transmit and receive data. More specifically, data experience a collision on the network when at least two wireless devices transmit data at the same time, and thus, a receiver wireless device receives error-containing data. Accordingly, the wireless devices in the wireless network have to avoid transmitting data at the same time.

A structure of a wireless network will now be described with reference to FIG. 1. FIG. 1 illustrates a wireless network consisting of wireless devices A to E. The wireless devices A to E are located within a predetermined area of a beacon section to transmit beacons. Referring to FIG. 1, the wireless device A transmits beacons to the wireless devices B to E, and the wireless device B transmits beacons to the wireless devices A and C. The wireless device C transmits beacons to the wireless devices A and B, and the wireless device D transmits beacons to the wireless devices A and E. The wireless device E transmits beacons to the wireless devices A and D. The wireless device C transmits data to the wireless device B during a reserved time slot, and the wireless device E transmits data to the wireless device D during a reserved time slot.

FIG. 2 illustrates a super frame used in the wireless devices of the wireless network. As shown in FIG. 2, the super frame consists of 256 time slots for beacons and data. The wireless devices in the wireless network require synchronization information to synchronize with one another. Therefore, the wireless transmits a beacon to its neighboring wireless devices with the synchronous information being contained in a
certain area of the beacon. The wireless device that wishes to transmit data uses a reserved one among the 256 time slots to transmit the data.

For example, if the wireless device C uses the time slot 2 to transmit data, the wireless device B receives the data during the time slot 2. If the wireless device E uses the time slot 3 to transmit data, the wireless device D receives the data during the time slot 3. Generally, a sender wireless device searches for a time slot its neighboring wireless devices have not reserved and asks a corresponding receiver wireless device whether it is possible to reserve the searched time slot. If it is possible to reserve the time slot in question, the receiver wireless device notifies the sender wireless device of that the reservation of the time slot is allowed. If it is impossible to reserve the time slot in question, the receiver wireless device notifies the sender wireless device of that the reservation of the time slot is canceled. If the sender wireless device and the receiver wireless device agree with the reservation of the time slot, the sender wireless device transmits data to the receiver wireless device during the reserved time slot.

FIG. 3 illustrates an active period and an inactive period of the wireless device C for transmitting data and the wireless device B for receiving data. FIG. 3 also illustrates a super frame consisting of a beacon transmission section and a plurality of time slots. In this example, it is assumed that the wireless device C has reserved the time slot 0 and the time slot 1 to transmit data to the wireless device B.

The wireless device C enters an active state during the reserved time slot 0 and time slot 1 to transmit data to the wireless device B. The wireless device B enters an active state during the reserved time slot 0 and time slot 1 to receive the data from the wireless device C. However, the wireless device C may not transmit all of the necessary data during the time slot 0 and the time slot 1. For example, if a wireless channel condition between the wireless devices C and B becomes worse, the wireless device C may not transmit the necessary data. The wireless device C has to remain in the active state even during the time slot 2 and the time slot 3 to know if the time slot reserved by wireless devices other than the wireless device C is available. If a certain wireless device reserves the time slot 2 and the time slot 3 but does not use the time slot 2 and the time slot 3, the wireless device C transmits data during the time slot 2 and the time slot 3. The wireless device B remains in the active state during the reserved time slot 0 and time slot 1, and returns to inactive state during the time slot 2 and the time slot 3. Accordingly, the wireless device B can prevent unnecessary power consumption.

Disclosure of Invention

Technical Problem

If a power of the wireless device C is less than a predetermined set value, the
wireless device C wastes the power because the wireless C remains in the active state during the time slot 2 and the time slot 3 regardless of the state of the wireless device B. Also, when the sender wireless device C remains in the active state to transmit data although the receiver wireless device B is in the inactive state, unnecessary power consumption is caused by the sender wireless device C. Also, since another wireless devices wish to use the time slots 2 and 3 but they are not allowed to use the time slots 2 and 3, a wireless resource is wasted.

**Technical Solution**

[9] An aspect of the present invention in order to solve the above problems in the related art is to provide a method for informing the availability of reception of traffics and a method for determination of active or inactive state in wireless communication networks using a contention-based distributed MAC.

[10] Another aspect of the present invention is to provide a method for informing a reception mode of PCA traffic of a wireless device that configures a wireless network and uses a prioritized contention access (PCA) and a method for transmitting a PCA traffic to another wireless device with reference to the reception mode of PCA traffic of another wireless device.

[11] Still another aspect of the present invention is to provide a method and system in which a sender wireless device reserves a time slot to enable a receiver wireless device to receive multicast data without an error.

[12] Still another aspect of the present invention is to provide a method and system in which a sender wireless device is capable of using a time slot excluding its reserved time slot to transmit data, thereby improving data transmission efficiency.

[13] The above aspects are achieved by providing a method for informing a reception mode of prioritized contention access (PCA) traffics of a wireless device of a wireless network. The method includes the wireless device determining one of a first reception mode and a second reception mode, in the first reception mode the wireless device being available or unavailable depending on an information received by the wireless device during a beacon period, in the second reception mode the wireless device being available to receive the PCA traffic regardless of whether the information is received during the beacon period, and the wireless device broadcasting a reception mode information about the determined reception mode over the network.

[14] Preferably, but not necessarily, in the first reception mode, the wireless device is available to receive the PCA traffic if the information includes an information indicating that 'another wireless device of the wireless network has a PCA traffic to transmit to the wireless device'.

[15] Preferably, but not necessarily, the information received by the wireless device
during the beacon period includes a traffic indication map information element (TIM IE), and the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device' is recorded to the TIM IE.

[16] Preferably, but not necessarily, the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device includes an address information about another wireless device which is a transmitter of the PCA traffic and an address information about the wireless device which is a receiver of the PCA traffic.

[17] Preferably, but not necessarily, in the second reception mode, the wireless device is available to receive the PCA traffic regardless of the information recorded to the TIM IE.

[18] Preferably, but not necessarily, in the first reception mode, if the information received by the wireless device during the beacon period includes the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device', the wireless device maintains an active state during a PCA slot in which another device is to transmit the PCA traffic to be available to receive the PCA traffic, and if the information received by the wireless device during the beacon period does not include the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device', the wireless device maintains an inactive state during the PCA slot.

[19] Preferably, but not necessarily, the broadcasting step includes the wireless device recording the reception mode information to an information element, i.e., a PCA availability IE that indicates a medium access slot (MAS) during which the wireless devices of the wireless network are available to receive the PCA traffic, and the wireless device broadcasting the PCA availability IE including the reception mode information over the network.

[20] Preferably, but not necessarily, the reception mode information is recorded to an interpretation field provided in the PCA availability IE.

[21] Preferably, but not necessarily, the interpretation field is 1 byte long, and the reception mode information is recorded to a TIM IE required bit provided in the interpretation field.

[22] Preferably, but not necessarily, if the TIM IE required bit is '1' the wireless device is in the first reception mode, and if the TIM IE required bit is '0', the wireless device is in the second reception mode.

[23] Preferably, but not necessarily, the determining step determines one of the first reception mode and the second reception mode based on at least one of a power level usable by the wireless device, an amount of traffic to be transmitted, an amount of traffic to be received, a transmission frequency and a reception frequency.

[24] Preferably, but not necessarily, the method further includes another wireless device
receiving the reception mode information of the wireless device broadcasted by the wireless device, and if the received reception mode information indicates the first reception mode and another wireless device has a PCA traffic to transmit to the wireless device, another wireless device broadcasting the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device' before transmitting the PCA traffic.

[25] The above aspects are achieved by providing a method for informing a reception mode of prioritized contention access (PCA) traffics of a wireless device of a wireless network, the method comprising: the wireless device determining one of a first reception mode and a second reception mode and broadcasting a reception mode information indicating whether the wireless device is in the first reception mode or the second reception mode over the wireless network, in the first reception mode the wireless device being available or unavailable to receive the PCA traffic depending on an information received by the wireless device during a beacon period, in the second reception mode, the wireless device being available to receive the PCA traffic regardless of whether the information is received.

[26] The above aspects are also achieved by providing a method for informing an availability of reception of traffics of a wireless device which configures a wireless network using a contention-based distributed medium access control (MAC). The method includes the wireless device determining one of a first reception mode and a second reception mode, in the first reception mode the wireless device being available on unavailable depending on an information received by the wireless device during a beacon period, in the second reception mode the wireless device being available to receive the traffics regardless of whether the information is received during the beacon period, and the wireless device broadcasting a reception mode information about the determined reception mode over the wireless network.

[27] Preferably, but not necessary, the method further includes the wireless device referring to at least one of the determined reception mode and the information received by the wireless device during the beacon period and maintaining one of an active state and an inactive state during specific slots.

[28] The above aspects are also achieved by providing a method for informing an availability of reception of traffics of a wireless device which configures a wireless network. The method includes the wireless device broadcasting one of a first reception mode and a second reception mode over the network, in the first reception mode the wireless device being available or unavailable to receive the traffic depending on information received by the wireless device during a beacon period, in the second reception mode, the wireless device being available to receive the traffic regardless of whether the information is received during the beacon period.
Preferably, but not necessarily, the wireless network uses a contention-based distributed medium access control (MAC).

The above aspects are achieved by providing a method for determining a state of a wireless device in a wireless network consisting of a plurality of wireless devices. The method comprises determining one of at least two power sensitivity levels by considering at least one of an available power and a standby packet, and determining whether the wireless device remains in active state or inactive state by considering a power sensitivity level transmitted from at least one correspondent wireless device which corresponds to the wireless device and the determined power sensitivity level.

Preferably, but not necessarily, the state of the wireless device is identical to a state of the correspondent wireless device.

Preferably, but not necessarily, the power sensitivity level consists of 2 bits, and is added to a beacon to be transmitted to the correspondent wireless device.

Preferably, but not necessarily, the wireless device determines its own state by considering a lower one of the transmitted power sensitivity level and the determined power sensitivity level as a lower power sensitivity level.

Preferably, but not necessarily, a state of a time slot comprises one of an MAS reserved by the wireless device or the correspondent wireless device, a soft reservation slot reserved by a certain wireless device other than the wireless device or the correspondent wireless device, a hard reservation slot reserved by the certain node other than the wireless device or the correspondent wireless device, and a non-reserved MAS.

Preferably, but not necessarily, the wireless device remains in the active state during its reserved the MAS without considering the determined power sensitivity level.

Preferably, but not necessarily, the wireless device determines whether it remains in the active state or the inactive state by considering the state of the MAS.

Preferably, but not necessarily, the power sensitivity level comprises one of four power sensitivity levels 1, 2, 3, and 4, the four sensitivity levels increasing with power sensitivity level number, and if the lower power sensitivity level is 1 and a broadcast data or an asynchronous data is generated, the wireless device remains in the active state during the non-reserved MAS.

Preferably, but not necessarily, the power sensitivity level comprises one of four power sensitivity levels 1, 2, 3, and 4, the four sensitivity levels increasing with power sensitivity level number, and if the lower power sensitivity level is 2, the wireless device remains in the active state during the non-reserved MAS.

Preferably, but not necessarily, the power sensitivity level comprises one of four power sensitivity levels 1, 2, 3, and 4, the four sensitivity levels increasing with power
sensitivity level number, and if the lower power sensitivity level is 3, the wireless
device remains in the active state during an MAS excluding the hard reservation time
slot that is reserved by a certain wireless device other than the wireless device or the
correspondent wireless device.

[40] Preferably, but not necessarily, the power sensitivity level comprises one of four
power sensitivity levels 1, 2, 3, and 4, the four sensitivity levels increasing with power
sensitivity level number, and if the lower power sensitivity level is 4, the wireless
device remains in the active state during all of the MAS.

[41] Also, the above aspect is achieved by providing a system for determining a state of
a wireless device in a wireless network consisting of a plurality of wireless devices.
The system comprises a wireless device determining one of at least two power
sensitivity levels by considering at least one of an available power and a standby
packet, the wireless device determining whether it remains in an active state or an
inactive state by considering a power sensitivity level transmitted from at least one corre-
respondent wireless device which corresponds to the wireless device and the
determined power sensitivity level, and the correspondent wireless device having an
identical state to the wireless device.

**Advantageous Effects**

[42] According to the present invention as described above, it is possible for a wireless
device of a wireless network to inform another wireless device of its reception mode of
PCA traffic reception and also to effectively transmit the PCA traffic to another
wireless device by referring to the reception mode of PCA traffic of another wireless
device. Also, the wireless device does not always maintain an active state during the
PCA slot configuring the super frame. Only if there exist another wireless device to
transmit the PCA traffic, the wireless device maintains an active state during the PCA
slot, and otherwise, it maintains an inactive state during the PCA slot. Therefore, a
power consumption can be reduced.

[43] As described above, since the state of the sender wireless device is identical to that
of the receiver wireless device, unnecessary power consumption can be prevented.
That is, when the sender wireless device remains in an active state, the receiver
wireless device remains in an active state too. Also, since the wireless device
determines its state by taking into consideration both its power sensitivity level and the
power sensitivity level of its corresponding wireless device, the power can be ef-
ficiently used.

**Brief Description of the Drawings**

[44] FIG. 1 is a view illustrating a wireless network consisting of a plurality of wireless
devices;
FIG. 2 is a view illustrating a structure of a super frame used by the wireless device in the wireless network;

FIG. 3 is a view illustrating one example of unnecessary power consumption at the wireless device of the conventional wireless network;

FIG. 4 is a view illustrating a PCA availability IE format and an interpretation field format;

FIG. 5 is a flowchart illustrating a method for informing a reception mode of PCA traffic according to an embodiment of the present invention and a method for transmitting a PCA traffic with reference to the reception mode;

FIG. 6 is a view illustrating one example case adopting the method for informing a reception mode of PCA traffic and the method for transmitting a PCA traffic with reference to the reception mode of PCA traffic;

FIG. 7 is a view illustrating a power-saving method of a wireless device of a wireless network according to an embodiment of the present invention; and

FIG. 8 is a view illustrating a power-saving method of a wireless device of a wireless network according to an embodiment of the present invention.

Best Mode for Carrying Out the Invention

Mode for the Invention

Hereinafter, the preset invention will now be described in greater detail with reference to the accompanying drawings.

First, a first embodiment of the present invention will be described with reference to FIGS. 4 to 6.

According to an embodiment of the present invention, a wireless device of a wireless network determines a reception mode of traffics or availability of reception of traffics, and informs another wireless device of the determined reception mode of traffics or availability of reception of traffics.

This embodiment is applicable to a wireless network using a contention-based distributed medium access control (MAC) by way of example. Of course, this embodiment is applicable to any other wireless network.

This embodiment is applicable to prioritized contention access (PCA) traffics by way of example. Of course, this embodiment is applicable to any other traffics.

The PCA traffic is transmitted and received during PCA slots of medium access slots (MASs) configuring a super frame of the wireless network.

A PCA slot accesses a wireless medium based on a prioritized contention, which is differentiated from a distributed reservation protocol (DRP) slot that is previously reserved by a specific wireless device to be able to access a wireless medium. If an
MAS for the super frame is not the DRP slot except, it is the PCA slot. That is, the MAS for the super frame is either the DRP slot or the PCA slot.

According to an embodiment of the present invention, a reception mode of PCA traffic of the wireless device is classified to two reception modes. One reception mode is that the wireless device is available or unavailable to receive the PCA traffic depending on the information received by the wireless device during the beacon period, which is referred to as a 'first reception mode' hereinafter. The other reception mode is that the wireless device is always available to receive the PCA traffic regardless of whether the information is received during the beacon period, which is referred to as a 'second reception mode' hereinafter.

The wireless device operating in the first reception mode will be described in detail below.

The wireless device operating in the first reception mode (referred to as a 'first wireless device') becomes available to receive the PCA traffic if another wireless device has a PCA traffic to transmit to the wireless device, i.e., if there is another wireless device to transmit a PCA traffic to the wireless device.

If the first wireless device is available to receive the PCA traffic, the first wireless device maintains an active state during the PCA slot in which another device is to transmit the PCA traffic.

Whether another wireless device has the PCA traffic to transmit to the first wireless device, i.e., whether there exists another wireless device to transmit the PCA traffic to the wireless device, is determined with reference to the information received by the first wireless during the beacon period.

That is, if the information received during the beacon period indicates that another wireless device has the PCA traffic to transmit to the first wireless device, i.e., that there exists another wireless device to transmit the PCA traffic to the first wireless device, the first wireless device notes the fact based on the information.

The information received during the beacon period and referred by the first wireless device may be a traffic indication map information element (TIM IE). That is, the TIM IE, which is transceived during the beacon period in the wireless network, may contain the information indicating that another wireless device has the PCA traffic to transmit to the first wireless device, i.e., that there exists another wireless device to transmit the PCA traffic to the first wireless device.

Also, the information indicating that another wireless device has the PCA traffic to transmit to the first wireless device, i.e., that there exists another wireless device to transmit a PCA traffic to the first wireless device may be address information about another wireless device which is to transmit the PCA traffic and address information about the first wireless device which is to receive the PCA traffic.
Meanwhile, the first wireless device becomes unavailable to receive the PCA traffic if another wireless device has no PCA traffic to transmit to the first wireless device i.e. if there is no wireless device to transmit the PCA traffic to the first wireless device.

That is, if the information received during the beacon period, such as TIM IE, does not indicate that another wireless device has the PCA traffic to transmit to the first wireless device, i.e., that there is another wireless device to transmit the PCA traffic to the first wireless device, the first wireless device becomes unavailable to receive the PCA traffic.

If the first wireless device becomes unavailable to receive the PCA traffic, the first wireless device maintains an inactive state during the PCA slot configuring the super frame.

Meanwhile, if the first wireless device has a PCA traffic to transmit to another wireless device, the first wireless device maintains an active state during the PCA slot. Also, the first wireless device maintains an active state during a DRP slot in which the first wireless device is reserved as a transmitter or receiver.

As described above, the first wireless device operating in the first reception mode does not always maintain an active state during the PCA slot configuring the super frame. More specifically, i) if there exists another wireless device to transmit the PCA traffic to the first wireless device, the first wireless device maintains an active state during the PCA slot, and ii) otherwise, the first wireless device maintains an inactive state during the PCA slot. Therefore, unnecessary power consumption can be prevented.

Also, if a small level of power is usable by the wireless device, e.g., if a power usable by the wireless devices is less than a predetermined threshold, the wireless device operates in the first reception mode and thus can reduce a power consumption. Also, if an amount of traffic to be transmitted or received by the wireless device, a transmission frequency, and a reception frequency has a relatively small value, the wireless device operates in the first reception mode and thus prevents unnecessary power consumption.

A wireless device operating in the second reception mode will be described in detail.

The wireless device operating in the second reception mode (referred to as a 'second wireless device' below) is available to receive a PCA traffic regardless of whether the TIM IE is received during the beacon period.

The second wireless device may be available to receive a PCA traffic regardless of the information recorded to the TIM IE.

Meanwhile, the second wireless device maintains an active state during the DRP slot in which the second wireless device is reserved as a transmitter or receiver.
If a wireless device has a high level of power, or a large amount of traffic, a high transmission frequency or a high reception frequency, the wireless device operates in the second reception mode.

The wireless device can be switched between the two reception modes. If the wireless device lacks a power in the second reception mode, it is switched to the first reception mode. In switching, the wireless device may take the amount of traffic to be transmitted, the amount of traffic to be received, the transmission frequency and the reception frequency into account.

The wireless device broadcasts information about its determined reception mode over the wireless network to inform another wireless device of its reception mode, i.e., of whether the wireless device is in the first reception mode or the second reception mode.

More specifically, the wireless device records the reception mode information to the PCA availability IE and broadcasts it.

The PCA availability IE is an information element representing MASs during which the wireless devices of the wireless network are capable of receiving the PCA traffic, i.e., representing the PCA slots among the MASs configuring the super frame.

As shown in (a) of FIG. 4, the PCA Availability IE consists of an 'element ID' field which is 1 byte long, a 'PCA Availability bitmap' field which contains information about the MASs designated as PCA slots and is N byte long (N=0~32), a 'length field' which contains information about a length of the PCA availability bitmap and is 1 byte long, and an 'interpretation' field which is 1 byte long. The above-described reception mode information is recorded to the 'interpretation' field.

More specifically, as shown in (b) FIG. 4, the 'interpretation' field is provided with a TIM IE Required bit b0 and the TIM IE Required bit b0 indicates the above-described reception mode information.

i) If the TIM IE Required bit is '1', the wireless device operates in the first reception mode, and ii) if the TIM IE Required bit is '0', the wireless device operates in the second reception mode.

Since the first wireless device operating in the first reception mode requires the TIM IE to determine whether to maintain an active state or an inactive state during the PCA slot, a bit representing the reception mode information is called "TIM Required bit"(b0).

The wireless device of the wireless network receives the reception mode information from another wireless device and thus refers to it in transmitting the PCA traffic.

More specifically, when a wireless device B to receive a PCA traffic operates in the first reception mode, a wireless device A to transmit the PCA traffic records in-
formation indicating that the wireless device A has a PCA traffic to transmit to the wireless device B to a TIM IE and broadcasts or transmits the TIM IE during the beacon period before transmitting the PCA traffic. Then, the wireless device B determines to be maintained in an active state during the PCA slot with reference to the TIM IE.

[89] On the other hand, when the wireless device B operates in the second reception mode, the wireless device A may omit the procedure of broadcasting or transmitting the TIM IE because the wireless A is always in an active state during the PCA slot.

[90] Up to now, the method for informing another wireless device of the reception mode of PCA traffic determined by the wireless device is described. Also, the method for transmitting the PCA traffic to another wireless device by referring to the reception mode of PCA traffic is described.

[91] Brief descriptions of the above-described methods will be made with reference to FIG. 5.

[92] First, the method in which a wireless device informs another wireless device of its reception mode of PCA traffic determined by the wireless device will be described in detail (operation S100).

[93] Referring to FIG. 5, a wireless device determines a first reception mode or a second reception at operation S110. i) In the first reception mode, whether the wireless device is available or unavailable to receive the PCA traffic depends on the information recorded in the TIM IE received by the wireless device during the beacon period, and ii) in the second reception mode, the wireless device is available to receive the PCA traffic regardless of whether the TIM IE is received by the wireless device during the beacon period.

[94] More specifically, in the first reception mode, i) if the TIM IE contains the information indicating that another wireless device has a PCA traffic to transmit to the wireless device, i.e., indicating that there exists another wireless device to transmit the PCA traffic to the wireless device, the wireless device becomes available to receive the PCA traffic, and ii) otherwise, the wireless device becomes unavailable to receive the PCA traffic.

[95] At operation S110, the wireless device takes a power usable by the wireless device, an amount of traffic to be transmitted, an amount of traffic to be received, a transmission frequency and a reception frequency into account.

[96] The wireless device broadcasts reception mode information indicating whether it is in the first reception mode or the second reception mode, which is determined at operation S110, over the wireless network at operation S120.

[97] More specifically, at operation S120, the wireless device records the reception mode information to the TIM IE Required bit b0 provided in the interpretation field of
the PCA availability IE as shown in FIG. 6, and broadcasts the PCA availability IE over the network.

[98] Herein, i) if the TIM IE required bit is '1', the reception mode information indicates that the wireless device is in the first reception mode, and ii) if the TIM IE required bit is '0', the reception mode information indicates that the wireless device is in the second reception mode.

[99] Hereinbelow, the method in which the wireless device transmits the PCA traffic to another wireless device with reference to the reception mode of PCA traffic of another wireless device (operation S200) will be described.

[100] At operation S210, a wireless device of a wireless network receives reception mode information of another wireless devices broadcasted at operation 120. Accordingly, the wireless device is aware of the reception mode of another wireless device and thus refers to it in transmitting the PCA traffic.

[101] More specifically, if a wireless device B to receive the PCA traffic is in the first reception mode, a wireless device A to transmit the PCA traffic records information indicating the wireless device A has a PCA traffic to transmit to the wireless device B to the TIM IE and broadcasts or transmits the TIM IE during the beacon period before transmitting the PCA traffic to the wireless device B at operation S220. Then, the wireless device B refers to the TIM IE and determines that the wireless device maintains an active state during the PCA slot.

[102] If the wireless device to receive the PCA traffic is in the second reception mode, the wireless device A to transmit the PCA traffic may omit the procedure of broadcasting or transmitting the TIM IE because the wireless B is always in an active state during the PCA slot.

[103] The wireless device transmits a traffic to another wireless device during a corresponding slot at operation S230. Herein, the corresponding slot can be both the DRP slot and the PCA slot.

[104] Additional description of the present invention will now be made with reference to FIG. 6.

[105] FIG. 6 illustrates a part of the super frame used in a wireless network consisting of a wireless device A, a wireless device B, a wireless device C and a wireless device D, i.e., illustrating a beacon period (BP), MAS 0, MAS 1, MAS 2, and MAS 3.

[106] It is assumed that i) the wireless device A operates in the second reception mode, and that ii) the wireless devices B, C, and D operate in the first reception. It is also assumed that i) the MAS 0 is a DRP slot that is reserved for the wireless device A to transmit a DRP traffic to the wireless device B, and that ii) the MAS 2 is a DRP slot that is reserved for the wireless device C to transmit the DRP traffic to the wireless device D. According to these assumptions, the MAS 1 and the MAS 3 are PCA slots.
Also, it is assumed that the wireless device B operating in the first reception mode has a PCA traffic to transmit to the wireless device C operating in the first reception mode. According to this assumption, during the BP, the wireless device B broadcasts the TIM IE containing the information indicating ‘the wireless device B has a PCA traffic to transmit to the wireless device C’ or transmits the TIM IE to the wireless device B.

The following table 1 shows active/inactive states of the wireless devices A, B, C, and D according to the above-described assumptions.

<table>
<thead>
<tr>
<th></th>
<th>MAS 0</th>
<th>MAS 1</th>
<th>MAS 2</th>
<th>MAS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device A (2nd reception mode)</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>Device B (1st reception mode)</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>Device C (1st reception mode)</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>Device D (1st reception mode)</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Active</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

The wireless device A being in the second reception mode maintains an active state during the DRP slot that the wireless device A is reserved as a transmitter. The wireless device A is available to receive the PCA traffic regardless of whether the TIM IE is received. That is, the wireless device A maintains an active state during the MAS 1 and MAS 3 which are a PCA slot to be available to receive the PCA traffic. On the other hand, the wireless device A maintains an inactive state during the MAS 2 which is a DRP slot that the wireless device is not reserved as transmitter nor a sender.

The wireless device B being in the first reception mode maintains an active state during the MAS 0 which is a DRP slot in which the wireless device is reserved as a receiver. Since the wireless device B has a PCA traffic to transmit to the wireless device C, the wireless device B maintains an active state during the MAS 1 and the MAS 3. On the other hand, the wireless device B maintains an inactive state during the MAS 2 which is a DRP slot in which the wireless device is not reserved as a transmitter or receiver.

The wireless device C being in the first reception mode maintains an active state during the MAS 2 which is a DRP slot in which the wireless device C is reserved as a transmitter. Since the wireless device B receives the TIM IE containing the information indicating ‘the wireless device B has a PCA traffic to transmit to the wireless device C’ during the BP, the wireless device C is available to receive the PCA traffic. That is, the wireless device C maintains an active state during the MAS 1 and the MAS 3 which are a PCA slot to be available to receive the PCA traffic. On the other hand,
the wireless device C maintains an inactive state during the MAS 0 which is a DRP slot in which the wireless device C is not reserved as a transmitter or receiver.

[114] The wireless device D being in the first reception mode maintains an active state during the MAS 2 which is a DRP slot in which the wireless device D is reserved as a receiver. Since the wireless device D does not receive the TIM IE containing the information indicating the wireless devices A, B and C have a PCA traffic to transmit to the wireless device B during the BP, the wireless device D is unavailable to receive the PCA traffic. That is, the wireless device D maintains an inactive state during the MAS 1 and the MAS 3 which are a PCA slot to be unavailable to receive the PCA traffic. Also, the wireless device D maintains an inactive state during the MAS 0 which is a DRP slot in which the wireless device C is not reserved as a transmitter or receiver.

[115] The wireless devices B and C maintain an active state during the MAS 1 and the MAS 3 which are a PCA slot so that the wireless device C is available to receive the PCA traffic from the wireless device B.

[116] Since the wireless device D maintains an inactive state during the MAS 1 and MAS 3 which are a PCA slot in which the wireless device D has no PCA traffic to receive and thus is not required to maintain an active state, it can reduce a power consumption.

[117] Hereinafter, a second embodiment of the present invention will now be described.

[118] The second embodiment of the present invention suggests a power sensitivity level concept. The power sensitivity level is determined by considering a power remaining in a wireless device and a standby packet. A wireless device determines whether it remains in an active state or an inactive state according to the power sensitivity level. In this embodiment, the number of the power sensitivity levels is set to four (4). However, this should not be considered as limiting. The number of the power sensitivity levels can be determined according to a user's setting. The power sensitivity levels may be set as many as possible so that the power sensitivity can be measured more precisely. Each wireless device measures its power sensitivity level. The power sensitivity level can be expressed by 2 bits because the number of the power sensitivity levels is set to 4. If the number of the power sensitivity levels exceeds 4, the number of bits for expressing the power sensitivity level increases. The following table 2 shows the power sensitivity level.

<table>
<thead>
<tr>
<th>Power Sensitivity Level</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>00</td>
</tr>
<tr>
<td>Level 2</td>
<td>01</td>
</tr>
<tr>
<td>Level 3</td>
<td>10</td>
</tr>
</tbody>
</table>
Hereinafter, a method for determining a state of a node in a wireless network without considering neighboring nodes will now be described.

A wireless device having the power sensitivity level 1 remains in an active state during its reserved time slot. That is, the wireless device remains in an active state during its reserved time slot to transmit and receive data. Also, the wireless device remains in an active state during a PCA slot or a non-reserved MAS if it is necessary for the wireless device to receive or transmit broadcast data or asynchronous data. The respective wireless device perform the same operation during the PCA slot and the non-reserved MAS. The PCA slot is a channel access slot based on contention and also called the enhanced distributed channel access (EDCA) slot. That is, the EDCA slot determines a priority according to the kind of data to be transmitted to a wireless device which has requested for reservation. For example, the EDCA slot assigns a high priority to the broadcast data or the asynchronous data and assigns a low priority to unicast data.

A wireless device having the power sensitivity level 2 remains in an active state during its reserved MAS. Also, the wireless device having the power sensitivity level 2 remains in an active state during the PCA slot.

A wireless device having the power sensitivity level 3 remains in an active state during its reserved MAS. Also, the wireless device having the power sensitivity level 3 remains in an active state during the PCA slot and a soft reservation slot which is reserved by another wireless device. A reservation slot is divided into a soft reservation slot and a hard reservation slot. The soft reservation slot is a slot that can be used by another wireless device which does not reserve the slot without transferring any message. The hard reservation slot transmits a message when a wireless device reserves a slot but does not use the slot, so that the hard reservation slot can be used by another wireless device.

A wireless device having the power sensitivity level 4 remains in an active state during its reserved MAS. The wireless device having the power sensitivity level 4 remains in an active state during the PCA slot, and the soft reservation slot and the hard reservation slot of another wireless device.

The wireless device transmits to its neighboring wireless devices a beacon that contains information on the power sensitivity level thereof within a beacon transmission section. Accordingly, each wireless device of the wireless network can perceive the power sensitivity level of its neighboring wireless device in addition to the power sensitivity level thereof. Hereinafter, a method for determining a state of a
wireless device in a wireless network by considering a power sensitivity level of a correspondent wireless device will now be described. If the wireless device is for transmitting data, the correspondent wireless device is for receiving the data. If the wireless device is for receiving data, the correspondent wireless device is for transmitting the data. The wireless device remains in an active state during its reserved MAS regardless of the power sensitivity level.

[127] A wireless device having the power sensitivity level 1 remains in an active state if it is necessary for the wireless device to transmit and receive broadcast data or asynchronous data. Otherwise, the wireless device remains in an inactive state.

[128] A wireless device having the power sensitivity 2 determines whether it remains in an active state or an inactive state according to the power sensitivity level of its correspondent wireless device during the PCA slot. That is, if a correspondent wireless device has a power sensitivity level 1 during the PCA slot and if broadcast data or asynchronous data is not generated, the wireless device remains in an inactive state, and otherwise, the wireless device remains in an active state. Also, the wireless device having the power sensitivity level 2 remains in an inactive state during the soft reservation slot and the hard slot reservation slot which are reserved by another wireless device and the correspondent wireless device regardless of the power sensitivity level of the correspondent wireless device.

[129] A wireless device having the power sensitivity level 3 determines whether it remains in an active state or an inactive state according to the power sensitivity level of its correspondent wireless device during the PCA slot. That is, if the correspondent wireless device has a power sensitivity level 1 during the PCA slot and if broadcast data or asynchronous data is not generated, the wireless device remains in an inactive state, and otherwise, the wireless device remains in an active state. Also, if the correspondent wireless device has a power sensitivity level 1 or 2, the wireless device having the power sensitivity level of 3 remains in an inactive state during the soft reservation slot reserved by another wireless device and the correspondent wireless device, and otherwise, the wireless device remains in an active state. The wireless device having the power sensitivity level 3 remains in an inactive state during the hard reservation slot reserved by another wireless device regardless of the power sensitivity level of the correspondent wireless device.

[130] A wireless device having the power sensitivity level 4 determines whether it remains in an active state or an inactive state according to the power sensitivity level of its correspondent wireless device during the PCA slot. That is, if the correspondent wireless device has a power sensitivity level 1 during the PCA slot and if broadcast data or asynchronous data is not generated, the wireless device remains in an inactive state, and otherwise, the wireless device remains in an active state. Also, if the cor-
respondent wireless device has the power sensitivity level 1 or 2 during the soft reservation slot reserved by another wireless device, the wireless device having the power sensitivity level 4 remains in an inactive state, and otherwise, the wireless device remains in an active state. If the correspondent wireless device has the power sensitivity level of 1, 2, or 3 during the hard reservation slot reserved by another wireless device, the wireless device having the power sensitivity level of 4 remains in an inactive state, and otherwise, the wireless device remains in an active state.

[131] Hereinafter, a method of switching between an active state and an inactive state in a wireless network to solve a power-consumption problem in the wireless device will now be described with referent to FIGS. 7 and 8.

[132] FIG. 7 illustrates a network consisting of wireless devices A to E by way of an example. The wireless device A has a power sensitivity level 1, the wireless devices B and C have a power sensitivity level 2, and the wireless devices D and E have a power sensitivity level 3. The wireless device A reserves a time slot 0 in order to transmit data to the wireless device B, and the wireless device B reserves a time slot 2 in order to transmit data to the wireless device C. The wireless device E reserves a time slot 3 in order to transmit data to the wireless device D. Also, it is assumed that the wireless device C does not reserve any time slot for the data transmission but asynchronous data to be transmitted to the wireless device E is generated. The following table 3 shows active/inactive states of the respective nodes according to the time slots 0 to 3.

[133] Table 3

<table>
<thead>
<tr>
<th></th>
<th>Time Slot 0</th>
<th>Time Slot 1</th>
<th>Time Slot 2</th>
<th>Time Slot 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node A (Power sensitivity level 1)</td>
<td>Active</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>Node B (Power sensitivity level 2)</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>Node C (Power sensitivity level 2)</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>Node D (Power sensitivity level 3)</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>Node E (Power sensitivity level 3)</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
</tr>
</tbody>
</table>

[134] [135] As shown in table 3, the wireless device A and the wireless device B remain in an active state during their reserved time slot 0. However, since the wireless device A has the power sensitivity level 1, the wireless devices A and B remain in an inactive state
during a hard reservation slot (MAS 2) and a soft reservation slot (MAS 3) which are reserved by another wireless device. The wireless devices A and B remain in an inactive state during the PCA slot (MAS1) since broadcast data or asynchronous data is not generated.

[136] The wireless devices B and C remain in an active state during their reserved MAS 2. The wireless devices B and C remain in an active state during the MAS 1 because they have the power sensitivity level 2. The wireless devices B and C remain in an inactive state during the soft reservation slot reserved by another wireless device (MAS 0 and MAS 3).

[137] The wireless devices D and E remain in an active state during their reserved MAS 3. Since wireless devices D and E have the power sensitivity level 3, they remain in an active state during the MAS 1 and the MAS 3. The wireless devices D and E remain in an inactive state during the hard reservation slot reserved by another wireless device (MAS 2).

[138] Since the wireless device C has the power sensitivity level 2 and the wireless device E has the power sensitivity level 3, the wireless devices C and E determine whether they remain in an active state or an inactive state by using the wireless device C which is lower than the wireless device E in the power sensitivity level. Accordingly, the wireless devices C and E remain in an active state during the MAS 1 and remain in an inactive state during the MAS 0, the MAS 2 and the MAS 3.

[139] If one certain wireless device can remain both in an active state and an inactive state during a specific MAS, the wireless device remains in an active state in an exemplary embodiment.

[140] FIG. 8 illustrates a wireless network consisting of wireless devices A to H. The wireless device A has a power sensitivity level 1, and the wireless devices B and C have a power sensitivity level 2. The wireless devices D, E and G have a power sensitivity level 3, and the wireless devices F and H have a power sensitivity level 4. The wireless device A reserves an MAS 0 in order to transmit data to the wireless device B, and the wireless device E reserves an MAS 1 in order to transmit data to the wireless device F. The wireless device G reserves a time slot 2 in order to transmit data to the wireless device H. Also, it is assumed that the wireless device C does not reserve any time slot for data transmission but asynchronous data to be transmitted to the wireless device D is generated. The following table 4 shows active/inactive states of the respective wireless devices according to the MAS 0 to 3.

[141] Table 4

<table>
<thead>
<tr>
<th>Node A (Power Sensitivity)</th>
<th>Time Slot 0</th>
<th>Time Slot 1</th>
<th>Time Slot 2</th>
<th>Time Slot 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>Node</td>
<td>Power Sensitivity Level</td>
<td>State 1</td>
<td>State 2</td>
<td>State 3</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>B</td>
<td>Active</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>C</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>D</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>E</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>F</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>G</td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>H</td>
<td>Active</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
</tbody>
</table>

[142] Referring to table 4, the wireless devices A and B remain in an active state during their reserved MAS 0. However, since the wireless device A has the power sensitivity level 1, the wireless devices A and B remain in an inactive state during a hard reservation slot (MAS 1) and a soft reservation slot (MAS 2) which are reserved by another wireless device. The wireless devices A and B remains in an inactive state during the MAS 4 which is an PCA slot because broadcast data or asynchronous data is not generated.

[144] The wireless devices E and F remain in an active state during their reserved MAS 1. Since the wireless device E has the power sensitivity level 3, the wireless devices E and F remain in an active state during the soft reservation slot (MAS 0 and MAS 2) which are reserved by another wireless device and the PCA slot (MAS 4).

[145] The wireless devices G and H remain in an active state during their reserved MAS 2. Since the wireless device G has the power sensitivity level 3, the wireless devices G and H remain in an active state during the soft reservation time slot (MAS 0) reserved by another wireless device and the PCA slot (MAS 3), and remain in an inactive state during the hard reservation slot (MAS 1) reserved by another wireless devices.

[146] Since the wireless device C has the power sensitivity level 2 and the wireless device D has the power sensitivity level 3, the wireless devices C and D determine whether they remains in an active state or an inactive state by using the wireless device C that is
lower in the power sensitivity level than the wireless device D. Accordingly, the wireless devices C and D remain in an active state during the MAS 3 and remains in an inactive state during the MAS 0, MAS 1 and the MAS 2.

[147] The wireless devices A to H each transmit data during its reserved MAS. If a certain wireless device reserves an MAS but does not use the reserved MAS, the MAS is available to other wireless device. For example, if the wireless devices A and B do not use the MAS 0, the MAS 0 is available to the wireless device E, the wireless device F, the wireless device G, and the wireless device H.

[148] The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.

Industrial Applicability

[149] .

Sequence Listing

[150] .
Claims

1. A method for informing a reception mode of a prioritized contention access (PCA) traffic of a wireless device of a wireless network, the method comprising: the wireless device determining one of a first reception mode and a second reception mode, in the first reception mode the wireless device being available or unavailable depending on an information received by the wireless device during a beacon period, in the second reception the wireless device being available to receive the PCA traffic regardless of whether the information is received during the beacon period; and the wireless device broadcasting a reception mode information about the determined reception mode over the network.

2. The method as claimed in claim 1, wherein in the first reception mode, the wireless device is available to receive the PCA traffic if the information includes an information indicating that 'another wireless device of the wireless network has a PCA traffic to transmit to the wireless device'.

3. The method as claimed in claim 2, wherein the information received by the wireless device during the beacon period includes a traffic indication map information element (TIM IE), and the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device' is recorded to the TIM IE.

4. The method as claimed in claim 3, wherein the information indicating that another wireless device has a PCA traffic to transmit to the wireless device' includes an address information about another wireless device which is a transmitter of the PCA traffic and an address information about the wireless device which is a receiver of the PCA traffic.

5. The method as claimed in claim 4, wherein in the second reception mode, the wireless device is available to receive the PCA traffic regardless of the content recorded to the TIM IE.

6. The method as claimed in claim 2, wherein in the first reception mode, if the information received by the wireless device during the beacon period includes the information indicating that another wireless device has a PCA traffic to transmit to the wireless device', the wireless device maintains an active state during a PCA slot in which another device is to transmit the PCA traffic to be available to receive the PCA traffic, and if the information received by the wireless device during the beacon period does not include the information indicating that another wireless device has a PCA traffic to transmit to the wireless device', the wireless device maintains an inactive state during the PCA traffic transmission.
slot.

7. The method as claimed in claim 1, wherein the broadcasting step comprises: the wireless device recording the reception mode information to a PCA availability IE that indicates a medium access slot (MAS) during which the wireless devices of the wireless network are available to receive the PCA traffic; and the wireless device broadcasting the PCA availability IE including the reception mode information over the network.

8. The method as claimed in claim 7, wherein the reception mode information is recorded to an interpretation field provided in the PCA availability IE.

9. The method as claimed in claim 8, wherein the interpretation field is 1 byte long, and the reception mode information is recorded to a TIM IE required bit provided in the interpretation field.

10. The method as claimed in claim 9, wherein if the TIM IE required bit is '1', the wireless device is in the first reception mode, and if the TIM IE required bit is '0', the wireless device is in the second reception mode.

11. The method as claimed in claim 1, wherein the determining step determines one of the first reception mode and the second reception mode based on at least one of a power level usable by the wireless device, an amount of traffic to be transmitted, an amount of traffic to be received, a transmission frequency and a reception frequency.

12. The method as claimed in claim 1, further comprising: another wireless device receiving the reception mode information of the wireless device broadcasted by the wireless device; and if the received state information indicates the first reception mode and another wireless device has a PCA traffic to transmit to the wireless device, another wireless device broadcasting the information indicating that 'another wireless device has a PCA traffic to transmit to the wireless device' before transmitting the PCA traffic.

13. A method for informing a reception mode of a prioritized contention access (PCA) traffic of a wireless device of a wireless network, the method comprising: the wireless device broadcasting one of a first reception mode and a second reception mode, in the first reception mode the wireless device being available or unavailable to receive the PCA traffic depending on an information received by the wireless device during a beacon period, in the second reception mode, the wireless device being available to receive the PCA traffic regardless of whether the information is received.

device which configures a wireless network using a contention based distributed medium access control (MAC), the method comprising:

the wireless device determining one of a first reception mode and a second reception mode, in the first reception mode the wireless device being available on unavailable depending on an information received by the wireless device during a beacon period, in the second reception mode the wireless device being available to receive the traffics regardless of whether the information is received during the beacon period; and

the wireless device broadcasting a reception mode information about the determined reception mode over the wireless network.

15. The method as claimed in claim 14, further comprising the wireless device referring to at least one of the determined reception mode and the information received by the wireless device during the beacon period and maintaining one of an active state and an inactive state during specific slots.

16. A method for informing an availability of reception of traffics of a wireless device which configures a wireless network, the method comprising:

the wireless device broadcasting one of a first reception mode and a second reception mode over the network, in the first reception mode the wireless device being available or unavailable to receive the traffic depending on an information received by the wireless device during a beacon period, in the second reception mode, the wireless device being available to receive the traffic regardless of whether the information is received during the beacon period.

17. The method as claimed in claim 16, wherein the wireless network uses a contention based distributed medium access control (MAC).

18. A method for determining a state of a certain wireless device in a wireless network consisting of a plurality of wireless devices, the method comprising:

determining one of at least two power sensitivity levels by considering at least one of an available power and a standby packet; and

determining whether the certain wireless device remains in active state or inactive state by considering a power sensitivity level transmitted from at least one correspondent wireless device which corresponds to the certain wireless device and the determined power sensitivity level.

19. The method as claimed in claim 18, wherein the state of the certain wireless device is identical to that of the correspondent wireless device.

20. The method as claimed in claim 18, wherein the power sensitivity level consists of 2 bit, and is added to a beacon to be transmitted to the correspondent wireless device.

21. The method as claimed in claim 18, wherein the certain wireless device
determines its state by considering lower one of the transmitted power sensitivity level and the determined power sensitivity.

[22] 22. The method as claimed in claim 21, wherein a state of a medium access slot (MAS) are divided into an MAS reserved by the certain or the correspondent wireless device, a soft reservation slot reserved by a wireless device other than the certain or the correspondent time slot, a hard reservation slot reserved by a wireless device other than the certain or the correspondent wireless device, and a non-reserved MAS.

[23] 23. The method as claimed in claim 22, wherein the certain wireless device remains in the active state during its reserved MAS without considering the determined power sensitivity level.

[24] 24. The method as claimed in claim 22, wherein the certain wireless device determines whether the certain wireless device remains in the active state or inactive state by considering the state of the MAS.

[25] 25. The method as claimed in claim 22, wherein the power sensitivity level ranges from 1 to 4, and if the lower power sensitivity level is 1 and a broadcast data or an asynchronous data is generated, the certain wireless device remains in the active state during the non-reserved MAS.

[26] 26. The method as claimed in claim 22, wherein the power sensitivity level ranges from 1 to 4, and if the lower power sensitivity level is 2, the certain wireless device remains in the active state during the non-reserved MAS.

[27] 27. The method as claimed in claim 22, wherein the power sensitivity level ranges from 1 to 4, and if the lower power sensitivity level is 3, the certain wireless device remains in the active state during an MAS excluding the hard reservation time slot that is reserved by a wireless device other than the certain wireless device or the correspondent wireless device.

[28] 28. The method as claimed in claim 22, wherein the power sensitivity level ranges from 1 to 4, and if the lower power sensitivity level is 4, the certain wireless device remains in the active state during all of the MAS.

[29] 29. A system for determining a state of a certain wireless device in a wireless network consisting of a plurality of wireless devices, the system comprising: a wireless device determining one of at least two power sensitivity levels by considering at least one of an available power and a standby packet, the wireless device determining whether the wireless device remains in an active state or an inactive state by considering a power sensitivity level transmitted from at least one correspondent wireless device which corresponds to the wireless device and the determined power sensitivity level; and the correspondent wireless device having an identical state to the wireless device.
INTERNATIONAL SEARCH REPORT

International application No. PCT/KR2005/003600

A. CLASSIFICATION OF SUBJECT MATTER

H04L 12/28(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC8 H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Patents and applications for inventions since 1975
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2003/0174664 A1 (AT&amp;T Corp) 18 September 2003 (see abstract, figure 1, claim 1)</td>
<td>1 – 29</td>
</tr>
<tr>
<td>A</td>
<td>US 2002/0163933 A1 (AT&amp;T Corp) 7 November 2002 (see abstract, figure 2, claim 1)</td>
<td>1 – 29</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier application or patent but published on or after the international filing date
  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publicaiton date of citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed
  "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
  "&" document member of the same patent family

Date of the actual completion of the international search
27 FEBRUARY 2006 (27.02.2006)

Date of mailing of the international search report
27 FEBRUARY 2006 (27.02.2006)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
LEE, Dong Hwan
Telephone No. 82-42-481-5755
<table>
<thead>
<tr>
<th>Patent document</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US200317466AA</td>
<td>18.09.2003</td>
<td>AU2002346389A8</td>
<td>12.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US20030886437A1</td>
<td>08.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US20030886437AA</td>
<td>08.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003156553A1</td>
<td>21.08.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003156553AA</td>
<td>21.08.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003174665A1</td>
<td>18.09.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003174665AA</td>
<td>18.09.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003174690A1</td>
<td>18.09.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003174690AA</td>
<td>18.09.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003181204AA</td>
<td>25.09.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004095911A1</td>
<td>20.05.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004095911AA</td>
<td>20.05.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO20039054A2</td>
<td>08.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO200314343A2</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO200314346A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO200314427A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO200314428A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO200343357A1</td>
<td>22.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003039054A2</td>
<td>08.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003039054A3</td>
<td>26.02.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041343A2</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041343A3</td>
<td>10.07.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041346A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041427A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041428A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003043357A1</td>
<td>22.05.2003</td>
</tr>
<tr>
<td>US2002163933A1</td>
<td>07.11.2002</td>
<td>AU2002346389A8</td>
<td>12.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US20020163933A1</td>
<td>07.11.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002154653A1</td>
<td>24.10.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002154653AA</td>
<td>24.10.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002163933AA</td>
<td>07.11.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003039054A2</td>
<td>08.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041343A2</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041346A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041427A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041428A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003043357A1</td>
<td>22.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003039054A2</td>
<td>08.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003039054A3</td>
<td>26.02.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041343A2</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041343A3</td>
<td>10.07.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041346A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041427A1</td>
<td>15.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2003041428A1</td>
<td>15.05.2003</td>
</tr>
</tbody>
</table>