发明名称
一种焦炉煤气制合成气的方法

摘要
一种焦炉煤气制合成气的方法是将脱硫净化后的高温干馏煤气作为原料气，氧气、二氧化碳和水蒸汽作为化学转化剂，经预热后，送入反应器内进行合成，同时发生非催化转化反应，然后在催化反应后的混合气进入催化剂床层发生催化重整反应，制得合成气。本发明催化剂用量少，转化率高，所得合成气氢碳比可控性强，实现了能量的综合利用，利用了焦炉煤气和二氧化碳为原料气，是一种经济、环保以及低碳的焦炉煤气制合成气方法。
1. 一种焦炉煤气制合成气的方法，包括焦炉高温干馏煤气、氧气、二氧化碳和水蒸气的合成工艺方法，该方法采用自热非催化转化和催化重整相结合的两段法，将焦炉煤气、氧气、二氧化碳和水蒸气转化为合成气。

2. 权利要求 1 所述，该方法采用自热非催化转化和催化重整相结合的两段法的具体工艺步骤如下：

 (1) 在常温，0.1 〜 10MPa 压力下，将焦炉高温干馏所产生的煤气，经脱硫净化后作为原料气，氧气，二氧化碳和水蒸气作为气体转化剂，分别预热至 100 〜 800℃，每摩尔焦炉煤气的氧气、二氧化碳和水蒸气的用量分别为：氧气 ≤ 0.28mol；二氧化碳 ≤ 0.3mol；水蒸气 ≤ 0.3mol；

 (2) 将预热后的原料气和气体转化剂在 1000 〜 7000h⁻¹ 空速条件下送入反应器内进行混合；

 (3) 混合后的气体在非催化，700 〜 1400℃温度下，发生甲烷非催化部分氧化和氢气燃烧反应，其放出的热量同时促使二氧化碳、水蒸气与甲烷发生非催化重整反应，生成含有一氧化碳和水蒸气的混合气；

 (4) 反应后混合气中 5% 〜 15% 的甲烷，二氧化碳和水蒸气进入催化剂床层，在 500 〜 1000℃温度下发生二氧化碳和水蒸气重整甲烷的催化重整反应，生成氢气和一氧化碳组成的合成气；

 (5) 将反应得到的合成气由反应器排出，进行显热回收，冷却洗涤制得合成气。

3. 权利要求 1 或 2 所述，其氧气纯度为 90 〜 100%。

4. 权利要求 1 或 2 所述，其二氧化碳纯度为 92 〜 100%。
说明

一种焦炉煤气制合成气的方法

技术领域

[001] 本发明涉及一种焦炉煤气制合成气的方法，特别是一种利用焦炉煤气、氧气、二氧化碳和水蒸气进行反应制合成气的方法。

背景技术

[0002] 焦炉煤气是炼焦过程中的副产物，通常含氢气40～70%，甲烷10～30%，还有少量其它气体，除少量用于回炉燃烧和发电外，大部分直接放空和燃烧既浪费资源又污染环境，与此同时，我国的二氧化碳排放量高居世界第二，对我们的生存环境造成了极大的威胁。因此，综合利用焦炉煤气与二氧化碳具有重要的经济意义和环保意义，符合低碳经济和可持续发展的要求。

[0003] 焦炉煤气与氧气、二氧化碳、水蒸气制合成气是利用其中甲烷氧化和氢气燃烧的放热反应为甲烷重整的吸热反应提供热量，实现能量的综合利用。

[0004] 主要发生以下反应：

[0005] \[
\text{H}_2 + 0.5\text{O}_2 = \text{H}_2\text{O} \quad \Delta H_{298K} = -241.84 \text{kJ} \cdot \text{mol}^{-1}
\] \quad (1)

[0006] \[
\text{CH}_4 + 2\text{O}_2 = \text{CO}_2 + 2\text{H}_2 \quad \Delta H_{298K} = -802.60 \text{kJ} \cdot \text{mol}^{-1}
\] \quad (2)

[0007] \[
\text{CH}_4 + 0.5\text{O}_2 = \text{CO} + 2\text{H}_2 \quad \Delta H_{298K} = -27.32 \text{kJ} \cdot \text{mol}^{-1}
\] \quad (3)

[0008] \[
\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2 \quad \Delta H_{298K} = 206.15 \text{kJ} \cdot \text{mol}^{-1}
\] \quad (4)

[0009] \[
\text{CH}_4 + 2\text{O}_2 = 2\text{CO} + 2\text{H}_2 \quad \Delta H_{298K} = 247.27 \text{kJ} \cdot \text{mol}^{-1}
\] \quad (5)

[0010] 现有公开号为CN1186428C的一种“换热式焦炉煤气加压催化部分氧化法制合成气的工艺”。该工艺是将含CH₄2.5～30%的焦炉煤气与饱和蒸汽混合并加热后，进入转化炉炉头与氧化剂混合向下流动，在转化炉的催化剂层后进行转化反应，所得合成气经降温后送出。其不足之处是原料气本身H/C就高，又未利用二氧化碳作碳源，故所得合成气H/C偏高，平均为2.7，不适于工业中甲醇的生产和F-T合成。

[0011] 现有公开号为CN101392192A的一种“焦炉煤气二氧化碳转化及气基竖炉直接还原铁生产方法”。该方法是将焦化厂已经初步净化处理的焦炉煤气进行深度脱硫处理作为原料气，氧气、二氧化碳、水蒸气为气体转化剂，进转化炉转化，转化气用作气基竖炉直接还原铁生产方法的还原气。从竖炉出来的炉顶气部分作为燃料气供热加压炉燃料；部分作为工艺气，处理后返回竖炉作还原气。其不足之处是焦炉煤气与气体转化剂在转化炉内进行的是一段时间催化转化反应，要使反应物的转化率很高，就必须提高反应温度，增加氧气的耗量，而反应温度过高时，容易积碳，为减少积碳，又须增加水蒸气的加入量，这样就增大了设备投资与操作费用。

[0012] 鉴于以上现有技术存在的不足，本发明使用焦炉煤气两段法制合成气，焦炉煤气与氧气、二氧化碳、水蒸气先进行700～1400℃温度下的自热非催化转化反应，再进行500～1000℃温度下的催化重整反应。
发明内容
[0013] 本发明要解决的问题是在利用焦炉煤气和二氧化碳制备合成气时，提高二氧化碳的转化率以及控制氢碳比的问题，其目的是提供一种焦炉煤气制合成气的方法。
[0014] 本发明所采取的措施包括焦炉煤气、氨气、二氧化碳和水蒸气的合成工艺方法，采用自热非催化转化和催化重整相结合的两段法，将焦炉煤气、氨气、二氧化碳和水蒸气转化为合成气。其具体的工艺步骤如下：
[0015] （1）在常温、0.1～10MPa 压力下，将焦炉高温干馏所产生的煤气，经脱硫净化后作为原料气，氧气、二氧化碳和水蒸气作为气体转化剂，分别预热至 100～800℃，每摩尔焦炉煤气的氧气、二氧化碳和水蒸气的用量分别为：氧气≤0.28mol；二氧化碳≤0.3mol；水蒸气≤0.3mol；
[0016] （2）将预热后的原料气和气体转化剂在1000～7000h⁻¹ 空速条件下送入反应器内进行混合；
[0017] （3）混合后的气体在非催化、700～1400℃温度下，发生甲烷非催化部分氢化以及氢气燃烧反应，其放出的热量同时促使二氧化碳、水蒸气与甲烷发生非催化重整反应，此过程统称为自热非催化转化反应，该自热非催化转化反应生成含有一氧化碳和水蒸气的混合气；
[0018] （4）反应后混合气中 5%～15%的甲烷、二氧化碳和水蒸气进入催化剂床层，在500～1000℃温度下发生二氧化碳和水蒸气重整甲烷的催化重整反应，该催化重整反应生成氢气和一氧化碳组成的合成气；
[0019] （5）将反应得到的合成气由反应器排出，进行显热回收，冷却洗涤制得合成气。
[0020] 本发明上述技术方案中所述的氢气纯度为 90～100%；所述的二氧化碳纯度为 92～100%。
[0021] 由上述本发明提供的技术方案可以看出，本发明采用了自热非催化转化和催化重整相结合的两段法将焦炉煤气、氨气、二氧化碳和水蒸气转化为合成气，通过气相色谱对其进行检测和分析，得到焦炉煤气中的甲烷转化率约为 99.9%，二氧化碳的转化率约为 80%，达到了对焦炉煤气和二氧化碳的高效率利用；在一段自热非催化转化反应后的混合气中只有 5%～15%的甲烷与气体转化剂在催化剂床层内进行反应，因而催化剂用量少；在一段自热非催化转化反应过程中，充分利用了焦炉煤气中氮气的燃烧及甲烷的非催化部分氢化合成二氧化碳、水蒸气非催化重整甲烷反应供热，一段自热非催化转化反应后 700～1400℃的高温混合气也为二段催化重整反应供热，使整个过程节约了能源，实现了能量的综合利用；本发明所用氧气和二氧化碳纯度高，杂质少，有能力保证合成气的氢碳比，最后制得的合成气氢碳比可控性强，适用于后续工业中的合成。

附图说明
[0022] 图 1 是本发明焦炉气两段法制合成气方法的装置结构示意图
[0023] 图中：1：反应器；2：催化剂；3：预热器；4：废热锅炉；5：冷却洗涤塔；6：止回阀；

具体实施方式
[0024] 下面结合附图用具体实施方式能够对本发明的合成方法作出进一步的详细说明，本领域的技术人员在阅读了本实施方式后，能够实施本发明的所述方法，同时，其所述的优
点与效果也能够得到体现。

[0025] 实施例 1

[0026] 首先，将作为原料气的煤高温干馏产生的焦炉煤气进行脱硫净化处理，处理后硫含量＜5ppm。

[0027] 其次，在常温、1 ～ 4MPa 压力下，将部分纯度为 93% 的二氧化碳、水蒸气与脱硫净化后的焦炉煤气相混合，送入废热锅炉 4 内预热至 400 ～ 700℃；同时，将部分纯度为 93% 的二氧化碳、水蒸气与纯度为 92% 的氧气相混合，送入预热器 3 内也预热至 400 ～ 700℃。

[0028] 每摩尔脱硫净化后的焦炉煤气的氧、二氧化碳和水蒸气的使用量分别为：氧气≤ 0.28mol；二氧化碳≤ 0.3mol；水蒸气≤ 0.3mol。

[0029] 然后，将经预热的原料气在 2500 ～ 5000h⁻¹ 空速条件下，一并送入反应器 1 内边混合边反应，在 1000 ～ 1300℃下的发生甲烷非催化部分氧化、氢气部分燃烧，同时，其放出的热量促使部分二氧化碳、水蒸气与甲烷发生非催化重整反应，该段自热非催化转化反应生成含有一氧化碳和水蒸气的混合气，主要反应为：

[0030] \[\text{H}_2 + 0.5 \text{O}_2 = \text{H}_2\text{O} \quad \Delta H_{298K}^0 = -241.84 \text{kJ} \cdot \text{mol}^{-1} \quad (1) \]

[0031] \[\text{CH}_4 + 0.5 \text{O}_2 = \text{CO} + 2\text{H}_2 \quad \Delta H_{298K}^0 = -27.32 \text{kJ} \cdot \text{mol}^{-1} \quad (2) \]

[0032] \[\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2 \quad \Delta H_{298K}^0 = 206.15 \text{kJ} \cdot \text{mol}^{-1} \quad (3) \]

[0033] \[\text{CH}_4 + \text{CO}_2 = 2\text{CO} + 2\text{H}_2 \quad \Delta H_{298K}^0 = 247.27 \text{kJ} \cdot \text{mol}^{-1} \quad (4) \]

[0034] 接着，该混合气中的 5% ～ 15% 的甲烷、二氧化碳、水蒸气进入催化剂床层，在 600 ～ 900℃下发生二氧化碳与水蒸气重整甲烷的催化重整反应，该段催化重整反应生成氢气和一氧化碳组成的合成气，主要反应为：

[0035] \[\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2 \quad \Delta H_{298K}^0 = 206.15 \text{kJ} \cdot \text{mol}^{-1} \quad (1) \]

[0036] \[\text{CH}_4 + \text{CO}_2 = 2\text{CO} + 2\text{H}_2 \quad \Delta H_{298K}^0 = 247.27 \text{kJ} \cdot \text{mol}^{-1} \quad (2) \]

[0037] 将在反应器 1 内转化得到的高温（600 ～ 900℃）合成气由反应器 1 排出，送入废热锅炉 4 进行显热回收，降温至 500℃左右，再经预热器 3 继续回收部分显热，合成气温度降至 200℃左右，然后进入冷却洗涤塔 5 进行冷却洗涤，最后得到氢碳比在 1.4 ～ 3.8 内可调的、可合成众多下游产品的合成气，送入本系统。

[0038] 为防止焦炉煤气窜流入氧气管道，在氧气管道上设置了止回阀 6。

[0039] 表 1 给出了一组入口处焦炉煤气的组成。表中数据表明，脱硫净化后的焦炉煤气的主要组成是 H₂、CH₄、CO。

[0040] 表 1 入口处焦炉煤气的组成（mol%）

<table>
<thead>
<tr>
<th></th>
<th>H₂</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
<th>O₂</th>
<th>CnHn</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56.48</td>
<td>26.87</td>
<td>6.95</td>
<td>2.62</td>
<td>0.50</td>
<td>2.65</td>
<td>3.93</td>
</tr>
</tbody>
</table>

[0042] 表二给出了 2MPa 压力下，按每摩尔脱硫净化后的焦炉煤气的氧、二氧化碳和水蒸气的使用量分别为：氧气≤ 0.28mol；二氧化碳≤ 0.3mol；水蒸气≤ 0.3mol 的要求，经两段法转化后一组转化气的组成。

[0043] 表 2 转化气的组成（mol%）
实施例 2

首先，将作为原料气的煤气高温干馏产生的焦炉煤气进行脱硫净化处理，处理后硫含量≤5ppm。

其次，在常温，1～4MPa 压力下，将部分纯度为 99%的二氧化碳、水蒸气与脱硫净化后的焦炉煤气相混合，送入废热锅炉 1 内预热至 400～700°C；同时，将部分纯度为 99%的二氧化碳、水蒸气与纯度为 98%的氧气相混合，送入预热器 3 内也预热至 400～700°C。

每摩尔脱硫净化后的焦炉煤气的氧气、二氧化碳和水蒸气的使用量分别为：氧气≤0.28mol；二氧化碳≤0.3mol；水蒸气≤0.3mol。

然后，将经预热的原料气在 2500～5000h⁻¹ 空速条件下，一并送入反应器 1 内边混合边反应，在 1000～1300°C 下的发生甲烷非催化部分氧化、氢气部分燃烧，同时，其放出的热量促使部分二氧化碳、水蒸气与甲烷发生非催化重整反应，该段自热非催化转化反应生成含有一氧化碳和水蒸气的混合气，主要反应为：

\[\text{H}_2 + 0.5 \text{O}_2 = \text{H}_2\text{O} \quad \Delta H^{\text{298K}} = -241.84 \text{kJ} \cdot \text{mol}^{-1} \] \hspace{1cm} (1)

\[\text{CH}_4 + 0.5 \text{O}_2 = \text{CO} + 2\text{H}_2 \quad \Delta H^{\text{298K}} = -27.32 \text{kJ} \cdot \text{mol}^{-1} \] \hspace{1cm} (2)

\[\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2 \quad \Delta H^{\text{298K}} = 206.15 \text{kJ} \cdot \text{mol}^{-1} \] \hspace{1cm} (3)

\[\text{CH}_4 + \text{CO}_2 = 2\text{CO} + 2\text{H}_2 \quad \Delta H^{\text{298K}} = 247.27 \text{kJ} \cdot \text{mol}^{-1} \] \hspace{1cm} (4)

接着，该混合气中的 5%～15%的甲烷、二氧化碳、水蒸气进入催化剂床层，在 600～900°C 下发生二氧化碳与水蒸气重整甲烷的催化重整反应，该段催化重整反应生成氢气和一氧化碳组成的合成气，主要反应为：

\[\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2 \quad \Delta H^{\text{298K}} = 206.15 \text{kJ} \cdot \text{mol}^{-1} \] \hspace{1cm} (1)

\[\text{CH}_4 + \text{CO}_2 = 2\text{CO} + 2\text{H}_2 \quad \Delta H^{\text{298K}} = 247.27 \text{kJ} \cdot \text{mol}^{-1} \] \hspace{1cm} (2)

将在反应器 1 内转化得到的高温 (600～900°C) 合成气由反应器 1 排出，进入废热锅炉 4 进行显热回收，降温至 500°C 左右，再经预热器 3 继续回收部分显热，合成气温度降至 200°C 左右，然后进入冷却洗涤塔 5 进行冷却洗涤，最后得到氢碳比在 1.4～3.8 内可调的、可合成众多下游产品的合成气，送出本系统。

为防止焦炉煤气窜流入氧气管道，在氧气管道上设置了止回阀 6。

表一给出了一组入口处焦炉煤气的组成。表中数据表明，脱硫净化后的焦炉煤气的主要组成是 H₂、CH₄、CO。

表 1 入口处焦炉煤气的组成（mol%）

<table>
<thead>
<tr>
<th>H₂</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
<th>C₆H₆</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.48</td>
<td>26.87</td>
<td>6.95</td>
<td>2.62</td>
<td>0.50</td>
<td>2.65</td>
</tr>
</tbody>
</table>

表二给出了 2MPa 压力下，按每摩尔脱硫净化后的焦炉煤气的氧气、二氧化碳和水
蒸气的使用量分别为：氧气≤0.28mol；二氧化碳≤0.3mol；水蒸气≤0.3mol的要求，经两段法转化后一组转化气的组成。

表2 转化气的组成（mol％）

<table>
<thead>
<tr>
<th></th>
<th>H₂</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
<th>C₆H₆</th>
<th>N₂</th>
<th>XCH₄</th>
<th>XCO₂</th>
<th>H/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67.26</td>
<td>0.02</td>
<td>26.17</td>
<td>4.27</td>
<td>0.05</td>
<td>2.23</td>
<td>99.87</td>
<td>71.39</td>
<td>2.07</td>
</tr>
</tbody>
</table>
图 1