Title: METHOD AND DEVICE FOR CONTROLLING A TOOL FEED

Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR STEUERUNG EINES BAHNVORSCHUBS

A feeding speed profile of a tool feed (F) can be directly programmed. If an admissible axial dynamic is exceeded by a predetermined speed profile, minimum values are used in advance by the tool feed to correct the control blocks during tool feeding. The feeding speed profile can be programmed primarily as a linear, polynomial cubic feed profile, wherein said profile can be predetermined by a sequence of control blocks as a feed polynomial or spline by interpolation or approximation.
Zusammenfassung

Ein Bahngeschwindigkeitsprofil des Bahnvorschubs (F) kann direkt programmiert werden, wobei im Falle eines Überschreitens einer zulässigen Achsdynamik durch das vorgegebene Bahngeschwindigkeitsprofil Minima im Verlauf des Bahnvorschubs steuerungssatzübergreifend vorausschauend angefahren werden. Das Bahngeschwindigkeitsprofil kann insbesondere als lineares, polynomiales und kubisches Vorschubprofil programmiert werden, wobei letzteres über eine Folge von Steuerungssätzen als Vorschubpolynom oder Vorschubspline durch Interpolation oder Approximation vorgebar ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	NL	Niederlande	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	NM	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauritriën	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	MX	Mexico	UZ	Uzbekistan
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	VN	Vietnam
CG	Kongo	KE	Kenia	NL	Niederlande	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland		
CM	Kamerun	KO	Korea	PL	Polen		
CN	China	KR	Republik Korca	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
Beschreibung

Verfahren und Vorrichtung zur Steuerung eines Bahnvorschubs

Die Erfindung bezieht sich auf ein Verfahren sowie eine Vorrichtung zur Steuerung des Bahnvorschubs einer numerisch gesteuerten Werkzeugmaschine, eines Roboters oder dergleichen, wobei über jedem Steuerungssatz der Bahnvorschub vorgegeben wird.

In der bekannten Technik numerischer Steuerungen, beispielsweise zum Einsatz bei Werkzeugmaschinen, wird je Teileprogrammsatz ein über den Satz konstanter Bahnvorschubswert programmiert. Ein solcher konstanter Bahnvorschub ist jedoch nur dann sinnvoll, wenn er charakteristisch für die Bearbeitungsbedingungen ist bzw. wenn die Bearbeitungsbedingungen über dem Satz konstant sind.

Ein konstanter Bahnvorschub ist beispielsweise dann nicht sinnvoll, wenn das Teileprogramm eine Maschinenachs bewegung einer nicht-kartesischen Maschine direkt vorgibt. Der Bahnvorschub ist in einem solchen Fall nicht repräsentativ für die Schnittbedingungen am Werkzeug. Sollen diese Schnittbedingungen konstant gehalten werden, was vorteilhaft ist, so muß sich der vorgegebene Bahnvorschub ändern.

Eine konstante Bahnvorschubvorgabe ist insbesondere auch ungünstig, wenn sich die Schnittbedingungen am Werkzeug durch eine variierende Konturkrümmung und damit verbunden einen variierenden Eingriffs bereich beispielsweise eines Fräsers ändern (z.B. Spirale durch Kreisvolvente).

Herkömmlicherweise werden somit Bahnvorschubprofile so erzeugt, daß eine Unterteilung eines Teileprogramms in viele kurze Sätze erfolgt und für jeden dieser Steuerungssätze ein
eigener, jeweils konstanter Vorschubwert vorgegeben wird. Das hierdurch erzeugte vorgegebene Bahnvorschubprofil stellt sich somit herkömmlicherweise als Vorschubtreppenprofil dar, wie es in der Darstellung gemäß FIG 2 gezeigt ist. Über die Abszisse ist der Bahnweg B dargestellt, welcher in mehrere Steuerungssätze (dargestellt in Form von senkrecht verlaufenden gestrichelten Linien) unterteilt ist. Über die Ordinate ist der Bahnvorschub F aufgetragen.

Um ein solches starres Vorschubtreppenprofil flexibler zu gestalten, ist die Vorgabe eines programmierbaren Vorschub-Overrideprofiles vorgeschlagen worden (vgl. hierzu insbesondere die Realisierung der Firma FANUC mit der Bezeichnung FS15/MA Involute Interpolation). Die bekannte Möglichkeit einer Geschwindigkeitsbeeinflussung durch Vorschub-Overridewerte beruht darauf, daß über einen Vorschub-Override eine Variation des programmierten Absolutvorschubs proportional im Bereich von 0 bis beispielsweise 200 % möglich ist, um sich geänderten technologischen Gegebenheiten, beispielsweise während der Bearbeitung eines Werkstückes, anpassen zu können. Bei den bekannten Verfahren werden nun Override-Stützpunkte über die Bahnänge vorgegeben und es erfolgt eine lineare Interpolation des Overridewertes zwischen den Override-Stützpunkten.

Im ersten bekannten Fall der Vorgabe eines Vorschubtreppenprofils wird dieses gemäß der Parametrierung der Geschwindigkeitsführung sowie entsprechend der Dynamik von verwendeten Servos und Antrieben verschliffen. Neben dem Nachteil einer großen Anzahl von Teileprogrammsätzen und damit unhandlich großen Teileprogrammen erhält man das paradoxe Resultat, daß moderne dynamische Antriebe die Bearbeitungsqualität verschlechtern.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren sowie eine dazugehörige Vorrichtung zur Steuerung des Bahnvorschubs zu schaffen, welches eine möglichst große Flexibilität im Hinblick auf eine Geschwindigkeitsführung des Bahnvorschubs ermöglicht und sicherstellt, daß Geschwindigkeitsbegrenzungen unabhängig von der Maschinendynamik eingehalten werden, die den Nachteil vieler notwendiger Teileprogrammsätze überwindet und eine möglichst gute Bahntreue gewährleistet.

Gemäß der vorliegenden Erfindung wird diese Aufgabe durch ein Verfahren zur Steuerung des Bahnvorschubs einer numerisch gesteuerten Werkzeugmaschine, eines Roboters oder dergleichen, bei dem über jedem Steuerungssatz der Bahnvorschub vorgegeben wird, dadurch gelöst, daß ein Bahngeschwindigkeitsprofil des Bahnvorschubs direkt programmierbar ist, wobei im Falle eines Überschreitens einer zulässigen Achsdynamik durch das vorgegebene Bahngeschwindigkeitsprofil Minima im Verlauf des Bahnvorschubs steuerungssatzübergreifend vorausschauend angefahren werden.

In einer ersten vorteilhaften Ausgestaltung des Verfahrens gemäß der vorliegenden Erfindung wird das Bahngeschwindigkeitsprofil des Bahnvorschubs als lineares Vorschubprofil über einem Steuerungssatz vorgegeben.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens gemäß der vorliegenden Erfindung wird das Bahngeschwindigkeitsprofil des Bahnvorschubs als polynomiales Vorschubprofil
über einem Steuerungssatz oder einer Folge von Steuerungssätzen vorgegeben.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens gemäß der vorliegenden Erfindung wird das Bahngeschwindigkeitsprofil des Bahnvorschubs als Vorschubspline über einer Folge von Steuerungssätzen vorgegeben.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens mit Vorgabe des Bahngeschwindigkeitsprofils als Vorschubspline oder -polynom werden als Stützpunkte des Vorschubsplines bzw. des Vorschubpolynoms jeweils am Steuerungssatzübergang mittels eines Prädiktoralgorithmus Bahnvorschubsohlwerte vorgegeben, welche über einen interpolierenden Spline oder ein interpolierendes Polynom miteinander verbunden werden.

In einer weiteren vorteilhaften Ausgestaltung gemäß der vorliegenden Erfindung wird die Vorgabe des Bahngeschwindigkeitsprofiles als polynomiales Vorschubprofil über einer Folge von Steuerungssätzen oder als Vorschubspline über eine Folge von Steuerungssätzen dadurch weitergebildet, daß als Stützpunkte jeweils am Steuerungssatzübergang mittels eines
Prädiktoralgorithmus Bahnvorschubsollwerte vorgegeben werden, zwischen denen über ein approximierendes Spline oder ein approximierendes Polynom der Bahnvorschub vorgegeben wird.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens gemäß der vorliegenden Erfindung wird weiterhin erreicht, daß eine Achsüberlastung nach einem Stop oder einem Sprung im Vorschubprofil vermieden werden kann. Dies geschieht dadurch, daß im Falle eines Sprungs im Bahngeschwindigkeitsprofil des Bahnvorschubes und/oder bei Änderungen eines Bahnvorschub-Override-Wertes eine Glättung der Bahngeschwindigkeitsführung aktivierbar ist.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens gemäß der vorliegenden Erfindung wird ein möglichst geringer Fehler beim Verfahren des Vorschubprofiles erreicht, indem ein angefahrenes Bahngeschwindigkeitsprofil des Bahnvorschubes mit kompensierter oder abgeschalteter Glättung des Geschwindigkeitsprofiles verfahren wird.

Um das Verfahren gemäß der vorliegenden Erfindung und die damit verbundenen Vorteile zur Lösung der eingangs gestellten Aufgabe auf besonders effektive Art und Weise realisieren zu können, wird weiterhin eine Vorrichtung zur Steuerung des Bahnvorschubs einer numerisch gesteuerten Werkzeugmaschine,
eines Roboters oder dergleichen mit über jedem Steuerungssatz vorgebarem Bahnvorschub vorgeschlagen, welche dadurch gekennzeichnet ist, daß ein Bahngeschwindigkeitsprofil des Bahnvorschubs direkt programmierbar ist, wobei im Falle eines Überschreitens einer zulässigen Achsdynamik durch das vorgegebene Bahngeschwindigkeitsprofil Minima im Verlauf des Bahnvorschubs steuerungssatzübergreifend vorausschauend anfahrbar sind.

Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der folgenden Beschreibung eines vorteilhaften Ausführungsbeispiels in Verbindung mit den Figuren deutlich. Es zeigen:

FIG 1 Beispiel anhand einer graphischen Darstellung für die Programmierung verschiedener Bahnvorschubprofile gemäß der vorliegenden Erfindung,
FIG 2 Vorschubtreppenprofil nach dem Stand der Technik,
FIG 3 Beispiel der Programmierung eines linearen Bahngeschwindigkeitsprofiles,
FIG 4 Beispiel eines polynomaies Bahngeschwindigkeitsprofils über einen Steuerungssatz,
FIG 5 Beispiel eines kubischen Bahngeschwindigkeitsprofiles durch Splineinterpolation über mehrere Steuerungssätze und
FIG 6 Beispiel zur Vorschubprogrammierung und tatsächlich gefahrenes Vorschubprofil.

Der besseren Verständlichkeit halber soll im folgenden mit einer Beschreibung der Darstellungen der unterschiedlichen programmierten Bahngeschwindigkeitsprofile gemäß der Darstellungen nach den Figuren 2 bis 5 begonnen werden.

Die Darstellung gemäß FIG 2, welche ein Vorschubtreppenprofil nach dem Stand der Technik beschreibt, wurde bereits eingangs
erläutert. In der Darstellung gemäß FIG 3 ist ebenfalls - wie bereits bei der Darstellung gemäß FIG 2 erläutert - über die Abszisse der Bahnweg B und über die Ordinate der Bahnvorschub F aufgetragen. Der Bahnweg B ist in mehrere Steuerungssätze aufgeteilt, was anhand von senkrecht verlaufenden gestrichelten Linien dargestellt ist. Der gezeigte Bahnvorschubverlauf wird jeweils vom aktuellen Wert am Satzanfang bis zum Satzende über den Bahnweg B linear eingefahren und gilt danach als modaler Wert. Ein solcher linearer Bahnvorschubverlauf wird im folgenden mit FLIN bezeichnet, während ein konstanter Bahnvorschubwert gemäß der Darstellung nach FIG 2 mit FNORM bezeichnet wird.

Bei einer Interpolation verläuft das gesuchte Vorschubprofil durch die vorgegebenen Stützstellen, so daß die gefundene Funktion gestattet, den Bahnvorschub zwischen den Stützstellen zu führen. Im Falle einer Approximation ist der gesuchte Bahnvorschub nach einer vorgebaren Strategie zwischen den Stützstellen hindurchzulegen, ohne daß an den Stützstellen der approximierte Wert mit dem Vorschubsollwert der Stützstelle zusammenfallen muß.

Der Bahnvorschub wird im Falle einer Splineinterpolation vom aktuellen Vorschubwert zum programmierten Vorschubwert bis zum Satzende in kubischem Verlauf eingefahren. Die satzweise programmierten Bahnvorschubwerte werden - bezogen auf den Satzendpunkt - durch einen Spline verbunden. Der Spline be-

Stützpunkte zur Bestimmung eines Vorschubsplines FCUB bzw. eines Vorschubpolynoms FPO können beispielsweise mittels eines Prädiktoralgorithmus jeweils am Steuerungssatzübergang vorgegeben werden.

Dabei kann eine Interpolation des Vorschubprofils eines Satzes mittels eines Prädiktoralgorithmus beispielsweise folgendermaßen aussehen:

Ausgangspunkt: aktuelle Bahnposition s_0 und Bahngeschwindigkeit v_0

1. Schätzen der zukünftigen Bahnposition aus linearer Extrapolation mit

 $s_{11} = s_0 + v_0 \cdot Ti$

 und des zugehörigen Vorschubs mit

 $v_{11} = \text{Vorschubprofil} (s_{11})$

 unter Berücksichtigung eines anstehenden Override-Wertes, wobei $Ti = \text{Interpolationszeit}$

 => s_0, v_0, s_{11}, v_{11}

2. Verbessern des Schätzwertes durch v_{11} nach

 $s_{12} = s_0 + (v_0 + v_{11})/2 \cdot Ti$ und

 $v_{12} = \text{Vorschubprofil} (s_{12})$

 sowie evtl. auch der Beschleunigung nach

 $a_{12} = v_{12} \cdot d(\text{Vorschubprofil})/dt$ mit $s = s_{12}$

 unter Berücksichtigung eines anstehenden Override-Wertes

 => s_0, v_0, v_{12}, a_{12}

3. Anfahren von v_{12} und evtl. a_{12} unter Wahrung der vorgesehenen Beschleunigungs- und evtl. Ruckbegrenzung unter
Berücksichtigung von Vorschubminima und Dynamikbegrenzungen

=> neue Bahnposition s1 und Bahngeschwindigkeit v1

=> Rücksprung zu 1.

Das Beispiel-Teileprogramm besteht aus 15 Steuerungssätzen N1 bis N15 und setzt sich aus den folgenden Anweisungen zusammen:

20 N1 F1000 FNORM G1 X8 G91 G64
25 N2 F2000 X7
30 N3 F=FPO(4000,6000,-4000) X16
35 N4 X6
40 N5 F3000 FLIN X5
45 N6 F2000 X8
50 N7 X5
55 N8 F1000 FNORM X5
60 N9 F1400 FCUB X8
65 N10 F2200 X6
70 N11 F3900 X7
75 N12 F4600 X7
80 N13 F4900 X5
85 N14 FNORM X5
90 N15 X20

Damit sichergestellt ist, daß Geschwindigkeitsbegrenzungen unabhängig von der Maschinendynamik eingehalten werden, erfolgt für den Fall, daß das vorgegebene Bahnvorschubprofil die zugelassende Achsdynamik überschreitet, ein satzübergreifendes, vorausschauendes Anfahren von Minima im Bahnnahverlauf. Dieser Zusammenhang ist anhand der Darstellung gemäß FIG 6 veranschaulicht. Über die Abszisse ist der Bahnweg B, über die Ordinate ebenfalls wiederum der Vorschub F aufgetragen. Es sind drei Steuerungssätze N100, N110 und N120 gezeigt. Die beiden Sätze N110 und N120 besitzen ein konstantes Vorschubprofil FNORM, während der Steuerungssatz N110 ein li-

bei einer möglichen Achsüberlastung die geschilderte Glättung der Geschwindigkeitsführung stoßfrei wieder aktiviert wird.

Alle in der vorstehenden Beschreibung erwähnten bzw. in den Figuren dargestellten Merkmale sollen, sofern der bekannte Stand der Technik dies zuläßt, für sich allein oder in Kombination als unter die Erfindung fallend angesehen werden.

Patentansprüche

1. Verfahren zur Steuerung des Bahnvorschubs (F) einer numerisch gesteuerten Werkzeugmaschine, eines Roboters oder der-gleichen, wobei über jedem Steuerungssatz (N₁...Nₓ) der Bahn-vorschub (F) vorgegeben wird, dadurch gekennzeichnet, daß ein Bahngeschwindigkeitsprofil des Bahnvorschubs (F) direkt programmierbar ist, wobei im Falle eines Überschreitens einer zulässigen Achsdynamik durch das vorgegebene Bahngeschwindigkeitsprofil Minima im Verlauf des Bahnvorschubs (F) steuerungssatzübergreifend vorausschauend angefahren werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Bahngeschwindigkeitsprofil des Bahnvorschubs als lineares Vorschubprofil (FLIN) über einem Steuerungssatz (N₁...Nₓ) vorgegeben wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Bahngeschwindigkeitsprofil des Bahnvorschubs als polynomiales Vorschubprofil (FPO) über einem Steuerungssatz oder einer Folge von Steuerungssätzen (N₁...Nₓ) vorgegeben wird.

4. Verfahren nach Anspruch 1 oder 2 oder 3, dadurch gekennzeichnet, daß das Bahngeschwindigkeitsprofil des Bahnvorschubs als Vorschub spline (FCUB) über einer Folge von Steuerungssätzen (N₁...Nₓ) vorgegeben wird.

5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß als Stützpunkte des Vorschub spline (FCUB) bzw. des Vorschubpolynoms (FPO) jeweils am Steuerungssatzübergang mittels eines Prädiktoralgorithmus Bahnvorschubsollwerte (F_{soll}) vorgegeben werden, welche über
einen interpolierenden Spline bzw. eine interpolierendes Polynom miteinander verbunden werden.

6. Verfahren nach Anspruch 3 oder 4, daß durch gekennzeichnet, daß als Stützpunkte des Vorschub-spline (FCUB) bzw. des Vorschubpolynoms (FPO) jeweils am Steuerungssatzübergang mittels eines Prädiktoralgorithmus Bahnvorschubsollwerte (F soll) vorgegeben werden, zwischen denen über einen approximierenden Spline bzw. ein approximierendes Polynom der Bahnvorschub vorgegeben wird.

7. Verfahren nach einem der vorangehenden Ansprüche, daß durch gekennzeichnet, daß ein Anfahren des Bahngeschwindigkeitsprofils des Bahnvorschubs (F) unter Wahrung der zulässigen Achsdynamik mit einer Glättung der Bahngeschwindigkeitsführung erfolgt.

8. Verfahren nach einem der vorangehenden Ansprüche, daß durch gekennzeichnet, daß im Falle eines Sprungs im Bahngeschwindigkeitsprofil des Bahnvorschubs (F) und/oder bei Änderungen eines Bahnvorschub-Override-Wertes eine Glättung der Bahngeschwindigkeitsführung aktivierbar ist.

9. Verfahren nach einem der vorangehenden Ansprüche, daß durch gekennzeichnet, daß ein angefahrene Bahngeschwindigkeitsprofil des Bahnvorschubs (F) mit kompensierter oder abgeschalteter Glättung des Geschwindigkeitsprofils verfahren wird.

10. Vorrichtung zur Steuerung des Bahnvorschubs (F) einer numerisch gesteuerten Werkzeugmaschine, eines Roboters oder dergleichen, wobei über jedem Steuerungssatz (N1...Nx) der Bahnvorschub (F) vorgebar ist, daß durch gekennzeichnet, daß ein Bahngeschwindigkeitsprofil des
Bahnvorschubs (F) direkt programmierbar ist, wobei im Falle eines Überschreitens einer zulässigen Achsdynamik durch das vorgegebene Bahngeschwindigkeitsprofil Minima im Verlauf des Bahnvorschubs (F) steuerungssatzübergreifend vorausschauend anfahrbar sind.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G05B19/4103

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbol)
IPC 6 G05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 706 104 A (SIEMENS AG) 10 April 1996 see the whole document</td>
<td>1-3, 7, 8, 10</td>
</tr>
<tr>
<td>A</td>
<td>DE 43 10 126 A (IBH BERNHARD HILPERT INGENIEUR) 6 October 1994 see page 3, line 10 - page 5, line 51; figures 1, 2</td>
<td>1, 4</td>
</tr>
<tr>
<td>A</td>
<td>US 5 321 623 A (ENSENAT RIPOLL ET AL) 14 June 1994 see column 4, line 28 - column 6, line 17; figures 2A-3</td>
<td>1, 5, 6</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 490 431 A (PHILIPS NV) 17 June 1992 see column 5, line 10 - column 7, line 11; figures 2A-3</td>
<td>1, 5, 6</td>
</tr>
</tbody>
</table>

Patent family members are listed in annex.

Further documents are listed in the continuation of box C.

* Special categories of cited documents:
 "X" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

**" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"**" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"*" document member of the same patent family

Date of the actual completion of the international search: 30 October 1998

Date of mailing of the international search report: 09/11/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Nettesheim, J
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 4310126 A</td>
<td>06-10-1994</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 605B19/4103

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK.

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole):

IPK 6 605B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen:

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe):

C. ALS WESENTLICH ANGEGEHEN UNTERTAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 706 104 A (SIEMENS AG) 10. April 1996, siehe das ganze Dokument</td>
<td>1-3, 7, 8, 10</td>
</tr>
<tr>
<td>A</td>
<td>DE 43 10 126 A (IBH BERNHARD HILPERT INGENIEUR) 6. Oktober 1994, siehe Seite 3, Zeile 10 - Seite 5, Zeile 51; Abbildungen 1, 2</td>
<td>1, 4</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 490 431 A (PHILIPS NV) 17. Juni 1992, siehe Spalte 5, Zeile 10 - Spalte 7, Zeile 11; Abbildungen 2A-3</td>
<td>1, 5, 6</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen.

Siehe Anhang Patentfamilie.

Datum des Abschlusses der internationalen Recherche:

30. Oktober 1998

Absendedatum des internationalen Rechercheberichts:

09/11/1998

Name und Postanschrift der Internationalen Recherchenbehörde:

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Beisitzer:

Nettesheim, J
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 59406892 D</td>
<td>15-10-1998</td>
</tr>
<tr>
<td>DE 4310126 A</td>
<td>06-10-1994</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69122055 D</td>
<td>17-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69122055 T</td>
<td>12-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0490431 A</td>
<td>17-06-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4268609 A</td>
<td>24-09-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69122055 D</td>
<td>17-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69122055 T</td>
<td>12-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4268609 A</td>
<td>24-09-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5321623 A</td>
<td>14-06-1994</td>
</tr>
</tbody>
</table>