污水治理组合式风能充氧曝气的方法

摘要

污水治理组合式风能充氧曝气的方法 1. 利用风能，结合深层和表层充氧曝气的方法，风力发电机带动潜水泵和混流装置进行深层充氧曝气，风轮带动叶轮对水体进行表层曝气，两者皆无需电能，解决了水体治理工程中的高能耗问题，节约了能源；2. 把表层充氧曝气与深层曝气有效结合的方法，包括：①有效利用水面上的风速充氧曝气的方法；②把深层的混流增氧与表层的风能曝气结合的方法。
权利要求书

1. 一种污水处理组合式风能充氧曝气的方法，其特征在于：1. 利用风能，结合深层和表层充氧曝气的方法，风力发电机带动潜水泵和混流装置进行深层充氧曝气，风轮带动叶轮对水体进行表层曝气，两者皆无需电能耗，解决了水体治理工程中的高能耗问题，节约了能源；2. 把表层充氧曝气与深层曝气有效结合的方法，包括：①有效利用水面上的风速充氧曝气的方法，②把深层的混流增氧与表层的风能曝气结合的方法。

2. 根据权利要求1所述的这种污水处理组合式风能充氧曝气的方法，其特征还在于风力发电机带动潜水泵和混流装置进行深层充氧曝气，风轮带动叶轮对水体进行表层曝气，在当风速达到6m/s时，风能发电机的螺旋桨转动带动发动机组运行，把电传输给潜水泵和混流装置，对水体进行深层的充氧曝气，当风速大于1.6m/s时，风轮带动位于水面以下的叶轮旋转使水体对流交换，以混流增氧装置为中心，若干台风曝气机分布在以混流装置为中心的圆上，呈花瓣形排列，混流筒和风能曝气机都浮于水面上，其底部均与浮筒相连，并用锚固定于水体下面。
说明书

污水处理组合式风能充氧曝气的方法

本发明涉及的是一种充氧曝气的方法，特别是一种污水处理组合式风能充氧曝气的方法，属于污水处理领域。

城市每天大量的生活污水、工业废水，由于没有及时治理，这些污废水污染着城市的河道及环境，严重影响着城市居民的生活，严重污染地区甚至危害动植物的生命和人类的生活条件，破坏了生态平衡。在我国靠近城市的较大湖泊，污染中，约有 50%来自城市污水，50%来自流域非点源地表径流和湖区降水，在离城市较远或者受城市工业废水、生活污水排放影响较小的湖泊、水库，约 70%来自湖泊流域的面源污染，因此污水处理中治理湖泊河道富营养化是一个重要环节。利用风能直接为人类服务已有很长的历史，大多是利用风力发电，也有利用风力驱动机械，如磨坊、储水等，还有利用风力在池塘、养鱼塘作为换气晒水的设备，如加拿大 Trillium Windmill Inc.公司生产的一种用鱼塘充氧装置，其动力是采用位于地面以上的风车发电，通过风机转动发电后带动位于池塘底部的泵旋转而搅动整个水体，使表层水体与底层水体进行交换，把与表层含氧量高的水翻下去与底层含氧量较低的水混合，消除水体内部溶解氧的浓度差，从而达到给池塘充氧的目的，其根本作用只是达到维护水质的目的，它只是利用泵搅动水体使整个池塘的氧气分布均匀，而不能用于对污水的处理，更不能把深层曝气与表层曝气装置结合起来把大量空气充入水中，还不具有在使水体形成对流交换的同时对大面积水域进行深层的充氧曝气，消除水体黑臭、破坏藻类的生存环境能力。部分常用于污水处理中的充氧曝气装置和池塘增氧装置经历了小孔径曝气、大气泡曝气设备和现在多见的微孔曝气器几个发展阶段，但都存在一些尚未解决的缺陷，大孔径曝气最大缺点是能耗过大，而微孔曝气器存在容易堵塞的严重问题。经过文献查新检索，至今尚无有关利用风能组合表层和深层的曝气装置来治理河道、湖泊污水的文献报道。
本发明的目的在于克服现有技术中的不足，提供一种污水治理组合式风能充氧曝气的方法。

本发明的技术方案如下：1、利用风能，结合深层和表层充氧曝气的方法，风力发电机带动潜水泵和混流装置进行深层充氧曝气，风轮带动叶轮对水体进行表层曝气，两者皆无需电能，解决了水体治理工程中的高能耗问题，节约了能源；2、把表层充氧曝气与深层曝气有效结合的方法，扩大了充氧区域，并且使充氧均匀：①有效利用水面上的风速充氧曝气的方法，在当风速达到6m/s时，风能发电机的螺旋桨转动带动发电机组运行，电力可达20KW，通过配电箱把电传输给潜水泵和混流装置，对水体进行深层的充氧曝气，当风速大于1.6m/s时，风轮带动位于水面以下的叶轮旋转使水体对流交换，打破水体不同层次之间溶解氧的浓度差，实现了对表层水体的充氧，解决了充氧过程中能耗较高的问题。②把深层的混流增氧与表层的风能曝气结合的方法，以混流增氧装置为中心，若干台风曝气机分布在以混流装置为中心的圆上，呈花瓣形排列，混流筒和风能曝气机都浮于水面上，其底部均与浮筒相连，并用锚固定于水体下面，解决了水面定位和稳定的问题。

本发明具有实质性特点和显著进步，本发明用于河流或湖泊水面上，在风速大于6m/s时，风力发电机开始工作，带动潜水泵和混流器进行深层曝气，五台风能曝气机也同时工作进行表面曝气。本装置中风能曝气机呈梅花状排列，考虑到在河道湖泊水面上工作时会有不同方向的来风，无瓣梅花形结构对各方向的来风都能保持稳定；在风向单一且风速较小时，五台风能曝气机中至少有两台可以工作，确保了一定的曝气量。每台风能曝气机的服务面积可达600m²，这样五台风气机组合使用覆盖面积至少可达1500m²的水域面积。

本发明适用于蓝藻高发区，装置启动后可覆盖较大的水域，且在很小的风速下也可以进行表层曝气，破坏静水层，根据藻类的生长机理：在静水条件下，氮、磷等营养物使藻类生长旺盛，静水层一旦被破坏，水中的溶解氧度不在存在，溶解氧分布均匀，加速了水体中深层的氧的利用，蓝藻失去了生存条件。
而不能存活。因此，本发明对我国目前大型水体普遍存在的水体富营养化问题起到一定的抑制作用。本发明不需动力、不耗电、运行简单，运转费仅是维护费，符合我国目前的经济状况，特别适用于我国大型水体的充氧曝气。

以下结合附图对本发明的实施例进一步描述：

图 1 本发明实施例示意图（一）
图 2 本发明实施例示意图（二）

本发明实施的具体方式可以有多种，其中可以以风能深表层组合充氧曝气装置的实施例可作为一例，如图 1、图 2 所示：当风速达到 1.6m/s, 启动风速时，风轮 1 转动，推动中心轴的转动，带动水面下叶轮 2 转动，搅动水体，进行表面曝气。曝气时，叶轮 2 搅动表层水体，使水体表层产生水跃，把大量混合液水滴和膜状水甩向空气中，然后携带空气形成的水气混合物回到水中，水气接触面积越大，空气中的氧就更容易溶入水中。随着连续风吹动风轮 1，带动转动轴和叶轮 2 不断转动，表层水不断更新，氧不断溶入，同时下层水中含量小的混合液在叶轮 2 搅拌作用下，向上环流；表层充氧区含氧量多的混合液向下环流，上下溶解氧浓度不同的水层发生交换，从而提高了水体的溶解氧含量，使表层下各层水体的溶解氧水平有不同程度的提高。

当风速大于 6m/s 时，风力发电机 3 工作带动潜水泵 4 给水加压通过进水管沿混流装置 5，筒壁以切线方向进入筒内沿筒壁沿筒壁高速旋流，在筒内形成一定的真空条件，外部又通过空压机或氧气储气罐把空气或纯氧通过进气机构 7 输入筒体底部，气体在外压、内吸的作用下进入通体筒体。切线方向的高速水流又进行水力剪切作用，把输入筒内的气体制成微小的气泡群，加大了水氧接触面积。高压水由于高速离心作用形成高强旋流沿多层套筒后由出水机构 6 流出，多层套筒嵌入结构延长了水氧的接触时间，加大了氧的溶解率。进气结构 7 的气源通过空压机或氧气罐把气压入筒内，由微小的气孔释放出微气泡，被切线方向进入的水流切割成微气泡，与高速紊流水充分混合后形成高富氧气的水；在混流搅拌溶解氧时，水与气泡在这多层内充分搅动混合，气体在高
速水流的切割下形成微小气泡，同时压力使得气相与液相界面消失的瞬间，完成气相与液相质的传递；充分混合的水气由混流出水部分流出，在出水机构的内部套有进水支管，在汽水混合物排出时与从支管进入的水再次混合后排出血增加了套筒内部的压力使出水易于排出，也有利与水气的混合，实现了对水体的高效充氧。