

(12) STANDARD PATENT APPLICATION (11) Application No. AU 2012203142 A1

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Utility meter with temperature based actuation of a remote disconnect switch

(51) International Patent Classification(s)

G08C 19/04 (2006.01) **G01K 13/00** (2006.01)
G01D 4/02 (2006.01)

(21) Application No: **2012203142**

(22) Date of Filing: **2012.05.22**

(30) Priority Data

(31) Number

13/115,145

(32) Date

2011.05.25

(33) Country

US

(43) Publication Date: **2012.12.13**

(43) Publication Journal Date: **2012.12.13**

(71) Applicant(s)

General Electric Company

(72) Inventor(s)

LaFrance, Ryan Marc;Shill, Scott M.;Wagner, Jerry;Tomson, Bruce

(74) Agent / Attorney

Phillips Ormonde Fitzpatrick, 367 Collins Street, Melbourne, VIC, 3000

UTILITY METER WITH TEMPERATURE BASED ACTUATION OF A REMOTE DISCONNECT SWITCH

ABSTRACT

The present application provides a utility meter (100). The utility meter (100) may include a processor (120) with a predetermined temperature range (260), a remote disconnect switch (200) in communication with the processor (120), and a temperature sensor (210) in communication with the processor (120). The processor (120) opens the remote disconnect switch (200) when the temperature sensor (210) senses a temperature (235) that exceeds the predetermined temperature range (260).

2012203142 22 May 2012

1/4

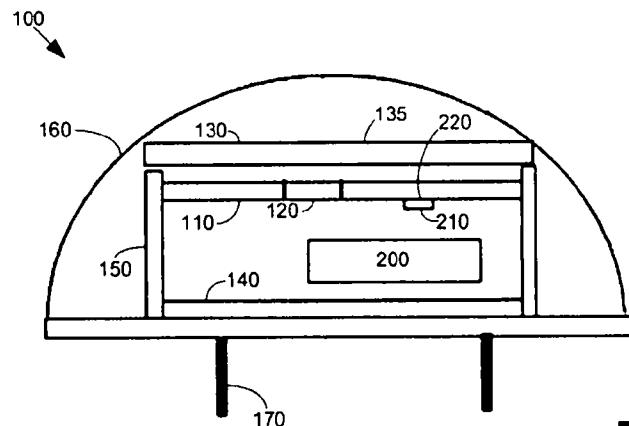


Fig. 1

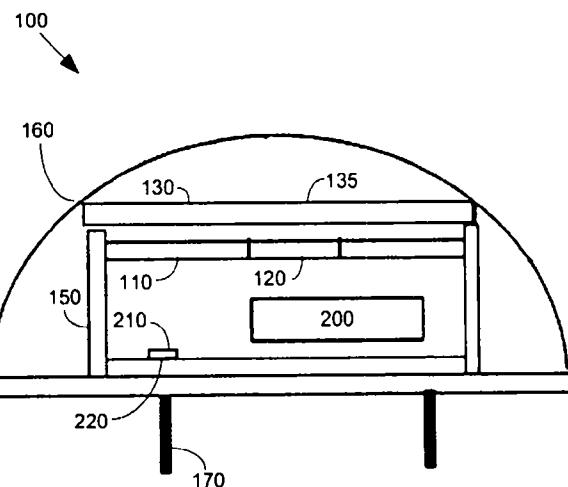


Fig. 2

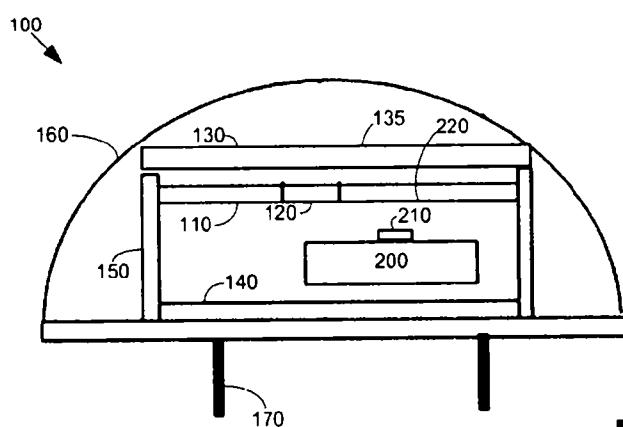


Fig. 3

2012203142 22 May 2012

AUSTRALIA

Patents Act

**COMPLETE SPECIFICATION
(ORIGINAL)**

	Class	Int. Class
Application Number:		
Lodged:		
Complete Specification Lodged:		
Accepted:		
Published:		
Priority		
Related Art:		

Name of Applicant:

General Electric Company

Actual Inventor(s):

Ryan Marc LaFrance, Scott M. Shill, Jerry Wagner, Bruce Tomson

Address for Service and Correspondence:

PHILLIPS ORMONDE FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street
Melbourne 3000 AUSTRALIA

Invention Title:

UTILITY METER WITH TEMPERATURE BASED ACTUATION OF A REMOTE DISCONNECT
SWITCH

Our Ref : 940689

POF Code: 88428/141848

The following statement is a full description of this invention, including the best method of performing it known to applicant(s):

UTILITY METER WITH TEMPERATURE BASED ACTUATION OF A REMOTE DISCONNECT SWITCH

[0101] This application claims priority from United States Application No. 13/115,145 filed on 25 May 2011, the contents of which are to be taken as incorporated herein by this reference.

TECHNICAL FIELD

[0102] The present application relates generally to a utility meter and more particularly relates to a utility meter with an internal temperature sensor for temperature-based actuation of a remote disconnect switch in the presence of possibly dangerous conditions.

BACKGROUND OF THE INVENTION

[0103] A wide variety of utility meters are configured to transmit and receive messages, instructions, and other types of information to one or more recipients such as a data collection server or a utility service provider. One such function is known as a “remote disconnect”, which allows the entire electrical service to be switched off at the utility meter remotely. Specifically, instructions received by the utility meter may trigger a remote disconnect switch so as to disconnect the electrical service until instructions are received otherwise. Preferably, such a remote disconnect switch may be situated upstream from a load side and downstream from a meter line side. A communications link may provide information regarding the actuation of such a remote disconnect switch. Reconnection functionality also may be used.

[0104] Faulty contacts or contacts not well seated in such a remote disconnect switch within a utility meter can decrease the surface area of the copper that passes the current therein. This decrease in surface area may greatly increase the resistance therein and, hence, cause a large temperature increase along a gradient. Such a large temperature increase may present the possibility of damage to the utility meter and possibly to adjacent structures.

[0105] There is therefore a desire therefore for an improved utility meter design that can accommodate unusual internal temperature increases in a safe and efficient manner.

Specifically, there is a desire for improved remote disconnect switch configurations and operations that may avoid such large temperature increases and the associated possibility of damage caused thereby.

[0106] A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.

SUMMARY OF THE INVENTION

[0107] According to an aspect of the present invention, there is provided a utility meter, comprising: a processor; the processor comprising a predetermined temperature range; a remote disconnect switch in communication with the processor; and a temperature sensor in communication with the processor; wherein the processor opens the remote disconnect switch when the temperature sensor senses a temperature that exceeds the predetermined temperature range.

[0108] According to another aspect of the present invention, there is provided a method of operating a utility meter with a remote disconnect switch, comprising: sensing a temperature about the remote disconnect switch with one or more temperature sensors; comparing the sensed temperatures with a predetermined threshold range; and issuing a disconnect signal to the remote disconnect switch if the sensed temperatures exceed the predetermined threshold range.

[0109] According to yet another aspect of the present invention, there is provided a utility meter. The utility meter may include a remote disconnect switch positioned about a base, a temperature sensor positioned about the base, and the remote disconnect switch and the temperature sensor in communication via a temperature monitoring circuit. The remote disconnect switch opens when the temperature sensor senses a temperature that exceeds a predetermined temperature range.

[0110] These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0111] Fig. 1 is a side view of a utility meter as may be described herein.

[0112] Fig. 2 is a side view of an alternative embodiment of a utility meter as may be described herein.

[0113] Fig. 3 is a side view of an alternative embodiment of a utility meter as may be described herein.

[0114] Fig. 4 is a side view of an alternative embodiment of a utility meter as may be described herein.

[0115] Fig. 5 is a schematic view of the utility meter of Fig. 1.

[0116] Fig. 6 is a schematic view of an alternative embodiment of a utility meter as may be described herein.

[0117] Fig. 7 is a schematic view of an alternative embodiment of a utility meter as may be described herein.

[0118] Fig. 8 is a flow chart of several of the method steps that may be used with the utility meter described herein.

DETAILED DESCRIPTION

[0119] Referring now to the drawings, in which like numerals refer to like elements throughout the several views, Fig. 1 shows a utility meter 100 as may be described herein. The utility meter 100 may be configured to monitor utility usage for a structure such as a residence or a business. The utility meter 100 may be suitable for electrical, water, gas, and any other type of metered utility and the like. The utility meter may be a smart meter or an advance meter configured to identify consumption in greater detail than a conventional mechanical meter. Such a utility meter 100 may facilitate real time or near real time consumption readings, power outage notification, and/or power quality monitoring and the like. Many different types of utility meters may be used herein.

[0120] The utility meter 100 may include a main meter electronics board 110. The main meter electronics board 110 may include any number of processors 120 thereon. The processors 120 generally may be of conventional design. The processors 120 may include any

number of software applications or modules that facilitate the execution of computer readable instructions so as to control the operation of the overall utility meter 100. The main meter electrical board 110 also may include any number of other devices associated with or internal to the processors 120. Such devices may include different types of memory devices, network interface or communication devices, operating systems, sensors, and the like. Other components and other configurations may be used herein.

[0121] The utility meter 100 also may include a name plate carrier 130. The name plate carrier 130 may include a name plate 135 with identification information related to the utility meter 100. An interface device such as an LED screen also may be used to display information as desired. The main meter electric board 110 and the name plate carrier 130 may be positioned about one or more bases 140 and within a bezel 150 and the like. A cover 160 may surround all of the components herein. A number of terminal blades 170 may place the utility meter 100 in communication with a utility 180 and a load 190 to be measured. Other components and other configurations may be used herein.

[0122] As described above, the utility meter 100 also may include a remote disconnect switch 200. Activation of the remote disconnect switch 200 will disconnect the utility meter 100 and the load 190 from the utility 180. The remote disconnect switch 200 may be positioned on the base 140 and in communication with the main meter electrical board 110 and the processors 120. The remote disconnect switch 200 may include any structure that mechanically and/or electrically breaks the electrical circuit therein.

[0123] The utility meter 100 thus also includes one or more temperature sensors 210 in communication with the remote disconnect switch 200. In the example of Fig. 1, the temperature sensor 210 may be positioned on the main meter electrical board 110. In the example of Fig. 2, the temperature sensor 210 is positioned about the base 140. In Fig. 3, the temperature sensor 210 is positioned on or adjacent to the remote disconnect switch 200. In any of these embodiments, the temperature sensor 210 can sense the temperature about the base 140. The temperature sensor 210 may be attached to the main meter electrical board 110, the base 140, or the remote disconnect switch 200 via a thermal epoxy 220. The thermal epoxy 220 may assist with thermal conduction as well as firmly mounting the temperature sensor 210 thereon. Any number of temperature sensors 210 may be used herein. Other components and other configurations may be used herein.

[0124] In addition to the use of the remote disconnect switch 200 within the meter 100 itself, an external remote disconnect switch 205 also may be used. As is shown in Fig. 4, the

external remote disconnect switch 205 may be positioned apart from the main meter electronics board 110 but in communication with the load 190 or otherwise so as to break the circuit.

[0125] Fig. 5 shows the operation of the temperature sensor 210 in a temperature monitoring circuit 225. The temperature sensor 210 may output an analog voltage signal 230 based upon a temperature 235 of the base 140. A comparator, an A/D converter 240, and the like may convert the analog voltage signal 230 to a digital signal 250. The digital signal 250 may be received by the processor 120. The temperature 235 of the base 140 thus may be compared to a predetermined threshold temperature range 260 or other type of data structure and the like. The processor 120 may instruct the remote disconnect switch 200 to open via a disconnect signal 270 such that the utility meter 100 is disconnected from the utility 180 if such threshold temperatures are exceed or other type of predetermined condition is met. For example, other parameters may include the rate of temperature change such that the disconnect signal 270 may be provided if an increase of a given number of degrees is detected within a given time frame. Other types of parameters may be used herein.

[0126] An optional sensor buffer circuit 280 also may be used herein. Likewise, an optional switch relay driver 290 also may be used herein. As is shown in Fig. 6, the A/D converter 240 may be built into the processor 120. Other components and other configurations may be used herein.

[0127] The processor 120 may be one of those on the main meter electrical board 110 or a separate processor 120 in a stand alone monitoring circuit and the like also may be used. Likewise, the processor 120 may be remote from the utility meter 100 and in communication via a network and the like. As is shown in Fig. 7, the temperature monitoring circuit 225 may directly drive the switch relay 290 or otherwise drive the remote disconnect switch 200 without notifying the processor 120. Likewise, the processor 120 may be optionally notified in real time or at a later time. The temperature monitoring circuit 225 may be in direct communications with the utility 180 or other source.

[0128] The temperature monitoring circuit 225 of the utility meter 100 described herein thus prevents the base 140 from exceeding threshold temperatures due to the remote disconnect switch 200 or otherwise through the use of the temperature sensor 210. As such, the internal temperatures of the utility meter 100 will remain below the threshold temperatures 260 that may create a possibly dangerous situation. The utility meter 100 generally may not

be reconnected to the utility 180 until certain types of inspections and/or diagnostics are completed. Reconnection functionality may be greatly varied.

[0129] Fig. 8 shows a flow chart of several method steps that may be used in the temperature monitoring circuit 225. The process may begin at step 300. At step 310, the temperature sensor 210 senses the temperature 235 about the base 140 or other location. The temperature sensor 210 outputs the analog signal 230 that is converted to the digital signal 250 by the A/D converter 240. The digital signal 250 then may be compared to the predetermined threshold temperature range 260 or other type of information at step 320. If the temperature, as represented by the digital signal 250, is below the predetermined threshold range 260, the method may return to step 310 for further temperature readings. If the temperature exceeds the predetermined threshold range 260, the processor 250 may issue the disconnect signal 270 so as to instruct the remote disconnect switch 200 to open at step 330. The processor 120 then may report the event at step 340 as desired. Alternatively, the processor 120 may be bypassed such that the remote disconnect switch 200 is directly connected within the temperature monitoring circuit 225. The method may end at step 350. The flow chart shown herein is for the purpose of example only. Similar methods may be used herein.

[0130] It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.

[0131] Where the terms “comprise”, “comprises”, “comprised” or “comprising” are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereto.

PARTS LIST

- 100 utility meter
- 110 main meter electronics board
- 120 processors
- 130 name plate carrier
- 135 name plate
- 140 base
- 150 bezel
- 160 cover
- 170 terminal blades
- 180 utility
- 190 load
- 200 remote disconnect switch
- 205 external remote disconnect switch
- 210 temperature sensor
- 220 thermal epoxy
- 225 temperature monitoring circuit
- 230 analog voltage signal
- 235 temperature
- 240 A/D converter
- 250 digital signal
- 260 predetermined threshold temperatures
- 270 disconnect signal
- 280 optional sensor buffer circuit
- 290 optional switch relay driver
- 300 step

2012203142 22 May 2012

310 step
320 step
330 step
340 step
350 step

The claims defining the invention are as follows:

1. A utility meter, comprising:
 - a processor;
 - the processor comprising a predetermined temperature range;
 - a remote disconnect switch in communication with the processor; and
 - a temperature sensor in communication with the processor;
 - wherein the processor opens the remote disconnect switch when the temperature sensor senses a temperature that exceeds the predetermined temperature range.
2. The utility meter of claim 1, wherein the processor is positioned about an electronics board.
3. The utility meter of claim 2, wherein the temperature sensor is positioned on the electronics board.
4. The utility meter of claim 1, further comprising a base and wherein the remote disconnect switch is positioned about the base.
5. The utility meter of claim 4, wherein the temperature sensor is positioned on the base.
6. The utility meter of claim 1, wherein the temperature sensor is positioned about the remote disconnect switch.
7. The utility meter of any one of claims 1 to 6, further comprising a plurality of temperature sensors.

8. The utility meter of any one of claims 1 to 7, wherein the remote disconnect switch is positioned between a utility and a load.

9. The utility meter of any one of claims 1 to 8, wherein the temperature sensors are positioned via a thermal epoxy.

10. The utility meter of any one of claims 1 to 9, wherein the processor, the remote disconnect switch, and the temperature sensor are in communication via a temperature monitoring circuit.

11. The utility meter of claim 10, wherein the temperature monitoring circuit comprises an analog signal produced by the temperature sensor.

12. The utility meter of claim 11, wherein the temperature monitoring circuit comprises an A/D converter to convert the analog signal to a digital signal for use in the processor.

13. The utility meter of any one of claims 10 to 12, wherein the processor issues a disconnect signal via the temperature monitoring circuit.

14. The utility meter of any one of claims 10 to 13, wherein the temperature monitoring circuit comprises a sensor buffer circuit and a switch relay driver.

15. A method of operating a utility meter with a remote disconnect switch, comprising:

sensing a temperature about the remote disconnect switch with one or more temperature sensors;

comparing the sensed temperatures with a predetermined threshold range; and

issuing a disconnect signal to the remote disconnect switch if the sensed temperatures exceed the predetermined threshold range.

16. A utility meter substantially as hereinbefore described with reference to any one of the embodiments shown in the drawings.

17. A method of operating a utility meter with a remote disconnect switch substantially as hereinbefore described with reference to any one of the embodiments shown in the drawings.

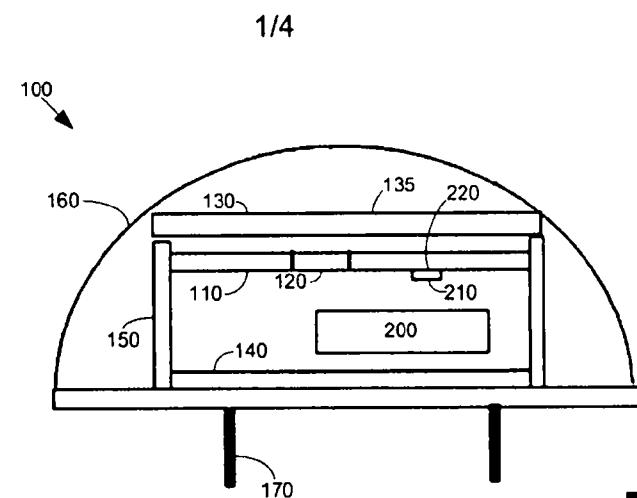


Fig. 1

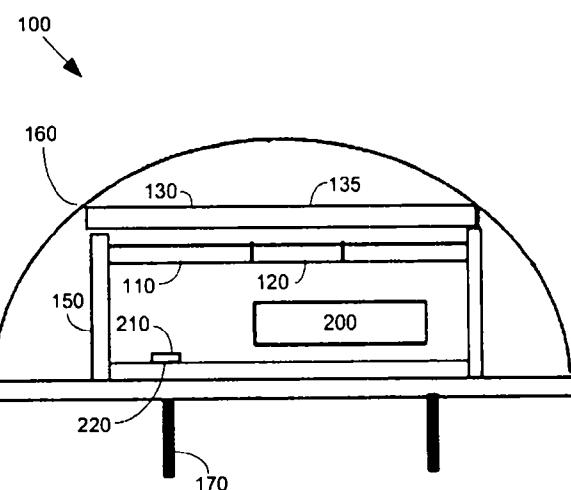


Fig. 2

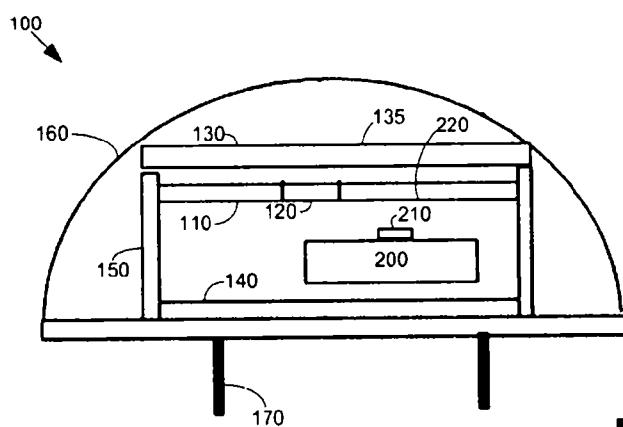


Fig. 3

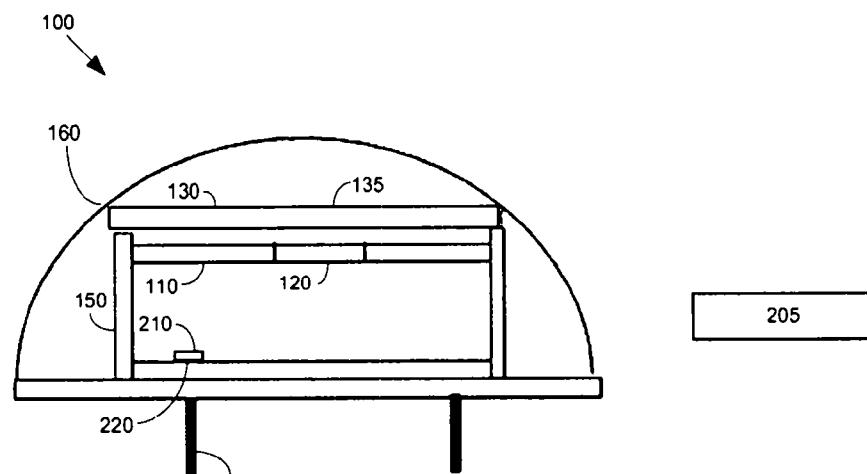


Fig. 4

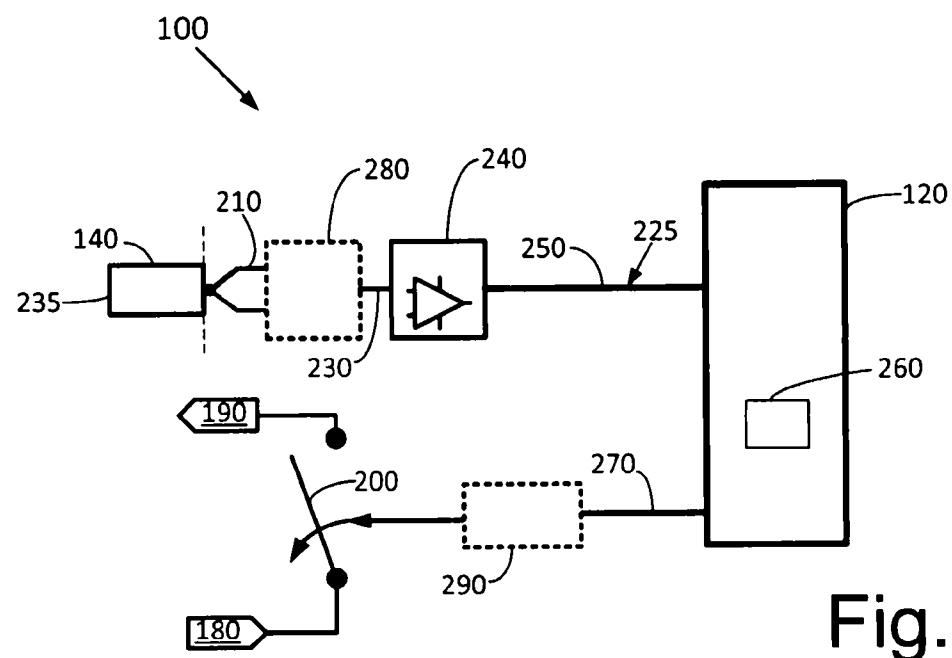


Fig. 5

Fig. 6

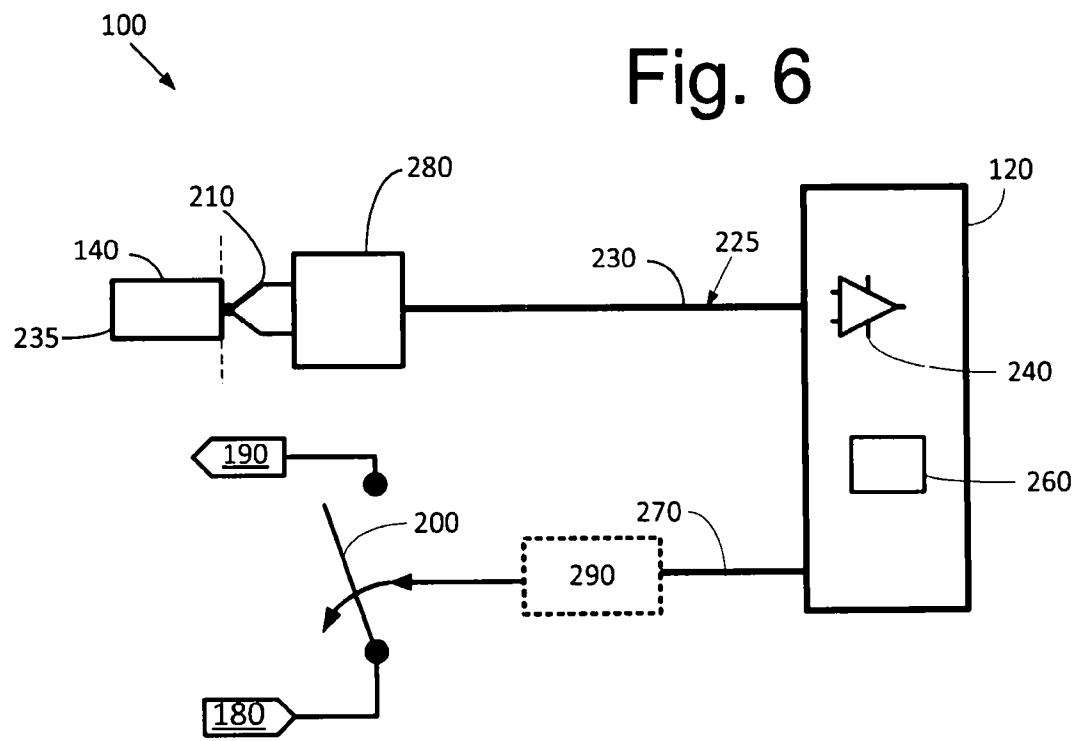
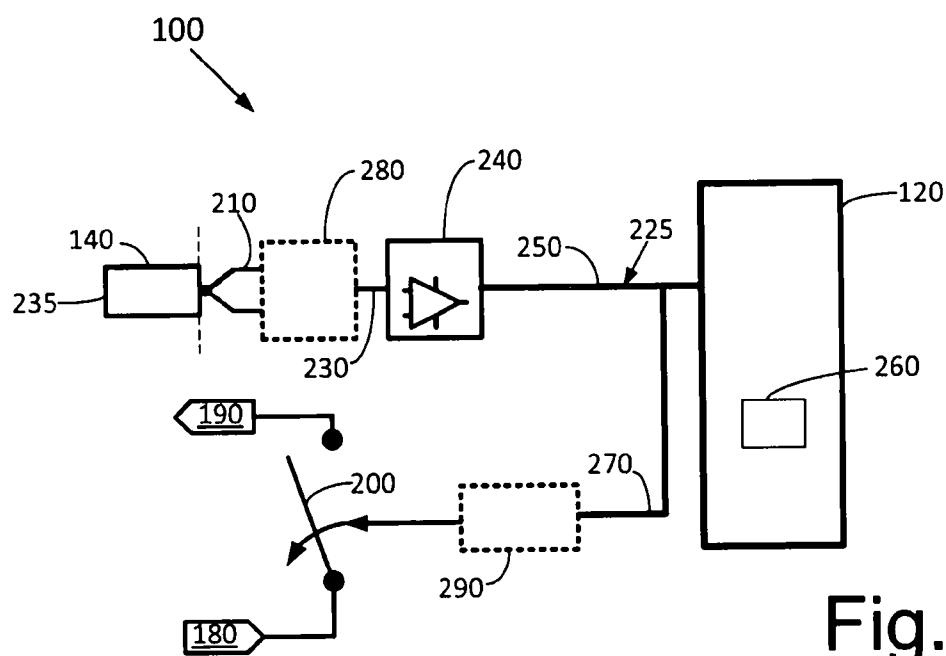



Fig. 7

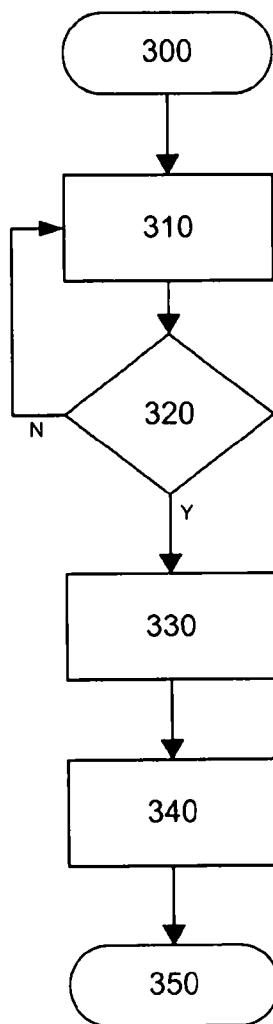


Fig. 8