

[19]	INTELLECTUAL PROPERTY PHILIPPINES			
[12]	INVENTION PUBLICATION			
[11]	Publication Number:	12015000410	Document Code:	B1
[22]	Publication Date:	10/7/2017		
[21]	Application Number:	12015000410	Document Code:	A
[22]	Date Filed:	27/11/2015		
[54]	Title:	DESTATICIZING BRUSH AND IMAGE FORMING APPARATUS		
[71]	Applicant(s):	CANON KABISHIKI KAISHA		
[72]	Inventor(s):	DAISUKE YAMAMOTO		
[30]	Priority Data:	8/12/2014 JP20140247890		
[51]	International Class 8:	G03G 15/00 20060101AFI20180709BPHH;		
[57]	Abstract:	A destaticizing brush includes a grounding member, a conductive brush member, and an adhesive tape member. The conductive brush member is bent back in a U-turn shape along an outer periphery of the grounding member in which a longitudinal direction intersects the grounding member such that the conductive brush member is in electric contact with the grounding member. An outer periphery of the conductive brush member that has been bent back and the grounding member are adhered in an integrated manner with the adhesive tape member, and at least one end of the conductive brush member is exposed from the adhesive tape member.		

member (not shown) that supplies developer (toner) to the electrostatic latent image formed according to image information by irradiation of the laser beam, from a laser scanner unit (not shown), on the surface of the

5 photosensitive drum **106** that has been uniformly charged is provided.

A toner image formed on the surface of the photosensitive drum **106** upon supply of toner from the developing device (not shown) is transferred onto a sheet S. A cleaning device

10 and the like serving as a cleaning member (not shown) that scrapes off the toner remaining on the surface of the photosensitive drum **106** after the above to perform cleaning is provided.

Image information is sent to a control unit of the image

15 forming apparatus **100** from a personal computer or the like. The control unit that has performed image forming processing on the image information sends out a print signal. Then, the sheets S that are stacked on an intermediate plate that can be lifted up and down inside the feeding

20 cassette **105** illustrated in FIG. 1 are fed out with the feed roller **101**. Then, the sheets S, separated and fed out by the feed roller **101** that is working together with a separation member (not shown), is sent to the registration roller **102**.

Meanwhile, together with the print command, a laser beam

25 according to the image information is emitted from the laser

scanner unit serving as the image exposing member (not shown). Then, the laser beam is irradiated on the surface of the photosensitive drum **106** that serves as the image carrier that is uniformly charged by the charge roller serving as a 5 charge member (not shown) such that an electrostatic latent image is formed. The developer (toner) is supplied from the developing device serving as the development member (not shown) on the electrostatic latent image formed on the surface of the photosensitive drum **106** such that a toner 10 image is formed.

The registration roller **102** conveys the sheet S to the transfer nip portion N between the photosensitive drum **106** and the transfer roller **103** that serves as a transfer means so that the sheet S corresponds to the 15 position of the toner image that has been formed on the surface of the photosensitive drum **106**. A transfer bias is applied to the transfer roller **103** such that the toner image formed on the surface of the photosensitive drum **106** is transferred to the sheet S. The sheet S on which the toner 20 image has been transferred is sent to the fixing device **104** that serves as a fixing member is heated and compressed such that the toner image is fixed to the sheet S.

The sheet S to which the toner image has been fixed is 25 nipped and conveyed by discharge rollers **202** and driven

rollers **204** provided in the discharge portion **20** and is discharged onto the discharge tray **107**. Furthermore, when images are formed on both surfaces of the sheet **S**, the sheet **S** that is nipped by the discharge rollers **202** and the driven rollers **204** is guided from the fixing device **104** to a both-surface path **108** by reverse rotation of the discharge rollers **202** at a predetermined timing such that the front and back sides are flipped. Subsequently, once again, the sheet **S** is nipped and conveyed by the registration roller **102** and is conveyed to the transfer nip portion **N**. Then, after the image forming operation is performed in a similar manner to that of the image forming operation performed on one side, the sheet **S** is discharged onto the discharge tray **107**.

15 (Destaticizing Brush)

Referring next to FIGS. 1 to 6, a configuration of destaticizing brush units **210** serving as the destaticizing brushes of the present exemplary embodiment provided in the discharge portion **20** of the image forming apparatus **100** will 20 be described. As illustrated in FIGS. 1 and 2, a destaticizing unit **21** in which the destaticizing brush units **210** serving as the destaticizing brushes are disposed in the two left and right portions in FIG. 2 in the vicinity and downstream of the discharge rollers **202** and the driven

rollers **204** that are provided in the discharge portion **20** of the image forming apparatus **100** is provided.

As illustrated in FIGS. 1 and 2, when the sheet **S** nipped and conveyed by the discharge rollers **202** and the driven rollers **204** are discharged on the discharge tray **107**, conductive brush members **210a** provided in each of the destaticizing brush units **210** electrically comes in contact with and slides against the sheet **S**. At this time, the charged sheet **S** is discharged on the discharge tray **107** while being destaticized by the conductive brush members **210a**.

As illustrated in FIG. 2, the discharge portion **20** in which the discharge rollers **202** and the driven rollers **204** are provided includes a discharge frame **201**, the discharge rollers **202**, and bearings (not shown) that rotatably and pivotally supports the discharge rollers **202**. Furthermore, the discharge portion **20** includes driven rollers **204**, holders **205** that rotatably support the driven rollers **204**, and a pressurizing spring (not shown).

The discharge portion **20** further includes flags **207** that detect that the sheet **S** has been fully loaded on the discharge tray **107**, and the destaticizing brush units **210** in which the conductive brush members **210a** are provided. The discharge portion **20** further includes a conductive grounding member **211** that is in contact with the conductive brush

members **210a** in an electrical manner and that supports the destaticizing brush units **210**, an attaching member **212** to attach the destaticizing brush units **210**, and the like.

A rotational driving force is transmitted to a drive
5 transmission gear **208** illustrated in FIG. 2 from a motor serving as a driving source (not shown). The drive transmission gear **208** is fixed to a drive shaft **202a** of the discharge rollers **202**. Furthermore, the discharge rollers **202** are rotationally driven by the rotational 10 driving force transmitted to the discharge rollers **202** from the drive transmission gear **208** through the drive shaft **202a**. The driven rollers **204** are in pressure contact with the discharge rollers **202** by a biasing force of the pressurizing spring (not shown) and is rotated by the 15 rotation of the discharge rollers **202**. The sheet **S** is nipped and conveyed by the discharge rollers **202** and the driven rollers **204** and is discharged on the discharge tray **107**.

As illustrated in FIG. 5, the destaticizing brush units **210** are each configured so as to include the 20 conductive brush members **210a** and an adhesive tape member **210b** serving as a tape member having adhesiveness. The adhesive tape member **210b** of the present exemplary embodiment may not be conductive. End portions **210a1** of the conductive brush members **210a** are adhered on an adhesive 25 surface **210b1** serving as a surface of the adhesive tape

member **210b** having adhesiveness. Each of the conductive brush members **210a** is formed of a thin line such as a metal or conductive resin fiber and is configured of a single piece of or a plurality of pieces of wire.

- 5 The grounding member **211** illustrated in FIG. 3B is, as illustrated in FIG. 4, configured of a conductive wire spring (wire) having a circular section. U-shaped attaching portions **211a** serving as bend portions formed by bending portions of the straight portion **211b** in a U-shape are
- 10 provided in the areas of the grounding member **211** where the destaticizing brush units **210** are attached.

In the destaticizing brush units **210** illustrated in FIG. 5, the adhesive tape member **210b** is bent back in a U-shape at a return line **210c** located at a substantially middle portion 15 of the adhesive tape member **210b** in a short direction (the up-down direction in FIG. 5) in an integrated manner with the end portions **210a1** of the conductive brush members **210a** as illustrated in FIG. 3A. Then, as illustrated in FIGS. 3A and 3B, each of the attaching portions **211a** of 20 the grounding member **211** is disposed so as to be positioned at substantially the middle of the corresponding adhesive tape member **210b** in a longitudinal direction (the left-right direction in FIG. 5).

Then, each of the destaticizing brush units **210** is fitted 25 from the upper side towards the lower side in FIG. 3A across

the straight portions **211b** on both sides of the corresponding attaching portion **211a**. In the conductive brush members **210a**, the outer side portions of the end portions **210a1** that have been bent back in a U-turn shape is 5 pressed using a jig (not shown) or the like so as to be attached while nipping the grounding member **211**.

Then, the adhesive surface **210b1** of each adhesive tape member **210b** is adhered to the surfaces of the corresponding straight portions **211b** and attaching portion **211a** of the grounding member **211**. Furthermore, areas other than the straight portions **211b** and the attaching portions **211a** of the grounding member **211** and the end portions **210a1** of the conductive brush members **210a** are fixed by adhesion of the adhesive surfaces **210b1** of the adhesive tape members **210b** to each other.

In the conductive brush members **210a** of the present exemplary embodiment, the longitudinal direction (the up-down direction in FIGS. 3A and 5) of the conductive brush members **210a** intersect the longitudinal direction (the left-right direction in FIGS. 3A and 3B) of the grounding member **211** illustrated in FIGS. 3A and 3B. The conductive brush members **210a** are bent back in a U-turn shape along the outer peripheral surfaces of the straight portions **211b** of the grounding member **211** in the above intersecting direction.

With the above, the end portions **210a1** of the conductive brush members **210a** come in electric contact with the straight portions **211b** of the grounding member **211**. The outer peripheries of the bent back end portions **210a1** and 5 the grounding member **211** are adhered to each other in an integrated manner with the adhesive tape members **210b**.

Furthermore, as illustrated in FIGS. 3A and 4, one of the ends of each conductive brush member **210a** is exposed from the corresponding adhesive tape member **210b**. In the areas 10 (the portions) of the adhesive tape member **210b** other than the areas in contact with the straight portions **211b** and the attaching portions **211a** of the grounding member **211** and the conductive brush members **210a**, the adhesive surfaces **210b1** (the surfaces that have adhesiveness) face 15 each other and are adhered to each other.

As illustrated in FIG. 3A, rotation of the destaticizing brush units **210** about the straight portions **211b** of the grounding member **211** is suppressed by having the adhesive tape member **210b** be adhered to the attaching portions **211a** serving as bend portions of the grounding member **211**. 20

FIG. 4 is a cross-sectional explanatory drawing of the area of the straight portion **211b** in a state in which the destaticizing brush unit **210** is attached across the straight portions **211b** and the attaching portion **211a** of the 25

grounding member **211**. As illustrated in FIG. 5, the end portions **210a1** of the two conductive brush members **210a** provided in each destaticizing brush unit **210** are bent back in a U-turn shape as illustrated in 5 FIG. 4 and are attached so as to be in electric contact with the straight portions **211b** of the grounding member **211**.

As illustrated in FIG. 4, in the straight portions **211b** of the grounding member **211**, the end portions **210a1** of the conductive brush members **210a** to which the adhesive tape 10 members **210b** are adhered are bent back in a U-turn shape along the outer peripheral surfaces of the straight portions **211b** of the grounding member **211**. Furthermore, the end portions **210a1** of the conductive brush members **210a** are folded back in a U-shape and the straight portions **211b** of 15 the grounding member **211** are nipped. Furthermore, while the end portions **210a1** of the conductive brush members **210a** and the straight portions **211b** of the grounding member **211** are in electric contact with each other, the outer peripherals 20 of the end portions **210a1** of the conductive brush members **210a** are adhered to the adhesive surfaces **210b1** of the adhesive tape members **210b** facing inwards.

Meanwhile, in the attaching portions **211a** serving as the bend portions that are formed by bending portions of the straight portions **211b** of the grounding member **211** in a U- 25 shape, the outer peripherals of the attaching

portions **211a** are adhered to the adhesive surfaces **210b1** of the adhesive tape member **210b** facing inwards.

As illustrated in FIG. 4, other than the portions of the adhesive tape member **210b**, which has been folded back in a 5 U-shape, in the areas in contact with the conductive brush members **210a** and the straight portions **211b** and the attaching portions **211a** of the grounding member **211**, the adhesive surfaces **210b1** of the adhesive tape member **210b** are adhered to each other. Accordingly, bonding strength is 10 high.

The straight portions **211b** of the grounding member **211** are directly in electric contact with the end portions **210a1** of the conductive brush members **210a**. With the above, when one of the ends of the conductive brush members **210a** that is 15 exposed from the adhesive tape members **210b** come in contact with the sheet **S** that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204** illustrated in FIG. 2, then, the electric charge of the charged sheet **S** directly flows to the grounding member **211** through the 20 conductive brush members **210a**.

As illustrated in FIG. 2, the attaching portions **211a** that are formed by bending portions of the straight portions **211b** of the grounding member **211** of the present exemplary embodiment are provided in two portions. 25 Furthermore, a destaticizing brush unit **210** is attached to

each of the attaching portions **211a**. Accordingly, even when each of the conductive brush members **210a** come in contact to and slides against the sheet **S** that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204**, the 5 conveyance balance between the left and right side of the sheet **S** illustrated in FIG. 2 can be kept.

As illustrated in FIG. 3A, the destaticizing unit **21** in which the destaticizing brush units **210** and the grounding member **211** are provided in an integrated manner is attached 10 to the attaching member **212** illustrated in FIG. 2. FIG. 6 is a bottom view of the destaticizing unit **21** attached to the attaching member **212** viewed from the bottom side. As illustrated in FIG. 3B, the straight portions **211b** of the grounding member **211** looks like they are on a straight line 15 when viewed from the front.

In the present exemplary embodiment, as illustrated in FIG. 6, the adhesive tape members **210b** that have been folded back in a U-shape are fitted into and supported by holding portions **212a** that are provided in the attaching member **212**. 20 Furthermore, the straight portions **211b** of the grounding member **211** are abutted against and locked to an end face **212b1** of a rib pattern **212b** provided at substantially a center portion of the left and right destaticizing brush units **210** of FIG. 6 such that the straight portions **211b** of 25 the grounding member **211** are bent towards that side of the

paper surface and towards this side of the paper surface of FIG. 3B (in the up-down direction in FIG. 6). In the above state, the straight portions **211b** of the grounding member **211** are attached to the attaching member **212** serving 5 as a holding member holding the destaticizing unit **21** (destaticizing brushes).

Accordingly, as illustrated in FIG. 6, in the vicinity of the adhesive tape members **210b** of the destaticizing brush units **210**, the adhesive tape members **210b** of the 10 destaticizing brush units **210** are attached while being pressed against the holder surfaces (contact surfaces) **212a1** of the attaching member **212**. The destaticizing unit **21** (the destaticizing brushes) are held by the attaching member (holding member) **212** while in a 15 state in which the adhesive tape members **210b** are pressed against the holder surfaces (contact surfaces) **212a1** of the attaching member (holding member) **212**.

With the above, the electric contact between the conductive brush members **210a** and the grounding member **211** becomes 20 better even more. In other words, the rib pattern **212b** functions as a member that presses the destaticizing brush unit **210** against the holder surfaces **212a1**. Furthermore, with the attaching portions **211a** that are formed by bending portions of the 25 straight portions **211b** of the grounding member **211** in a U-

shape, rotation of the destaticizing brush units **210** about the straight portions **211b** of the grounding member **211** can be suppressed. Accordingly, the angle and direction in which the conductive brush members **210a** come in contact to and

5 slide against the sheet S that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204** illustrated in FIG. 2 become stable.

The grounding member **211** is grounded by being electrically connected to a conductive member that is electrically

10 connected to a side plate that is grounded (not shown). In such a state, the conductive brush members **210a** come in contact to and slides against the sheet S that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204** illustrated in FIG. 2. With the above, the

15 electric charge flows from the charged sheet S through each of the conductive brush members **210a**, the grounding member **211** and, further, the conduction member and the side plate that are not shown; accordingly, the sheet S is destaticized.

20 In the present exemplary embodiment, the end portions **210a1** of the conductive brush members **210a** that are bent back in a U-turn shape are directly in electric contact with the straight portions **211b** of the grounding member **211**. Furthermore, the straight portions **211b** of the grounding

25 member **211**, the attaching portions **211a**, and the end

portions **210a1** of the conductive brush members **210a** are adhered and fixed to each other in an integrated manner with the adhesive tape members **210b**. With the above, a simple and inexpensive destaticizing brush can be provided.

- 5 The grounding member **211** can match the shape of an end portion **211c** to the shape of each area of the image forming apparatus **100** in order to be electrically connected to an appropriate grounding place; accordingly, the grounding member **211** has excellent degree of freedom.
- 10 Second Exemplary Embodiment

Referring to FIGS. 7 to 9, a configuration of a second exemplary embodiment of an image forming apparatus including a destaticizing brush according to the present disclosure will be described next. Note that description of members that are configured in a similar manner to the members of the first exemplary embodiment will be omitted and will be attached with the same reference numeral, and even if the reference numeral of the members are different, the same member name will be given.

- 15
- 20 As illustrated in FIG. 4, in the first exemplary embodiment, the grounding member **211** is configured of a wire spring that has a circular section, and as illustrated in FIG. 5, the adhesive tape members **210b** are adhered to the end portions **210a1** of the conductive brush members **210a**.

As illustrated in FIG. 8, in the present exemplary embodiment, a grounding member **311** is configured of a conductive metal plate that has a rectangular section.

Furthermore, as illustrated in FIG. 9, sheet members **310b** are adhered to center portions **310a1** of conductive brush members **310a** through two-sided adhesive tape members **310c** serving as tape members having adhesiveness. The adhesive two-sided adhesive tape members **310c** and the sheet members **310b** of the present exemplary embodiment may not be conductive.

As illustrated in FIG. 9, destaticizing brush units **310** serving as the destaticizing brushes of the present exemplary embodiment are each configured so as to include two conductive brush members **310a**, the sheet member **310b** and the adhesive two-sided adhesive tape member **310c**. As illustrated in FIG. 7A, each destaticizing brush unit **310** is bent back in a U-shape at a return line **310d** provided at substantially the center portions of the adhesive two-sided adhesive tape member **310c** and the sheet member **310b** illustrated in FIG. 9 in the short direction (the up-down direction in FIG. 9).

Furthermore, the destaticizing brush units **310** are fitted over the grounding member **311**, which is formed of a conductive metal plate having a rectangular section, from the upper side to the lower side of FIG. 7A. In the

conductive brush members **310a**, the outer side portions of the center portions **310a1** that have been bent back in a U-turn shape is pressed using a jig (not shown) or the like so as to be attached while nipping the grounding member **311**.

- 5 Then, the adhesive surfaces **310c1** of the adhesive two-sided adhesive tape members **310c** are adhered and fixed to the surface of the grounding member **311**. The two end portions of each of the conductive brush members **310a** are exposed from the corresponding adhesive two-sided adhesive tape member **310c** and the corresponding sheet member **310b**.

The conductive brush members **310a** of the present exemplary embodiment are bent in a U-turn shape along an outer peripheral surface of the ground member **311** and in the longitudinal direction, which is the up-down direction of FIG. 9, that intersects the longitudinal direction of the grounding member **311** indicated by the left-right direction of FIG. 7B. With the above, the center portions **310a1** of the conductive brush members **310a** come in electric contact with the grounding member **311**. The outer peripheries of the bent back center portions **310a1** and the grounding member **311** are adhered to each other in an integrated manner with the adhesive two-sided adhesive tape members **310c**.

FIG. 8 is, as illustrated in FIG. 7A, a cross-sectional explanatory drawing of an area of the conductive brush member **310a** in a state in which the destaticizing brush

unit **310** is attached to the grounding member **311**. The sheet member **310b** and the adhesive two-sided adhesive tape member **310c** are bent in a U-shape together with the center portion **310a1** of the conductive brush member **310a** in an

5 integrated manner and nip the grounding member **311** with the center portion **310a1** of the conductive brush member **310a**. With the above, the center portions **310a1** of the conductive brush members **310a** are in electric contact with the grounding member **311**.

10 The grounding member **311** and the center portions **310a1** of the conductive brush members **310a** are directly in electric contact with each other. With the above, similar to the first exemplary embodiment illustrated in FIG. 2, when the conductive brush members **310a** come in contact with the sheet

15 S that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204**, then, the electric charge of the charged sheet S directly flows to the grounding member **311** through the conductive brush members **310a**.

20 As illustrated in FIG. 7A, the destaticizing brush units **310** are provided at two portions in the grounding member **311** of the present exemplary embodiment. Accordingly, similar to the first exemplary embodiment illustrated in

FIG. 2, even when each of the conductive brush

25 members **310a** come in contact to and slides against the sheet

S that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204**, the conveyance balance between the left and right side of the conveyed sheet S illustrated in FIG. 2 can be kept.

- 5 As illustrated in FIG. 7A, the destaticizing unit **31** in which the destaticizing brush units **310** and the grounding member **311** are provided in an integrated manner is, in a substantially similar manner to the first exemplary embodiment illustrated in FIG. 2, attached to the attaching member **212**. As illustrated in FIG. 8, since sheet members **310b** that do not have adhesiveness is adhered on outside adhesive surfaces **310c1** of the adhesive two-sided adhesive tape members **310c**, there is no hindrance when attaching the destaticizing brush units **310** to the attaching member **212**.
- 10
- 15

The grounding member **311** is grounded by being electrically connected to a conductive member that is electrically connected to a side plate that is grounded (not shown). In such a state, the conductive brush members **310a** come in contact to and slides against the sheet S that is nipped and conveyed by the discharge rollers **202** and the driven rollers **204** illustrated in FIG. 2. With the above, the electric charge flows from the charged sheet S through each of the conductive brush members **310a**, the grounding member **311** and, further, the conduction member and the side

plate that are not shown; accordingly, the sheet S is destaticized. With the above, a simple and inexpensive destaticizing brush can be provided.

In place of the adhesive tape member **210b** of the first 5 exemplary embodiment, as is the case of the present exemplary embodiment, a tape member with weak adhesiveness, a sheet member **310b** with no adhesiveness, and an adhesive material such as an adhesive two-sided adhesive tape member **310c** may be used to obtain a similar effect as that 10 of the first exemplary embodiment.

Furthermore, in the present exemplary embodiment, destaticizing is performed by the two end portions of each conductive brush member **310a** coming in contact and shifting against the sheet S that is nipped and conveyed by discharge 15 rollers **202** and the driven rollers **204**. With the above, the destaticizing effect can be increased with fewer conductive brush members **310a**. Other configurations are configured in the same manner as those of the first exemplary embodiment and a similar effect can be obtained.

20 While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all 25 such modifications and equivalent structures and functions.

INTELLECTUAL PROPERTY OFFICE
SEARCHED
INDEXED
2018 MAY 18 PM 2:25**DESTATICIZING BRUSH AND IMAGE FORMING APPARATUS**

5

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present disclosure relates to a destaticizing brush and an image forming apparatus including the same.

Description of the Related Art

10 **[0002]** In image forming apparatuses such as a copier, a printer, and a facsimile machine, a destaticizing brush is used to reduce or remove static electricity charged on a sheet.

15 **[0003]** There is a destaticizing brush in which a brush material formed of an arrangement of a plurality of pieces of electroconductive fiber is pinched with an aluminum tape and one side of an adhesive surface of a conductive two-sided adhesive tape so as to integrally form a unit. The other adhesive surface of the conductive two-sided adhesive
20 tape is adhered to a conductive holding member such as a metal plate such that the destaticizing brush unit is held therewith and is grounded, through a grounding member, by being in electric contact with a grounding portion such as a side plate.

[0004] Generally, adhesiveness of a conductive two-sided adhesive tape is weak. Accordingly, the two-sided adhesive tape may come off when a conveyed sheet and the destaticizing brush come in contact with and slide against each other. As a measure of the above, the destaticizing brush unit and the holding member may be nipped with a nip member so that the two-sided adhesive tape does not come off. However, the structure will become complex and a number of components will be used causing the destaticizing brush to become costly. Furthermore, since conductive two-sided adhesive tapes are expensive and prices of copiers, printers, facsimile machines, and the like are required to be reduced, a destaticizing brush having a simple and inexpensive configuration is in need.

15 **[0005]** For example, in Japanese Patent Laid-Open No. 2002-8890, a destaticizing unit is proposed in which a destaticizing brush main body portion is adhered to a grounding plate with a non-conductive adhesive tape and in which a destaticizing brush that is inserted into an opening provided in the grounding plate comes in electric contact with a wall surface of the opening at a uniform pressure.

20 **[0006]** However, in the destaticizing unit of Japanese Patent Laid-Open No. 2002-8890, a contact failure may occur due to aged deterioration of the destaticizing brush

weakening the pressure pressing the wall surface of the opening of the grounding plate.

SUMMARY OF THE INVENTION

[0007] The present disclosure provides a destaticizing brush that overcomes the above problems and that has a simple and inexpensive configuration.

[0008] A destaticizing brush includes a grounding member that has a line-like shape and that performs electrical grounding, a conductive brush member configured of a plurality of pieces of wire and that comes in contact with an object, and a tape member that has adhesiveness. In the destaticizing brush, the conductive brush member is bent back in a U-shape around an outer periphery of the grounding member and comes in contact with the grounding member, the tape member adheres the conductive brush member and the grounding member in an integrated manner while the tape member covers an outer periphery of the conductive brush member bent in the U-shape, and at least one end of the conductive brush member is exposed from the tape member and comes in contact with the object.

[0009] An image forming apparatus includes an image forming device that forms an image on a sheet, a destaticizing brush that comes in contact with a sheet that is conveyed and that destaticizes the sheet, the

destaticizing brush including a grounding member that has a line-like shape and that performs electrical grounding, a conductive brush member configured of a plurality of pieces of wire and that comes in contact with the sheet, and a tape

5 member that has adhesiveness. In the image forming apparatus, the conductive brush member is bent back in a U-shape around an outer periphery of the grounding member and comes in contact with the grounding member, the tape member adheres the conductive brush member and the grounding member
10 in an integrated manner while the tape member covers an outer periphery of the conductive brush member bent in the U-shape, and at least one end of the conductive brush member is exposed from the tape member and comes in contact with the sheet.

15 Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional explanatory drawing illustrating
20 a configuration of an image forming apparatus including a destaticizing brush according to a first exemplary embodiment of the present disclosure.

FIG. 2 is a perspective view for describing a configuration of a sheet discharge portion of the image forming apparatus

including the destaticizing brush according to the first exemplary embodiment.

FIG. 3A is a perspective view for describing a configuration in which conductive brush members are provided in a 5 grounding member in the destaticizing brush of the first exemplary embodiment. FIG. 3B is a perspective view for describing a configuration of the grounding member of the first exemplary embodiment.

FIG. 4 is a cross-sectional view for describing a 10 configuration of a contact portion between the conductive brush members and the grounding member of the destaticizing brush of the first exemplary embodiment.

FIG. 5 is a front view for describing a configuration of the destaticizing brush of the first exemplary embodiment.

15 FIG. 6 is a bottom view of the destaticizing brush of the first exemplary embodiment attached to the attaching member viewed from the bottom side.

FIG. 7A is a perspective view for describing a configuration in which conductive brush members are provided in a 20 grounding member in the destaticizing brush of the second exemplary embodiment. FIG. 7B is a perspective view for describing a configuration of the grounding member of the second exemplary embodiment.

FIG. 8 is a cross-sectional view for describing a configuration of a contact portion between a conductive brush members and a grounding member of a destaticizing brush of the second exemplary embodiment.

5 FIG. 9 is a front view for describing a configuration of the destaticizing brush of the second exemplary embodiment.

DESCRIPTION OF THE EMBODIMENTS

Referring to the drawings, exemplary embodiments of an image forming apparatus including a destaticizing brush according 10 to the present disclosure will be described in detail.

First Exemplary Embodiment

Referring to FIGS. 1 to 6, a configuration of a first exemplary embodiment of an image forming apparatus including a destaticizing brush according to the present disclosure 15 will be described first.

(Image Forming Apparatus)

FIG. 1 is a cross-sectional explanatory drawing illustrating a configuration of an image forming apparatus including a destaticizing brush according to the present disclosure. An 20 image forming apparatus **100** illustrated in FIG. 1 is an example of a laser beam printer. In FIG. 1, the image forming apparatus **100** includes a photosensitive drum **106** serving as an image carrier that is an image forming member that forms an image on a sheet **S**.

The image forming apparatus **100** further includes a feeding cassette **105**, a feed roller **101**, a registration roller **102**, and the like that configures a sheet feeding portion that separates and feeds the sheets **S** sheet by sheet to a 5 transfer nip portion **N** formed between the photosensitive drum **106** and a transfer roller **103** serving as a transfer member. The image forming apparatus **100** further includes a laser scanner unit (not shown) serving as an image exposing member that irradiates a laser beam on a surface of a 10 photosensitive drum **106** according to image information.

The image forming apparatus **100** further includes a fixing device **104** serving as a fixing member. Furthermore, a discharge tray **107** is provided in the upper portion of the image forming apparatus **100**. An image forming process member 15 such as the photosensitive drum **106** serving as the image forming device is configured as a process cartridge that is detachable with respect to a main body of the image forming apparatus **100**.

The image forming process member that is provided in the 20 process cartridge in an integrated manner includes the photosensitive drum **106** serving as an image carrier that carries an electrostatic latent image, and a charge roller serving as a charge member (not shown) that uniformly charges the surface of the photosensitive drum **106**. 25 Furthermore, a developing device serving as a development

CLAIMS:

RECEIVED
2013 MAY 18 PM 2:25
U.S. PATENT AND
TRADEMARK OFFICE

1. A destaticizing brush, comprising:
 - a grounding member that performs electrical grounding and is a singular continuous element that includes a
 - 5 straight portion and a bent portion, the straight portion having a shape extending from a first end of the grounding member toward a second end of the grounding member, the bent portion being formed between the first end and the second end and by being bent with respect to the straight portion;
 - 10 a conductive brush member configured of at least two pieces of wire that come in contact with an object; and a tape member that has adhesiveness, wherein the conductive brush member is bent back in a U-shape around an outer periphery of the grounding member and comes in contact
 - 15 with the grounding member, the tape member adheres to the conductive brush member and a part of the grounding member in an integrated manner while the tape member covers an outer periphery of the conductive brush member bent in the U-shape, the part of the grounding member including the
 - 20 straight portion and the bent portion, and at least one end of the conductive brush member is exposed from the tape member and comes in contact with the object.
2. The destaticizing brush according to claim 1, wherein

the tape member includes an adhesive layer and a portion of the adhesive layer adheres to another portion of the adhesive layer to face each other.

3. The destaticizing brush according to claim 2,
5 wherein

the at least one end of the conductive brush member and another end of the conductive brush member are exposed from the tape member.

4. The destaticizing brush according to claim 1,
10 wherein

the grounding member is a conductive wire spring that has a circular section.

5. The destaticizing brush according to claim 4,
wherein

15 the bent portion has a shape projecting in a direction intersecting a direction in which the straight portion extends.

6. The destaticizing brush according to claim 5,
wherein

20 the tape member is a single piece of two-sided adhesive tape that adheres to the bent portion and the conductive brush member to each other.

7. The destaticizing brush according to claim 1,
wherein

the tape member is a two-sided adhesive tape having no
conductivity.

5 8. The destaticizing brush according to claim 1,
wherein

at least two pieces of wire are disposed on either side
of the bent portion of the grounding member.

9. An image forming apparatus, comprising:
10 an image forming device that forms an image on a
sheet; and
a destaticizing brush that comes in contact with a
sheet that is conveyed and that destaticizes the sheet, the
destaticizing brush comprising: a grounding member that
15 performs electrical grounding and is a singular continuous
element that includes a straight portion and a bent portion,
the straight portion having a shape extending from a first
end of the grounding member toward a second end of the
grounding member, the bent portion being formed between the
20 first end and the second end and by being bent with respect
to the straight portion;
a conductive brush member configured at least two
pieces of wire that come in contact with the sheet; and

a tape member that has adhesiveness, wherein the conductive brush member is bent back in a U-shape around an outer periphery of the grounding member and comes in contact with the grounding member, the tape member adheres to the 5 conductive brush member and a part of the grounding member in an integrated manner while the tape member covers an outer periphery of the conductive brush member bent in the U-shape, the part of the grounding member including the straight portion and the bent portion, and at least one end 10 of the conductive brush member is exposed from the tape member and comes in contact with the sheet.

10. The image forming apparatus according to claim 9, wherein

the tape member includes an adhesive layer, and a 15 portion of the adhesive layer adheres another portion of the adhesive layer to face each other.

11. The image forming apparatus according to claim 10, wherein

the one end of the conductive brush member and another 20 end of the conductive brush member are exposed from the tape member.

12. The image forming apparatus according to claim 9, wherein

the grounding member is a conductive wire spring that has a circular section.

13. The image forming apparatus according to claim 12, wherein

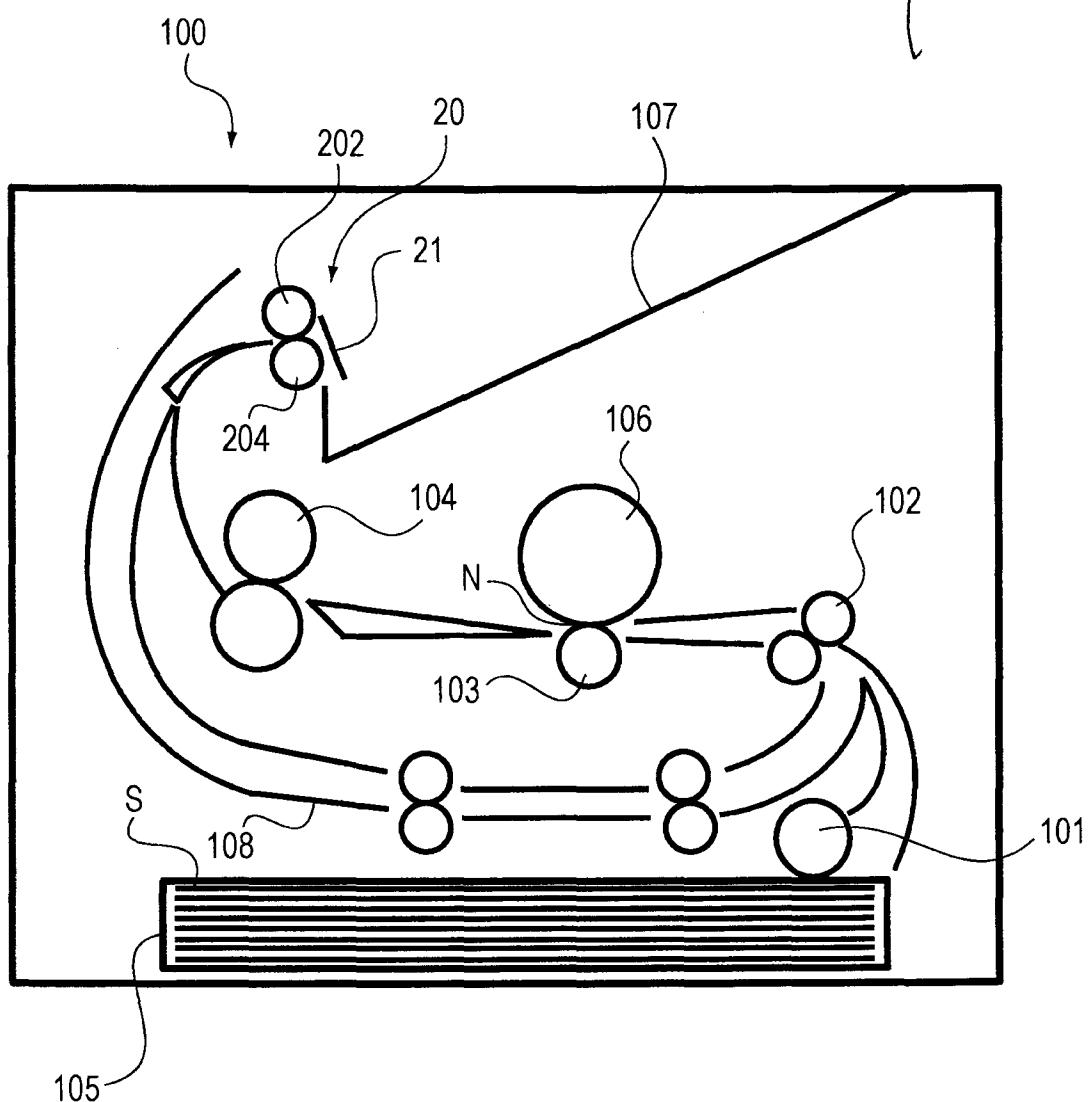
5 the bent portion has a shape projecting in a direction intersecting a direction in which the straight portion extends.

14. The image forming apparatus according to claim 13, wherein

10 the tape member is a single piece of two-sided adhesive tape that adheres to the bent portion and the conductive brush member to each other.

15. The image forming apparatus according to claim 9, wherein

15 the tape member is a two-sided adhesive tape having no conductivity.

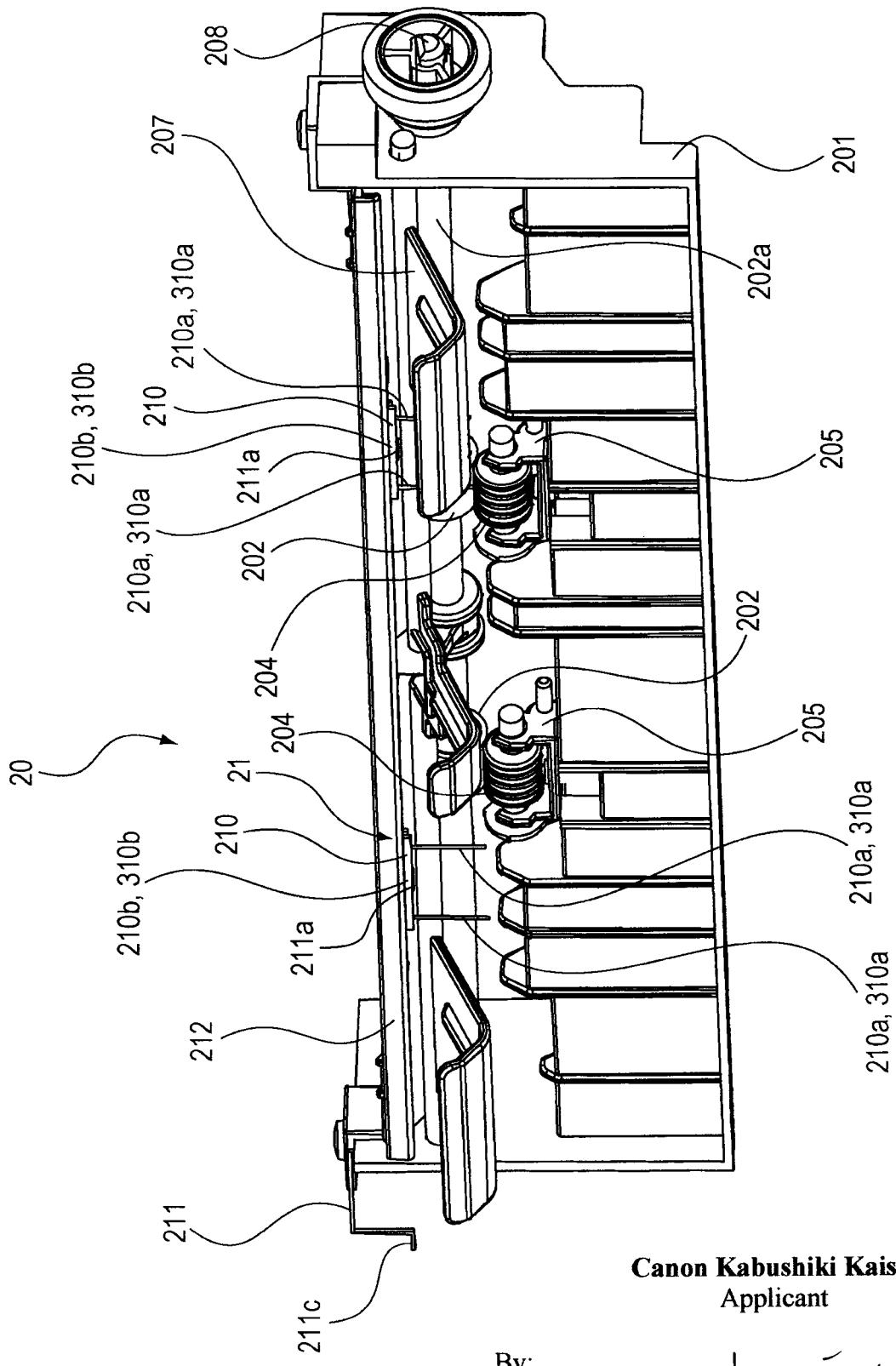

16. The image forming apparatus according to claim 9, wherein

20 at least two pieces of wire are disposed on either side of the bent portion of the grounding member.

INTELLECTUAL PROPERTY OFFICE
RECEIVED

2018 MAY 18 PM 2:29

FIG. 1



Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON

FIG. 2

Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON

FIG. 3A

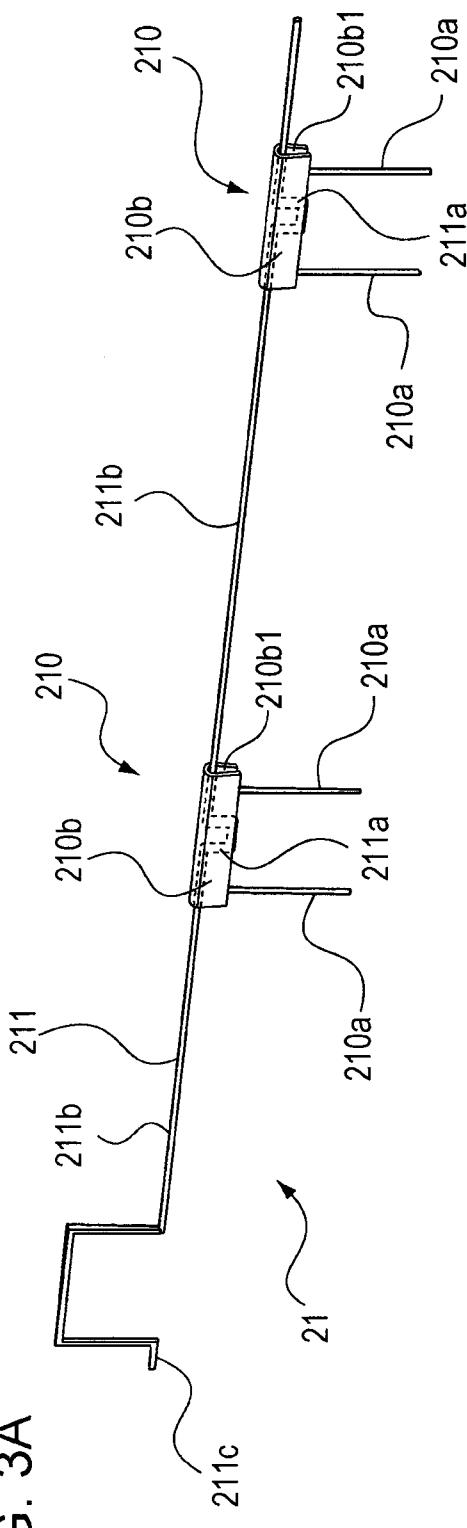
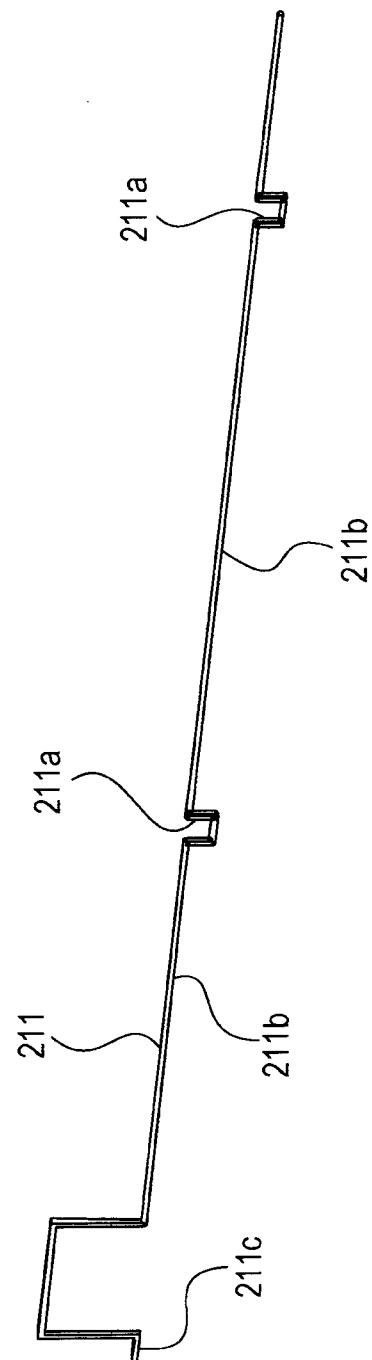
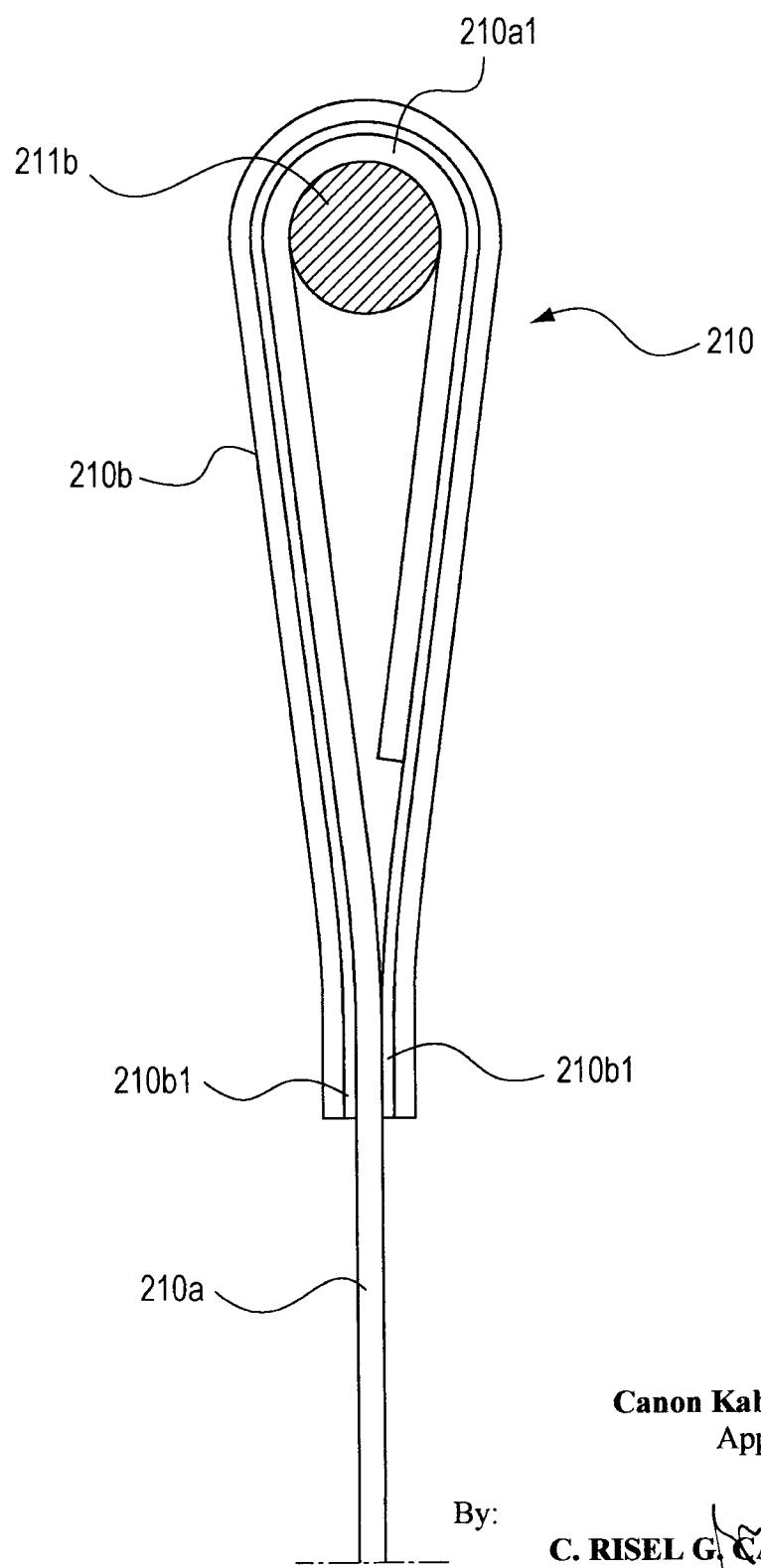



FIG. 3B

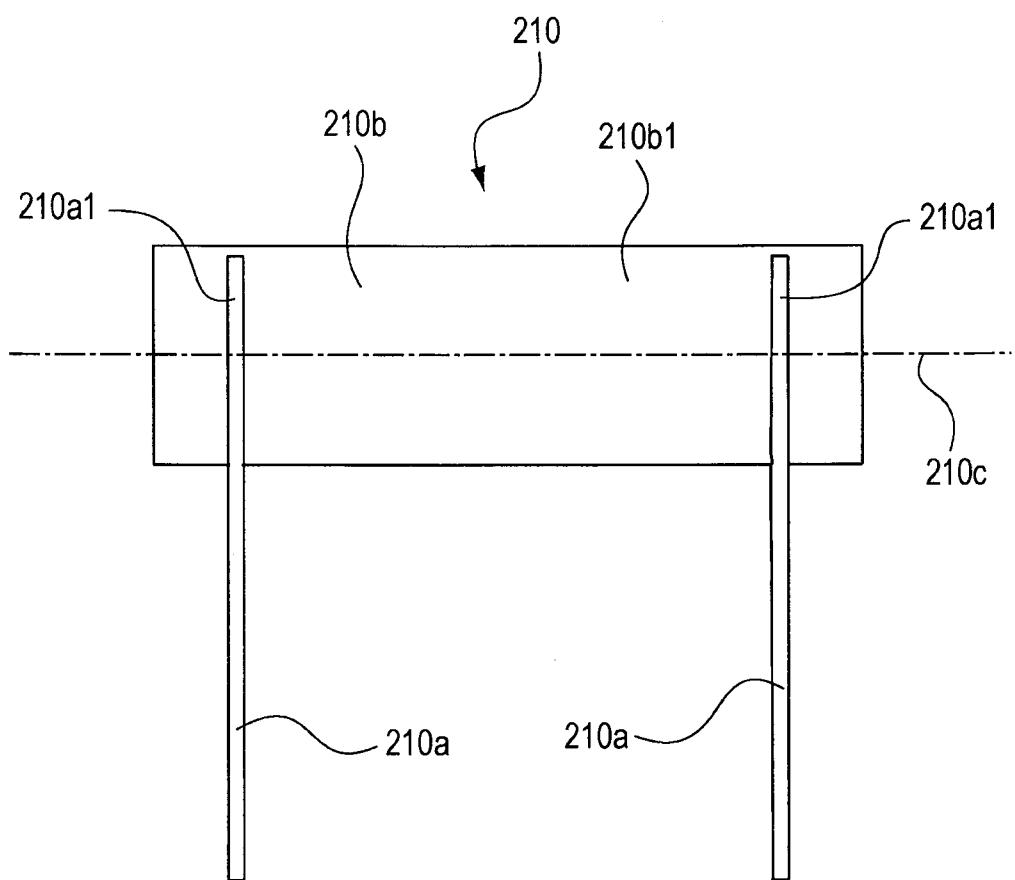


Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON
[Signature]

FIG. 4

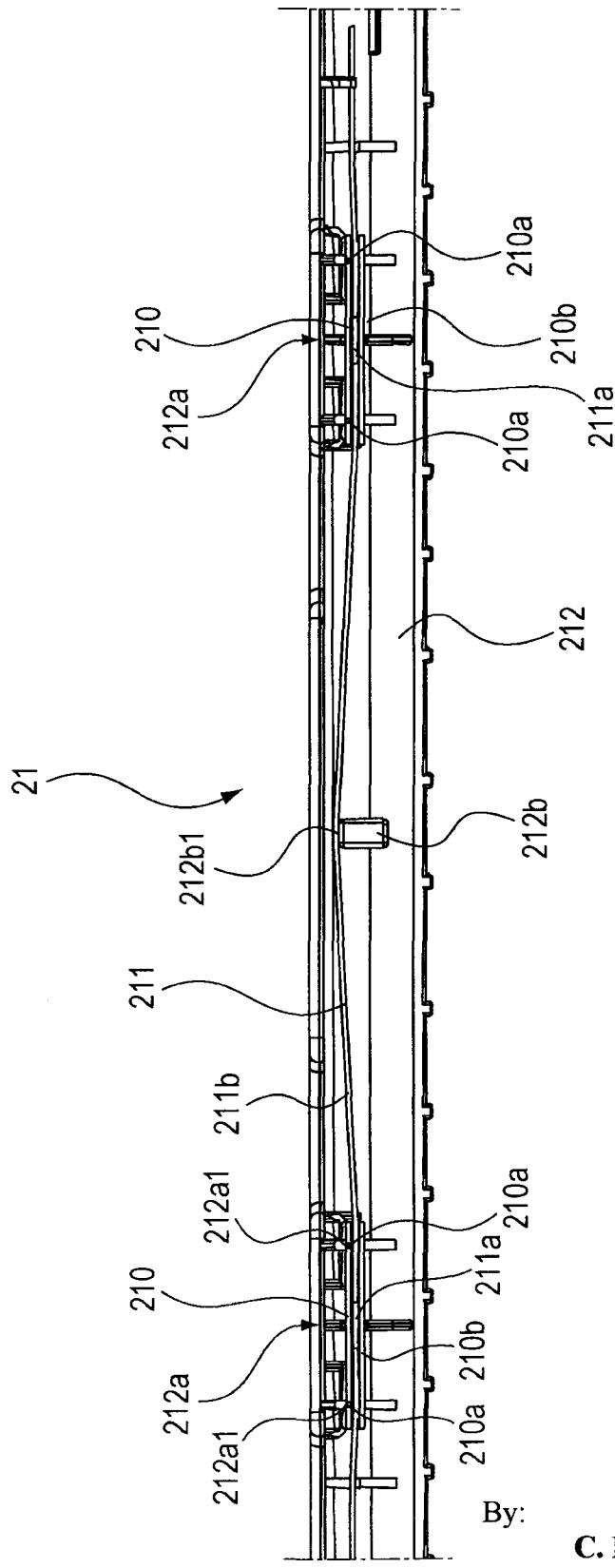


Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON

FIG. 5



Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON

FIG. 6

Canon Kabushiki Kaisha
Applicant

C. RISEL G. CASTILLO-TALEON

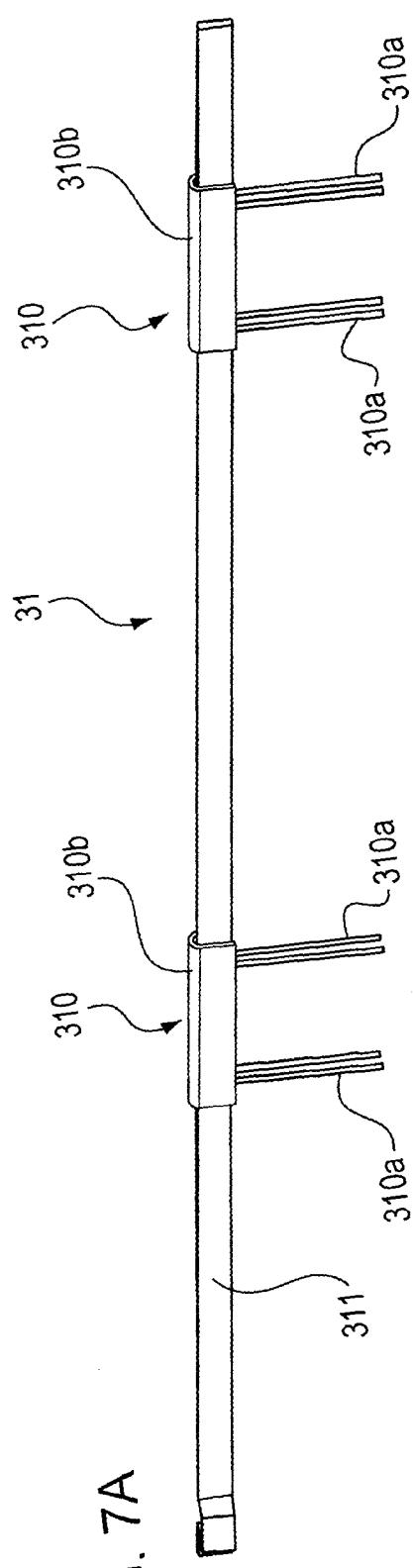


FIG. 7A

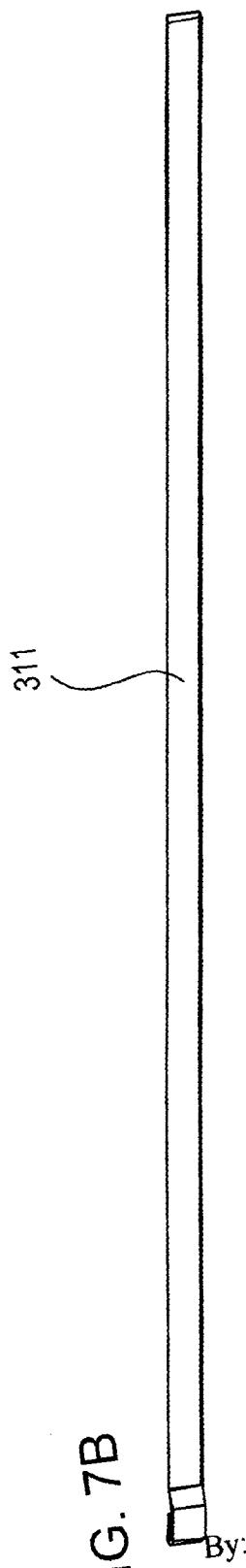
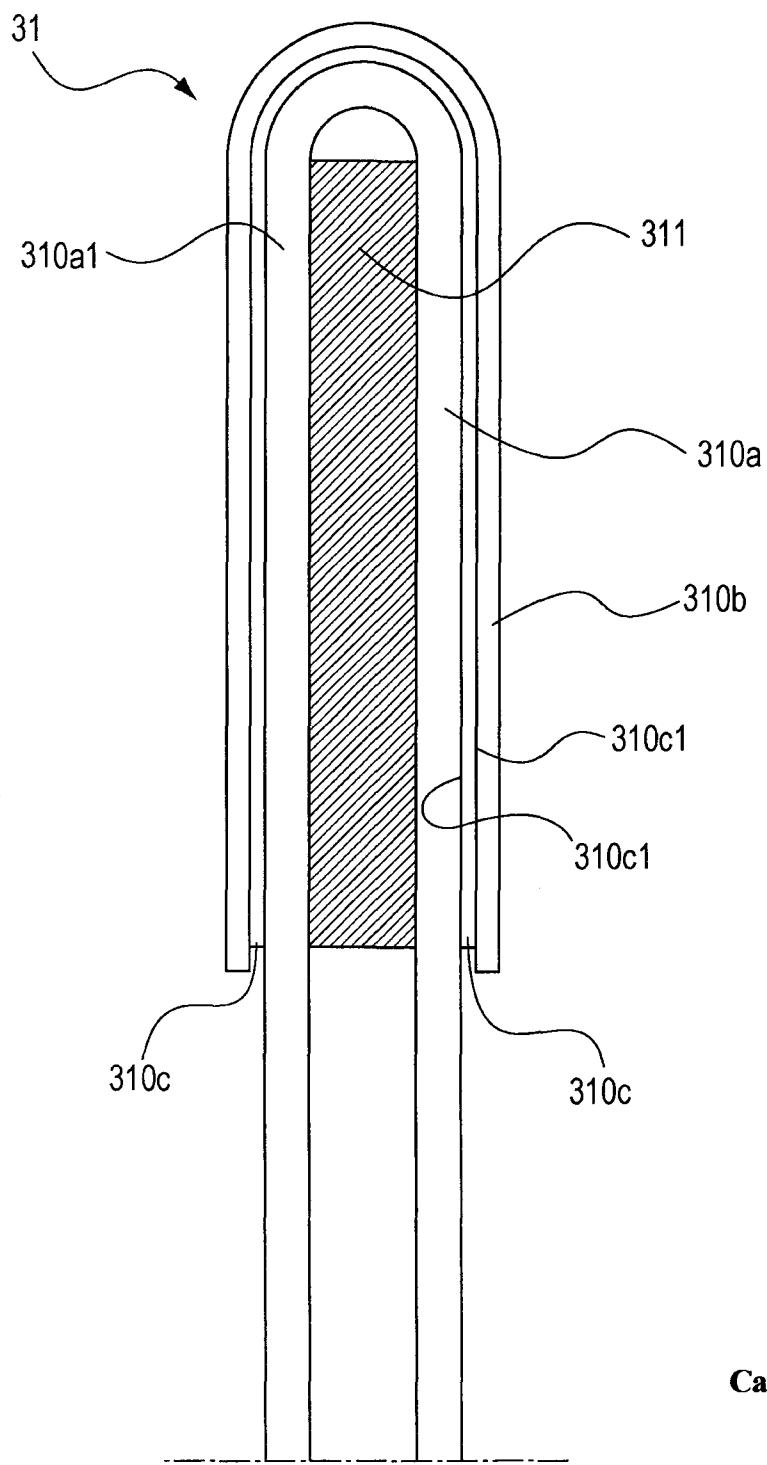
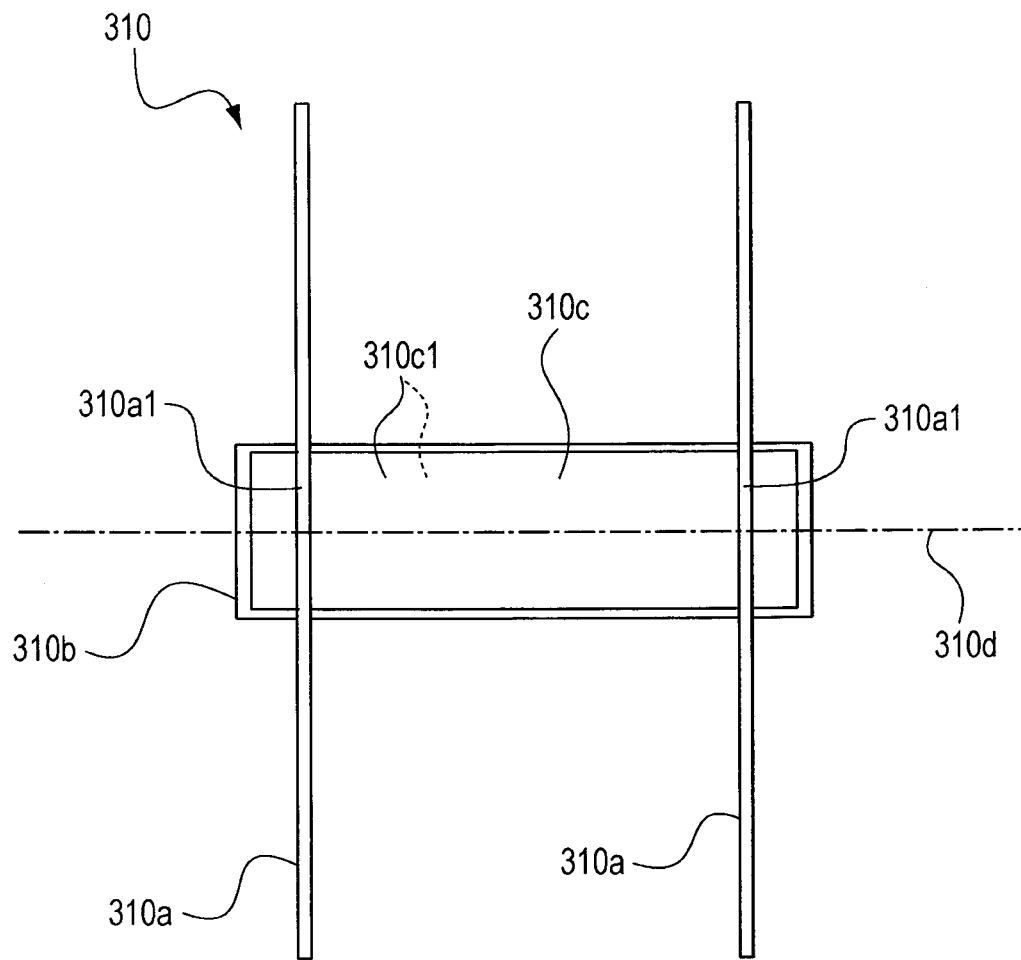



FIG. 7B

Canon Kabushiki Kaisha
Applicant

By: C. RISEL G. CASTILLO-TALEON

FIG. 8


Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON

INTELLECTUAL PROPERTY OFFICE
RECEIVED
2010 MAY 18 PM 2 29

FIG. 9

Canon Kabushiki Kaisha
Applicant

By:

C. RISEL G. CASTILLO-TALEON