A surgical instrument comprising a handle assembly, an elongated portion, a head portion, an approximation mechanism, and a lockout mechanism is disclosed. The handle assembly comprises a movable handle and a stationary handle. The elongated portion extends distally from the handle assembly and defines a longitudinal axis. The head portion is disposed adjacent a distal portion of the elongated portion, and comprises a first jaw member and a second jaw member. The approximation mechanism comprises a drive member disposed in mechanical cooperation with the first jaw member and is configured to longitudinally move the first jaw member in relation to the second jaw member. The lockout mechanism is configured to selectively permit actuation of the movable handle to eject fasteners from the second jaw member. The lockout mechanism comprises a pin extending from the movable handle and is slidingly engaged with a slot in the drive member.
SURGICAL INSTRUMENT WITH LOCKOUT MECHANISM

BACKGROUND

Technical Field

[0001] The present disclosure relates generally to a surgical fastening instrument for applying surgical fasteners to body tissue. More particularly, the present disclosure relates to a surgical fastening instrument that is locked out from firing fasteners until the cartridge assembly and anvil assembly are sufficiently approximated.

Background Of Related Art

[0002] Anastomosis is the surgical joining of separate hollow organ sections. Typically, an anastomosis procedure follows surgery in which a diseased or defective section of hollow tissue is removed and the remaining end sections are to be joined. Depending on the desired anastomosis procedure, the end sections may be joined by either circular, end-to-end or side-to-side organ reconstruction methods.

[0003] In a circular anastomosis procedure, the two ends of the organ sections are joined by means of a stapling instrument which drives a circular array of staples or fasteners through the end section of each organ section and simultaneously cores any tissue interior of the driven circular array of staples to free the tubular passage. Examples of instruments for performing circular anastomosis of hollow organs are described for example in U.S. Patent Nos. 7,303,106, 6,053,390, 5,588,579, 5,19983, 5,005,749, 4,646,745, 4,576,167, and 4,473,077, each of which is incorporated herein in its entirety by reference. Typically, these instruments include an elongated shaft having a handle portion at a proximal end to actuate the instrument and a staple holding component disposed at a distal end. An anvil assembly including an anvil rod with an attached anvil head is mounted to the
distal end of the instrument adjacent the staple holding component. Opposed end portions of tissue of the hollow organ(s) to be stapled are clamped between the anvil head and the staple holding component as these components are approximated. The clamped tissue is stapled by actuation of a trigger to drive one or more staples from the staple holding component so that the ends of the staples pass through the tissue and are deformed by the anvil head. An annular knife is concurrently advanced to core tissue within the hollow organ to free a tubular passage within the organ.

[0004] Besides anastomosis of hollow organs, surgical stapling instruments for performing circular anastomosis have been used to treat internal hemorrhoids in the rectum. Typically, during use of a circular stapling instrument for hemorrhoid treatment, the anvil head and the staple holding component of the surgical stapling instrument are inserted through the anus and into the rectum with the anvil head and the staple holding component in an open or unapproximated position. Thereafter, a pursestring suture is used to pull the internal hemorrhoidal tissue towards the anvil rod. Next, the anvil head and the staple holding component are approximated to clamp the hemorrhoid tissue between the anvil head and the staple holding component. The stapling instrument is fired to remove the hemorrhoidal tissue and staple the cut tissue. In stapled hemorrhoidopexy, a strip of mucosa and submucosa at the top of the hemorrhoids is removed by the stapling instrument, thereby treating the hemorrhoids by inhibiting blood flow to the tissue.

[0005] In certain situations, it is desirable to prevent premature firing of staples. Accordingly, it would be desirable for a surgical instrument to include a lockout mechanism that prevents the movable handle from being actuated until the anvil assembly and the cartridge assembly are sufficiently approximated.
SUMMARY

[0006] The present disclosure relates to a surgical instrument comprising a handle assembly, an elongated portion, a head portion, an approximation mechanism, and a lockout mechanism. The handle assembly comprises a movable handle and a stationary handle. The elongated portion extends distally from the handle assembly and defines a longitudinal axis. The head portion is disposed adjacent a distal portion of the elongated portion, and comprises a first jaw member and a second jaw member. The approximation mechanism comprises a drive member disposed in mechanical cooperation with the first jaw member and is configured to longitudinally move the first jaw member in relation to the second jaw member. The lockout mechanism is configured to selectively permit actuation of the movable handle to eject fasteners from the second jaw member. The lockout mechanism comprises a pin extending from the movable handle which is slidingly engaged with a slot in the drive member.

[0007] In disclosed embodiments, actuation of the approximation mechanism causes longitudinal translation of the slot with respect to the pin.

[0008] In disclosed embodiments, the slot in the drive member includes a blocking portion and a firing portion. When the pin is engaged with the blocking portion of the slot, the movable handle is prevented from being actuated, and when the pin is disposed between the blocking portion and the firing portion of the slot, the movable handle is able to be actuated. Here, it is disclosed that the pin is engaged between the blocking portion and the firing portion of the slot when the first jaw member and the second jaw member are in an approximated position. Here, it is disclosed that the pin is engaged with the firing portion of the slot during actuation of the movable handle. It is further disclosed that the firing portion of the slot is disposed distally adjacent the blocking portion of the slot. It is further disclosed that the blocking portion of the
slot is substantially parallel to the longitudinal axis, and the firing portion of the slot is disposed at an angle with respect to the blocking portion of the slot. It is further disclosed that the firing portion of the slot is arcuate.

[0009] In disclosed embodiments, the surgical instrument further comprises an approximation knob disposed adjacent a proximal portion of the drive member, and a stopper threadably engaged with a portion of the approximation knob. A blocking portion of the stopper is configured to contact a proximal face of the drive member.

[0010] In disclosed embodiments, the handle assembly is threadably engaged with the elongated portion.

[0011] The present disclosure also relates to a method of adjusting the minimum tissue gap between a cartridge assembly and an anvil assembly of a surgical instrument. The method comprises providing a surgical instrument comprising a handle assembly, an elongated portion extending distally from the handle assembly and defining a longitudinal axis, a head portion disposed adjacent a distal portion of the elongated portion and comprising a cartridge assembly and an anvil assembly. A tissue-contacting surface of the cartridge assembly and a tissue-contacting surface of the anvil assembly define a tissue gap therebetween. The method also comprises rotating the handle assembly with respect to the elongated portion such that the cartridge assembly moves along the longitudinal axis with respect to the handle assembly, and affixing the handle assembly to the elongated portion to prevent future movement therebetween.

[0012] In disclosed embodiments, the elongated portion threadably engages the handle assembly.

[0013] In disclosed embodiments, the surgical instrument further comprises an approximation knob disposed in mechanical cooperation with the anvil assembly. Here, the
method further comprises rotating the approximation knob to cause longitudinal movement of the anvil assembly with respect to the cartridge assembly. Here, it is disclosed that the surgical instrument further comprises a drive member disposed in mechanical cooperation with the approximation knob and in mechanical cooperation with the anvil assembly, such that rotation of the approximation knob causes longitudinal translation of the drive member and longitudinal translation of the anvil assembly. Here, it is disclosed that the surgical instrument further comprises a stopper threadably engaged with a portion of the approximation knob. It is further disclosed that the method comprises rotating the stopper with respect to the approximation knob until a blocking portion of the stopper contacts a proximal face of the drive member. It is further disclosed that the method comprises affixing the stopper to the approximation knob to prevent future movement therebetween.

DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed surgical stapling instrument are disclosed herein with reference to the drawings, wherein:

FIGS. 1 and 2 are perspective views of the presently disclosed surgical instrument illustrated in an approximated position, in accordance with an embodiment of the present disclosure;

FIG. 3 is a side view of the surgical instrument of FIGS. 1 and 2;

FIG. 4 is a top view of the surgical instrument of FIGS. 1-3 after the surgical instrument has been fired;

FIG. 5 is an enlarged view of the area indicated in FIG. 4;
Fig. 6 is a perspective view of a distal end of the surgical instrument of the present disclosure including a shipping wedge thereon;

Fig. 7 is a perspective view of the shipping wedge of Fig. 6;

Fig. 8 is a perspective view of a portion of the surgical instrument of the present disclosure with various parts removed;

Fig. 9 is a perspective, assembly view of the surgical instrument of the present disclosure;

Fig. 10 is a perspective, assembly view of parts of an elongated portion of the surgical instrument of the present disclosure;

Fig. 11 is a perspective, assembly view of a shell assembly of the surgical instrument of the present disclosure;

Fig. 12 is a perspective, assembly view of a drive assembly of the surgical instrument of the present disclosure;

Fig. 13 is a perspective, assembly view of a pivot member of the surgical instrument of the present disclosure;

Fig. 14 is a perspective, assembly view of a portion of the handle assembly of the surgical instrument of the present disclosure;

Fig. 15 is a perspective, assembly view of an approximation mechanism of the surgical instrument of the present disclosure;

Fig. 16 is a perspective, assembly view of an anvil assembly of the surgical instrument of the present disclosure;

Fig. 17 is a perspective, assembly view of a movable handle of the surgical instrument of the present disclosure;
FIG. 18 is a perspective view of the surgical instrument of the present disclosure with various parts removed, and illustrating a firing assembly in a locked position;

FIG. 19 is an enlarged view of the area indicated in FIG. 18;

FIG. 20 is a cross-sectional view of the surgical instrument of the present disclosure taken along line 20-20 in FIG. 18;

FIG. 21 is an enlarged view of the area indicated in FIG. 20;

FIG. 22 is a cross-section view of the surgical instrument of the present disclosure taken along line 22-22 in FIG. 4;

FIG. 23 is a cross-section view of the surgical instrument of the present disclosure taken along line 23-23 in FIG. 22;

FIG. 24 is an enlarged view of the area indicated in FIG. 22;

FIG. 25 is an enlarged view of the area indicated in FIG. 22;

FIG. 26 is a perspective view of the surgical instrument of the present disclosure with various parts removed, and illustrating the firing assembly in a firing-enabled position;

FIG. 27 is an enlarged view of a portion of the surgical instrument illustrated in FIG. 26;

FIG. 28 is a proximal-looking transverse, cross-sectional view taken along line 28-28 in FIG. 22;

FIG. 29 is a transverse, cross-sectional view taken along line 29-29 in FIG. 22;

FIG. 30 is a proximal-looking transverse, cross-sectional view taken along line 30-30 in FIG. 22;

FIG. 31 is an enlarged view of the area indicated in FIG. 22 illustrating a safety latch in a firing-enabled position;
FIG. 32 illustrates the safety latch of FIG. 31 in a locked position;

FIG. 33 is a perspective view of the surgical instrument of the present disclosure with various parts removed, and illustrating the firing assembly in a firing-enabled position;

FIG. 34 is an enlarged view of the area indicated in FIG. 33;

FIG. 35 is a side view of portions of the surgical instrument of the present disclosure with various parts removed, and illustrating the firing assembly in a firing-enabled position; and

FIG. 36 is a side view of portions of the surgical instrument of the present disclosure with various parts removed, and illustrating the firing assembly in an actuated position.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical instrument will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. Throughout this description, the term "proximal" will refer to the portion of the instrument closer to the operator and the term "distal" will refer to the portion of the instrument farther from the operator.

FIGS. 1-36 illustrate an embodiment of the presently disclosed surgical instrument shown generally as 100. Briefly, surgical instrument 100 includes a handle assembly 200, an elongated body portion 300 defining a longitudinal axis X-X, a head portion 400, and a lockout mechanism 500. The length, shape, curvature and/or diameter of elongated body portion 300 and head portion 400 may be varied to suit a particular surgical procedure.

With specific reference to FIGS. 1-4, handle assembly 200 includes a stationary handle 210, a movable handle 220, and an approximation mechanism 250. Head portion 400
includes a first jaw member (i.e., an anvil assembly 410) and a second jaw member (i.e., a shell assembly 420). Anvil assembly 410 is movable in relation to shell assembly 420 between spaced (e.g., FIGS. 18 and 20) and approximated positions (e.g., FIGS. 1, 2 and 22).

With reference to FIGS. 9, 12, 15 and 18, further details of approximation mechanism 250 are disclosed. Approximation mechanism 250 includes an approximation knob 252 and a drive member or drive screw 260. Approximation knob 252 is mechanically engaged with drive screw 260, and a distal portion 262 of drive screw 260 is configured to mechanically engage an anvil retainer 412 (FIG. 16). The proximal portion of drive screw 260 includes a helical channel 262 and is slidably positioned within a central bore 253 of a rotatable sleeve 254 (FIG. 15), which extends distally from approximation knob 252. A pin 256 extends through a hole 255 in a distal portion of sleeve 254 into helical channel 264. Sleeve 254 is axially fixed with respect to stationary handle 210. Thus, rotation of approximation knob 252 causes rotation of sleeve 254, which causes pin 256 to move along channel 262 of drive screw 260 to effect axial movement of drive screw 260, and thus a corresponding axial movement of anvil retainer 412 and anvil assembly 410. That is, rotation of approximation knob 252 causes movement of anvil assembly 410 in relation to shell assembly 420 between spaced and approximated positions.

More particularly, rotation of approximation knob 252 in a first direction (e.g., clockwise) retracts anvil retainer 412 to cause proximal movement of anvil assembly 410 (i.e., toward shell assembly 420). Rotation of approximation knob 252 in a second opposite direction (e.g., counter-clockwise) distally advances anvil retainer 412 to cause distal movement of anvil assembly 410 (i.e., away from shell assembly 420). Other approximation mechanisms are also contemplated. Further details of the approximation mechanism are described in U.S. Patent No. 7,303,106, the entire contents of which are incorporated herein by reference.
Referring now to FIGS. 35 and 36, actuation of movable handle 220 (i.e., pivoting in the direction of arrow "A" in FIG. 36), from its firing enabled position (FIG. 35) to its actuated or fired position (FIG. 36), causes fasteners or staples 450 (FIG. 11) to be ejected from shell assembly 420 toward anvil assembly 410. That is, movable handle 220 is disposed in mechanical cooperation with a pusher 600, such that actuation of movable handle 220 causes distal advancement of pusher 600 into direct or indirect contact with staples 450, which causes ejection of staples 450 toward staple deforming pockets 411 (FIG. 16) of anvil assembly 410. More particularly, a biasing element 610 urges pusher 600 proximally into contact with a camming surface 222 of movable handle 220. A distal portion of biasing element 610 is in contact with a wall 202 (FIG. 22) extending radially inwardly from an inner wall 204 of handle assembly 200, thus enabling biasing element 610 to proximally bias pusher 600. When movable handle 220 is actuated, i.e. pivoted about a pivot member 223, camming surface 222 of movable handle 220 is moved distally, camming a proximal portion of pusher 600, which causes distal translation of pusher 600 and ejection of staples 450. Further details of the actuation of the movable handle to cause ejection of staples is described in U.S. Patent No. 7,303,106, incorporated by reference herein in its entirety.

Referring now to FIGS. 12, 18, 19, 26, 27 and 33-36, lockout mechanism 500 of surgical instrument 100 is shown. Locking mechanism 500 is configured to prevent premature ejection of staples from shell assembly 420. Moreover, locking mechanism 500 prevents actuation of movable handle 220 until anvil assembly 410 has been moved into its approximated position with respect to shell assembly 420. Locking mechanism 500 includes a slot 270 in drive screw 260, and a pin 280 extending from a portion of movable handle 220 and which engages
slot 270. With specific reference to FIG. 12, slot 270 includes a first, blocking portion 272, and a second, firing portion 276.

[0056] With specific reference to FIG. 19, prior to sufficient approximation of anvil assembly 410, pin 280 of movable handle is within blocking portion 272 of slot 270. In this position, a user is prevented from actuating movable handle 220 in the direction of arrow "A," because an attempt to do so would cause pin 280 to move in the direction of arrow "B" (FIG. 19). As shown, pin 280 is unable to move in the direction of arrow "B" because pin 280 would be forced against a lower wall 273 of blocking portion 272 of slot 270, thus preventing actuation of movable handle 220.

[0057] Referring now to FIG. 27, after sufficient approximation of anvil assembly 410, pin 280 of movable handle 220 is adjacent firing portion 276 of slot 270. That is, drive screw 260 has been distally advanced via rotation of approximation knob 252 such that firing portion 276 of slot 270 of drive screw 260 is adjacent pin 280 of movable handle 220. In this position, actuation of movable handle 220 by a user causes a gripping portion 224 of movable handle 220 to move in the direction of arrow "A" and causes pin 280 of movable handle 220 to move in the direction of arrow "B" into firing portion 276 of slot 270. As discussed above, when pin 280 of movable handle 220 moves into firing portion 276 of slot 270, camming surface 222 of movable handle 220 is moved distally, camming a proximal portion of pusher 600, which causes distal translation of pusher 600 and ejection of staples 450.

[0058] Additionally, when pin 280 of movable handle 220 is within firing portion 276 of slot 270, drive screw 260 is physically prevented from longitudinal movement. That is, in this position, a user will be prevented from rotating approximation knob 252, as the engagement between pin 280 and firing portion 276 of slot 270 of drive screw 260 would prevent longitudinal
movement of drive screw 260. More particularly, the engagement between pin 280 and a distal wall 277 of firing portion 276 of slot 270 would prevent drive screw 260, and thus anvil assembly 410, from proximally translating (see also FIGS. 35 and 36). The engagement between pin 280 and a proximal wall 278 of firing portion 276 of slot 270 would prevent drive screw 260, and thus anvil assembly 410, from distally translating.

[0059] After movable handle 220 is actuated to effect firing and the user releases the force against movable handle 220, biasing element 610 urges pusher 600 and thus camming surface 222 of movable handle 220 proximally. Pin 280 is likewise moved proximally out of firing portion 276 of slot 270, thus enabling longitudinal translation of drive screw 260.

[0060] Additionally, slot 270 includes a transverse portion 279 disposed at the proximal-most end of slot 270 (FIG. 27). It is envisioned that transverse portion 279 of slot 270 facilitates assembly of surgical instrument 100. That is, during assembly, pin 280 of movable handle 220 is able to enter slot 270 through transverse portion 279.

[0061] In the illustrated embodiments, and with particular reference to FIGS. 31 and 32, surgical instrument includes a safety latch 650 disposed in mechanical cooperation with movable handle 220. Safety latch 650 is another feature of surgical instrument 100 that is configured to maintain movable handle 220 in an open, non-actuated position until anvil assembly 410 and shell assembly 420 have been approximated. When safety latch 650 is in the blocking position shown in FIG. 32 (wherein anvil assembly 410 and shell assembly 420 are in an unapproximated (spaced) position), movable handle 220 cannot be squeezed or actuated. When safety latch 650 is in the enabling position shown in FIG. 31 (wherein anvil assembly 410 and shell assembly 420 are in a closed position), movable handle 220 is able to be actuated. It is envisioned that safety latch 650 is biased into its blocking position (FIG. 32), and is movable by a user into its enabling
position (FIG. 31). As can be appreciated, safety latch 650 is an additional feature that may be included to help prevent staples from being fired prematurely by physically blocking movement of movable handle 220.

[0062] As shown in FIGS. 8 and 10, pusher 600 includes a proximal extension 620. An outer perimeter of at least part of proximal extension 620 contacts an inner wall 204 of handle assembly 200 (see FIGS. 22 and 31). It is envisioned that proximal extension 620 of pusher 600 helps balance the forces enacted on drive screw 260 during firing of surgical instrument 100. That is, the friction between inner wall 204 of handle assembly 200 and proximal extension 620 during longitudinal translation of drive screw 260 helps prevent drive screw 260 from twisting or torquing during firing. [note to inventors: please confirm accuracy and/or provide additional information, if necessary]

[0063] With particular reference to FIGS. 5 and 34, surgical instrument 100 includes an indicator 700. Indicator 700 includes a first indicia 710 disposed adjacent a distal portion of drive screw 260, a second indicia 720 disposed adjacent proximal extension 620 of pusher 600, and a window 730 on handle assembly 200. Indicator 700 is configured to enable a user determine whether staples 450 have been fired from shell assembly 420. A user knows when staples 450 have been fired, when, as viewed through window 730, first indicia 710 is longitudinally aligned with second indicia 720. In FIG. 34, where first indicia 710 and second indicia 720 are longitudinally displaced from each other, movable handle 220 has not yet been actuated and thus no staples have been fired. In FIG. 5, first indicia 710 and second indicia 720 are longitudinally aligned, and thus indicates that surgical instrument 100 has been fired.

[0064] With reference to FIGS. 21 and 25, a stopper 800 is illustrated. Stopper 800 is threadably engaged with approximation knob 252 and is configured to ensure the position of
drive screw 260 with respect to pin 280 of movable handle 220. During assembly, approximation knob 252 is rotated a sufficient amount that corresponds to firing position 276 of slot 270 being adjacent pin 280. Once this position is confirmed, stopper 800 is rotated (e.g., advanced distally) until a blocking portion 802 stopper 800 makes contact with a proximal face 261 of drive screw 260 (FIG. 25). Next, during assembly, welding or a thread adhesive, for example, is used where the threads 804 of stopper 800 engage threads 257 of approximation knob 252 to prevent future longitudinal movement of stopper 800 with respect to approximation knob 252. When stopper 800 is in this position and effectively affixed to approximation knob 252, the proper positioning of drive screw 260 (e.g., firing portion 276 of slot 270 therein) with respect to pin 280 is ensured.

[0065] Referring now to FIG. 24, surgical instrument 100 includes a tissue gap adjustment mechanism 900. Tissue gap adjustment mechanism 900 enables altering the gap "G" between tissue-contacting surfaces of anvil assembly 410 and shell assembly 420 after assembly of surgical instrument 100. Due in part to the build up of manufacturing tolerances, it is often cost prohibitive to achieve an exact or precise tissue gap "G" in an assembled surgical instrument. In the present disclosure, an exact tissue gap "G" can be achieved without the use of tighter or more strict manufacturing tolerances.

[0066] Tissue gap adjustment mechanism 900 includes a first threaded portion 910 disposed adjacent a distal portion of handle assembly 200, and a second threaded portion 920 disposed adjacent a proximal portion of elongated body portion 300. First threaded portion 910 is configured to threadably engage second threaded portion 920. After at least a partial assembly of surgical instrument 100, handle assembly 200 is rotated with respect to elongated body portion 300 to increase or decrease the size of the tissue gap "G" by advancing or retracting shell
assembly 420. That is, when handle assembly 200 is rotated in a first direction about the longitudinal axis X-X with respect to elongated body portion 300, shell assembly 420 moves proximally with respect to handle assembly 200 and the tissue gap "G" increases, and when handle assembly 200 is rotated in a second direction about the longitudinal axis X-X with respect to elongated body portion 300, shell assembly 420 moves distally with respect to handle assembly 200 and the tissue gap "G" decreases. Once the desired tissue gap "G" is achieved, welding or a thread adhesive, for example, is used where first threaded portion 910 and second threaded portion 920 are engaged to prevent future longitudinal movement between handle assembly 200 and elongated body portion 300. As can be appreciated, the location of tissue gap adjustment mechanism 900 (i.e., where handle assembly 200 and elongated body portion 300 meet) is not limited to the location shown in the figures, but can be disposed in any reasonable location on surgical instrument 100.

Figures 6 and 7 illustrate a shipping wedge 950. Shipping wedge 950 includes a first pair of tines 952 and a second pair of tines 954. Tines 952 are configured to slidingly engage apertures 414 (FIG. 16) on a distal end of anvil assembly 410. Tines 954 are radially-outwardly flexible and are configured to releasably engage openings 422 (FIG. 11) on an outer wall of shell assembly 420. It is envisioned that shipping wedge 950 maintains anvil assembly 410 in a substantially fixed longitudinal position with respect to shell assembly 420 during shipping, storage, etc. of surgical instrument 100.

The present disclosure also relates to a method of performing a surgical procedure using surgical instrument 100 described herein, a method of manufacturing surgical instrument 100 described herein, a method of assembling surgical instrument 100 described herein, and a method of adjusting tissue gap "G" as described herein.
It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of disclosed embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
CLAIMS

1. A surgical instrument, comprising:
 a handle assembly comprising a movable handle and a stationary handle;
 an elongated portion extending distally from the handle assembly and defining a longitudinal axis;
 a head portion disposed adjacent a distal portion of the elongated portion, the head portion comprising a first jaw member and a second jaw member;
 an approximation mechanism comprising a drive member disposed in mechanical cooperation with the first jaw member and being configured to longitudinally move the first jaw member in relation to the second jaw member; and
 a lockout mechanism configured to selectively permit actuation of the movable handle to eject fasteners from the second jaw member, the lockout mechanism comprising a pin extending from the movable handle and being slidingly engaged with a slot in the drive member.

2. The surgical instrument of Claim 1, wherein actuation of the approximation mechanism causes longitudinal translation of the slot with respect to the pin.

3. The surgical instrument of Claim 1, wherein the slot in the drive member includes a blocking portion and a firing portion, wherein when the pin is engaged with the blocking portion of the slot, the movable handle is prevented from being actuated, and wherein when the pin is disposed between the blocking portion and the firing portion of the slot, the movable handle is able to be actuated.
4. The surgical instrument of Claim 3, wherein the pin is engaged between the blocking portion and the firing portion of the slot when the first jaw member and the second jaw member are in an approximated position.

5. The surgical instrument of Claim 3, wherein the pin is engaged with the firing portion of the slot during actuation of the movable handle.

6. The surgical instrument of Claim 3, wherein the firing portion of the slot is disposed distally adjacent the blocking portion of the slot.

7. The surgical instrument of Claim 3, wherein the blocking portion of the slot is substantially parallel to the longitudinal axis, and wherein the firing portion of the slot is disposed at an angle with respect to the blocking portion of the slot.

8. The surgical instrument of Claim 3, wherein the firing portion of the slot is arcuate.

9. The surgical instrument of Claim 1, further comprising an approximation knob disposed adjacent a proximal portion of the drive member, further comprising a stopper threadably engaged with a portion of the approximation knob, and wherein a blocking portion of the stopper is configured to contact a proximal face of the drive member.

10. The surgical instrument of Claim 1, wherein the handle assembly is threadably engaged with the elongated portion.
11. A method of adjusting the minimum tissue gap between a cartridge assembly and an anvil assembly of a surgical instrument, the method comprising:
 providing a surgical instrument comprising a handle assembly, an elongated portion extending distally from the handle assembly and defining a longitudinal axis, a head portion disposed adjacent a distal portion of the elongated portion and comprising a cartridge assembly and an anvil assembly, wherein a tissue-contacting surface of the cartridge assembly and a tissue-contacting surface of the anvil assembly define a tissue gap therebetween;
 rotating the handle assembly with respect to the elongated portion such that the cartridge assembly moves along the longitudinal axis with respect to the handle assembly; and
 affixing the handle assembly to the elongated portion to prevent future movement therebetween.

12. The method of Claim 11, wherein the elongated portion threadably engages the handle assembly.

13. The method of Claim 11, wherein the surgical instrument further comprises an approximation knob disposed in mechanical cooperation with the anvil assembly.

14. The method of Claim 13, further comprising rotating the approximation knob to cause longitudinal movement of the anvil assembly with respect to the cartridge assembly.

15. The method of Claim 13, wherein the surgical instrument further comprises a drive member disposed in mechanical cooperation with the approximation knob and in mechanical
cooperation with the anvil assembly, such that rotation of the approximation knob causes
longitudinal translation of the drive member and longitudinal translation of the anvil assembly

16. The method of Claim 15, wherein the surgical instrument further comprises a stopper
threadably engaged with a portion of the approximation knob.

17. The method of Claim 16, further comprising rotating the stopper with respect to the
approximation knob until a blocking portion of the stopper contacts a proximal face of the drive
member.

18. The method of Claim 17, further comprising affixing the stopper to the approximation
knob to prevent future movement therebetween.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See the extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

UPC: A61B-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

ICPRSABS, EPDOC, WPI, CTXT, VEN: surgical, instrument, handle, assembly, head, lockout, approximation, pin, slot, actuation, fire

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2010051669 A1 (TYCO HEALTHCARE GROUP LP), 04 March 2010 (04.03.2010) description, paragraphs [0032]-[0046] and figures 1-8</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>CN 103120599 A (GYRUS MEDICAL LTD.), 29 May 2013 (29.05.2013) The whole document</td>
<td>1-18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 - A: document defining the general state of the art which is not considered to be of particular relevance
 - E: earlier application or patent but published on or after the international filing date
 - L: document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - O: document referring to an oral disclosure, use, exhibition or other means
 - P: document published prior to the international filing date but later than the priority date claimed
 - T: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - X: document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - Y: document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - &: document member of the same patent family

Date of the actual completion of the international search 28 February 2014 (28.02.2014)

Date of mailing of the international search report 20 Mar. 2014 (20.03.2014)

Name and mailing address of the ISA/CN

The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088
facsimile No. 86-10-62019451

Authorized officer LAN,Xia
Telephone No. (86-10) 82245486

Form PCT/ISA /210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2010051669 A1</td>
<td>04.03.2010</td>
<td>CA 2677405 A1</td>
<td>03.03.2010</td>
</tr>
<tr>
<td>EP 2160984A2</td>
<td>10.03.2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2012031948 A1</td>
<td>09.02.2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2013193187 A1</td>
<td>01.08.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2707560 A1</td>
<td>11.01.2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 2010202192 A1</td>
<td>27.01.2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 8146790 B2</td>
<td>03.04.2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2011006100 A1</td>
<td>13.01.2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 20091 89829 A</td>
<td>27.08.2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU 2009105142 A</td>
<td>20.08.2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR PI0901725 A2</td>
<td>26.01.2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7861906 B2</td>
<td>04.01.2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2009206129 A1</td>
<td>20.08.2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 2092897 A2</td>
<td>26.08.2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU 2489100 C2</td>
<td>10.08.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN 200900253 l2</td>
<td>28.08.2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 103120599 A</td>
<td>29.05.2013</td>
<td>FR 2982760 A1</td>
<td>24.05.2013</td>
</tr>
<tr>
<td>DE 102012221109 A1</td>
<td>23.05.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2013131666 A1</td>
<td>23.05.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 201 3106949 A</td>
<td>06.06.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB 2496735 A</td>
<td>22.05.2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 20120499 A1</td>
<td>19.06.2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA /210 (patent family annex) (July 2009)
A. CLASSIFICATION OF SUBJECT MATTER

- A61B 17/03 (2006.01)i
- A61B 17/04 (2006.01)i
- A61B 17/068 (2006.01)i