HEATING DEVICE FOR AEROSOL-TYPE LATHER DISPENSERS

James A. Galgano, 80 NW. 158th St., and John A. Saraceno, 8325 NW. 29th Court, both of Miami, Fla.

Filed May 8, 1959, Ser. No. 811,668

1 Claim. (Cl. 219—43)

This invention relates generally to heating devices and is more particularly directed to a heating device for an aerosol-type lather dispenser. During the past few years the popularity of the aerosol lather bomb, also known as the instant lather, has skyrocketed to the point where most men have discarded the old fashioned shaving brush, and use these bombs for their daily shave. This has been brought about largely by the use of lather making machines required to be used in barber shops by sanitary regulations. However, due to the high cost of these lather making machines, and also to the great deal of care required to maintain the machines in proper operating condition, the use of the lather making machines has been confined to the barber shops. The aerosol-type lather dispensers are the answer to the shaving man's problem since they are relatively inexpensive and have no working or moving parts, so that there are no maintenance problems.

There is, however, one disadvantage in the use of the aerosol-type lather dispenser as compared to the shaving brush, in that there is no means for heating the lather. Those men who desire a hot lather for their beard still use the old fashioned shaving brush, while those who use the present instant lather must shave with a cold lather, which leaves much to be desired.

Therefore, it is a principal object of the present invention to provide a heating device for aerosol-type lather dispensers wherein the lather is maintained at a constant temperature at all times without danger to the bomb.

Another object of the present invention is to provide a heating device for aerosol-type lather dispensers which device is adjustable to receive lather bombs of different sizes.

A further object of the present invention is the provision of a heating device for aerosol-type dispensers described as above, wherein the heating device is simple in construction and inexpensive in operation.

With these and other objects in view, the invention will be best understood from a consideration of the following detailed description taken in connection with the accompanying drawing forming a part of this specification, with the understanding, however, that the invention is not confined to any strict conformity with the showing of the drawing but may be changed or modified so long as such changes or modifications mark no material departure from the salient features of the invention as expressed in the appended claim.

In the drawing:

Figure 1 is an elevational view of an aerosol-type lather dispenser heating device embodying our invention with the bomb shown by dotted lines.

Figure 2 is a longitudinal cross sectional view taken along the line 2—2 of Figure 1.

Figure 3 is a transverse cross sectional view taken along the line 3—3 of Figure 2.

Referring to the drawing wherein like numerals are used to designate similar parts throughout the several views, the numeral 10 refers generally to our heating device receptacle on which is telescopically mounted a cover 11. The receptacle 10 is circular in cross section of sufficient size to accommodate the largest of the aerosol-type lather dispensers manufactured and sold, is open topped and is provided with a bottom wall 12. The circular bottom wall 12 is secured along its peripheral edge to the bottom edge of the receptacle 10 by crimping the two edges together and forming a depending flange 13 so as to space the bottom wall 12 from the surface upon which the heating device is placed. The cover 11 which is telescopically fitted on the upper portion of the receptacle 10 is provided with a bore 14 to permit an aerosol-type lather dispenser 15 positioned in the receptacle 10 to extend therethrough to a position above the cover 15. The spout 16 of the aerosol-type lather dispenser must be sufficiently high above and clear of the cover 14 to permit a person using the bomb 15 to place his hand palm upwards below the spout without interference from the cover 11.

Within the receptacle 10 is an electrical heating element 17 mounted on side walls 18 of a support member 19 which is provided with a plurality of openings 27 to permit the heat to flow upwardly freely to heat the aerosol lather. The support member 19 is of such diameter that it fits snugly within the receptacle 10 resting on the bottom wall 12 of the receptacle 10. The heating element 17 is of the ceramic type with metal support rods 20 extending outwardly therefore from with their ends secured through bores 21 in the side wall 18 of the support member 19. To terminals 22 of the heating element 17 is connected one end of electric wires 23 which extend through bores 24 and 25 in the side walls 18 and 10 respectively and terminate in a male plug 26 connectable to a source of electricity (not shown). A layer of asbestos 30 is placed on the bottom wall 12 of the receptacle 10. Means are provided for hanging the heating device on a wall comprising an elongated slot 28 in the side wall 10 wherein the slot 28 is tapered to permit the device to be hung without danger of its slipping off the head of the support screw or bolt.

It is readily noted that the simplicity of design of the heating device and inexpensiveness of cost of manufacture are its important features. Also, using an electrical heating element 17 of approximately 2K ohms resistance, the lather within the aerosol-type lather dispenser 15 will rise to a temperature of 98° F. and remain at that temperature constantly.

In the assembly of the heating device, the heating element 17 is mounted as shown on the side wall 18 of the support member 19 after the electric wires 23, 23 are connected to the terminals 22. The free end of the wires 23, 23 is threaded through the bores 24 and 25.

The support member 19 is placed into the receptacle 10 and forced downwardly until it rests on the bottom wall 12 in contact relation with an asbestos insulation 30 which had been previously laid thereon. Then, the plug 26 is connected on the free end of the wires 23, the aerosol-type lather dispenser 15 is placed within the receptacle 10 and the cover 11 is fitted over the top of the receptacle 10 and pushed downwardly until it engages the top portion of the dispenser 15. All that need be done is support the plug 26 into a source of electricity, the lather being to the wall of the receptacle on a wall, as desired. The heat generated by the heating element 17 will rise upwardly through the bores 27 to heat the dispenser 15 and the lather contained therein. After the temperature of approximately 98° F. is attained, the heat loss will equal the heat given off by the heating element 17 so that there will be no temperature change thereafter, the heating element 17
remaining connected to the source of electricity at all times.

What we claim as new and desire to secure by Letters Patent of the United States is:

A heating device for aerosol-type lather dispensers comprising an open top receptacle having a bottom wall, depending flange means mounted about said bottom wall for supporting said receptacle, an arcuate cover having a relatively long depending wall portion telescopically mounted on the upper portion of said receptacle for adjustably positioning said cover on said receptacle, said arcuate cover having an opening concentric with said receptacle for receiving the upper portion of said dispenser, a support member positioned in said receptacle, said support member having a perforated top wall and a depending side wall extending about said top wall, said depending wall forming an enclosed heating chamber between said bottom wall and said perforated top wall, a heating element, rod means securing said heating element to said side wall in spaced relation with said bottom wall and said perforated top wall, a plurality of bores in said depending wall and said receptacle and a pair of electric wires connected at one end to said heating element and extending through said bores.

References Cited in the file of this patent

UNITED STATES PATENTS

1,091,774 Shoenberg Mar. 31, 1914
1,966,949 Goldstein July 17, 1934
2,258,210 Maxwell Oct. 7, 1941
2,277,605 Palitzsch Mar. 24, 1942
2,413,176 Deaton Dec. 24, 1946
2,721,927 Beckstrand Oct. 25, 1955