发明名称 复合微生物饲料添加剂

摘要

本发明公开了一种复合微生物饲料添加剂，它是将7种正常微生物群加入固体培养基中经固态发酵、干燥、粉碎成粉末状得到的复合微生物添加剂。7种液体菌种为：蜡样芽孢杆菌、消化球菌、乳酸菌、双歧杆菌、酵母菌、光合菌、放线菌。本发明所得的饲料添加剂，含活菌数≥180亿/g，细菌总数≥240亿/g。添加于鸡、鱼、猪、羊的饲料中，能降低料肉比，增强动物的抗病能力。
1. 一种复合微生物饲料添加剂，其特征是由含有多种微生物菌群的液体菌种、固体培养基、糖蜜和氨基酸混合经固体发酵、干燥、粉碎后制成；其中：各液体菌种各占固体培养基干料重量的 10—15%，糖蜜占固体培养基干料重量的 8—15%，氨基酸占固体培养基干料重量的 15—25%；

液体菌液中各种微生物菌种活菌数的百分比为：

蜡样芽胞杆菌 24—26% 消化球菌 20—25% 乳酸菌 20—23%
双歧杆菌 7—10% 酵母菌 3—5% 光合菌 4—6%
放线菌 11—13%

固体培养基以下列原料按重量百分比混合制成：

玉米粉 20—30% 豆粕 15—25% 大米粉 5—10%
玉米蛋白粉 20—35% 麸皮 8—15% 果渣 4—8%
碳酸钙 2—5%

2. 一种权利要求 1 所述添加剂的制备方法，其特征是按如下步骤进行：

1）按比例称取各种原料备用；

2）将液体乳酸菌、双歧杆菌和光合菌按重量比 1：1：1 混合得厌氧液体复合菌种（1），将蜡样芽胞杆菌、消化球菌、酵母菌和放线菌按重量比 1：1：1 比例混合后得厌氧液体复合菌种（2），备用；

3）将玉米粉 20—30%、豆粕 15—25%、大米粉 5—10%、玉米蛋白粉 20—35%、麸皮 8—15%、果渣 4—8%和碳酸钙 2—5%按比例混合成干料后润水，使含水率为 30%，得固体培养基；

4）将固体培养基在温度 121℃下灭菌 50—70 分钟；

5）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种（1）、糖蜜、氨基酸接种；所述液体菌种（1）、糖蜜、氨基酸的加入量分别为固体培养基干料重量的 30%、10%、20%；

6）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种（2）、糖蜜、氨基酸接种，其加入量分别为固体培养基干料重量的 40%、10%、20%；

7）将培养过的固体培养基进行固体发酵；
8) 将经固体发酵后的物料干燥，使含水率<12%；
9) 粉碎至细度 40—60 目得成品。
3. 根据权利要求 2 所述的制备方法，其特征是所述步骤 (7) 固体发酵是将
接种过乳酸菌、双歧杆菌和光合菌液体菌种的固体培养在温度 25—30℃下进行
厌氧发酵 48 至 72 小时；将接种过蜡样芽孢杆菌、消化球菌、酵母菌、放线菌的
固体培养在 28℃温度下好氧发酵 48—60 小时。
复合微生物饲料添加剂

技术领域
本发明涉及由正常菌群经固体发酵而制成的一种复合微生物饲料添加剂，特别适用于鸡、鸭、鹅等禽类及牛、羊、猪的饲料添加剂。

背景技术
饲料添加剂目前广泛使用的是药物饲料添加剂，药物饲料添加剂是一种由抗生素或化学药物制成的添加剂，使用成本高，杀灭病原菌的同时也杀灭动物肠道正常菌群，并且易产生药物残留，使畜产品质量降低，加之连续单一地使用会引起病原菌产生抗药性。

为克服药物添加剂的缺点，国内外已开始研究开发微生物饲料添加剂。目前已公开使用的微生物饲料添加剂多为单菌种，且大都采用液体发酵制备，工艺设备复杂，投资大。其产品中微生物菌细胞仅有5亿/克，使用效果不理想。

发明内容
本发明的目的是克服单菌微生物添加剂的缺点，提供一种复合微生物饲料添加剂。

本发明的另一个目的是提供一种用固体发酵制备复合微生物饲料添加剂的方法。

本发明是以如下技术方案实现的：一种复合微生物饲料添加剂，其特征是由含有多种微生物菌群的液体菌种、固体培养基、糖蜜和氨基酸混合经固体发酵、干燥、粉碎后制成；其中：各液体菌种各占固体培养基干料重量的10—15%，糖蜜占固体培养基干料重量的8—15%，氨基酸占固体培养基干料重量的15—25%。

液体菌液中各种微生物菌种活菌数的百分比为：
蜡样芽胞杆菌 24—26% 消化球菌 20—25% 乳酸菌 20—23%
双歧杆菌 7—10% 酵母菌 3—5% 光合菌 4—6%
放线菌 11—13% 光合菌 4—6%
固体培养基以下列原料按重量百分比混合制成：
玉米粉 20—30% 豆粕 15—25% 大米粉 5—10%
玉米蛋白粉 20—35% 麸皮 8—15% 果渣 4—8%
碳酸钙 2—5% 。

上述添加剂的制备方法，其特征是按如下步骤进行：

1）按比例称取各种原料备用；

2）将液体乳酸菌、双歧杆菌和光合菌按重量比 1：1：1 混合得厌氧液体复合菌种（1），将蜡样芽胞杆菌、消化球菌、酵母菌和放线菌按重量比 1：1：1 比例混合后得好氧复合液体菌种（2），备用；

3）将玉米粉 20—30%、豆粕 15—25%、大米粉 5—10%、玉米蛋白粉 20—35%、麸皮 8—15%、果渣 4—8%和碳酸钙 2—5%按比例混合成干料后润水，使含水率为 30%，得固体培养基；

4）将固体培养基在温度 121℃下灭菌 50—70 分钟；

5）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种（1）、糖蜜、氨基酸接种；所述液体菌种（1）、糖蜜、氨基酸的加入量分别为固体培养基干料重量的 30%、10%、20%；

6）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种（2）、糖蜜氨基酸接种，其加入量分别为固体培养基干料重的 40%、10%、20%；

7）将接种后的固体培养基进行固体发酵；

8）将经固体发酵后的物料干燥，使含水率<12%；

9）粉碎至细度 40—60 目得成品。

所述步骤（7）中固体发酵是将接种过乳酸菌、双歧杆菌和光合菌液体菌种的固体培养在温度 25—30℃下进行厌氧发酵 48 至 72 小时；将接种过蜡样芽胞杆菌、消化球菌、酵母菌、放线菌的固体培养在 28℃温度下好氧发酵 48—60 小时。

按上述原料百分比及方法制得的复合微生物饲料添加剂呈褐色粉末状，具有香味。经国家指定的质量检测部门检测，达到如下指标：含活菌数≥180 亿/g，细菌总数 204 亿/g，蜡样芽胞杆菌 60 亿/g，消化球菌 58 亿/g，乳酸杆菌 50 亿/g，双歧杆菌 20 亿/g，酵母菌 12 亿/g，氨基酸 6%。

经使用证明本发明的优点是：

1、对畜禽有显著的促生长效果。多次试验证明，在饲料中添加本产品，可使猪和肉鸡日增重提高 5—15%。
2. 饲料中添加本产品，可以不加抗生素及化学药品，无配伍禁忌。无停药期，肉蛋奶产品中无药物残留，符合绿色食品及出口的要求。

3. 提高畜禽对饲料的消化及吸收率，降低料肉比，提高饲料报酬5—15%。

4. 改善肉蛋奶品质和风味。脂肪降低2—5%，肉蛋的胆固醇含量降低40%以上，鸡蛋腥味小，符合保健食品的要求。

5. 增强机体免疫力，调节肠道生态平衡。

6. 明显减轻动物粪便臭味、氨味，减少蝇蛆等虫害，改善养殖环境，创造健康卫生的生态环境。

7. 降低饲料成本，一方面由于所用的饲料不加抗生素、药品、制剂等，另一方面由于提高了消化吸收率，可以适当降低饲料中的营养水平，从而使饲料成本下降。

8. 增加经济效益。本产品的促生长等多种功能，至少给用户增加20—50%的经济效益。

具体实施方式

下面结合实施例进一步阐述本发明。其中各种液体菌种用常规培养方法培养。

实施例1：

1. 液体菌液各种微生物菌种的活菌数百分比：
 蜡样芽孢杆菌 25.2% 消化球菌 23.4% 双歧杆菌 8%
 酵母菌 4.2% 视线菌 12% 光合菌 5%
 乳酸菌 22.2%

2. 固体培养基：
 玉米粉 25% 豆粕 20% 大米粉 7%
 玉米蛋白粉 30% 麸皮 10% 苹果渣 5%
 碳酸钙 3%

3. 制备方法：
 1）按比例称取各种原料备用；
 2）将液体乳酸菌、双歧杆菌和光合菌按重量比1：1：1混合得厌氧液体复合菌种（1），将蜡样芽孢杆菌、消化球菌、酵母菌和视线菌按重量比1：1：1比例混合后得好氧复合液体菌种（2），备用；
3）将玉米粉 25%、豆粕 20%、大米粉 7%、玉米蛋白粉 30%麸皮 10%、苹果渣 5%和碳酸钙 3%按比例混合成干料后润水，使含水率为 30%，得固体培养基；

4）将固体培养基在温度 121℃下灭菌 50～70 分钟；

5）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种（1）、糖蜜、氨基酸接种；所述液体菌种（1）、糖蜜、氨基酸的加入量分别为固体培养基干料重量的 30%、10%、20%；

6）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种（2）、糖蜜、氨基酸接种，其加入量分别为固体培养基干料重的 40%、10%、20%；

7）将经接种液体菌种（1）的固体培养基在 25℃—30℃温度下灭氧发酵 48～72 小时；将接种过液体菌种（2）的固体培养基在 28℃下好氧发酵 48—60 小时；

8）将经固体发酵后的物料干燥，使含水率<12%；

9）粉碎至细度 40—60 目得成品。

实施例 2：

1、液体菌液各种微生物菌种的活菌数百分比：

<table>
<thead>
<tr>
<th>菌种名称</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>蜡样芽胞杆菌</td>
<td>24%</td>
</tr>
<tr>
<td>消化球菌</td>
<td>25%</td>
</tr>
<tr>
<td>双歧杆菌</td>
<td>7%</td>
</tr>
<tr>
<td>酵母菌</td>
<td>4%</td>
</tr>
<tr>
<td>细菌菌</td>
<td>13%</td>
</tr>
<tr>
<td>光合菌</td>
<td>4%</td>
</tr>
<tr>
<td>乳酸菌</td>
<td>23%</td>
</tr>
</tbody>
</table>

2、固体培养基：

<table>
<thead>
<tr>
<th>项目</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉米粉</td>
<td>20%</td>
</tr>
<tr>
<td>豆粕</td>
<td>25%</td>
</tr>
<tr>
<td>大米粉</td>
<td>5%</td>
</tr>
<tr>
<td>玉米蛋白粉</td>
<td>32%</td>
</tr>
<tr>
<td>麸皮</td>
<td>12%</td>
</tr>
<tr>
<td>苹果渣</td>
<td>4%</td>
</tr>
<tr>
<td>碳酸钙</td>
<td>2%</td>
</tr>
</tbody>
</table>

3、制备方法：

1）按比例称取各种原料备用；

2）将液体乳酸菌、双歧杆菌和光合菌按重量 1：1：1 混合得厌氧液体复合菌种（1），将蜡样芽胞杆菌、消化球菌、酵母菌和细菌菌按重量 1：1：1 比例混合后得到好氧复合液体菌种（2），备用；

3）将玉米粉 20%、豆粕 25%、大米粉 5%、玉米蛋白粉 32%、麸皮 12%、苹果渣 4%和碳酸钙 2%按比例混合成干料后润水，使含水率为 30%，得固体培养基；
基：

4）将固体培养基在温度 121℃下灭菌 50—70 分钟；

5）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种 (1)、糖蜜、氨基酸接种：所述液体菌种 (1)、糖蜜、氨基酸的加入量分别为固体培养基干重的 30%、10%、20%；

6）将灭菌后的固体培养基冷却至低于 50℃后加入复合液体菌种 (2)、糖蜜、氨基酸接种，其加入量分别为固体培养基干重的 40%、10%、20%；

7）将接好种液体菌种 (1) 的固体培养基在 25℃—30℃温度下厌氧发酵 48—72 小时，将接种过液体菌种 (2) 的固体培养基在 28℃下好氧发酵 48—60 小时；

8）将经固体发酵后的物料干燥，使含水率＜12%；

9）粉碎至细度 40—60 目得成品。

实施例 3：

1、液体菌液各种微生物菌种的活菌数百分比：

蜡样芽胞杆菌 26% 消化球菌 21% 双歧杆菌 10%
酵母菌 5% 视线菌 11% 光合菌 6%
乳酸菌 21%

2、固体培养基：

玉米粉 30% 豆粕 15% 大米粉 8%
玉米蛋白粉 20% 麦皮 15% 苹果渣 7%
碳酸钙 5%

3、制备方法：

1）按比例称取各种原料备用；

2）将液体乳酸菌、双歧杆菌和光合菌按量 1：1：1 混合得厌氧液体复合菌种 (1)。将蜡样芽胞杆菌、消化球菌、酵母菌和放线菌按量 1：1：1 比例混合后得厌氧复合液体菌种 (2)，备用；

3）将玉米粉 30%、豆粕 15%、大米粉 8%、玉米蛋白粉 20%、麦皮 15%、苹果渣 7% 和碳酸钙 5% 按比例混合成干料后润水，使含水率为 30%，得固体培养基；

4）将固体培养基在温度 121℃下灭菌 50—70 分钟；
5）将灭菌后的固体培养基冷却至低于50℃后加入复合液体菌种（1）、糖蜜、氨基酸接种；所述液体菌种（1）、糖蜜、氨基酸的加入量分别为固体培养基干料重量的30%、10%、20%；

6）将灭菌后的固体培养基冷却至低于50℃后加入复合液体菌种（2）、糖蜜、氨基酸接种，其加入量分别为固体培养基干料重的40%、10%、20%；

7）将接种过液体菌种（1）的固体培养基在25℃—30℃温度下厌氧发酵48—72小时；将接种过液体菌种（2）的固体培养基在28℃下好氧发酵48—60小时；

8）将经固体发酵后的物料干燥，使含水量<12%；

9）粉碎至细度40—60目得成品。

上述三个实施例所得产品经检测，均达到如下指标

细菌总数≥204.54亿/g，含活菌数≥180亿/g。

质量检测见下表1

<table>
<thead>
<tr>
<th>序号</th>
<th>检测项目</th>
<th>计量</th>
<th>检测结果1</th>
<th>检测结果2</th>
<th>检测结果3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>外观</td>
<td>/</td>
<td>实施例1</td>
<td>实施例2</td>
<td>实施例3</td>
</tr>
<tr>
<td>2</td>
<td>水份</td>
<td>%</td>
<td><12</td>
<td><12</td>
<td><12</td>
</tr>
<tr>
<td>3</td>
<td>氨基酸总量</td>
<td>亿/g</td>
<td>6.2</td>
<td>6.0</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>细菌总数</td>
<td>亿/g</td>
<td>204.54</td>
<td>204</td>
<td>204.9</td>
</tr>
<tr>
<td>5</td>
<td>蜡样芽孢杆菌</td>
<td>亿/g</td>
<td>60.23</td>
<td>60.0</td>
<td>60.10</td>
</tr>
<tr>
<td>6</td>
<td>消化球菌</td>
<td>亿/g</td>
<td>58.35</td>
<td>58.5</td>
<td>58.0</td>
</tr>
<tr>
<td>7</td>
<td>乳酸杆菌</td>
<td>亿/g</td>
<td>50.96</td>
<td>50.0</td>
<td>50.85</td>
</tr>
<tr>
<td>8</td>
<td>双歧杆菌</td>
<td>亿/g</td>
<td>20.30</td>
<td>20.20</td>
<td>20.00</td>
</tr>
<tr>
<td>9</td>
<td>酵母菌</td>
<td>亿/g</td>
<td>12.01</td>
<td>12.00</td>
<td>12.01</td>
</tr>
</tbody>
</table>

将上述所得产品添加于蛋鸡、肉鸡、鱼、对虾、猪、的饲料中，经用户使用证明，能降低料肉比，提高饲料报酬5—15%，增强抗病能力等。