(19)

US 20170046381A1

a2y Patent Application Publication (o) Pub. No.: US 2017/0046381 A1l

United States

Corbett et al.

43) Pub. Date: Feb. 16, 2017

(54)

(71)

(72)

(73)

@

(22)

(63)

METHOD OF OPTIMIZING THE
INTERACTION BETWEEN A SOFTWARE
APPLICATION AND A DATABASE SERVER
OR OTHER KIND OF REMOTE DATA
SOURCE

Applicant: DATA ACCELERATOR LIMITED,
London (GB)

Inventors: Sean Patrick Corbett, London (GB);

Edward Philip Edwin Elliott, Sussex

(GB); Matthew Philip Clothier,

Somerset (GB)

Assignee: DATA ACCELERATOR LIMITED,

London (GB)

Appl. No.: 15/213,272

Filed: Jul. 18, 2016

Related U.S. Application Data

Continuation of application No. 13/880,707, filed on
Aug. 16, 2013, now Pat. No. 9,396,228, filed as
application No. PCT/GB2011/050342 on Feb. 22,
2011.

30) Foreign Application Priority Data

Feb. 22, 2010
Mar. 17, 2010 (GB) ...
Jul. 2, 2010 (GB)

Publication Classification

................................... 1002961.9
... 10044493
1011179.7

(GB)

(51) Int. CL
GOGF 17/30
HO4L 29/06

(52) US.CL
CPC ... GOGF 17/30442 (2013.01); GOGF 17/30371
(2013.01); GOGF 17/30554 (2013.01); HO4L
67/42 (2013.01)

(2006.01)
(2006.01)

(57) ABSTRACT

The invention is a method of optimizing the interaction
between (i) a client, being an application such as database
software, implemented on a computing device, and (ii)
database server software implemented on a computing
device. Query data is routed from the client to the database
server software through an optimisation system imple-
mented on a computing device and then response data
provided by the database server software is routed to the
optimisation system. The optimisation system analyses that
(or later) query data and, based on that analysis, applies rules
to response data provided by the database server software, in
order to generate optimised response data to thereby speed
up the interaction between the client and the database server
software.

Optimization System

Decompose

Network Traffic |
interceptor

Protocol Specific

i

b request 1o

' understand

content 3nd
context

Parser

Data Request
Initiator el

Network failure N
Lconnection + re- ———,

establishment |
I

H
i

i
i N {
Compression | Network {
i empeipd
1 Engine i 1 Redirector {
L, ! A, i
¥
[T £ p——
| §
| Encryption !
1 Engine !
{

I Dynamic Rules |

Optimization & effectiveness + :

. Rules Engine | modification
{ :

________) engine !

L ks i

.

|
E
|
I
|

Y

Dats Source
{External
Reference}

US 2017/0046381 A1l

Feb. 16,2017 Sheet 1 of 29

Patent Application Publication

| 34NOld

AR aseyoing rd
T

aAOWIDY
L

Patent Application Publication

Feb. 16, 2017 Sheet 2 of 29

Present

Data Acceleralor new model

Purchase

One-off license purchase for most
software or web 2.0 apps like
Salesforce offered by subscription

New business models for traditional
software. Subscription, rental, rent to
own etc,

Deploy

CD-ROM or Download with 3 party
push deployment tools

Push or pull self service delivery of apps
using Application Streaming

Manage

3 party tools to manage on-going
licensing

Proactive license control and protection
for piracy with world class software DRM

Support

Problems caused by conflicts when
installing additional applications.
Large amounts of regression testing
required

Application Virtualization protects from
application conflicts. Unique
configurable virtualization ensures that
the application performs like it is locally
instatled

Update

3% party patch management
solutions required to push patch
updates

Patch updates are automatically
streamed to users. The patch is only
deployed once and all users receive the
application changes on the fly

Upgrade

Old version has to be removed and
the new version deployed as if it
were a different/new application

Updates are packaged once and then
can be automatically deployed to all
users with the old version automatically
removed

Remove

Software must be manually
removed and usage cannot be
centrally stopped once a user’s
license has expired. Uninstalled
applications leave many remnants
behind causing the system to
become cluttered and slow.

Software can be centrally removed as
soon as the user’s license has expired or
the application is no longer needed.
There are no traces of the application
left behind

FIGURE 2

US 2017/0046381 A1l

Patent Application Publication

Feb. 16,2017 Sheet 3 of 29

US 2017/0046381 A1l

Mobile AppStores since C. | Web AppStores Data | Accelerator Data Acoslerator
2000 2007 - Present AppStore 2010 - Appstore for
Entreprise DB
Apps 2010 -
Content Large number of smalt Small number of Windows higher Any Windows
low value apps web 2.0 high value | value apps app including
apps Very high value
DB apps
End Users Consumer SME & Enterprise | SME & Enterprise | SME & Enterprise
Customers Customers Customers
Main Apple {Tunes for iPhone Web 2.0 apps: Stand Alone As Jukebox
Offerings PocketGear/Handango Collaboration, Windows AppStore but
and Getjar for white CRM, HR, ERP etc. | Applications: with support for
labelled AppStores Office, Database
Photoshop, Applications that
AutoCAD, are higher value
CorelDraw, Sage, | and more
QuickBooks etc. business critical
Raoute to Handset manufacturers Normally lead by Providers with Second phase to
Market and Mobile Operators: providers of Web Appstores customers of
hosted email ~ tooking to go Jukebox
Hosters and SME beyond web apps | AppStore wishing
Apple, Vodafone, T- Telcos: - to extend
Mobile, LG, HTC etc. Hosters and offering
BT,1 &1, Telcos
Fasthosts, Asnamed
Telefonica etc,
Market Mature market worth Market has been New Market— New Market —
Maturity & Sdbiltion in 2009 maturing over multibiton $ muitibillion §
Size 200872009, stilt
small

FIGURE 3

Patent Application Publication

Feb. 16, 2017 Sheet 4 of 29

US 2017/0046381 A1l

SME AppStore

SME AppStore with
licensing

Enterprise AppStore

Offering

Take SMEs existing
applications and
provide them on a self-
service web portal

Offer sales of
additional software
licenses to
customer delivered
over the self-
service web portal.
Software publishers
can also offer new
licensing model;
e.g. Rental, Rent to
Cwn, Try and Buy

Self-Service
AppStore for
Enterprises to
efficiently deliver
their catalogue of
applications to the
end users

Benefits to End User

Simple management of
apps, license reporting,
self-service, always up
to date, no
installation/update
support overhead

Simple way to buy
apps. Can goup
and down with
changes in the
business. Move
from CapEx to
OpEx for software,
no upgrade costs
et¢.

Lower costs of
deployment, lower
costs of support,
faster deployments,
greater efficiency.

Content

Use customers’ existing
software licenses

Top 20 Apps: MS
Office, Adobe
Creative Suite,
Sage Accounts,
Intuit QuickBooks
ete.

Enterprises own apps

Data accsterator's
Product Technology

Application Jukebox
Data Accelerator for DB

Application Jukebox
Data Accelerator for

Application Jukebox
Data Accelerator for

apps DB apps DB apps
Web Portal Web Portal Enterprise Web
eCommerce engine eCommerce engine | Portal
Payment Processing or Payment Processing
Telco billing integration | or Telco biliing
integration
Route to Market Hosters, ISP’s and Second phase form | System
Telcos SME Managed Apps | Integrators/IT

AppStore

services Channel

FIGURE 4

US 2017/0046381 A1l

Feb. 16,2017 Sheet 5 of 29

Patent Application Publication

elep asuodsayyisenbay yjog — |

G 34N9ld

S80IAISS Usama(paieys
aq ueo ejep uoneziwndo pue

asuodsay SNgaY

SINadd

1senbay SINGOY

»

>
«

asuodsay SINGaH .

1senbay SINGAY

od
uopeziwydo

Ll

asuodsay SNGad J0jeniy
iod 1sonbay
uoneziwndo [sonboy swaay sSWaay
L l
asuodsay U@N_E_EOV asuodsey SINGAY g Jojeniu]
yuiod 1senboy
uoneziwndo SNgay

1senbay poziwndo

1senbay swaay

US 2017/0046381 A1l

Feb. 16,2017 Sheet 6 of 29

Patent Application Publication

9 34Noil4

0T '€TE9:60 0T0T Atenuef T

60°ET-EF:60 0TOT Adenuer |

YO CTEYI60 0TOT Aenuer T

Z0°TTEV'60 0107 Adenuer T

aull IaAIDS

€16£95/4974G95d
6PrYSayIvSYIvy483dueisulyq

693408042z
£0£188507813089EYIIEGIIURISUIV]

$65400/48V79-073698Y
Pra0r{8885VVy2auRISUly(Q

US 2017/0046381 A1l

Feb. 16,2017 Sheet 7 of 29

Patent Application Publication

aiemyjog

JanIRgaIseqRIR(

. 34N9Ol4

Aessadau y AlpoN
19nbay pieamiod

—

Ngay <

eegasuodsy
pazwndo
Aessedau g
s2wndp
g AJpoIA —asuodssy
uinpy .IJ
1senbay

JoRREIIYeR(q —

_l||.||ou:oawx E:«mmll..lL)

erqgasuodsay

walsAg
uonezundp

puss

—1 101eNIU} 19nbay

eegAny

o

US 2017/0046381 A1l

Feb. 16,2017 Sheet 8 of 29

Patent Application Publication

SINEQY

8 3dNOId

asuodsay

10 payoen

103813]320Y e1eq

e

1BY10

uiniay

1sanbay
pusg

101eiuy 1sanbay

US 2017/0046381 A1l

Feb. 16,2017 Sheet 9 of 29

Patent Application Publication

3YIE) WOl
asuodsay aasg

53 A

6 34NOId

SNEQaY 03

159nbat piemiod

A

\ﬁ/
pllea

~aug ayoe) st

~

.,

g

ON ON

A

-
7 8yden /M
5aA—
A -1 159nbay §

.. -
4/////\\ \\\\

1sanbay SNGQY

US 2017/0046381 A1l

Feb. 16,2017 Sheet 10 of 29

Patent Application Publication

0l 34Nold

sanbay DjoH .

S3A

N

™,

///pmwmsmm s|.

" ss3i80ud ™
[wApeate S

-

SWEQaY
01 153nbal piemuod

ON

/f/ 7 -
&
WL AX WO ~LAX NQUA SLAX WOYA
2'8'Y 103135, '8 103738, 2'8v 103138,
159nbay swaay senbay siNgay 1sanbay SAIgAY

US 2017/0046381 A1l

Feb. 16,2017 Sheet 11 of 29

Patent Application Publication

. \\mwmx Suiag sisanb

WZAX
WOY4 '8V 103138,
1sanbay SNEQY

E S

Ll 34NOIld

wZAX
QY4 D8’V 103138,
15anbay SINGQaY

.1

wZAX
WOYd 2’8’V 103138,
1senbay SINGAY

¥

sioeniul a1esidng
01 PIEMIOS ~ SSA

S

e .
-
\\\\. ///z.//

PN

.

RN
. ooydnpaiy

o 103E131U] 0} PIBMIO

A

asuodsay aA1aday

Patent Application Publication Feb. 16,2017 Sheet 12 of 29 US 2017/0046381 A1l

RDBMS

FIGURE 12

—— DataAccelerator —J

Intiator

Patent Application Publication Feb. 16,2017 Sheet 13 of 29 US 2017/0046381 A1l

(743
=
o0
[
os
&
T
Q
ey
©
@
[s]
(8]
(&)
<
s+
®
58]
'

™

—
F 3

IﬁI:J

S LL
ot
o0
S
@
¢33
o
[&]
<
18]
®
0w
[}

'
>

Initiator

Patent Application Publication Feb. 16,2017 Sheet 14 of 29 US 2017/0046381 A1l

2]
b=
b
o
o
-
-
O
e
515 =
x._“"“’g"J h
Omm
ARRE: LLJ
25 <
IS I T et m
Ul F 14
g <18 >
[0
< B O
R ol —
U
3 LL

.
P

Initiator

Patent Application Publication Feb. 16,2017 Sheet 15 of 29 US 2017/0046381 A1l

[%1

= .

m «

()]

o

*

= To)
8 ~
i

& L
g 3 0
s -
Iy V)
v a—
o LL
A

Initiator
Initiator
Initiator

US 2017/0046381 A1l

Feb. 16,2017 Sheet 16 of 29

Patent Application Publication

91 JdN9Old

3 1sanbay

Y7 15anbay—

J0lei3|addy eleq

101e131U]

g 1sonbay

10181

ey 159NDbaY—

a 1sanbay

1031R13[320Y eleq

Y7 153Nnbay—

JISERTN

US 2017/0046381 A1l

Feb. 16,2017 Sheet 17 of 29

Patent Application Publication

Ll 3dN9Old
suibug seiny | |¢
Buissa00id asuodsay pusg ejeuuLIB|
1s0d SNG(d Jojeniuy|
h
0] pJemio-
ajeuluIL] !
auibug >
se|ny 1ub114
-U] SNEIaY uOoI}0BUU0D
7 NINTVET
0] pJEmIO]
0] pJemio- (v) auibug
BAI908Y so|ny 6114
alBUILID| SWaay “ul Joenu| L
A h
0} pJemio-| 0} plemio
aleuluLIa| loneg 0} pJemio DAIBOBY | lajeunula]
0] pussg Jojeniu] "UOII0BUUOD BU] 8lBuiWLIB]
/ Jo Bujyoieo a1 asuodsal
wc_m:m:ww_:m UMO S}] 9AISS IO BlED
Buisseooid Joenu 8y} puss 0} JoAI8S B} 0}
150d wol4 pJemioj ‘1sye ueo auibus
Jojen 1senbay se|nJ Jojeniul 8y - (v)

US 2017/0046381 A1l

Feb. 16,2017 Sheet 18 of 29

Patent Application Publication

St:0T 0107/T/€
00:01 010Z/1/2
3 NOYH4 4 1D3138

-

8l 3dN9ld

00:01 010Z/1/1
JWQO4Yd g 103138

S$:01 010Z/1/¢
00:0T 0102/1/¢
00:01 0T0Z/1/1

g WO0d4 V¥ 1237138

ES

Patent Application Publication Feb. 16,2017 Sheet 19 of 29 US 2017/0046381 A1l

>
>

-&C
- s S ~
Ny o [*2]
2 88— 2
8 2“%)
fo st gm [a
A
.
o}
8
0
o
v
9 (@)
[} b vl
Dy
g LLl
Q %
L

Initiator

Patent Application Publication Feb. 16,2017 Sheet 20 of 29 US 2017/0046381 A1l

o
ot gg -~
%) = o wy
= DU, v JUNN =
fva) o= 23]
[c:% Q
o O &=
F—.

k.

k.

jo

e

o

e

9

a

[

Q

<

o]

ot

0

[}

A

FIGURE 20

Initiator

US 2017/0046381 A1l

Feb. 16,2017 Sheet 21 of 29

Patent Application Publication

L 34NOld

SNgay

103843(320Y 218Q)

3

Bunaxiep

Jo1enu|

e b e oy

s

J01B18{900Y BIR(

3

Buunoeooy

Jo1enu|

US 2017/0046381 A1l

Feb. 16,2017 Sheet 22 of 29

Patent Application Publication

SWaad

¢¢ 3d4N9ld

8v(d -
J0]BIB]900Y |« a
uonOBUUOY e1eq aoueIsy| d03EnIU]
NVM |E007
BMMWWU«« va- 0
uondsuuoyD eleq B uolPBULOD Lou.mmwwoo< N aouesy| Jojeniy|
NV) NVM |e007
) l
Sva- yva- eva- g
* 1 J01BIBI9I0Y ¢ < JOIRIBIB0IY L«
uonoOsuuoy wmmﬁ. v uonoBuU0D) 1018191990y UOIOBUUOD Hmm v aouejsy| Joreniul
NYT ed ejleq led
NVYM NV |e007
4
LOHMMWmo< va- v
< J0]BI3}820Y |«
uonosuU0D eleq uonosuUo) e1eq uonosuuon | 401U
NV NV NV']

US 2017/0046381 A1l

Feb. 16,2017 Sheet 23 of 29

Patent Application Publication

SWdad

A

€¢ 3dNoOl4

uolBuuo)
NV

lojess[@00y
Eled

A

Aqun
NVM

Jlojeisjeooy
eleq

4

aoue)su|
[2007]

doydeT

US 2017/0046381 A1l

Feb. 16,2017 Sheet 24 of 29

Patent Application Publication

SNddY

A

AU NV

Jojela|a0oy
ereq

<
%

¢ 34N9ld

J0}RIB|e00Y
Eled

A

3

lojeis|eooy
ele(]

E 3

'

AU NV

10je19|900Y
eleq

r 3

Jojelsjeooy
eleq

3

Jojela|eooy
eleq

aoue)su| dorde
[2007

~ oouB)sy|
{2907 doyden

"~ oouejsuyl doyden
{2007

~ oouEjsyl| doyde
[8007]

" souejsy doyde
(207

US 2017/0046381 A1l

Feb. 16,2017 Sheet 25 of 29

Patent Application Publication

SWaad

G¢ 3d4N9lid
> Jo)ela|eody <
eleq
A
Y
10jeIB|900Yy [« L] > JO]BIB|900Y
Bje(] Eleq

b

A

A

A

uoNoBULUOD NY1

Jojelsjeooy

. 3

dojden

eleq
y
A4
10}BID|900Y |« JO}RI9900Y e
eleq AU NVM eleq aouRISU| [BDOT
A
ﬁ 101eI19|800y e
ejeq
J0jelo|aoy l0)BI81020Y
Eled <« > ejleq

A

US 2017/0046381 A1l

Feb. 16,2017 Sheet 26 of 29

Patent Application Publication

SWdad

A

9¢ FdN9DId
SWaay
4
jusi|D
10119200y 10188300y
eleq ejeq
A A
A 4
" iojeisjenoy <
eled
A
Y
10jeI9[00y [L L] i0jeiseoy le
eleq Ble(Ui
A
i A
» 10JIBI800Y |
eleq
A
10peI0[E00Y | R JojRIo|e00Y
BleQ il eied v
SNEGY
JuslD

US 2017/0046381 A1l

Feb. 16,2017 Sheet 27 of 29

Patent Application Publication

SWNEQY

¢ 3dNOi4

Y

A

10143300V el

103RI9|920Y B1RQ

-

101213]300Y B1R(

A

Y

101R13}930Y BlR(

BIH

Patent Application Publication Feb. 16,2017 Sheet 28 of 29 US 2017/0046381 A1l

r 4 4 \(
©
-
o
z"; 48] 0)
Pt N N N
0
=
—
O.
L) J) _J
o i r AW 4
Ee]
>
S 8
o S 3 i n
'_5 nd
-
& O
J J _J J LL
4 aYd avd
&
= LD
— = c
© W O C
(<D o) Og
% = c
Q
—

US 2017/0046381 A1l

Feb. 16,2017 Sheet 29 of 29

[ESTTESETE
jeusaixngd
32UN0Sg ejeg
A
]
.
w |
~ | aurBug |
1 uopdAiug "
| . I
A
“ A wxn..».,stf,
Jjomanpay | T !
“ | XICAIDN < { uosssidwio) M
| ! I
~ 55555555 3 e e e ot o e o e i
e
1 wawysyqeiss
O — P el <B4 4 UOI2BULOD §
sudus | [—— ! t
i ¢ i { i | BIONE) YIOMIBN
[uonesppow | auiBug sany ! oweneen L | TTTTmms :
“ + SSEUIANDBYP M y B uoneZundo 3 | WED E1eq M e
| 9910y MWevAQ o i ! !
L e e e e e o BUBUZ UNBY-Fad)
! !
L, {
PRSI, (S
[
! I
! IXDIUOD {
i e
|
| PuelusvOd 135184 R e I ore
| pueisiopun ¢ . s3199ds 0301014 |) Sypes yiomiaN | I L Jsanbay vieg
b orisanbar
” ssoduwozag !
!!!!!!!! i
wsIsAs uoneziwnido

Patent Application Publication

US 2017/0046381 Al

METHOD OF OPTIMIZING THE
INTERACTION BETWEEN A SOFTWARE
APPLICATION AND A DATABASE SERVER
OR OTHER KIND OF REMOTE DATA
SOURCE

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The field of the invention is methods of optimizing
the interaction (e.g. data flow) between a software client
application and database server software (or, more generally,
software serving/providing data from a remote data source).
The invention can be used with traditional legacy applica-
tions to make them web delivered; it allows, for example,
database applications to be cloud-based, with client appli-
cations connecting to a hardware server running the database
server software over a relatively slow connection, such as
the public Internet.

[0003] 2. Technical Background

[0004] Since the early 1990’s there has been a well-known
computer architecture called client-server where the client
computer runs an application and the server computer typi-
cally, runs server software such as database server software.
The client applications connect to the database and send
requests; they then use the responses to drive the client
application.

[0005] These client and server systems have had to reside
on local network connections or else they perform very
slowly or have to be written specifically to handle low
network speeds and high amounts of latency. In the last few
years there has been a shift in the focus of client-server
systems to web based systems where the client connects to
a server component which then connects to the database.
This means the application can work over slower network
links but has a number of disadvantages, the main one being
that the application is limited to how much data it can send
to the client, so web applications are generally less sophis-
ticated than the original client-server systems. This means
that developers have two options, the first is to create
client-server systems which gives them the richness of a full
application but requires a local network connection to func-
tion properly or to write a web based application which
means they will work over a remote connection but func-
tionality is poor.

[0006] 3. Discussion of Related Art

[0007] Over the last 3 years especially, new developments
have seen a trend whereby software vendors are offering
their traditional on-premises software to their customers as
a hosted service. This is either being achieved using Server
Based Computing or by re-creating a new version of the
existing application using Web 2.0 technologies. This is a
natural progression as they have moved from core compe-
tencies of creating the software, to managing the delivery of
the software on behalf of their clients.

SUMMARY OF THE INVENTION

[0008] According to a first aspect of the invention, there is
provided a method of optimizing the interaction between (i)
a client, being an application such as database software,
implemented on a computing device, and (ii) database server
software implemented on a computing device, the method
comprising the steps of:

Feb. 16, 2017

[0009] (a) routing query data from the client to the data-
base server software through an optimisation system imple-
mented on a computing device and then routing response
data from the database server software to the optimisation
system,

[0010] (b) the optimisation system analysing query data
and, based on that analysis, applying rules to optimise
response data provided by the database server software, in
order to generate optimised response data to thereby speed
up the interaction between the client and the database server
software.

[0011] The optimisation system can optionally decode the
query data and/or response data to understand the content
and/or context as the client and/or server understands it, to
provide relevant optimisation. By ‘content and/or context’
we mean the following: ‘content’ is the actual query that the
client has asked to be run or the request for the data that the
client has asked for. “‘Context’ is whether it is a part of a
series of requests and the relationships between the requests.
‘Context’ also means understanding environmental details
such as which server the request is going to, which user and
workstation sent the request and a number of other details
such as specific network link speeds. Finally by understand-
ing the context of the request, we can see how effective
specific rules have been for specific requests to either change
the parameters of the rules or even enable or disable them.
We use both the content and context to go above and beyond
what traditional optimisation systems do to make informed
decisions about how best to optimize network traffic.

[0012] The client application can, in more general terms,
be thought of as a ‘Data Request Initiator’ or similar and the
server software can then be thought of as a ‘Data Source’ or
similar and the invention can be generalised to use these
terms as substitutes for the terms ‘client application’ and
‘server software’.

[0013] The method may be one in which the optimisation
system enables the interaction between the client applica-
tion/database and the database server software to be suffi-
ciently optimised to enable a practical connection to be
made over a slow (e.g. under 5 Mb per second) or high
latency (e.g. 5 ms one way) link such as the Internet. The
optimisation system may, for example, reduce the amount of
processing or operations to be performed by the server
software. The optimisation system may also reduce the
amount of data needed to pass between the client application
and the database server software. The interaction between
the application or database and the database server may
include any one or more of the following: the flow of data,
the cessation of the flow of data, obviating the need for data
to flow, or managing the flow of data. In all cases, the flow
can be from the client to the optimisation system; from the
optimisation system to the server software, from the server
software to the optimisation system or from the optimisation
system to the client. Also, response data to a query may be
received and cached by the optimisation system and then
used as a response to a later query; hence, the query data in
step (a) and step (b) above may be different queries.

[0014] In an implementation, the optimisation system
analyses the query data and, based on that analysis, applies
rules to the query data, after the content of that query data
has been generated by the client. Similarly, the optimisation
system analyses the response data provided by the server
software and, based on that analysis, applies rules to the

US 2017/0046381 Al

response data, after the content of that response data has
been generated by the server software.

[0015] In summary, the invention relates to a specific
technique of optimizing interactions between a client and
database server software. Specifically, optimisation is
applied to response data provided by the database server
software; the software on the client and the software on the
server (e.g. the DBMS) may (optionally) be unchanged by
the optimisation system. In the typically prior art however,
the approach is for the client to send a single query to the
database server software, and for the database server soft-
ware itself to then optimise the content of the response to
that query (e.g. in order to minimise the data traffic for that
response), and finally for the database server software to
send that optimised response to the client. So, in that prior
art, there is no optimisation of response data provided by the
database server software; instead, the database server soft-
ware is itself modified to do all of the optimisation. This
approach requires bespoke coding of database server soft-
ware. (We note for completeness that this does not exclude
the possibility of optimisation of response data being done,
in an implementation of this invention, at the database server
software as well). The advantage of applying optimisation
after the content of the response data has been generated and
provided by the database server software is that it removes
the need to gain access to how the database server software
is generating its responses. The database server software
(e.g. the DBMS described above) remains “substantially
unchanged.

[0016] And this differs from say conventional compres-
sion because conventional compression is applied crudely to
all query/response message traffic between the client and
server—whereas in an implementation of the present inven-
tion, there would be an analysis of the query data and, based
on that analysis, compression related rules are then applied
to the response. That is a very different approach.

[0017] An implementation, called Data Accelerator, from
Data Accelerator Limited, includes one or more of the
following features:

[0018] the database server software is cloud-based, or
on a local network, or on a WAN or the database server
is local to the client application.

[0019] the client application or database is deployed,
managed or updated to end-users using application
virtualisation software.

[0020] allows the number of database server software
computing devices or the load on the or each database
server software computing device required, to be
reduced.

[0021] allows the load on the or each database server
computing device to be balanced or redirected in cases
of fail-over.

[0022] the optimisation system is added to an existing
(e.g. legacy) database client application or database
server software, and the structure of the tables and/or
files of the database running on the database server
software, are each substantially unchanged by the opti-
misation system.

[0023] the optimisation system is not an integral part of
the client application or the database server software or
implemented by bespoke coding to the client applica-
tion or the database server software.

Feb. 16, 2017

[0024] the optimisation system changes either the appli-
cation/database or the database server software, but not
both.

[0025] the optimisation system is implemented in soft-
ware and includes a client application or a server
application.

[0026] the optimisation system is implemented in soft-
ware and includes a client application and a server
application.

[0027] the optimisation system is implemented in hard-
ware.

[0028] the optimisation system is located between the
application/database and the database server software.

[0029] the optimisation system is located on the appli-
cation/database and/or the database server software.

[0030] the optimisation system includes multiple
instances of individual optimisation systems that each
provides optimisation services.

[0031] the multiple instances include a chain or mesh of
peers.

[0032] the path through the multiple instances of indi-
vidual optimisation systems is variable.

[0033] the multiple instances of individual optimisation
systems are able to communicate amongst themselves.

[0034] the multiple instances of individual optimisation
systems share diagnostics and performance informa-
tion.

[0035] the multiple instances of individual optimisation
systems each understand where they are in the chain or
mesh of peers between initiator and the server.

[0036] the optimisation system can dynamically deter-
mine how effective or detrimental a specific rule is and
can choose to vary the applied rules to find the optimum
performance enhancement.

[0037] the server software is serving data to client; it
may for example be a SQL or MS SQL server.

[0038] the query and response data includes DBMS
(Database Management System) requests and
responses.

[0039] the optimisation system reduces the number of
DBMS requests and/or responses.

[0040] the rules are accessed through a rules engine.

[0041] the rules engine decides when and how to apply
rules.

[0042] the rules define caching of queries.

[0043] the rules define how to obtain diagnostic, per-
formance, cached data, cachability information.

[0044] the rules define how to configure other rules.

[0045] the rules define peer to peer caching of queries.

[0046] the rules define compression.

[0047] the rules define encryption.

[0048] the rules define predictive pre-fetching.

[0049] the rules define string replacement.

[0050] the rules define query batching.

[0051] the rules define re-routing to specific database
servers for load balancing or fail-over.

[0052] the rules define request modification.

[0053] the rules pre-validate requests.

[0054] the rules define auditing and logging.

[0055] the rules automatically tune, adapt or improve.

[0056] the rules define how to re-cache queries

[0057] the rules define how to split large buffers of data
into separate TCP streams

US 2017/0046381 Al

[0058] the rules define how to merge small buffers of
data to create a single TCP packet
[0059] the rules define how to return simple responses
[0060] the rules can be selectively enabled or disabled
based on factors such as initiator and server addresses
or locations, time of day, configuration, server load.
[0061] the rules are applied at different points in the
request/response stream.
[0062] the rules are custom rules.
[0063] According to a second aspect of the invention,
there is a computer system including:
[0064] (a) remotely accessible database server software
implemented on a computing device;
[0065] (b) a client, being an application such as database
software, implemented on a computing device connected
over a network to the database server, and
[0066] (c) an optimisation system implemented on a com-
puting device, in which query data is routed from the client
to the database server through the optimisation system and
then response data provided by the database server software
is routed to the optimisation system; and in which the
optimisation system analyses the query data and, based on
that analysis, applies rules to optimise the response data
provided by the database server, in order to generate opti-
mised response data to thereby speed up the interaction
between the client and the database server software.
[0067] In a third aspect of the invention, there is a com-
puter software that, when running on a computing device,
enables the optimisation of the interaction between (i) a
client, being an application such as database software,
implemented on a computing device, and (ii) database server
software implemented on a computing device, and in which
query data is routed from the client to the database server
software through an optimisation system running the com-
puter software and then response data provided by the
database server software is routed to the optimisation sys-
tem;
[0068] and in which the software when running on the
optimisation system analyses the query data and, based on
that analysis, applies rules to the response data provided by
the database server software, in order to generate optimised
response data to thereby speed up the interaction between
the client and the database server software.
[0069] In afourth aspect, there is computer readable media
storing computer software as defined above.
[0070] According to a fifth aspect of the invention, there
is provided a method of distributing software applications,
comprising the steps of:
[0071] (a) providing multiple software client applications
accessible in an application store;
[0072] (b) routing query data between one or more of the
software applications and a database server, via a WAN such
as the Internet, and through a data optimisation system that
applies rules to speed up the interaction between the or each
software client application and the database server software.

[0073] The optimisation system may operate as defined
above.
[0074] In this fifth aspect, the software applications may

include database client applications and may be distributed
to end users’ device (e.g. a PC or a mobile device); the
software applications may also be distributed to system
integrators. The database server may be cloud-based. The
software applications may be deployed, managed or updated
to end-users using application virtualisation software.

Feb. 16, 2017

[0075] According to a sixth aspect of the invention, there
is provided a method of optimizing the interaction between
a file requestor and a file server, comprising the steps of:
[0076] (a) routing query data between the file requestor
and the file server through an optimisation system;

[0077] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the file requestor and the file server.

[0078] The optimisation system may operate as defined
above.
[0079] According to a seventh aspect of the invention,

there is provided a method of optimizing the interaction
between a web data requestor and a web server, comprising
the steps of:

[0080] (a)routing data between the web data requestor and
the web server through an optimisation system;

[0081] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the web data requestor and the web server.

[0082] The optimisation system may operate as defined
above.
[0083] According to an eight aspect of the invention, there

is provided a method of optimizing the interaction between
a Web-based Distributed Authoring and Versioning (Web-
DAV) requestor and a WebDAV server, comprising the steps
of:

[0084] (a) routing data between the WebDAV data
requestor and the WebDAV server through an optimisation
system,

[0085] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the WebDAV data requestor and the WebDAV server.

[0086] The optimisation system may operate as defined
above.
[0087] According to a ninth aspect of the invention, there

is provided a method of optimizing the interaction between
an application streaming requestor and an application
streaming server, comprising the steps of:

[0088] (a) routing data between the application streaming
data requestor and the application streaming server through
an optimisation system;

[0089] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the application streaming data requestor and the application
streaming server.

[0090] The optimisation system may operate as defined
above.
[0091] According to a tenth aspect of the invention, there

is provided a method of optimizing the interaction between
a SOAP requestor and a SOAP server, comprising the steps
of:

[0092] (a) routing data between the SOAP data requestor
and the SOAP server through an optimisation system;
[0093] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the SOAP data requestor and the SOAP server.

[0094] The optimisation system may operate as defined
above.
[0095] According to an eleventh aspect of the invention,

there is provided a method of optimizing the interaction
between an email requestor and an email server, comprising
the steps of:

[0096] (a) routing data between the email data requestor
and the email server through an optimisation system;

US 2017/0046381 Al

[0097] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the email data requestor and the email server.

[0098] The optimisation system may operate as defined
above.
[0099] According to a twelfth aspect of the invention,

there is provided a method of optimizing the interaction
between a document requestor and a document management
system, comprising the steps of:

[0100] (a) routing data between the document data
requestor and the document management server through an
optimisation system;

[0101] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the document data requestor and the document management
system server.

[0102] The optimisation system may operate as defined
above.
[0103] According to a thirteenth aspect of the invention,

there is provided a method of optimizing the interaction
between a data requestor and a data server, where the server
is any software component that provides data to a requestor,
comprising the steps of:

[0104] (a) routing data between the data requestor and the
data server through an optimisation system;

[0105] (b) the optimisation system analysing the data and
applying rules to the data to speed up the interaction between
the data requestor and the data server.

[0106] The optimisation system may operate as defined
above.
[0107] According to a fourteenth aspect of the invention,

there is provided a method of optimizing a number of
different types of traffic to provide a replacement to tradi-
tional virtual private networking solutions currently in place
with not only the traditional benefit of an encrypted con-
nection to network data but also an optimized connection to
provide significantly enhanced performance for users.
[0108] The optimized connection may use an optimisation
system as defined above.

[0109] According to a fifteenth aspect of the invention,
there is provided a method of optimizing and streaming an
application using App Accelerator and Data Accelerator in
conjunction so that the App Accelerator connects through
Data Accelerator to a file data source, either WebDAV, SMB,
CIFS, FTP or equivalent to request blocks of files to be used
and Data Accelerator provides its full set of rules to optimize
the downloads. ‘App Accelerator’ is a proprietary applica-
tion virtualisation technology which we will describe later;
however, note that we the use the term ‘App Accelerator’ in
the broadest sense as the generalisation of the specific
application virtualisation technology we describe. As such,
it covers not only the specific implementation that we
describe of that technology, but any kind of application
virtualisation technology. Likewise, we use the term ‘Data
Accelerator’ in the broadest sense as the generalisation of
the data acceleration technology we describe. As such, it
covers not only the specific implementation that we describe
of that technology, but any kind of data acceleration tech-
nology.

[0110] According to a sixteenth aspect of the invention,
there is provided a method of having a truly roaming
application for users using App Accelerator. Typically when
an application is used, it writes certain configuration infor-
mation to the local machine such as the size of the window

Feb. 16, 2017

after a user resizes it and the position of toolbars and other
user details. Currently when a user moves to another
machine and uses the application, they need to re-setup their
standard choices or user preferences. Using App Accelerator
when the application writes such configuration information,
the information is synchronized with the portal server and so
when the user moves to another machine anywhere in the
world and runs the application, the settings are automatically
synchronised so it is as if the exact same application and
configuration have followed the user to their new computer.
[0111] According to a seventeenth aspect of the invention,
there is provided a method of making documents available
locally while storing them at a remote data source. Current
implementations of document stores typically fall into two
categories, the first creates a copy of the store on each users
machine by copying all documents in the store locally, and
as changes are made to the local store the files are uploaded
to the server. The second category is where users download
documents as they require, modify and then upload the
documents. Neither method is a perfect solution, the first
requires a significant amount of local storage and for large
data stores, this is often impractical. The second relies on
users updating the remote files which often does not happen.
When using the Data Accelerator to accelerate traffic to a
network share over a slow link, it means that the users access
the files as if they were local but actually they are remote so
removes the problems seen with both of the existing solu-
tions. This is achieved by storing the files on a network
location and using WebDAV, SMB, CIFS, FTP or equivalent
to request blocks of files to be used and Data Accelerator
provides its full set of rules to optimize the downloads

[0112] Benefits of the Data Accelerator Implementation
[0113] Reduced Number or DBMS servers for an Enter-
prise

[0114] The main benefit to an organisation is that when a

DBMS request is sent, it can be served faster and more
efficiently with as minimal impact or load on the actual
DBMS as possible. The reason that the load on the DBMS
needs to be minimised is that they are traditionally expen-
sive systems to operate, either through licensing or the
hardware that is required in order that the responses can be
served quickly enough. By minimising load, Data Accelera-
tor can lead to a significant reduction in the number of
DBMS servers that an organization needs to run and can
therefore lead to a significant reduction in both costs and the
environmental impact of running those servers.

[0115] Database in the Cloud or Database as a Service
[0116] The second main benefit is because of the extra
work that goes on at the network (and/or client) level like
caching, compression or string replacement, it is now pos-
sible to locate the DBMS system over a slow link, either a
secured link to another site or over the internet to a cloud.
Because of the nature of the environment, the DBMS system
can be scaled cheaply. With the network optimization that
Data Accelerator carries out, moving DBMS systems into
the cloud can be made a reality for both new and legacy
systems.

[0117] Benefits of the Data Accelerator when Used as a
VPN
[0118] It is important to understand that by accelerating

traffic at the application level, combined with encryption and
network level optimization we can provide a secure con-
nection between two points and a level of optimization that
traditional VPN solutions do not provide, thereby making

US 2017/0046381 Al

the primary use of VPN’s, i.e. remote workers, viable in a
large number of situations where current solutions are
unable to work or users suffer poor or sub-optimal perfor-
mance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0119] FIG. 1 shows areas impacted by changes in a
software life cycle.

[0120] FIG. 2 shows areas impacted by changes in a
software life cycle; contrasting known approaches with that
possible using an implementation of the invention.

[0121] FIG. 3 shows new delivery models emerging and
Data Accelerator’s proposition.

[0122] FIG. 4 shows Data Accelerator’s Product Offering
to service the markets.

[0123] FIG. 5 shows how the data optimization services
can interact with other services, initiators and DBMS (data-
base management system) servers. RDBMS is Relational
DBMS.

[0124] FIG. 6 shows a response data set.

[0125] FIG. 7 is a schematic of the approach where the
rules have not been able to stop the request from being sent
to the DBMS so the request is forwarded.

[0126] FIG. 8 shows the response is able to be served
directly from the Data Accelerator optimization server and
the DBMS system does not need to do anything.

[0127] FIG. 9 shows caching of request and response data,
to return the response direct from a cache without having to
run the request on the DBMS.

[0128] FIG. 10 shows Query Batching i.e. duplicate que-
ries which have been requested at the same time can be
stopped because the first request can be run while the
duplicates are held, when the response to the first one is sent,
it can be sent to all of the initiators; this Figure shows the
requests being held.

[0129] FIG. 11 shows Query Batching i.e. duplicate que-
ries which have been requested at the same time can be
stopped because the first request can be run while the
duplicates are held, when the response to the first one is sent,
it can be sent to all of the initiators; this Figure shows the
response being served to multiple initiators.

[0130] FIG. 12 shows a single Data Accelerator instance.
[0131] FIG. 13 shows two Data Accelerator Instances.

[0132] FIG. 14 shows multiple Data Accelerator instances.
[0133] FIG. 15 shows that different initiators at either the

same or separate locations can go through any route of Data
Accelerator instances.

[0134] FIG. 16 shows how the Data Accelerator can
change the route to the DBMS depending on where the
request came from or a specific property of the request.
[0135] FIG. 17 shows the different points that the rules can
be applied and the flow through the application. There are a
number of different types of rules that can be applied at
different points within the request/response stream.

[0136] FIG. 18 shows that the first query was run three
times, the first time it ran, the next request included the
query “SELECT B FROM C”, but all subsequent requests
were for “SELECT D FROM E”, so the pre-caching rule on
the 2/1/2010 (format: day/month/year) would have added a
request for “SELECT B FROM C” which would not have
been used, so this would then not be selected for pre-caching
again but on the 3/1/2010 the same query was run again so
would have been selected for pre-caching and would have
had the results ready when it was requested.

Feb. 16, 2017

[0137] FIG. 19 shows two DBMS systems that replicate
data between themselves and the Data Accelerator sending
requests to the DBMS 1 system.

[0138] FIG. 20 shows that if the load-balancing rule
determines that system 1 is under too much load and it is
affecting query performance, it can switch to send requests
to DBMS 2.

[0139] FIG. 21 shows how there are two separate work-
groups, Accounting and Marketing; they both use the same
DBMS but rarely run the same queries.

[0140] FIG. 22 shows a number of different configurations
that instances can have to connect to a DBMS.

[0141] FIG. 23 shows the Data Accelerator instance chain
when the laptop is out of the office.

[0142] FIG. 24 shows how the instance, when in the office
shares information and data with its peers.

[0143] FIG. 25 shows a Data Accelerator instance that
includes a WAN link.

[0144] FIG. 26 shows an example of a configuration.
[0145] FIG. 27 shows an example of a configuration.
[0146] FIG. 28 shows a table of examples for use cases for

Data Accelerator.

[0147] FIG. 29 shows the major components in Data
Accelerator.
DETAILED DESCRIPTION
[0148] Section A: Overview
[0149] A problem facing current DB based apps is that

they are written on the assumption that the client is on the
same LAN as the DB. Because the LAN is assumed to be
fast, there is no optimization of the data traffic. Many people
now want to deliver their DB apps over the Internet, with
their DB servers somewhere in the cloud. Software as a
Service apps all require this, for example. However a DB
app, which was designed with a server and client talking to
each other over a high bandwidth LAN;, will be very slow
when working over the Internet.

[0150] The conventional solution is to analyse the traffic
between the client and server and get rid of bottlenecks using
bespoke coding. (We generally use the term ‘server’ to refer
specifically to the server software as opposed to the hard-
ware computing device; on occasion we will be referring to
the hardware device, but the context will generally make the
meaning plain). This approach is costly as it involves
understanding a detailed level of knowledge of the data calls
and requires the bespoke performance coding is kept up to
date with all changes in the rest of the application.

[0151] One of the broad ideas in Data Accelerator is to
re-direct traffic between a client and DB (e.g. SQL) server so
that the traffic passes between a small app on the client and
a server component that is on a LAN with the DB server. The
small app and the server component apply traffic optimiza-
tion and traffic shaping and together form an optimisation
system as defined earlier. This should yield a generic solu-
tion that can retro-fit to any legacy DB that needs to migrate
to the cloud or deliver software as a service.

[0152] Five core technologies are used by the optimisation
system (e.g. small app on the client and a server component):
[0153] 1. Compression and encryption

[0154] 2. Caching data on each client, with peer-to-peer
transfer of cached data between clients. The optimisation
system (e.g. DB side Server Component) maps out which
clients are on the network and what data they each cache and
can hence restrict itself to delivering just deltas to clients as

US 2017/0046381 Al

needed. It can also trigger the peer-to-peer transfer of data
between clients—many of which will be on the same fast
LAN.

[0155] 3. Predictive pre-caching in which the optimisation
system (e.g. DB side Server Component) understands the
likely flow of client side interactions and can hence predict
what data the client is likely to request and can then send it
in advance to the client side cache. This is an adaptive
process, learning incrementally, for each application, the
likely interaction flow by monitoring actual usage.

[0156] 4. SQL (or other DB) string replacement by index-
ing lengthy strings with compact references. The optimisa-
tion system (e.g. Server Component) dynamically learns
what SQL strings are being used frequently and can then tell
the client to stop using specific full strings and instead start
using a compact reference. When the client adopts that
compact reference, the optimisation system (e.g. server
component) can then interpret it correctly.

[0157] 5. General Protocol efficiency improvements—for
example

[0158] 5a. Parallel TCP Streams

[0159] When sending large chunks of TCP data, it is often

inefficient over a network with high latency and also high
bandwidth to send a series of packets in serial as the time it
takes to transfer the data over the internet is at least
(SizeOtData/Maximum TCP Packet Size)*(Time To Send
Packet Over Internet+Time To Send Acknowledgement), so
where we need to send 10,000 bytes, assuming the Maxi-
mum TCP Packet Size is 1460 bytes and the network links
we are using have a combined latency of 50 ms in each
direction, the time to send the data and receive the TCP
acknowledgement is:

(10,000/1460)* (50+50)=~685 ms

[0160] If instead, the data had been split into chunks no
larger than 1460 and sent at the same time, we would in
effect end up with a time to transfer of:

(1460/1460)* (50+50)=100 ms

[0161] This scales out in that you can send as many
parallel packets as there is available bandwidth meaning that
it takes roughly the same amount of time to send 10,000
bytes as opposed to 100,000 bytes as long as there is the
available bandwidth. The exact figures do not reflect the
actual situation of using the internet as different packets will
be routed over different links but the process of splitting
packets can have a dramatic impact on performance.

[0162]

[0163] The time it takes to transfer data over the internet
is determined by the amount of latency involved and to some
extent the amount of available bandwidth, for example it
takes roughly the same amount of time to transfer a single
byte as opposed to 1000 bytes as there is an overhead for
each packet, as opposed to each byte. Typically the maxi-
mum size of a single TCP packet over the internet is 1460
bytes, if Data Accelerator has to transfer two small packets
over two separate connections at the same time, the packet
merging rule could, create a single packet and sends it
upstream to be split by another instance of the Data Accel-
erator. Although the latency involved is the same, instead of
sending two small packets in parallel, we half the bandwidth
requirement while leaving the latency overhead the same by
sending the data in a serial fashion, so although we do not

5b. Cross Connection Packet Merging

Feb. 16, 2017

transfer data faster, we save bandwidth which can be used by
other connections where they would possibly have to wait
before sending the data.

[0164] 5c. Network Protocol Switching

[0165] This is a technique to improve performance of
existing TCP connections, for example in a network with a
very high latency but very high reliability it might be that the
time for the client to receive the TCP acknowledgements is
too slow so instead the Data Accelerator sends the data using
UDP as no downstream acknowledgement is required, then
the Data Accelerator could send a checksum for the data
with each packet and its own packet identifier so if data is
not received or not received in order the upstream Data
Accelerator instance can re-request the missing data, occa-
sional acknowledgements can be included which although
add to the latency, do not necessarily happen on the same
connection as the data so do not need to hold up the flow of
data.

[0166] Here these technologies are used individually or
collectively in the context of re-directing traffic between a
client and DB (e.g. SQL) server software so that the traffic
passes between an optimisation system (e.g. a small app on
the client and a server component) that can apply traffic
optimization and traffic shaping. More generally, in Data
Accelerator, we have (i) a client, being an application such
as database software, implemented on a computing device,
and (ii) database server software implemented on a com-
puting device, and Data Accelerator works by (a) routing
query data from the client to the database server software
through an optimisation system implemented on a comput-
ing device and then routing response data from the database
server software to the optimisation system; (b) the optimi-
sation system analysing query data and, based on that
analysis, applying rules to optimise response data provided
by the database server software, in order to generate opti-
mised response data to thereby speed up the interaction
between the client and the database server software.
[0167] As noted earlier, the present invention is imple-
mented in a system from Data Accelerator Limited: Data
Accelerator is pioneering a new paradigm of software deliv-
ery and management that will go further than any that exist
today. Data Accelerator’s solution will permit businesses to
purchase not just the limited selection of web 2.0 applica-
tions currently available, but to have an AppStore for any
kind of business, conceivably delivering ALL of the appli-
cations needed by a business to run a business, including
database applications. The benefits, which are explained
below, are far-reaching and fundamental, going beyond the
point of increased efficiencies in initial purchase and deliv-
ery. Achieving this goal, particularly if a relatively slow (e.g.
under 5 Mb per second) network is used, requires new ways
of optimising the flow of data across the network—for
example across the network that links a database client
application obtained from the App Store and the database
server for that application.

[0168] One of the key reasons businesses have moved to
buying from web AppStores, is for the simplicity of both
purchase and deployment, auditing and updating. But criti-
cally, with the implementation of application virtualisation,
they are doing so to reduce the cost of the on-going day to
day management of these applications on the desk-top, even
more so for very large enterprises. Now, by enabling all of
their business applications, including those that are not web
2.0 apps, to be delivered through web stores and streamed

US 2017/0046381 Al

from centrally hosted databases, businesses can get all of the
benefits associated with web 2.0 applications for the rest of
their inventory of software. This has a huge impact for
almost any company’s entire legacy IT infrastructure. The
areas most impacted by these changes in a software life
cycle may be those shown in FIG. 1 and in FIG. 2. FIG. 2
contrasts the present approach to that possible with Data
Accelerator’s approach for each step in the lifecycle.
[0169] What Will Data Accelerator Offer the Market?

[0170] Data Accelerator offers the ability to go to any
Windows, or other non-Windows PC or device (e.g. Mac,
Linux, Android, 108 etc.) anywhere in the world and launch
a legacy application, possibly from a web portal, connecting
to a remote data source, without any on site infrastructure,
on any internet connection and the application will work at
the same speed as a locally served application with full
access to all local devices, printers and other applications.
[0171] Traditionally, in order to benefit from a central
database or data store, and its associated reduced total costs
of ownership and other benefits, it is required that both the
server and client side processing are performed on the
central servers. This is normally achieved using either a Web
(or sometimes referred to as a Web 2.0) application or by
using server based computing technologies such as Micro-
soft Terminal Services or Citrix XenApp (formally Citrix
Presentation Server); both options have significant down-
sides. Web applications suffer from a limited or poor user
interface and user experience as the limitations of web
application development technologies means that the user
interface cannot be as rich or perform as well as a native
client application. For existing software publishers it is also
a very time consuming and extremely expensive process to
re-develop existing applications into Web applications; and
once this is done, although the software publisher benefits
from a centralised database or data store, at best, they get the
same end user functionality and often significantly less
functionality. Server based computing takes the approach of
running the existing database software centrally and also
running the client application software on central servers.
This allows existing applications to be centralised without
re-development but with the significant downside of prob-
lems with integration between the central application and the
end users local devices (e.g. Printer, scanner and USB
devices) and other local applications with the high costs and
complexity of running the client computing on server infra-
structure. This is due to the centralised application running
on one computer (in the central location) and all devices and
other applications running on the local end users computer.
[0172] As Data Accelerator is able to reduce the effect of
low bandwidth or high latency connections on the perfor-
mance of an application, it makes it practical for the client
application to be run on the end users device, where it was
originally intended and designed to run, and the server to be
hosted centrally, possibly in a public or private cloud.
Without Data Accelerator the performance between the local
application and the central server would be too slow for
acceptable use. This presents one final problem, which is
that the local application needs to be managed and main-
tained, this is discussed later using the App Accelerator
technologies in combination with Data Accelerator to deploy
and manage the client application. The combined effect
gives the software publisher the ability to deploy and
manage their software centrally, with a central database or
data store, without any re-development of the application or

Feb. 16, 2017

any device or application integration problems with the
same performance as if the application were being served
and installed locally.

[0173] Data Accelerator’s AppStore will enable any appli-
cation, including database applications, to be delivered over
the Internet or Intranet giving users access to their applica-
tions and their data on any Internet connection from any
computer. For small, medium and large enterprises this
transition provides an enormous cost reduction to their
existing technology infrastructure and significantly
increases the productivity of their users. (For the purpose of
broad definition, an SME will typically use a publically run
AppStore and hosting in public cloud, whilst an enterprise
will typically use an internal privately run AppStore and
private cloud). The software publisher regains control of the
distribution of the software and is less dependent on having
competent channel partners to represent the product; plus the
software publisher will realise a larger profit margin by
streamlining the number of partners in the channel and
making it easier to deploy the application.

[0174] The ability to centrally manage the customer’s
application from the initial deployments through the life-
cycle of patch updates and version upgrades in a simple and
centralized way significantly reduces the on-going cost for
supporting their customers. This requires no interaction or
disruption for the end users, with their applications always
being up to date. Additionally because the application is
centrally distributed no local IT resources are required to
support the user. To run the application the user just visits a
portal and in one click the application begins downloading
or streaming. The application becomes zero touch for I'T and
self-healing, as should a failure occur, a simple re-boot
returns the application to a “Gold Image” without loss of
data.

[0175] Licensing and Digital Rights Management (DRM)
[0176] The application is deployed in a virtual layer on the
client device which offers very strong Digital Rights Man-
agements, ensuring that the application cannot be copied or
pirated. The application is controlled centrally allowing the
publisher to activate or deactivate applications remotely
subject to authentication procedures. New transactional
business models like SaaS or Rent to Own can now be
adopted for these applications which were not previously
available to the software publishers. This gives the publish-
ers competitive advantage as the legacy application has all
the rich functionality of years of investment in its IP but it
can now also offer the same new business models of Web
2.0/Cloud applications.

[0177] Roaming Users

[0178] Any authenticated user can log on to launch the
application from any device and the application and data
will stream down on demand, as well as optionally synchro-
nising the user’s personal settings for the application, once
the user has finished with the application then all trace of the
application, application settings and data can be deleted
ensuring data security but providing full roaming capability
for users wherever they are. For the IT administrator the
application is zero touch, and self-healing, so there is
minimal support or administration overhead. This provides
greater flexibility for the users and reduces overheads for IT.
[0179] Centralized Database Management for Backup and
Maintenance Tasks

[0180] With multi-site locations, each server farm has to
have its own Systems Administrator to perform back-ups

US 2017/0046381 Al

and maintenance. Every location will have the same back-up
and maintenance process being performed by local system
administrators, whereas with Data Accelerator the process is
centralised and simplified. One server farm is maintained,
one back-up procedure to run, with just one local systems
administrator to manage it. Centralising the database pro-
vides a more cost effective and efficient way to manage the
data and server farm.

[0181]

[0182] The conventional DR solution is to replicate the
working environment in the form of a fall-back office which
can be made live in the event of a disaster and the personnel
would relocate to the fall-back office. This is very costly to
support and maintain and even in the event of a disaster there
is a lag time to switch environments. With the Data Accel-
erator solution of Data Accelerator & App Accelerator all
data and applications can be served up to any other Windows
environment in a few minutes at vastly reduced cost, and
with a much greater flexibility for the users. For example in
the event of a disaster, the user can work from a static or
roaming device and the application with all the data, will
stream down to the user and maintain the full functionality
that they had whilst in the original work place.

[0183] With reference to FIG. 3, the new delivery models
emerging are shown in the columns headed “Mobile App-
Stores since C. 2000 and “Web AppStores 2007-Present”,
and Data Accelerator’s proposition is shown in the columns
headed “Data Accelerator AppStore 2010” and “Data Accel-
erator AppStore for Enterprise DB Apps 20107 of the Table.

[0184] In FIG. 4, Data Accelerator’s Product Offering to
service the markets is identified in the Table. Key to a
business oriented AppStore is the provision of database
applications. In the past, database applications have required
a high bandwidth (e.g. over 5 MB per second) LAN linking
a powerful server with multiple client computers. That
approach is however not relevant to database applications
bought from an AppStore since those database applications
will typically have to operate efficiently over a relatively
slow connection such as the internet or wireless connectivity
such as GPRS.

[0185]

[0186] Data Accelerator Limited is developing its own
proprietary technology, Data Accelerator, for accelerating
and optimizing the flow of data between any application and
a database server. Specifically the solution will enable
practical access to a database application across a wide area
network (WAN) or the Internet that is not currently possible
or is prohibitively slow at present. Data Accelerator is the
only known product of its type. Data Accelerator may also
make use of Application Virtualisation. Together with Data
Accelerator this will create the first of its kind in a data flow
optimization model that works for the cloud, capitalising on
and meeting three principal global market opportunities:

Disaster Recovery

How are we Doing this?

[0187] 1. A PC application store for any Windows appli-
cation.
[0188] This SME based offering will be targeted at Tele-

phone Company (Telco) operators, hardware vendors, retail-
ers and Independent Software Vendors (ISVs) to re-sell to
their end users. On top of streaming applications to users
moreover, we have the added advantage of being able to
deliver and store end-user data in the public or private cloud
because of Data Accelerator (explained below).

Feb. 16, 2017

[0189] 2. A private application store for enterprises tar-
geted at system integrators to resell to their customers,
managed centrally from a private or public cloud.

[0190] Data Accelerator’s solution will aid the sales pro-
cess and return on investment (ROI) of a system integrator’s
own products or services, especially where they are man-
aging desk-tops, by reducing the cost and complexity of
delivering applications to enterprise users and the overheads
of administering and paying for expensive server set-ups.
[0191] 3. An independent App Store targeted at Indepen-
dent Software Vendors (ISVs) for new and existing markets.
[0192] Those ISV’s that have a database back end on their
application will normally suffer from complex and long
sales cycles and high costs of implementation as each time
they sell their software their customer also has to make an
additional investment in the database infrastructure to sup-
port the application.

[0193] Ifthe ISV uses Data Accelerator however, they can
run a central hosted database in the Cloud for their custom-
ers to use. This is delivered at a much lower cost to the end
customer due to economies of scale and it means that the
ISV only has to focus on selling the benefits of their
software. Then the ISV can use an Application Virtualisation
technology to deploy their client software and updates to the
customer over a WAN. This gives complete control over
licensing to the ISV and it means that there is a very simple
implementation process for the customer with a lower Total
Cost of Ownership.

[0194] Ahypothetical, fictional example of an ISV that has
this kind of problem is Bert’s Glasses, which supplies
replacement car windscreens. A significant part of their
business involves gathering data on vehicles and then mak-
ing that available to car traders, insurers and car repair
centres. The software they provide for car repair centres is
called Glassbert and has a client application and a back end
database that stores the car repair costing data for quoting to
insurers. This application is not appropriate to become a
web-based application due to the need to communicate with
local large files, such as photos of the repairs themselves.
Currently Bert’s Glasses requires each customer to install
and maintain their own SQL (Structured Query Language)
server at each customer office. This presents a large problem
for them during the sales cycle to a new customer since car
repair centres have little or no information technology (IT)
knowledge and to maintain such a server in each office costs
around GBP 1,000 a year for a small SQL server. Also, the
current set-up makes updating the data a very complex and
expensive process involving sending out a CD ROM to
1,000 customers every month to update the database. Bert’s
Glasses have previously investigated providing a central
database for their customers and know that this would
reduce their sales cycle and significantly reduce their costs
of updating and supporting those customers. However their
investigations correctly found that the database would be too
slow to be used over a WAN (either a virtual private network
(VPN) or internet) so the only option would be to use Citrix
XenApp

[0195] (Presentation Server) to serve the application
remotely. This would be prohibitively expensive for them
and add around GBP 600 per user to the cost of their
application. Given that Bert’s Glasses has 1,000 customers
with approximately 10,000 users each charged GBP 1000
per year, this is over a 50% increase in the cost of imple-
menting such a solution—many GBP millions.

US 2017/0046381 Al

[0196] The other area where Data Accelerator can help
ISVs is if they have a web-based application. Any web-
based application has a back end database and as the ISV
scales up the number of users they also have to scale up the
database infrastructure; this comes at a cost that can be very
high.

[0197] Data Accelerator can be used to scale the number
of users that can use a web based application without
needing to increase the number of database servers. This can
reduce the cost for the ISV and improve the performance of
the web application for the user.

[0198] Section B: Data Accelerator
[0199] What does it do?
[0200] Data Accelerator optimizes data traffic between a

data source server software and any client application.
[0201] How it Works?

[0202] The Data Accelerator data flow optimisation sys-
tem will analyse the specific SQL traffic and perform various
proprietary optimization techniques to reduce the amount of
information (e.g. data requests) sent to the SQL server or
response data sent back to the client via the optimisation
system and the amount of processing required of that server.
Furthermore, Data Accelerator is a totally transparent solu-
tion that can be retrofitted on any database application to
improve speed of response times and overall query perfor-
mance over a WAN. This significantly increases the size of
the addressable market. An added benefit in terms of ease of
adoption is that Data Accelerator and Application Virtual-
ization software can be implemented incrementally rather
than a wholesale replacement of systems and methods at a
huge cost, e.g. Virtual Desktop Infrastructures (VDI).
[0203] What does this Mean for Enterprises?

[0204] Reduced Number of DBMS (Database Manage-
ment servers) for an Enterprise

[0205] The main benefit to an organisation is that when a
DBMS request is sent, it can be served (i.e. responded to)
faster and more efficiently with minimal impact or load on
the actual DBMS. The reason that the load on the DBMS
needs to be minimised is that they are traditionally expen-
sive systems to operate, either through licensing or the
hardware that is required in order that the responses can be
served quickly enough. With Data Accelerator we can, in
one variant, use the far cheaper and more abundant process-
ing power of the users’ PC (e.g. the optimisation system can
include a client component running on client PCs, taking
advantage of the computational power of those PCs). By
minimising load, Data Accelerator can lead to a significant
reduction in the number of DBMS servers that an organi-
zation needs to run leading to a significant reduction in both
costs and the environmental impact of running those servers.
[0206] Databases in the Cloud or Database as a Service
[0207] The second main benefit is because of the improve-
ments that Data Accelerator gives at the network level (such
as caching, compression or string replacement) it is now
possible to locate the DBMS system over a slow link, either
a secured link to another site, a VPN or over the internet to
a cloud. Because of the nature of the environment, the
DBMS system can be scaled cheaply. With the network
optimization that Data Accelerator achieves, moving DBMS
systems into the cloud can be made a reality for both new
and legacy systems.

[0208] How is the Benefit Measured?

[0209] The benefit will depend on the application itself but
in the real world would allow a financial application that

Feb. 16, 2017

would normally takes a user 10 minutes to log into over the
internet using conventional techniques to be reduced to a
few seconds or allow a large enterprise to reduce their
number of severs by up to 10 times. With each customer, the
exact saving will be accurately demonstrable with live data
feedback that can measure and quantify the saving and
efficiency benefit on each application for every client in real
time. Because Server Virtualisation only reduces the number
of physical hardware boxes but not the amount of computing
power required, the benefits accruing through Data Accel-
erator will be a much greater improvement. Server Virtu-
alisation has swept the market over the last 5 years, hence
the growth of VMware and Citrix, showing us the potential
of the market for fast adoption.

[0210] Where and how Will it be Applied and Installed?
[0211] The server software will be a standalone applica-
tion that can be installed on either the SQL server or any
other server on the same local area network (LAN) segment
of'the SQL Server. The client side will be able to be installed
as an application or as a client install on each PC, or a
combination of both. The client will be installable in user
mode, meaning without the requirement for Administrator
rights on the end PC. IT departments will of course also be
able to use Data Accelerator for all their corporate database
applications to improve performance, extending the use of
applications to home users and branch offices and reduce the
costs of their server infrastructure or in fact to any employee
who needs to be mobile.

[0212] What Techniques Lie Behind the Implementation
of the Invention?

[0213] The SQL data will be cached and we deploy
techniques to automatically pre-fetch the subsequent SQL
data that is needed for any given application query. When
responding to a query, the optimisation system (e.g. client)
will get the results from a local client’s cache if available
and only the differential will be sent over the WAN. The key
part of this method is that the SQL server and application
will not be aware of the optimization taking place. Data
Accelerator is a totally transparent solution that can be
retrofitted on any database application to improve speed of
response times and overall query performance over a WAN.
Additionally the Data Accelerator is able to optionally
decode the query data and response data to understand the
content and/or context as the client and server understands
it, to provide relevant optimisation based on single or related
queries. It can be contrasted with the typical prior art where
the approach is for the client to send a single query to the
database server software, and for the database server soft-
ware itself to then optimise the content of the response to
that query (e.g. in order to minimise the data traffic for that
individual response), and finally for the database server
software to send that optimised response to the client. So, in
that prior art, there is no optimisation of response data
provided by the database server software; instead, the data-
base server software is itself modified to do all of the
optimisation. This approach requires bespoke coding of
database server software. The advantage of applying opti-
misation after the content of the response data has been
generated and provided by the database server software is
that it removes the need to gain access to how the database
server software is generating its responses. The database
server software (e.g. the DBMS described above) remains
“substantially unchanged”. This of course massively
increases our addressable market since it will be applicable

US 2017/0046381 Al

to all historic database applications currently running. It
achieves this by rerouting the SQL traffic that normally
flows directly between the client application and the SQL
server. With Data Accelerator now the SQL traffic flows via
our additional client and server application so that we can
dynamically add in optimization techniques to the commu-
nication.

[0214] The diagrammatic example of FIG. 5 shows how
the data optimization services can interact with other ser-
vices, initiators and DBMS servers: the optimization servers
are labelled in FIG. 5 as ‘Optimization Points’.

[0215] There will be four main optimization techniques
used on the SQL traffic and these will improve over time.
These are:

[0216] Peer-to-Peer Caching of queries
[0217] Compressions and Encryption
[0218] Predictive Pre-fetching
[0219] String replacement

[0220] How Will it Improve Over Time?

[0221] The initial software release will contain the frame-
work and rules to accelerate database connection but it will
have to be manually configured to a specific application. The
subsequent versions of Data Accelerator will allow the
acceleration (i.e. the applicable optimisation rules) to auto-
matically adapt, improve and/or tune itself to any applica-
tion. Subsequent releases will also use the network effect
data (the aggregated data from all customers) that is gener-
ated from the users of the application to help us further
improve the acceleration.

[0222] Section C: Application Virtualization and App
Accelerator

[0223] What does it do?

[0224] Application Virtualization delivers applications to

an-end-users computing device from a server with central
control and management over the application and its license.
Once the application is on the users’ desktop, it is virtual-
ized, meaning only the parts of it required to work while
running the application are temporarily available and there-
fore there are restrictions to stop the application from
conflicting with other applications on the desktop, thus
preventing support issues. Also, this protects the software
from piracy.

[0225] Why do we Need it?

[0226] Using Data Accelerator to centralise the database
or move it into the cloud, removes the requirement for onsite
database servers and onsite support for those servers. Com-
bining this with Application Virtualisation also allows the
client application to be managed and supported centrally
rather than onsite. Thus the combined benefit allows a total
centrally managed solution thereby giving reduction in cost
and increased productivity.

[0227]

[0228] This technology gives good control mechanisms
for the delivery of an application as well as a protection from
conflicts and piracy of the Virtualisation capabilities. It can
provide Digital Rights Management for preventing piracy
and controlling billing and the use of the application, which
in turn enables our customers to have innovative new
revenue models and our customers to safely enter emerging
markets with SaaS business models and their software
protected from piracy.

Application Virtualization

Feb. 16, 2017

[0229] How Will Application Virtualization be Integrated
with Data Accelerator?

[0230] Application Virtualization is used for delivering the
binary files for applications or data while Data Accelerator
is used for the transfer of structured information between an
application and its database. The integration of these prod-
ucts will allow any type of application to be delivered and
for users to be able to access the back end data for the
application.

[0231] Our solution uses the App Accelerator to down-
load, maintain and provide custom services for application
virtualization packages, custom services could include
licensing and DRM control for example.

[0232] The Download and Run Architecture Using App
Accelerator
[0233] The process for users running applications using

App Accelerator is typically:

[0234] 1. User Browses to a web site or uses a pre-
defined URL

[0235] 2. User logs in

[0236] 3. The user credentials are checked against our
licensing server to ensure they have permissions to use
the required application

[0237] 4. The User launches the virtualized package by,
clicking a button labelled “Launch” which downloads
the App Accelerator

[0238] 5. When the App Accelerator is downloaded, the
user runs the exe which was downloaded

[0239] 6. App Accelerator starts, creates any desktop/
miscellaneous shortcuts and ensures that the latest
version of the files required for the application virtu-
alization package are available, if not it will download
them. Each individual virtualized application package
has its own set of required actions, such as setting
shortcuts and downloading supporting files which are
carried out as required.

[0240] 7. The App Accelerator then downloads the
correct version of the application virtualization pack-
age, including if required Data Accelerator and then
starts the virtualized application.

[0241] When the user next tries to use their application
virtualization package, the App Accelerator is started, which
runs through the checks to ensure that both itself, and the
application virtualization package, is up to date, if necessary
it will download any updated files and then start the virtu-
alized application package.

[0242] Using the process, the user needs to download the
file and run it only once, from that point on the application
virtualization package will always be up to date.

[0243] The benefit over traditional systems without any
virtualization is that typically those legacy type applications
would need to be installed, the process would be for the
customer to download a setup program or insert a CD into
the computer, then they would need to go through an
installation process, which many users are unable or unwill-
ing to do. Any updates to the application would need a new
installation program or possibly an uninstall routine fol-
lowed by an install routine.

[0244] The benefit over alternative application virtualiza-
tion solutions without the App Accelerator is that the down-
loaded application either needs to have a virtualization
manager/player installed, a browser plugin installed, or the

US 2017/0046381 Al

application needs to be manually downloaded and updated
when the user chooses to do so with no central control of
management.

[0245] The Combined Effect of Using the App Accelerator
and the Data Accelerator

[0246] One of the major shortfalls in the typical usage of
application virtualization is that although application virtu-
alization packages can be installed over the internet, many
such packages require a database or other data source and
this data source is often far too large, complex or critical to
a company for it to be virtualized as well, or it is required
to be shared centrally between users and cannot be virtual-
ized individually on each machine. This is where the App
Accelerator can be used to allow users to run programs
easily by using our download and run application architec-
ture, and then Data Accelerator can be used to allow the
application virtualization package to work with a remote
data source.

[0247] As application virtualization packages are often
large, and when they are updated only a subset of the
package actually changes. Data Accelerator can also be used
to stream the files required to reduce the time for initially
launching the application and reducing the time to download
updates. This is achieved by using the App Accelerator to
stream the application virtualization package through a
connection optimised using Data Accelerator, for example
the App Accelerator can be configured to:

[0248] 1. Download the Data Accelerator
[0249] 2. Start the Data Accelerator
[0250] a. The Data Accelerator can then use predic-

tive pre-caching on a WebDAV share over the inter-
net to pre-cache the blocks of files that the App
Accelerator will use to launch the application
[0251] 3. The App Accelerator can then download the
virtualized application package through the Data
Accelerator taking advantage of the standard rules that
the Data Accelerator provides, such as predictive pre-
caching, caching, compression, multi-stream TCP par-
allelism, TCP packet merging etc. to download the
package and then route the requests for the remote data
source through the Data Acceleration which can then
apply the same rules against the network traffic for the
data source which is discussed elsewhere.
[0252] Additionally once the application virtualization
package is accessed through the Data Accelerator, rather
than being downloaded in full and saved locally, we are able
to use Data Accelerator as effectively a gatekeeper to the
application virtualization package. The two main uses for
this are for highly flexible licencing controls and Digital
Rights Management (DRM). As a virtualized application is
never installed onto the local computer it can only be run
when the computer is able to access the application virtu-
alization package. Therefore with Data Accelerator acting as
the gatekeeper to the centrally stored application virtualiza-
tion package we are able to prevent the application from
being run in any way unless it is routed though Data
Accelerator. An additional layer of security would be that the
central server that contains the application virtualization
package would be configured to only respond to requests
from an instance of Data Accelerator.
[0253] To provide highly flexible licencing (e.g. time
based usage, limited number of times an application can be
run, try and buy etc.) the Data Accelerator is configured to
check if the user has permission to run the application from

Feb. 16, 2017

a central database before allowing access to the application
virtualization package; also the Data Accelerator can be
configured to keep a time based token of remaining usages
and then cease to allow access to the package once the time
has expired; thus stopping the application from running.
Additionally as Data Accelerator is able to decode the
network traffic it can prevent operations like a file copy from
being able to be run so that the software cannot be pirated
and the license checks cannot be bypassed; this provides the
DRM capabilities.

[0254] In short, the App Accelerator and Data Accelerator
combination provides a simple end user experience that
facilitates client based computing using application virtual-
ization which uses remote data sources as if they were local
to provide a general usability that is not possible without
either App Accelerator or Data Accelerator.

[0255] The Effect of Combining Application Virtualiza-
tion with Optimized or Accelerated Interaction Between a
Software Application and Database Server or Remote Data
Source

[0256] The breakthrough invention from the inventors that
led to the creation of Data Accelerator and App Accelerator
was that maintaining a traditional, client server architecture,
but being able to centralize the server database or data
source and the management of the client application would
facilitate an improved and lower cost solution. This required
the use of existing application virtualization techniques, but
the missing link was combining this with an optimized or
accelerated interaction between the client software applica-
tion and the database server software or remote data source.
The application virtualization techniques allow for the client
application to be run on the client device without requiring
traditional installation whilst the interaction optimization or
acceleration allowed for the application to provide accept-
able performance over low bandwidth or high latency con-
nections. App Accelerator was then invented to further
enhance the deployment and management of the application
virtualization packages.

[0257] Section D: More Technical Detail

[0258] Data Accelerator is a system that intercepts
requests that are being sent to a relational database, decom-
posing the request in order to understand the request and
applying a set of rules in order to improve the performance
of transferring the request and response. This can be applied
to any Relational Database Management System (DBMS)
database system. It enables, for example, legacy DBMS
platforms to be migrated efficiently to cloud-based opera-
tion.

[0259] A set of rules can be applied to optimize the request
and/or the response so that the initiator of the request gets
the response results as quickly as possible. The present
implementation of the invention is predicated on the fact that
requests sent to a DBMS are often unnecessary duplicates,
the requests often return a large amount of data that may or
may not be actually used and the DBMS systems do not take
into account external factors such as the performance of the
network, the load on the DBMS and whether the client
already has some or all the data it needs to fulfil the request.
Instead of getting the DBMS system to run and generate a
response to every request, an implementation of the inven-
tion can for example analyse the request and decide on a
course of action that can either avoid having the DBMS
re-run the query, thereby saving the time it takes to execute
the query and the time it takes to transfer over the network,

US 2017/0046381 Al

or it can alter the request and/or the response in order to
serve the response more efficiently. We will refer to this as
an optimization system, optimization server or optimization
point. These optimization systems can be implemented in
hardware, software, or a combination: for example, they
may be implemented in a computer running appropriate
software; the computer is located between the initiator and
the DBMS. Similarly, they may form part of the DBMS, for
example being part of the software controlling the DBMS,
or be part of the software running on the initiator’s com-
puter. Or they may be distributed across the DBMS, the
initiators’ computers, or one or more intermediary servers.
In each case, the existing client application (running on the
initiator’s computers) and the server (the DBMS) are sub-
stantially unchanged by the optimisation system; this is very
different from conventional and costly bespoke coding
approaches to data flow optimisation.

[0260] Multiple implementations of the invention (each
providing optimization services) may (optionally) be used at
different network points between the initiator of the request
and the DBMS. When routing is done between two or more
of the systems that each provide optimization services, then
these systems (i.e. optimization systems) can include addi-
tional information either in or around the request for
upstream or downstream optimization services in order to
learn more about the request and responses so that they can
understand the effectiveness of any rule applied and also
offer other guidance about results of the optimization and
possible further optimizations.

[0261] When there are other versions of the optimization
services running which are not in the direct path between the
initiator and the DBMS, such as separate clients on a
peer-to-peer network, then they may optionally also share
both request and response data as well as information to
learn about the effective methods of optimizations described
above. Rules can be selectively enabled or disabled based on
a number of factors such as initiator and DBMS addresses,
the locations, time of day, configuration or other methods
such as server load. An example of how the optimization
services can interact with other services, initiators and
DBMS servers is shown in FIG. 5: the optimization servers
are labelled in FIG. 5 as ‘Optimization Points’.

[0262] Major Components of the Preferred Implementa-
tion
[0263] The optimization system is made up of a number of

major components which are either required or optional. The
FIG. 29 shows the required components with solid outlines
and the optional ones with a dotted outline. They are
described as follows:

[0264] Network Traffic Interceptor

[0265] The network traffic interceptor receives the request
from the initiator; (i.e. client application) it is responsible for
accepting the TCP/IP socket data that the initiator sends to
the DBMS and passing the data to the protocol specific
parser. The network traffic interceptor does not understand
anything about the request as all it sees is a stream of data.
[0266] Protocol Specific Parser

[0267] The protocol specific parser takes the stream of
binary data that the network traffic interceptor receives and
splits or merges the binary stream into a message that is
specific to the type of protocol being used. An example for
Microsoft SQL Server which uses the TDS (Tabular data
stream) protocol is that the size of the message is at byte
offset 2 from the beginning of the stream, using this length

Feb. 16, 2017

the protocol specific parser can split the stream into mes-
sages. If the network traffic interceptor doesn’t send enough
data for a complete message the start of the message is
buffered until the rest of the data is received.

[0268] The protocol specific parser also decodes the mes-
sages to show what properties each message has, for
example with a SQL request, it will decode the message so
the text of the SQL request can be read.

[0269]
[0270] The request decomposer adds additional properties
to the request which although they are not included in the
request, are known because of the specific connection or
previous queries to gain an understanding of the context of
the query. For example in Microsoft SQL Server each
connection has an identifier called a “SPID”. The SPID can
be included in the request but it does not have to be. By
monitoring requests and responses the SPID can be saved
and appended to every request that comes in. The SPID can
then be used by other components to retrieve metadata about
the request directly from SQL Server using the SPID.
[0271] Optimization & Rules Engine

[0272] The rules engine takes each request or response and
applies all the rules that have been configured for each point
the rule can interact with the request and response. For
example, in one situation when the request has arrived but
before it has been forwarded to the server, the Cache Server
rule is applied to the request to see if the response can be
served from cache.

Request Decomposer

[0273] Dynamic Rules Effectiveness+Modification
Engine
[0274] This takes data from a number of sources about

how well each rule is working or in some cases about how
the computer environment is working and determines what
it is that the rules should be doing in general and specific
cases. For example in order that the compression rule should
know whether or not to compress some data, the rule needs
to know how long on average it takes to compress a piece of
data x bytes long and how long it takes to send x bytes over
a specified network link. The rule modification engine in this
case will monitor how long it takes to compress each packet
as they are compressed, it also monitors how long it takes to
send different sized packets over the specified network link,
the information is then requested by the compression rule to
determine whether or not to compress the data it currently
has. The effectiveness engine may also track how long
different types of data take to compress, i.e. a series of 100
0’s takes 1 ms but 10,000 random bytes takes 6 ms, this data
can be used to determine whether it is faster to compress,
send then decompress or to just to send the data.

[0275] We will now take a look at the optional components
in the preferred implementation, they are optional as some
users will not want or need all components but other users
will make use of all of the components.

[0276]

[0277] The pre fetch engine ensures that where possible
queries are available in the data cache so that when queries
are requested, the responses are available so the request does
not have to go upstream to the server data source. The
pre-fetch engine stores the original request so when it knows
that a request may be used, it can pass the original binary
data stream to the Network Traffic Interceptor, the reason for
this is that the request is then handled as a normal request
from the initiator and other rules such as the compression

Pre-Fetch Engine

US 2017/0046381 Al

rule can also be applied and no custom logic needs to be
added so that the pre-fetch engine can access the data cache
etc.

[0278] Network Failure Connection+Re-Establishment
Engine
[0279] This component monitors the network connections

and if a failure occurs, attempts to create a new connection
to allow the client to continue working on the connection.
[0280] The way the engine works is to monitor all reads/
writes to a network socket. If any of these fail because the
connection has been closed; the re-establishment engine
connects a new socket and uses that for the read/writes. In
the case of a read, the original request is re-sent, and the
responses (if there is more than one) returned from the last
time data was sent back to the client. There are some
situations where the connection cannot be recovered, for
example when the request is not cacheable and it needs to be
re-run so the reads can be re-read, in this case the client
application receives a connection termination and handles it
as necessary.

[0281] Compression Engine

[0282] This is the component that handles compressing
and uncompressing data when requested by the compression
rule. The engine takes uncompressed data and uses a con-
figurable compression method such as the Lempel-Ziv
method. The data is then appended with a header showing
that the data is compressed and the method used. The
compression engine is then used by the up or downstream
instance of Data Accelerator to decompress the data.
Because the data that is compressed is typically very similar
the compression engine may decide to apply some extra
techniques such as using a pre-known compression table
which can be stored in the Application Intelligence Table
(AIT) so the table does not need to be transmitted with each
set of compressed data to further reduce the size of the data.
[0283] Encryption Engine

[0284] This is the component that handles encrypting and
de-encrypting the data when asked by the encryption rule.
The data is encrypted in a more blanket approach than the
compression as encryption is either required or not require
for a given link. If the data is encrypted it has a header which
shows that it is encrypted and the encryption method used as
well as details on which certificates etc. should be used to
decrypt the data.

[0285] Network Redirection Engine

[0286] This monitors servers for uptime and performance
and when a server goes offline redirects all connections to a
backup server.

[0287] There may be additional optional components
depending on a user’s need, they may for example need an
engine to change the way data is transferred from TCP over
IP to UDP over IP for example and this would require an
additional engine to do the translation.

[0288] Application Intelligence Table (AIT)

[0289] The optimization engine has a global table which
lists all queries that are received by an application (e.g. the
client application or the server software), the table is avail-
able to all components and all components can feed into the
Application Intelligence Table so that the optimization can
make the best decisions for each request/response that is
received.

[0290] The AIT contains details of the query that is being
requested, whether the query is cacheable, which base tables
are read from and written to and data about how previous

Feb. 16, 2017

requests have performed, the following is a representation of
a subset of what a row in the AIT may contain:

[0291] Query: “Insert Into TableTwo Select*from Table-
One”

[0292] IsCacheable: No

[0293] BaseReadTables: “TableOne”

[0294] BaseWriteTables: “TableTwo”

[0295] Previous Request Times:

[0296] Was Compressed: True, Time: 00:00.22

[0297] Was Compressed: True, Time: 00:00.26

[0298] Was Compressed: False, Time: 00:00.94

[0299] Using the data, the compression rule, can for

example in this instance see that the response time is much
faster with compression than without, so will bear this in
mind when deciding whether or not to compress the next
time it sees this request.

[0300] The AIT can be extended by other components as
necessary, for example the network redirection engine might
have added some data to show that when one specific data
source is used for a specific query it is significantly faster so
it will ensure it always sends that specific query to the fast
host.

[0301] The AIT is critical to managing the Data Cache in
that when a query runs that includes a base write table, all
of'the queries in cache which have one of the write tables as
a read table can be expired.

[0302] Ifa query, or a required part or property of a query,
is not in the AIT then each rule will add different parts of the
row until it is complete, for example the Cache Data rule,
can see that the decision on whether a query is cacheable has
not been made, so it connects to the DBMS instance, uses
the execution plan to find if it is cacheable and determines
which base read and write tables, if any there are, once the
information is known it updates the AIT so other rules and
future requests have the same information available.
[0303] This dynamic learning effectively means the AIT
can grow and keep up to date as the application changes
and/or users perform other operations that haven’t been used
before. The benefits of the self-learning AIT are that the
developers of the application do not have to pre-program the
AIT and as the AIT grows and understands more about the
application, it can better optimize the application so that for
users, it appears to get faster and faster.

[0304] The reason that the preferred implementation uses
the AIT and pre-determines as much as possible is that it is
more efficient than working out on the fly everything that
each component needs to know about a query. It is a
complex operation and without storing it for later use, there
is a significant amount of duplication, depending on the
requests that are being optimized.

[0305] Detailed Description of the Preferred Implementa-
tion
[0306] Data Accelerator provides the interception, analy-

sis and database traffic optimization described in the pre-
ceding sections. To re-cap on the fundamentals, the tradi-
tional approach for database systems (DBMS) is for the
initiator of a request to send every request to a DBMS and
for that system to run every single request. In one example,
the present implementation of the invention challenges this
orthodoxy by requiring that the requests and responses have
rules applied to them to limit what is actually run on the
DBMS, running queries more intelligently and making
better use of network bandwidth to improve performance for
users of DBMS systems by optimising the responses that are

US 2017/0046381 Al

sent over the network. The example of the approach can be
summarised as intelligently “intercept and analyse then
respond, change or ignore” at the Data Accelerator optimi-
zation system. FIG. 7 is a schematic of the approach where
the rules have not been able to stop the request from being
sent to the DBMS so the request is forwarded. FIG. 8 shows
the response can be served directly from the Data Accelera-
tor optimization system and the DBMS system does not
need to do anything. Typically the responsiveness of a
DBMS system is affected by a number of factors such as,
query compilation, load, data access (reading and writing to
disks) and network response time. By using a rules-based
framework that is able to intelligently learn how to apply the
rules to give the maximum performance benefit, significant
savings can be made whilst still having a scalable DBMS
architecture.

[0307] The preferred implementation does not modify the
query that is generated by the client (and that may then be
received at the server software) or the response that is
generated by the server software (and may be returned to the
client), instead the request and response are modified during
the transportation of the request and response, in that the
data is compressed or cached but the client and server are
unaware that the request or response is different. Hence, the
optimisation system supplements the client application and
the server software and acts on requests and responses that
are formed and packaged by, respectively, the client appli-
cation and the server software. When the response is not
served from cache, the response is always generated in
whole by the server; this then may be cached and served
again later. Although the preferred implementation does not
modify the request or response the optimization engine
might in fact choose to do so.

[0308] The Data Accelerator can apply many different
kinds of rules, such as any one or more of the rules in
this non-exhaustive list:

[0309] Caching of request and response data, to return
the response direct from a cache without having to run
the request on the DBMS—see FIG. 9.

[0310] Pre-Caching of requests can take place so when
a request has been seen before with other requests,
those other requests can be sent to the DBMS so when
the initiator requires them, they are available immedi-
ately.

[0311] Query Batching i.e. duplicate queries which
have been requested at the same time can be stopped
because the first request can be run while the duplicates
are held, when the response to the first one is sent, it can
be sent to all of the initiators. See FIG. 10 which shows
the requests being held and FIG. 11 which shows the
response being served to multiple initiators.

[0312] Compression of the request and/or the response
which will decrease the time it takes to send the actual
data over the network.

[0313] Replacement of common strings to minimise the
data travelling over the network.

[0314] Re-Routing of requests to separate specific
DBMS systems to provide a load-balancing feature

[0315] Re-Routing of requests over separate specific
network paths depending on which one is online and
fastest.

[0316] Request modification which will modify queries
to only request the data that is required, for example

Feb. 16, 2017

adding a TOP X clause to a query that only requires a
certain amount of data but requests more than it needs.

[0317] Pre-Validating the request for errors such as
incorrect syntax of the query language being used or for
security issues, so these can be failed before even
having to get the DBMS to fail the request.

[0318] To address issues such as auditing and logging,
a rule can be put in place to call the auditing or logging
systems so that these can still be used.

[0319] To address issues such as security over WAN
links a rule can be put in place to encrypt the traffic
between two Data Accelerator instances.

[0320] There are sometimes simple requests for data
which can be satisfied without the need to send the
request to the DBMS, for example a query such as
“SELECT 1” or “SELECT 10*100” always returns the
same response, so where this is detected, the simple
request response generator rule can generate the
response locally.

[0321] These and other rules give numerous advantages
over the existing method of having a DBMS run each and
every request that is sent to it (and may be received by it),
the specific advantages include:

[0322] Lowering the actual cost and ownership cost of
high performance DBMS systems, notably:

[0323] The cost of having to have additional and more
powerful hardware.

[0324] The power costs associated with more physical
servers and more powerful servers.

[0325] The personnel cost of having to maintain the
equipment and keep it running optimally

[0326] 'Typically with DBMS systems, because of the
amount of data that is transferred over the network,
using a wide area link to connect to the DBMS is not
possible, however using the Data Accelerator you can
host your DBMS system anywhere in the world.

[0327] As the Data Accelerator reduces the amount of
requests being sent to the DBMS, the requests that it
does have to deal with get more resources to complete
in a more efficient manner, so even queries that cannot
be helped by the rules framework will still complete
faster.

[0328] Some examples should help to show how wasteful
traditional systems are and how they can be optimized. The
first example is of a national healthcare provider who
without Data Accelerator would have to either host their
DBMS in one location and use an expensive remote virtu-
alization solution or have a DBMS in each branch office and
replicate data around between branches which can be inef-
ficient, prone to failure and expensive. Using the present
implementation of the invention they can connect directly
from each client via a local Data Accelerator instance, which
applies any caching and pre-caching rules it can or com-
presses and encrypts all traffic connecting over the WAN to
the Data Accelerator instance at the DBMS site where it is
uncompressed and unencrypted and forwarded onto the
DBMS. The response is similarly compressed and encrypted
before sending back.

[0329] The benefit of this approach is that the healthcare
provider simply needs one site that keeps costs low whilst
still getting the performance they need. Typically when a
patient goes to reception their details are first loaded so the
receptionist’s traffic can be prioritised by the Data Accel-
erator, as the data that is required is common i.e. there are

US 2017/0046381 Al

a number of requests which get the patient records (e.g.
names, address, date of birth etc.) the pre-caching can have
a massive benefit. As the patient moves to the specific
department, the information is already available at the local
cache so it can be served immediately. This shows a situation
where the Data Accelerator can be used where imperfect
solutions were previously used.

[0330] The second example is of a global insurance com-
pany that has a number of reports showing the daily claims
and policy sales data which are run by various levels of
management every day. By using the Data Accelerator they
are able to drastically reduce the amount of processing that
the DBMS system needs to do during the online day so it can
be used for other processing or a cheaper system can be put
in place. The hierarchy of managers who view the reports
are:

[0331] 1xGlobal Director
[0332] 5xRegional Directors
[0333] 50xCountry Managers—Each region has an

average of 10 countries
[0334] 2500xDistrict Managers—FEach Country has an
average of 50 districts
[0335] There is one report for each manager so the global
director has a global report, regional directors have a report
and each country manager has their own report etc. A report
consists of one DBMS request. Typically each person views
their own report, their peers reports (district managers peers
are those in their country and not in all countries) and also
their direct subordinates.
[0336] The data is refreshed once overnight and without
the present implementation of the invention and request
caching the amount of requests the DBMS needs to cope
with is:
[0337] Global Director=6 Reports—1 Global Report
and 5 Regional Reports
[0338] Regional Directors=275 Reports—Fach
regional director views the 5 regional reports and their
own countries reports
[0339] County Managers=27500 Reports—Each coun-
try manager views all 50 country reports and their own
districts
[0340] District Managers=25000 Reports—Fach dis-
trict manager views their own reports and all the
districts in their own country
[0341] Total Requests=52781
[0342] Ifhowever we use caching, so that reports are only
run once, then we simply count the number of reports that
are available:

[0343] 1 Global Report
[0344] 5 Regional Reports
[0345] 50 Country Reports
[0346] 500 District Reports
[0347] Total Requests=556
[0348] That is 1.053% of the number of original requests.

Because the same reports are run every day, once the data
has been refreshed the Data Accelerator can employ pre-
caching to generate the data the reports require before
anyone has even requested the first report. Deploying this for
enterprise reporting solutions often means that it is possible
to restrict the use of complicated and expensive pre-aggre-
gating solutions such as online analytical processing
(OLAP) cubes.

[0349] For a final example we can take a look at a website
which shows dynamic pages directly from a DBMS system.

Feb. 16, 2017

The site is 24/7 and has pages modified by editors as well as
data feeds constantly updating pages. By using the Data
Accelerator they are able to improve the performance of the
site and ensure that the resources needed to serve the site are
reduced so the running costs are cheaper.
[0350] A page consists of, a site header, site footer, a site
tree and the page itself where each item is a separate DBMS
request.
[0351] On average:
[0352] 1 Page every 5 minutes is added or deleted
which changes the site tree
[0353] The header or footer are changed once every 7
days
[0354] 'The site receives 50 page views a minute
[0355] The situation without Data Accelerator is that the
DBMS handles 2,000 requests/minute which are:

[0356] 50xSite Tree
[0357] 50xSite Header
[0358] 50xSite Footer
[0359] 50xPages
[0360] This equates to 12,000 requests per hour, 288,000

per day and 2,016,000 requests a week.

[0361] Using Data Accelerator, depending on which pages
are shown, in the worst case scenario, where the page
requested is always the page that has been modified there is
still a massive reduction in requests:

[0362] 1xSite Tree—every 5 minutes

[0363] 1xSite Header—every 7 days

[0364] 1xSite Footer—every 7 days

[0365] 1xPage—every 5 minutes (if the changed page is

not requested then this can be even lower)
[0366] This equates to 12 requests per hour, 288 requests
per day and 2,018 DBMS requests every week. This is a
reduction in the worst case scenario to 0.1% of the original
requests.
[0367] The Data Accelerator optimisation system can
work as either the only instance between an initiator and an
DBMS or as part of a chain involving two or more instances;
using multiple instances allows rules to do things to the
request that they could not otherwise (compress, encrypt
etc.) and share diagnostics and performance information
between the instances. FIG. 12 shows a single Data Accel-
erator instance, FIG. 13 shows two Data Accelerator
Instances and FIG. 14 shows multiple instances.
[0368] The path through a chain of Data Accelerator
instances is not fixed but variable. Different initiators at
either the same or separate locations can go through any
route of Data Accelerator instances: see FIG. 15. FIG. 16
shows how the Data Accelerator can change the route to the
DBMS depending on where the request came from or a
specific property of the request. The Data Accelerators must
be aware of other instances both up and down stream
because some rules such as the compression rule will modify
the request and it must be uncompressed before reaching the
destination DBMS server otherwise the request would be
invalid.
[0369] When the Data Accelerator sends a packet that has
been modified, it wraps the contents of the packet in a
specific message that the Data Accelerator will remove
before forwarding to the DBMS or the initiator. In order that
the Data Accelerator instances can know what rules they are
allowed to apply to a packet, it uses a number of methods to
understand where it is in the chain between the initiator and
DBMS. One such method is for the first Data Accelerator

US 2017/0046381 Al

instance in a chain to send a specially crafted DBMS request
up the stream and to monitor for the response. Each instance
has its own unique id. The first instance creates a request
such as “SELECT uniquelD”, the second adds its own id so
it becomes “SELECT uniquelD, uniquelD” each instance in
the chain adds its own id then when the response is received,
the order of the instances unique id in the result set shows
where it is in the stream.
[0370] Because Data Accelerator instances are aware of
the chain and of other instances they are able to communi-
cate between themselves within the network channel that has
already been opened for the initiator. These messages allow
the instances to share information about the requests and
responses, such as how quickly they are being received at
each point. With this information instances can dynamically
determine how effective or detrimental a specific rule has
been in a particular case so can choose to vary the applied
rules (either not apply the rule or change the parameters to
the rule or even test a different rule) to find the optimum
performance enhancements. It is this dynamic learning that
means Data Accelerator instances can consistently add ben-
efit over time.
[0371] In order to analyse requests that are being sent to a
DBMS, the Data Accelerator will extract the command that
is being sent such as “SELECT A, B, C FROM XYZ” or the
DBMS specific command in their own language such as
Procedural Language/SQL (PL/SQL) for Oracle or Transact-
SQL (T-SQL) for Microsoft SQL Server and use the com-
mand as the basis for applying the different rules that it has
available.
[0372] There are a number of different types of rules that
can be applied at different points within the request/response
stream. Section E below expands on these rules. FIG. 17
shows the different points that the rules can be applied and
the flow through the application. The rules are as follows:
[0373] Initiator In-Flight Rules
[0374] The request is received and rules such as the
caching rule can decide to allow the request or serve a
response directly from cache
[0375] Initiator Post-Send Rules
[0376] The request has been sent so rules such as the
pre-caching rule can send other requests which may
well be needed
[0377] DBMS In-Flight Rules
[0378] The response is received from the DBMS; rules
such as the compression rule can be applied before it is
sent to a downstream Data Accelerator instance.
[0379] DBMS Post-Send Rules
[0380] The response has been sent so the diagnostics
rule can determine how good a job it did and how it
could have been better.
[0381] We can follow a request with a specific example:
[0382] 1. A request comes in and the protocol specific
parser determines that the command is “SELECT a, b, ¢
FROM xyz”.
[0383] 2. The initiator In-Flight rules are applied
[0384] a. The caching rule determines that it is in cache but
has expired so cannot serve it
[0385] b. The compression rule determines that there is an
upstream Data Accelerator instance and the network link is
slow so the data is compressed and wrapped in a Data
Accelerator packet. These are example of the ‘content and/or
context’ that we reference earlier.
[0386] 3. The request is sent upstream.

Feb. 16, 2017

[0387] 4. The Initiator Post-Send rules are applied
[0388] a. The pre-caching rule determines that normally
when this is sent (another example of the ‘content and/or
context’ that we reference earlier), there are an additional 5
commands which are always run so it schedules the next 5
requests, the 5 requests are sent through the normal set of
rules so caching and compression etc. can still be applied.
[0389] 5. While the Initiator Post-Send rules are in prog-
ress, the response is received from the upstream servers. It
is then passed through the DBMS server in-flight rules.
[0390] a. The compression rule determines that the data is
compressed and there are no downstream Data Accelerator
servers (another example of the ‘content and/or context’ that
we reference earlier) so the data is uncompressed.

[0391] 6. The response is then sent back to the initiator
[0392] 7. The DBMS Post-Send rule is then applied
[0393] a. A diagnostics rule determines that the upstream

link is a fast link and there is little or no latency so after
running a test to compare how long it takes to compress data
and how long to send over the network, the compression rule
is turned off for upstream packets less than 1 k in size
(another example of the ‘content and/or context’ that we
reference earlier).

[0394] b. The pre-caching rule discovers that only 4 of the
5 commands it expected have been used and this has been
the case for the last 5 times the specific request was sent so
the caching rule has been modified to only request the 4
queries instead of the original 5 (another example of the
‘content and/or context’ that we reference earlier).

[0395] The key is that the Data Accelerator provides the
rules but also diagnostics and in-built learning to change the
rules dynamically to react to events as they happen in the
light of the ‘content and/or context’ of the request and/or
response.

[0396] Details of Specific Implementations

[0397] The Data Accelerator as an optimization system
has been shown above to implement a protocol handler for
a DBMS server, specifically Microsoft SQL Server but as
noted earlier there are a number of different protocols that
can be optimized in a similar manner. The optimization
system and the rules are built in a protocol agnostic manner
and so when looking at specific implementations it is enough
to know:

[0398] How a request and response are defined

[0399] How to get the content of the request

[0400] How to get the non-environmental context infor-
mation

[0401] Whether a request is cacheable

[0402] Determining when a cached item should be
expired

[0403] The first set of protocols we will look at is ones that

utilize Http, i.e. Http itself, WebDAV and Soap over Http.
[0404] A request is defined by a set of headers and an
optional body sent in ASCII text, the headers finish with an
empty line and the headers determine whether or not there
is a body, i.e. whether there is the HTTP header Content-
Length or other information such as a Content-Type or
Chunked-Encoding.

[0405] In the content of the request is the contents of the
Http Header and possibly the body, there are certain headers
which can be ignored for the purposes of caching such as the
Authorization or Referrer as these do not uniquely identify
a request, rather some extra data that is unique to the client.
For example to uniquely identify a request to determine a

US 2017/0046381 Al

key for caching, a key is defined as some text which can be
used to match requests, to requests/response pairs that are in
the cache, if we take this HTTP request:

[0406] GET/Uri/Uri HTTP/1.0[Carriage Return][Line
Feed]

[0407] Host: www.server.com|[Carriage Return][Line
Feed]

[0408] Content-Length: O[Carriage Return] [Line Feed]
[0409] [Carriage Return]|[Line Feed]

[0410] The unique caching key would be:

[0411] “GET:/Uri/Uri:1.0”

[0412] This shows we have the request type, “GET”, the

requested resource “/Uri/Uri” and the version of the request,
“HTTP 1.0

[0413] We can expand this to support WebDAV and Soap
by understanding the different types of WebDAV packets i.e.
PropFind and Options and reading the Xml Body of the Soap
Message which is used to define the caching key.

[0414] The context information is taken from headers such
as the User-Agent which gives information about the client
and client browser, the name of the server it was destined for
etc. The inter-request relationships context is monitored by
the Data Accelerator, watching requests and responses and
noting which connection and client they came from and in
which order.

[0415] To determine whether a request is cacheable, it
needs to be broken into two broad categories and requires
some additional information from the web server itself. The
first is requests which are inherently cacheable such as
requests for images, documents or files such as CSS files,
these can be cached, until the point they are modified. The
second set is requests which run application code such as
Java Servlets or Pearl Scripts, it is not always possible to
know what these are doing and when dealing with unknown
scripts, it is possible for example for a resource to return
totally different responses based on any number of factors
including the time of day or the weather outside. In these
cases it is necessary to use a number of methods such as
monitoring the responses and compare to previous similar
responses for the same request, analysing the resources by
parsing the text and or decompiling any executable files and
also using a manual method of having the owner of the
resources define which resources are cacheable and which
are not.

[0416] To determine when a request should be expired,
there are a number of methods which can be utilized, such
as the Http header If-Modified-Since can indicate whether a
response has changed or the Data Accelerator can monitor
individual files to see if they have changed, this is often
effective where a web site is set to not allow caching but the
files are the same and transferring the data over the internet
again is a waste of time. A similar method can be used for
Data Accelerator to request a resource from an upstream
Data Accelerator instance, if the server responds saying it
has expired, but the upstream instance determines that the
content of the response is the same as a previously returned
response then the upstream instance can tell the downstream
instance to use the version it already has.

[0417] Another example of a protocol specific implemen-
tation is where WebDAV traffic is sent over the HTTP
protocol, by understanding the WebDAV extensions, it is
possible to further understand the content and the context of
requests and provide a superior level of performance, even
in some places add-in additional functionality to existing

Feb. 16, 2017

servers. This can be seen by having the Data Accelerator
monitoring for Options requests, first of all these do not need
to go to the data source as the Data Accelerator can pre-
determine any specific options that the server does and does
not support, in some cases where a server does not support
a particular option, such as WebDAV version 2, the Data
Accelerator can return that the server does and handle the
protocol changes as required to make it look as if the server
does support version 2.

[0418] Preferred Implementation of the App Accelerator
“Download and Run” Architecture

[0419] When dealing with the scenario of a software
publisher wishing to distribute applications to end users with
an optional remote data source, it is preferred that the users
do not need to install anything and can as simply as possible
run their applications, making sure that they have the right
license to access the software, it cannot be pirated, and that
the software is always up to date, not least because
unpatched critical security issues can cause serious harm to
both users and software publishers.

[0420] Unfortunately because of the way internet brows-
ers view security, it is not possible form a single click on a
web site to download and run executable code which can
start App Accelerator, you either need to install a browser
plug in which typically requires user acceptance or you
download an executable and the user then runs the applica-
tion. The idea of the Download and Run Architecture is that
users only have to do the very minimum to get their
applications up and running and so they browse to the portal,
click a button labelled, for example, “Launch”, “Download”
or “Run” to download the App Accelerator for the specific
application, there is then some text to tell the user that they
need to run the App Accelerator when it is downloaded, from
this point on the App Accelerator is executing and takes over
from the users and carries out a set of actions so that the user
is able to run their application virtualization package with an
optional remote data source.

[0421] An example of this is from the fictional Solicibert
company that supplies law firms with time management and
billing software. A lawyer logs onto the portal, their creden-
tials are checked and a list of applications to which they have
access shown to the customer, he then clicks on the
“Launch” button for the “PerseusTimeTrack” application
virtualization package, the launch button downloads the App
Accelerator.

[0422] The user then runs the App Accelerator and it
checks in the users profile folder whether or not the required
files to run the package exist, if they do not then the files
(including Data Accelerator) are downloaded, a desktop
shortcut in the users roaming profile is created and the App
Accelerator is copied to the roaming profile. The App
Accelerator then validates the user has access to the soft-
ware, starts the Data Accelerator and then starts the software
and exits. The user then can use the software as if it was
installed and as if the remote data source was local due to the
optimization provided by Data Accelerator.

[0423] As the user changes the local configuration of the
application, such as his user preferences, these changes are
mirrored on his personal section of the web portal to a data
source through Data Accelerator.

[0424] When the user tries to run the application package
again, the App Accelerator verifies that it is up to date, and
if the files need updating then it will update them, otherwise
it starts the application.

US 2017/0046381 Al

[0425] When the user goes onto a new machine in the
same company, his roaming profile has the shortcut to the
application and the App Accelerator but no application files,
s0 he starts the shortcut which downloads the package and
the Data Accelerator and starts the application as before.
[0426] When the user goes home, he doesn’t have the
shortcuts on his home machine so he goes to the portal and
re-launches the package, which gets the App Accelerator, the
Data Accelerator, the package as well as any local configu-
ration changes that were mirrored to the personal section of
the portal.

[0427] For enhanced performance for larger application
virtualization packages and to allow increased control to
provide licensing controls and DRM; rather than download
the entire application virtualization package (which can be
several hundred MB) the package can be stored on a central
data store and access using a remote network share, for
example SMB, CIFS, WebDAV or FTP.

[0428] If the package were run from a remote network
share without any optimization the performance of the
application during use would be very slow as applications
load large amounts of data from the data store that contains
the application virtualization package into memory during
runtime and unload the data once they are not needed to keep
system RAM from being used up unnecessarily. This means
that even with a package of 100 MB there could be over
1000 MB of data transferred during use as the same parts are
loaded and unloaded from memory during use of the appli-
cation. The result of this is slow performance of the appli-
cation as client applications are written with the expectation
that the source files are stored on a local disk with high-
speed access compared to a remote network share. To
overcome these problems the Data Accelerator is used to
provide the relevant optimization techniques; for example
caching of the blocks of the package so that once they are
used the first time, they do not need to be pulled over the
network again, or compression to reduce the amount of data
that needs to be transferred, or pre-fetching so that once one
feature of an application has used the blocks of data for the
files needed to run a feature that always or normally follows
are cached in advance. Using the Data Accelerator also
means that when the application virtualization package is
updated only the parts that have changed need to be down-
loaded as the other parts will already be cached. Also the
application virtualization package can be enabled to run
offline as the Data Accelerator can be configured to proac-
tively cache all blocks of the package in the background for
later use offline.

[0429] Once the application virtualization package is
accessed through Data Accelerator, and especially as the
server with the package source file is configured only to
respond to network traffic generated by Data Accelerator, the
Data Accelerator can act as a gatekeeper to the package for
license control and DRM. The Data Accelerator can be
configured to perform a check against a central database to
determine if the user has access to that application and on
what basis and it can then allow or deny access to the
package depending on the response. A time-based session
can be sorted in the memory of the Data Accelerator process
which can be monitored so that when the time expires the
access to the package is suspended. Additionally the Data
Accelerator can be configured to deny network requests
were it can be seen from the network packets that the users
is attempting to copy the file; this provides DRM and

Feb. 16, 2017

anti-piracy. The cached blocks of the application can be
stored as encrypted files on the local machine in order that
the cache cannot be used unless it is accessed through the
Data Accelerator; again providing an additional level of
DRM.

[0430] Section E: the Optimisation Rules

[0431] We now look at how each of the individual rules
work to provide the benefits already mentioned.

[0432] Simple Caching Rule

[0433] If we start with the simple caching rule, there are
three parts, the actual caching of data called the “cache data
rule”, the serving of cached data called the “cache serve
rule” and the diagnostics component “cache diagnostics and
management”.

[0434] In order that the Data Accelerator can cache data,
the cache data rule runs after the response has been sent back
to the initiator because, at this point the Data Accelerator has
seen the request that was sent and the response that was
returned, it has everything it needs to cache the data. There
are a number of different types of cache that can be used,
these include an in-process and out-of-process or separate
machine cache and on permanent storage such as a hard
disk. The cache is effectively a hash table lookup with the
key being either the SQL command from the request or a
hash of that SQL command. Depending on the type of cache,
it will either store a pointer to the first response packet or it
will store the actual packets as an array.

[0435] Before a response can be added to the cache, the
rule must determine whether a request is actually cacheable.
There are a number of factors which affect whether or not
something is cacheable, there are certain types of SQL
command which are inherently non-cacheable, for example
an UPDATE or INSERT request, if this was cached and not
forwarded onto the DBMS it could cause data corruption
which is not acceptable. Other commands need to be looked
at in the context that they are being used, for example an
DBMS will have a command to retrieve the current date and
time. If a request is sent to get all records in the future,
depending on when the query was next run and if any
records were added or deleted, it may or may not have a
different set of results. If it is determined that the request can
be cached, it is stored in the actual cache. If it cannot be
cached, then we still store the request so further requests
don’t have to be verified.

[0436] Once a request/response are stored in a cache, the
cache serve rule can be applied to requests as they arrive but
before they are sent onto the DBMS, if the request is in the
cache, it is verified to ensure that it is still valid, for example
there have not been rows added to, deleted from or modified
in the cached response. The users’ permissions are then
verified to ensure that they have the correct level of security
to access the response and if they are allowed access then the
response is returned.

[0437] The cache diagnostics and management rule’s role
is to verify how well the cache has worked for a specific
request, to manage the cache size by expiring unused or not
often used requests as well as expiring items which are no
longer valid. To work out how effective a cached response
was, it compares the total time it took the DBMS to return
the response and compare it to how long it took to verify that
it was still valid, check security and return the cached
response—if the request is such that it is small and responds
almost instantly then it may not be worth caching. If the
diagnostics determine that caching the request is not adding

US 2017/0046381 Al

a benefit, it will still monitor later requests to see if at any
time it does become worth caching.

[0438] To see if a request is still valid the rule has a record
of the items that the request used within the DBMS and
monitors those for changes, if the changes affect the
response then it can either decide to just evict the item from
the cache or it can re-run the query so it has the latest
response available in cache.

[0439] To manage the size of the cache, every time an item
is served a counter is incremented and the time noted, if an
item hasn’t been used for a set amount of time or it is only
rarely used then it can be evicted from the cache.

[0440] Intelligent Caching Rule

[0441] The next rule is the intelligent cache rule; this is
similar to the simple cache rule in that it has three compo-
nents and in fact can share a cache with the simple caching.
In some situations the simple caching is not as effective as
it could be. For example if the response to a request changes,
the entire response is discarded. With the intelligent rule, it
can assess how much of the response has changed and if it
is under a certain percentage, which is determined by the
diagnostics component, the cached response will be modi-
fied so that it is up to date. Where this is of most use is where
a chain of Data Accelerator instances are being used per-
haps, one close to the DBMS and others at remote offices,
the intelligent caching rule can just request the portions of
packets that have been changed from the upstream instance
that is close to the DBMS so that the minimal amount of data
is sent over the network to the local instance, which then
merges the changes and then returns the cached response as
required. The cache data rule works in exactly the same way
as the basic caching rule, in that it determines the cache-
ability and stores it in a hash table.

[0442] The cache serve rule and the diagnostic rules
however need a much more complex method to determine if
the results can be merged or simply discarded. The rules will
decide on whether to do a merge based on factors including
the size of the response in that a small response may be
quicker to get direct from the DBMS. It also takes into
consideration how much of the data has changed. It does this
by getting an upstream Data Accelerator instance to physi-
cally re-run the request. Once the upstream instance gets the
response, it can analyse each packet in turn to see if it has
changed at all and if it has what percentage of the packet is
different. Once the rule knows how much of the data has
changed, it can determine what to do and how complicated
it is. Some changes are more complicated, for example, if
the size of a packet has changed, either due to extra rows
being returned, or a string changed then details like the
packet size and protocol specific information need updating,
but if something has changed but the length of the packet is
the same i.e. swapping “Company A” for “Company B” then
it is simply a matter of swapping the “A” for “B” which is
an easier modification to make.

[0443] Intelligent Cache Eviction

[0444] There is a further aspect to caching that can be used
to make sure that data is only evicted when it has actually
been changed as opposed to when it has likely been changed.
The intelligent cache eviction relies on the DBMS system
splitting a data file into subsections, for example with
Microsoft SQL Server each file is split into a series of 8K
pages. For each request, instead of the actual tables that were
used being monitored for changes, the pages that were read
or written to when running the query are captured, and then

Feb. 16, 2017

if any changes happen, only the responses which were built
using the changed pages are expired. In most DBMS sys-
tems it is possible that the subsections, i.e. pages, are moved
or split or merged so there is a component in the intelligent
cache eviction that monitors these and updates the internal
references to the pages so the new pages are monitored.
[0445] This isn’t effective in all scenario’s just as in
Microsoft SQL Server, when an “Index Scan” is run as part
of a query, this means all of the pages that make up an index
or table are read so all the queries that rely on those pages
are expired. This is exactly the same as the simple method
of cache eviction. The benefits of this are really seen when,
for example Microsoft SQL Server does an “Index Seek”
which uses a minimal amount of pages to return the response
required.

[0446] Part Caching

[0447] A further aspect of caching is how certain queries
are not cacheable because they update some data; sometimes
there are queries which perform two operations. A good
example is a query that reads from a secure table but also
adds an entry to an audit log; the write operation is com-
pletely independent of the read operations, so instead of
stopping the entire query from being cached, we can cache
the read operations and send the update operations sepa-
rately. This means that a query which typically is not
cacheable is now cacheable.

[0448] For this type of update, where an audit table gets
updated, it is important to guarantee the update so the AIT
can be configured to ensure that data is only served from
cache once the updates happen. This does slow down the
request but it is still faster, in many cases, to have parts of
the data cached than none of it.

[0449] Pre-Connection & Connection De-Coupling
[0450] Clients connecting to a DBMS typically find that
creating a connection is an slow operation, this is even more
noticeable when the database is located over a slow (e.g.
under 5 Mb per second) network link, in order that a client
can connect as fast as possible Data Accelerator pre-con-
nects a number of connections to the server, then when the
client tries to create a new connection a previously setup
connection is used. The way this works is that Data Accel-
erator has two connections, an incoming connection and an
outgoing connection; typically these are tied together but
connection de-coupling means that these are no longer tied
together and so an incoming connection can be spliced onto
a separate outgoing connection. The benefits of this
approach are that you can pre-create connections to speed up
the process of establishing connections in the client appli-
cations as well as other benefits such as re-connecting
dropped connections.

[0451] Compression Rule

[0452] If we now look at how the compression is imple-
mented, compression relies on there being a chain of Data
Accelerator instances between the initiator and DBMS, at
the very least there needs to be two instances, one to
compress and one to decompress the packets. Fither the
request or the response can be compressed but typically
requests are small enough that compression is usually
ignored. The compression piece is made up of three rules,
the “compress rule”, “decompress rule” and the “compres-
sion diagnostics”.

[0453] The diagnostics component analyses network
bandwidth within the chain of Data Accelerator instances to
discover what speed each of the up and down stream

US 2017/0046381 Al

networks are running so a score based on the performance
can be used. Over time the performance will be verified to
ensure if anything changes, or if there is a particularly busy
period on a portion of the network, it is taken into consid-
eration. The diagnostics component also checks to see how
long it takes to compress/decompress packets and compares
that to the time it takes to send over the network to find the
best ratio of packet size/compression size over CPU cost to
decide what to compress and what to ignore.

[0454] The compression rule will use both the network
performance and the CPU compression cost ratios to deter-
mine whether a specific request or response should be
compressed. If it is to be compressed it takes the packet(s),
compresses and wraps the compressed data in a Data Accel-
erator compression envelope which can then be forwarded.
The wrapper which contains the data is then sent either up
or down stream depending on whether or not it was a request
or response which was compressed.

[0455] The decompression rule examines each request and
response to determine if they are compressed or not. If they
are compressed, the rule will determine whether the link
contains a Data Accelerator instance. If there is no instance
that exists then the data is always uncompressed. If an
instance does exist then the data is still uncompressed but
only so that rules like the caching rule can be applied at each
level; in this case the uncompressed data is not forwarded.

[0456] Pre-Caching Rule

[0457] The next rule is the pre-caching rule. This is made
up of one component, which intercepts requests after they
have been forwarded upstream or to the DBMS. The rule is
based around a map of requests that have previously been
run through the instance. Each request that has been run
links to the next request that was sent, if that same series of
links had been made before then the pre-caching rule can run
the next set of queries. If you look at FIG. 18 we see that the
first query was run three times. The first time it ran, the next
request included the query “SELECT B FROM C”, but all
subsequent requests were for “SELECT D FROM E”, so the
pre-caching rule on the 2/1/2010 (format: day/month/year)
would have added a request for “SELECT B FROM C”
which would not have been used, so this would then not be
selected for pre-caching again but on the 3/1/2010 the same
query was run again so would have been selected for
pre-caching and would have had the results ready when it
was requested.

[0458] The criteria the pre-caching uses for selecting or
removing requests from pre-caching is based on how many
times a sequence of queries has been run as well as how
expensive it is to run a request. If a series of requests
complete very quickly then it may well be worth pre-caching
those even if they are not always used. Conversely if a
request takes a long time to complete then it might not be
worth running it just in case it is used.

[0459] Pre-Caching can also look for patterns in requests.
For example if a request came in with the SQL command
“SELECT*FROM Country WHERE
CountryName=‘England’”” and then the next request was for
“SELECT*FROM Employees WHERE CountrylD=1024"
it is likely that the CountrylD was returned from the first
query. The pre-caching rule can then get a list of all
CountryName and CountryID fields by querying the Coun-
try table directly, so when a request such as
“SELECT*FROM Country WHERE

Feb. 16, 2017

CountryName="Wales’” the id could be inserted into the
next query “SELECT*FROM Employees WHERE Coun-
tryID=??".

[0460] Query Batching

[0461] The next rule is the query batching rule which will
stop duplicate queries running at the same time. This rule
runs after the request has been received and before it has
been sent to the upstream instance or DBMS. The rule has
a list of currently executing requests and if the current
request is already being run then it is held. The rule waits on
the response from the request that is already executing and
puts the new request on hold, adding it to a list of waiting
requests. When the response returns, the rule copies the
response to each waiting request.

[0462] The query batching rule needs to employ the same
definition of cacheability that the caching rules use to decide
whether or not something is cacheable because some things
like INSERT or UPDATE queries need to be run on the
server whether or not they are duplicates.

[0463] String Replacement Rule

[0464] The string replacement rule works by replacing
common strings with specific id’s which allows the rule to
minimise the amount of data that is sent over the network.
For example if a company name appears in a number of
queries then depending on the length of the company name
it can save quite a lot of network traffic by replacing
“Company Name Corporation” with “:1:” or some similar
identifier. This can work with either the request or the
response and relies on there being more than one Data
Accelerator instance in the chain: one to replace the strings
and one to restore them.

[0465] If a packet contains string replacements then it is
wrapped in a replacement envelope. When an instance
receives a packet for forwarding, if there is an appropriate up
or downstream Data Accelerator instance, it will replace the
strings so it can apply any other rules on the instance but
forward the original message. If however the upstream is the
DBMS or the downstream is the initiator then the strings are
put back into the message and forwarded on.

[0466] DBMS Load Balancing Re-Routing

[0467] The re-routing rule monitors the load of a DBMS
and chooses to run the query on the least used DBMS
system. The re-routing rule requires some configuration and
some specific requirements of the DBMS. The rule must
have the details of the DBMS systems that can handle
specific requests and the databases themselves must be able
to handle requests no matter where the request ends up.
Examples of these are read only databases or where trans-
actions are copied to each database. FIG. 19 shows two
DBMS systems that replicate data between themselves and
the Data Accelerator sending requests to the DBMS 1
system. If the load balancing rule determines that system 1
is under too much load and it is affecting query performance,
it can switch to send requests to DBMS 2 as shown in FIG.
20.

[0468] Re-Routing of requests over separate network
paths
[0469] This rule needs to be configured with multiple

upstream Data Accelerator instances which can be con-
nected via separate network routes. It has two components,
the diagnostics rule and the redirector rule. The diagnostics
rule constantly checks the performance of both up and
downstream routes to score each one based on performance.
The redirector works by intercepting requests before they

US 2017/0046381 Al

are sent upstream and sends them via the fastest route at that
time. It works with responses by intercepting them before
they are sent back downstream in the same way.

[0470] Request Modification

[0471] This rule works by taking the request that was sent
and modifying it to send a request that only asks for the
minimum amount of data that is actually required. This rule
does require that it is configured with a list of SQL com-
mands it can modify. When a request arrives, it is checked
against a list of SQL commands which can be modified, if
it can be changed it swaps the portion of the SQL command
that can be changed with the replacement query and then the
response is rebuilt and then forwarded on. This rule does not
apply to responses.

[0472] An example of a query that can be modified is a
search screen that only shows a small number of records at
a particular time and for each page re-runs the query which
selects all records in the system. The query
“SELECT*FROM B” could be modified to “SELECT TOP
10*FROM B”, the benefit of this rule depends on the actual
queries and how the initiators are using the results.

[0473] Pre-Validation Rule

[0474] The pre-validation rule takes the request, retrieves
the SQL command and runs it through a series of checks to
ensure that the request can actually be completed. If it finds
that it cannot be completed then it returns the DBMS specific
error message/code. The rule runs after the request has been
received and before it is forwarded onto the upstream
DBMS.

[0475] The checks it can carry out include a syntax check
on the command to validate that the DBMS will actually
accept the request. It can check that the request includes an
actual command and is not just a comment, i.e. in a typical
DBMS system “/*SELECT*FROM A*/” will not return a
result as the command is commented out. It can also verify
that the user has the permissions to run the query which will
always result in a failure. The main benefit of this rule is that
commands which are not valid do not need to travel over the
network or to the DBMS for it to fail it outright.

[0476] Simple Response Generator Rule

[0477] This is similar to the pre-validation rule in that it
attempts to return responses without the need of the request
going to the DBMS. There are certain requests such as
“SELECT 10” or “SELECT GetDate()” which return a
known result, in these cases the simple response generator
rule, returns the response without the DBMS having to
generate it.

[0478] Encryption Rule

[0479] The encryption rule requires that there be at least
two Data Accelerator instances in the chain and typically the
rule encrypts the traffic, both the request and the response
when sending the data over an unsecured network like the
internet. There are two parts to the encryption, the encrypt
rule and the decrypt rule. When the request is received but
before it is sent upstream towards the DBMS, the last thing
that happens is that the data is encrypted if the link requires
it. The encrypted data is wrapped in an encryption envelope
and as the encryption is the last rule to run, the data may or
may not be compressed or otherwise changed by an earlier
rule. As each instance receives the request, if it is encrypted
it decrypts it so the other rules can be applied. When it
forwards the message, depending on whether or not the link
is secure it either re-encrypts and sends the encryption
envelope or simply forwards the unencrypted data. The type

Feb. 16, 2017

and level of encryption that can be used on a link are
configurable and can be different depending on which link is
used, for example on one link the rule could use Secure Hash
Algorithm SHA-2 over Transport Layer Security TLS 2.0
but on another link use MD-5 (Message-Digest algorithm 5)
over Secure Sockets Layer SSL 1.

[0480] Network Protocol Optimization Rule

[0481] The network protocol rule applies enhancements at
the network layer as opposed to the application layer, so for
example it might parallelise a large TCP buffer or it might
change the underlying protocol. The rule will typically
monitor how effective it is against different buffer sizes as
well as continually monitoring the network links and param-
eters of those links to make the best choices.

[0482] Custom Rules

[0483] To ensure that things like auditing or logging occur
in a DBMS system a custom rule can be put in place to run
a specific command on the system as events occur in the
Data Accelerator. In a typical system, there would be some
auditing when a user carried out a specific action, for
example if someone retrieved all the annual wages of all
employees, it would need to be audited but if the caching
rule had been applied then the request would not have
arrived at the DBMS to be logged. The custom rules item is
configured with a list of queries or events such as DBMS
load balancing or network path re-routing and then a list of
actions such as writing to a log file or sending a separate
request to the DBMS.

[0484] Peer to Peer

[0485] If we now take a look at how the Data Accelerator
instances in a chain or on a network can help each other by
sharing diagnostics information and data between them-
selves and how that then can increase their effectiveness.
[0486] For individual rules to be most effective they
typically use a diagnostic component to find optimum
method of working to get the fastest response for the
initiator, often where one instance has calculated something
it is useful to the other instances that are available. There are
two methods for communicating between Data Accelerator
instances, the first is when the instance is not sure if the
upstream point is another instance or the actual DBMS and
it sends an DBMS request with the information that the Data
Accelerator needs but that will not actually do anything if it
does reach the DBMS. We can demonstrate this when an
instance wants to enumerate the chain of instances and find
the speed of each network link, it can send a request such as:
[0487] “SELECT ‘1 January 2010 09:43:22.02° As
DAlnstance4AA5888240B4448e9E20-62A8F70CF595,
current date As ServerTime”

[0488] The DAlnstance4AA5888240B4448e9E20-
62A8F70CF595 is the unique id of the Data Accelerator
Instance, when the response comes back, it will include the
time the request was started and the time on the server, and
this gives an indication of how long it took to get a response
from the network. When there is a chain of Data Accelerator
instances, each instance adds its own uniquelD and time so
the request actually ends up as

[0489] “SELECT ‘1 January 2010 09:43:22.02° As
DAlnstance4AA5888240B4448e9E20-62A8F70CF595, ‘1
January 2010 09:43:22.04° As
DAIlnstance936C4368DE18405881707A22FDBCFES9, ‘1
January 2010 09:43:23.09° As
DAlnstanceS8F4AEASAEADS544cd9B56DF16F7563913,
current_date As ServerTime”

US 2017/0046381 Al

[0490] The response from this will be a data set such as is
shown in FIG. 6.

[0491] Each instance can then instantly see where it is in
the chain and also that the speed of the link between the 2nd
and 3rd instances is a slow link so they can make better
decisions based on this knowledge.

[0492] Also if the first instance receives a request such as
this, it then knows there is a downstream Data Accelerator
instance and instead of re-running the query, after combining
the request it received with the results it already has it can
simply share the updated results with both the initiator and
the upstream servers.

[0493] The second method of communication is where an
instance knows that another instance exists and wants to
either find out what it knows or wants to pass on some
information, it creates a connection using the DBMS net-
work method but instead of the network packet that the
DBMS expects, it sends a Data Accelerator control packet.
The control packet instructs the instance, not to forward
packets up or down stream but to pass the packet onto the
specified rule. The rules are given the information in the
control packet and it acts on that as required.

[0494] If we take a look at this in detail with an example
of the caching rule, FIG. 21 shows how there are two
separate workgroups, Accounting and Marketing, they both
use the same DBMS but rarely run the same queries. Each
department has their own Data Accelerator instance which
connects directly to the DBMS. Because there is no chain
the instances cannot communicate by sending requests up
the chain. Instead they create a connection using the stan-
dard DBMS method and use this to send control packets. In
the case of caching, where a request comes in from the
Marketing which has already been served to Accounting, the
caching rule, as well as checking its own cache can ask the
Accounting instance if it has the query cached, if it does it
can serve it without having to send the request to the DBMS.
[0495] Because the Data Accelerator can work and share
information in this peer-to-peer way or via the instance
chain, it can build a powerful network of shared data and
knowledge. FIG. 22 shows a number of different configu-
rations that instances can have to connect to a DBMS. If
each of the initiators runs the same query, initiator A runs it
for the first time so DAl and DA2 both store it in their
caches. Then initiator B sends the request. It has a local
instance of Data Accelerator and that doesn’t contain the
response in cache and because of the network configuration
it cannot talk to DA1. The request is forwarded to DA4. DA4
has a network link to DA2 and DA7 so it sends a control
packet to both instances to see if they have the request. DA1
returns the response and DA4 then carries out the standard
checks (is it allowed and has it expired). If the response is
acceptable then it is returned to DA3 which sends it back to
the initiator after caching the request itself. The initiator C
then sends the request. Again DA6 does not have a copy so
it forwards it to DA7, and DA7 does not have a copy but
does have a link to DA4 which it knows has previously
requested the query so it asks DA4 for the response. DA4
returns the response from its own cache. DA7 verifies and
sends back to DA6 which caches the result and returns it to
the initiator. At this point if initiator C resends the request it
is served immediately from DAG6. The initiator D then sends
the request. DAS8 does not have it in cache and has no peers
it can connect to so forwards it on to DAS. This instance also
does not have it in cache, but it does have a downstream

Feb. 16, 2017

instance that has the response but the link downstream is a
slow WAN link so it needs to make a decision as to whether
to send the request back down the link to DA4 or to send it
to the DBMS. This decision is based on how long the query
took to run on the server, how much data is in the response
and how slow the WAN link is between DA4 and DAS.

[0496] Another scenario for the Data Accelerator is in a
sales office where the salesmen have laptops. Each laptop
has a local instance and when they are on the road this is
mainly used for compressing the data. When the laptops are
in the office, they can share their caches with the other
laptops in the office. FIG. 23 shows the Data Accelerator
instance chain when the laptop is out of the office and FIG.
24 shows how the instance, when in the office shares
information and data with its peers.

[0497] The links that the Data Accelerator can work over
can be local connections so the instance runs on the initiators
computer as a windows service, a UNIX daemon or what-
ever type of process is best for the underlying operating
system. It can run over LAN links which are typically fast
or it can run over slower WAN links (e.g. in FIG. 25) or links
over public networks in cloud based systems. When running
over unsecure networks the Data Accelerator can use
encryption to secure both the requests and response data.

[0498]

[0499] Finally if we take a look at the different applica-
tions for the Data Accelerator we can see who may use it and
in what situations.

[0500]

[0501] Data Accelerator can use the techniques described
to help reduce the amount of queries that a database server
has to make in order to produce the required results. This
could be by serving the entire request from Cache or by
requesting only portions of the information that has
changed. Also clients can get the cached results from other
clients using peer to peer.

[0502] An example of this may be a huge multi-terabyte
database containing information from a supermarket’s store
card usage. When a team or internal staff are mining data
from the database in order to track trends of customers or
products, they may need to repeat many of the same queries
but each time with some additional or different information
required. By caching the results of the requests each time a
team member runs a query they only need the database
server to return any new results that no one else has already
requested. With such a large database there is a significant
amount of time required for each query and these apply
significant load to the database server. This could mean that
if a report is made up of 100 queries that each take around
30 seconds to complete, without Data Accelerator the time
to run a report or mine the required data is 50 minutes. But
if the first 80 queries are cacheable and take sub-second to
respond through data accelerator, the queries complete in 11
minutes and 20 seconds.

[0503] Another example of how Data Accelerator can
reduce the load on a database server is for a reporting
application. An organisation has a large database with a
record of new and historical customer purchases. Each week
the managers within the organisation run a report of the
purchases made and compare that to historical data. Nor-
mally the database server would have to return all of the data
required for the reports. Using Data Accelerator when a user
runs the report they can access all the historical data from

Section F: Use Cases

Examples for use cases for Data Accelerator:

US 2017/0046381 Al

cached queries that have been run before, and the database
server is only accessed to run a small query for the current
week’s data.

[0504] When a database server is replicating to other
database servers or if it is running a backup Data Accelerator
can be used to reduce the need for existing data or portions
of data to be requested from the database server. This can
result in a significant reduction in the load on a database
server as the only queries that are run on the database are for
data that has been added or changed since the last replication
or backup.

[0505] The second main use for Data Accelerator is to help
reduce the load on the connection from the client application
to the database servers. This is achieved by using the various
techniques described for each connection that the client
makes to the database server, and eliminating the need for
the connection where possible. By being able to improve the
performance of the connection between the client and the
database server it is possible to move the database server
from a local network connection onto a slower WAN con-
nection. This could mean that the database server is moved
into a public datacentre or public cloud environment or for
an enterprise it may mean that the database server is able to
be centralised into a private datacentre or private cloud
environment. For either a public or private datacentre or
cloud Data Accelerator will deliver improved performance
and lower costs for all types of connection speeds. FIG. 28
shows a matrix of various scenarios; an example for each
scenario is given below.

[0506] Example la (see FIG. 28): A university may have
its application that tracks students’ submissions of work and
results currently running with a database server on each
campus and the use of a Remote Desktop connection for
students to log in from remote locations. The application
without Data Accelerator is too slow to work without a
high-speed local network connection between the client
application and the database server. The current infrastruc-
ture is very expensive to run and the experience for end users
who connect remotely is very poor. By using Data Accel-
erator the database can be moved into a public cloud that
provides low cost infrastructure and the campus locations
and remote users or students can access the data using the
client application on their local machine. To simplify the
deployment of the client software application streaming can
be used from a web page deployment. A typical use is for a
tutor to download a student’s essay, which is stored in a
binary format inside the database, so it can be marked. When
the tutor is at home and using a DSL connection, it can take
the tutor up to 5 minutes per essay but with the Data
Accelerator using the rules to optimize the traffic, the same
request can take as little as 25 seconds.

[0507] Example 1b (see FIG. 28): Car repair garages
require software to accurately estimate the cost of repairing
damage to a vehicle and this price must be in correlation
with amount the insurance companies are prepared to pay
for such a repair. In order to cost a job there is an industry
database with all part costs and labour estimates. Currently
each car repair workshop has to install a database server as
the application is too slow when running over a WAN
connection. For example to open a contact and an estimate
takes 44 seconds on a local network and 1 minute 53 seconds
on a WAN connection. The problem with having a database
server in each car repair workshop is that it is costly to install
and maintain and also it is complex to update the database

Feb. 16, 2017

each month with the latest database. By using Data Accel-
erator the database can be moved into a public cloud
environment but the performance of the application can be
nearly the same as with a local server. The example above
would only take 49 seconds over a standard ADSL connec-
tion with Data Accelerator.

[0508] Example 1 ¢ (see FIG. 28): If a user is accessing an
application over a mobile broadband, 3G or GPRS connec-
tion the problems caused by slow WAN performance are
increased significantly. So if a user wanted to access the
database server over a mobile broadband connection with
the example above it would take several minutes on without
Data Accelerator. With Data Accelerator it is possible to
deliver near local network performance even over a very
slow GPRS connection. This would apply to many types of
applications that are used by mobile users, for example sales
quotation applications.

[0509] Private Cloud

[0510] Enterprise organisations are more likely to want to
centralise database servers into an internal private datacentre
or private cloud.

[0511] Example 2a (see FIG. 28): An example of this
would be a healthcare application for recording doctors
practise records about patient visits, appointments and bills.
This application would currently require a server to be
installed in each physical location. For a large hospital group
this could mean a large number of servers on large hospital
sites, servers in each practise which may include some rural
locations, and many other ancillary buildings. The cost of
deploying and managing this large number of database
servers would be very significant. Even if each building
were connected using a high-speed leased line, the problems
caused by latency and general lack of bandwidth are enough
to make the application unusable without a local database
server. With Data Accelerator it is possible to remove all
database servers and to maybe even downgrade some con-
nections, then having a single database server or a server
farm located in a private cloud environment. This would
result is a significant reduction in costs.

[0512] Example 2b (see FIG. 28): An example of an
application with a connection using a standard

[0513] DSL line to a private cloud would be a Veterinary
Clinic that has multiple branches with the animal database
located at the head office. The Clinic is connected to head
office over an ADSL line that has a maximum speed of 2.9
Mega Bits per second. The request to get animal history
screen consists or 4 requests, 3 cacheable, 1 not. Without
compression and caching it takes 2 minutes to open the
history screen. With caching and compressions, after the
details have been loaded once it only takes 5 seconds; the
first time without caching but with compression takes 1
minute.

[0514] Example 2c¢ (see FIG. 28): As mentioned above any
of these examples would be even more affected by the
connection performance when used on a mobile Internet
connection (3G, GPRS etc.) Using Data Accelerator would
also mean the mobile users would be able to access the
application. This could be on either a laptop with a data card
or even on a version of the application that runs on a smart
phone or mobile phone device.

[0515] An additional benefit of Data Accelerator is that for
connections that have any kind or packet loss or unreliabil-
ity, especially mobile Internet connections that are affected
by network coverage, the connection is automatically re-

US 2017/0046381 Al

established and the application can carry on working once
the connection is working again. Normally many applica-
tions will crash or end if the connection is dropped even for
a short time. By having Data Accelerator intercepting the
connection it can prevent the application from being aware
of the connection problem.

[0516] Section G: Additional Uses

[0517] The process of intercepting DBMS requests,
decomposing the request and applying a set of rules to
improve the performance can also be applied to other
systems outside of DBMS specific requests. Two other types
of system include opening files over a network and web or
HTTP requests.

[0518] The performance of opening files stored on a
remote file server (which is anything that can store files)
across a slow network is often poor and the difference
between that and of opening files when they are local to the
requestor is very noticeable. The data accelerator can
decompose the requests for files from a file requestor
(anything that can request a file—and hence includes end-
users, applications, databases etc.) and pass the request to
the rules engine which can apply any rules that are appro-
priate to improve the responsiveness of the client applica-
tion. For example when a client requests a list of all the files
in a directory on a remote share that is located over a slow
or unsecure link the Data Accelerator can apply the follow-
ing rules:
[0519] The cache serve rule to see if it already has a list
which it can immediately return
[0520] The cache serve rule can also see if a file was in
cache but has changed and request the portions of the
file which have changed to minimise the cost of re-
caching the data
[0521] The cache date rule to cache the response so it is
available for future requests
[0522] The pre cache rule can request all the files in the
directory so they are immediately available when a
future request is made
[0523] The compression rule can apply compression to
the file so that the data that is needed can be requested
as quickly as possible
[0524] The encryption rule can be applied so documents
and files can be carried securely over a public network.
[0525] A real world example of this would be a human
resources (HR) department in a global blue chip company:
the HR officers will store both general forms and also
documents that relate to specific employees which vary in
size and are confidential such as appraisal documents and
details of behavioural and misconduct cases against employ-
ees. The HR officers will be based in remote offices and often
travel to other offices and require fast access to the docu-
ments. Using the Data Accelerator means that the documents
can be stored in one secure location and the users can access
documents quickly and securely over remote links.

[0526] Web requests (from, generically, a ‘web data
requestor’) can also apply the same set of rules that file
requests can use because many webs requests contain static
data which do not change such as images, documents and
code files like html or CSS files. Traditional web caching
services work by determining whether or not a resource has
changed since it was last requested by using the [f-Modified-
Since HTTP header, whereas the Data Accelerator can be
more forceful in applying more complex rules for example

Feb. 16, 2017

with a standard HTTP Get request that returns a html page,
some images and some links:

[0527] The pre-cache rule can determine which images
are required for the page and request them before the
client does

[0528] The pre-cache rule can follow the links on the
page and request those pages so that they are already in
cache if the requestor follows a link.

[0529] The cache serve rule can determine whether to
serve something from cache based on actual content
rather than the web servers last modified time.

[0530] The cache serve rule can also request portions of
files which have changed as opposed to the complete
file

[0531] We can also apply the standard rules to:

[0532] The compression rule can compress in situations
where the web server is not configured to compress
data and smarter compression algorithms can compress
data further than HTTP compression that typically uses
gzip, reducing the time it takes to send it over the
network.

[0533] The encryption rule can provide secure commu-
nication over the public internet without the need to use
HTTPS/SSL on the client or web server, easing the
management on the server and the security on the
client.

[0534] An example of where a company that might
employ the data accelerator to optimize web requests could
be a publisher who keeps an electronic copy of their books
in html format. Users who are remote can read the books but
without the Data Accelerator there is often a delay for the
next page and for images in the book. The Data Accelerator
can use the pre-caching rule to automatically start down-
loading the next page or chapter so that it is immediately
available as well as downloading the images required. The
full suite of rules can also be applied so the request and
response is compressed and encrypted so it can be carried
over public networks.

[0535] Note

[0536] It is to be understood that the above-referenced
arrangements are only illustrative of the application for the
principles of the present invention. Numerous modifications
and alternative arrangements can be devised without depart-
ing from the spirit and scope of the present invention. While
the present invention has been shown in the drawings and
fully described above with particularity and detail in con-
nection with what is presently deemed to be the most
practical and preferred example(s) of the invention, it will be
apparent to those of ordinary skill in the art that numerous
modifications can be made without departing from the
principles and concepts of the invention as set forth herein.
[0537] The general direction of the App Accelerator and
the Data Accelerator is to be able to allow any device
anywhere to download and run data driven applications in a
simple manner, i.e. the “Download and Run Architecture”.
There are three main approaches to supporting any type of
device and these are in brief:

[0538] Using the requests that have been sent through
the Data Accelerator to automatically build an appli-
cations data access layer in whatever the target lan-
guage is, such as objective-c for the i0S platform, Java
for the android platform or C# for the Windows plat-
form. This enables software publishers to quickly

US 2017/0046381 Al

deploy existing applications to new platforms as they
only need to write the user interface layer.

[0539] Using App Accelerator to run the application on
a platform that is already supported by the application
and displaying the user interface on the device, this
gives publishers the simplest route to deploying appli-
cations but does require some investment in servers to
run App Accelerator on.

[0540] Using App Accelerator to provide a fully virtu-
alized OS, so applications designed to run on one OS
can be run under a separate OS with the App Accel-
erator proving the OS functions that the application
requires and translating those into the functions of the
underlying OS.

1. Method of optimizing the interaction between (i) a
client, being an application such as database software,
implemented on a computing device, and (ii) database server
software implemented on a computing device, the method
comprising the steps of:

(a) routing query data from the client to the database

server software through an optimisation system imple-

Feb. 16, 2017

mented on a computing device and then routing
response data provided by the database server software
to the optimisation system;

(b) the optimisation system analysing query data and,
based on that analysis, applying rules to response data
provided by the database server software, in order to
generate optimised response data to thereby speed up
the interaction between the client and the database
server software.

2. The method of claim 1 in which the optimisation
system analyses the query data and, based on that analysis,
applies rules to the query data, after the content of that query
data has been generated by the client to generate optimised
query data.

3. The method of claim 1 in which the optimisation
system analyses the query data and, based on that analysis,
applies rules to response data, after the content of that
response data has been generated by the server software to
generate optimised response data.

#* #* #* #* #*

