0 00/77635 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

0D 0

(10) International Publication Number

21 December 2000 (21.12.2000) PCT WO 00/77635 Al

(51) International Patent Classification’: GO6F 9/46 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, CA, CH, CN, CR, CU, CZ, DE,

(21) International Application Number: PCT/US00/16080 DX, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR, LS,

(22) International Filing Date: 13 June 2000 (13.06.2000) LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ,PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,

(25) Filing Language: English TT, T2, UA, UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

(30) Priority Data:

09/332,031 14 June 1999 (14.06.1999) US
(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901
San Antonio Road, MS PALO01-521, Palo Alto, CA 94303

(Us).

(72) Inventors: WALDO, James, H.; 155 Ruby Road, Dracut,
MA 01826 (US). MCCLAIN, John, W.F.; 59 Mt. Vernon
Street, Arlington, MA 02476 (US).

(74) Agents: GARRETT, Arthur, S.; Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P,, 1300 I Street, N.W.,
Washingotn, DC 20005-3315 et al. (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ,MD, RU, T], TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: NETWORK PROXY FOR DEVICES WITH LIMITED RESOURCES

Computer
712~ Memory l§ecnndary
. Storage
7144 Clent
Program
7427 RS
702
5 JUVM| RMt TPU 706
Look-up Server 5
:710 Input Vide Device
n| idec
Memory eoone Y DeSice Display Memory k716
o0 9¢ — ' | [Orphan Senvice |.~721
Look:up s 704 Protocol Stack 720
Service | 735
RS ¥ cPuU cPy 718
svm[RMI
EEEY
738 740
input Video 78
Inp
Device Display 708
Proxy Server
7225 Memory
726 -1~ Network Proxy
728 - Protocol Stack
730~ JRS '\
IRIED 700

(57) Abstract: A netwotk proxy is provided that facilitates the integration of orphan services into a network by enabling them to
interact with a lookup service that contains an indication of the services that are available on the network. These orphan services
typically reside on devices having too little memory to run the components necessary to be integrated into the network. Thus, the
network proxy acts as a go between, by registering the orphan services with the lookup service so that clients may access them and
by accessing services on behalf of the orphan services. As a result, the network proxy integrates orphan services into the network,

when they otherwise would be incapable of doing so.

10

15

20

25

WO 00/77635 PCT/US00/16080

NETWORK PROXY FOR DEVICES WITH LIMITED RESOURCES

RELATED APPLICATIONS
This application is a Continuation-In-Part of U.S. Patent Application
No0.09/044,826, filed on March 20, 1998, which is a Continuation-In-Part of U.S. Patent
Application No. 08/636,706 filed April 23, 1996, which are both incorporated herein by
reference.
The following applications are relied upon and are hereby incorporated by

reference in this application.

Provisional U.S. Patent Application No. 60/076,048, entitled "Distributed
Computing System," filed on February 26, 1998.

U.S. Patent Application No. 09/044,923, entitled “Method and System for Leasing
Storage,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,838, entitled “Method, Apparatus, and
Product for Leasing of Delegation Certificates in a Distributed System,” filed on March
20, 1998.

U.S. Patent Application No. 09/044,834, entitled “Method, Apparatus and Product
for Leasing of Group Membership in a Distributed System,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,916, entitled “Leasing for Failure Detection,”
filed on March 20, 1998.

U.S. Patent Application No. 09/044,933, entitled “Method for Transporting
Behavior in Event Based System,”filed on March 20, 1998.

U.S. Patent Application No. 09/044,919, entitled “Deferred Reconstruction of
Objects and Remote Loading for Event Notification in a Distributed System,” filed on
March 20, 1998.

U.S. Patent Application No. 09/044,938, entitled “Methods and Apparatus for
Remote Method Invocation,” filed on March 20, 1998.

U.S. Patent Application No. 09/045,652, entitled “Method and System for
Deterministic Hashes to Identify Remote Methods,” filed on March 20, 1998.

10

15

20

25

WO 00/77635 PCT/US00/16080

U.S. Patent Application No. 09/044,790, entitled “Method and Apparatus for
Determining Status of Remote Objects in a Distributed System,” filed on March 20,
1998.

U.S. Patent Application No. 09/044,930, entitled “Downloadable Smart Proxies
for Performing Processing Associated with a Remote Procedure Call in a Distributed
System,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,917, entitled “Suspension and Continuation
of Remote Methods,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,835, entitled “Method and System for Multi-
Entry and Multi-Template Matching in a Database,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,839, entitled “Method and System for In-
Place Modifications in a Database,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,945, entitled “Method and System for
Typesafe Attribute Matching in a Database,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,931, entitled “Dynamic Lookup Service in
a Distributed System,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,939, entitled “Apparatus and Method for
Providing Downloadable Code for Use in Communicating with a Device in a Distributed
System,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,932, entitled “Apparatus and Method for
Dynamically Verifying Information in a Distributed System,” filed on March 20, 1998.

U.S. Patent Application No. 09/030,840, entitled “Method and Apparatus for
Dynamic Distributed Computing Over a Network,” filed on February 26, 1998.

U.S. Patent Application No. 09/044,936, entitled “An Interactive Design Tool for
Persistent Shared Memory Spaces,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,934, entitled “Polymorphic Token-Based
Control,” filed on March 20, 1998.

U.S. Patent Application No. 09/044.915, entitled “Stack-Based Access Control,”

filed on March 20, 1998.

10

15

20

25

30

WO 00/77635 PCT/US00/16080

U.S. Patent Application No. 09/044,944, entitled “Stack-Based Security

Requirements,” filed on March 20, 1998.

U.S. Patent Application No. 09/044,837, entitled “Per-Method Designation of
Security Requirements,” filed on March 20, 1998.

FIELD OF THE INVENTION

The present invention relates generally to data processing systems and, more
particularly, to a network proxy.

BACKGROUND OF THE INVENTION

In modern “enterprise” computing, a number of personal computers, workstations,
and other devices such as mass storage subsystems, network printers and interfaces to the
public telephony system, are typically interconnected in one or more computer networks.
The personal computers and workstations are used by individual users to perform
processing in connection with data and programs that may be stored in the network mass
storage subsystems. In such an arrangement, the personal computers/workstations,
operating as clients, typically download the data and programs from the network mass
storage subsystems for processing. In addition, the personal computers or workstations
will enable processed data to be uploaded to the network mass storage subsystems for
storage, to a network printer for printing, to the telephony interface for transmission over
the public telephony system, or the like. In such an arrangement, the network mass
storage subsystems, network printers and telephony interface operate as servers, since
they are available to service requests from all of the clients in the network. By organizing
the network in such a manner, the servers are readily available for use by all of the
personal computers/workstations in the network. Such a network may be spread over a
fairly wide area, with the personal computers/workstations being interconnected by
communication links such as electrical wires or optic fibers.

In addition to downloading information from servers for processing, a client,
while processing a program, can remotely initiate processing by a server computer of
particular routines and procedures (generally “procedures™), in connection with certain
“parameter” information provided by the client. After the server has processed the
procedure, it will provide results of its processing to the client, which the client may

thereafter use in its processing operations. Typically in such “remote procedure calls” the

10

15

20

25

30

WO 00/77635 PCT/US00/16080

program will make use of a local “stub” which, when called, transfers the request to the
server which implements the particular procedure, receives the results and provides them
to the program. Conventionally, the stub must be compiled with the program, in which
case the information needed to call the remote procedure must be determined at compile
time, rather than at the time the program is run. Since the stub available to the client's
programs is static, it may be at best the closest that can be determined should be provided
for the program when it (the program) is compiled. Accordingly, errors and inefficiencies
can develop due to mismatches between the stub that is provided to a program and the
requirements of the remote procedure that is called when the program is run.
SUMMARY OF THE INVENTION

A new and improved system and method for facilitating the obtaining and
dynamic loading of a stub is provided to enable a program operating in one address space
to remotely invoke processing of a method or procedure in another address space, so that
the stub can be loaded by the program when it is run and needed, rather than being
statically determined when the program is compiled. Indeed, the stub that is loaded can
be obtained from the resource providing the remote method or procedure, and so it (the
stub) can exactly define the invocation requirements of the remote method or procedure.
Since the stub can be located and dynamically loaded while the program is being run,
rather than being statically determined when the program is compiled, run-time errors and
inefficiencies which may result from mis-matches between the stub that is provided and
the requirements of the remote method or procedure that is invoked can be minimized.
In an alternative embodiment of the present invention, the stub is obtained from a lookup
service to provide access to a service defined in the lookup service.

In brief summary, methods and systems consistent with an alternative
embodiment of the present invention facilitate access to a service via a lookup service.
A lookup service defines a network’s directory of services and stores references to these
services. A client desiring use of a service on the network accesses the lookup service,
which returns the stub information that facilitates the user’s access of the service. The
client uses the stub information to access the service.

In a second alternative embodiment of the present invention, a network proxy is

provided that facilitates the integration of orphan services into a network by enabling

10

15

20

25

30

WO 00/77635 PCT/US00/16080

them to interact with a lookup service that contains an indication of the services that are
available on the network. In this respect, the lookup service acts like a service registry.
These orphan services typically reside on devices having too little memory to run the
components necessary to be integrated into the network. Thus, the network proxy acts
as a go between, by registering the orphan services with the lookup service so that clients
may access them and by accessing services on behalf of the orphan services. As aresult,
the network proxy integrates orphan services into the network when they otherwise would
be incapable of doing so.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system including a service on a device, a service registry,
and a proxy. According to this method, the proxy receives a request from the service to
register with the service registry, obtains information that facilitates accessing the service,
and stores the information into the service registry.

In accordance with methods consistent with the present invention, a method for
registering a service located on a device in a service registry is provided in a data
processing system. According to this method, the service sends a request for registration
in the service registry to a proxy server, whereupon the proxy server registers the service
in the service registry to enable a client program to access the service, and the service
receives a request from the client program for accessing the service.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system including a client program, a service registry
containing a reference to a service on a device, and a proxy server. According to this
method, the client program retrieves the reference from the service registry and uses the
reference to send a request to access the service to the proxy server.

In accordance with systems consistent with the present invention, a data
processing system is provided. The data processing system comprises a lookup server,
adevice, and a proxy server. The lookup server includes a memory with a lookup service
containing registrations that facilitate access to corresponding services and includes a
processor for running the lookup service. The device includes a memory containing an
orphan service that requests registration in the lookup service and includes a processor

for running the orphan service. The proxy server includes a memory containing a

10

15

20

25

WO 00/77635 PCT/US00/16080

network proxy that receives the registration request from the orphan service and that
registers the orphan service in the lookup service and includes a processor for running the
network proxy.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the appended claims. The
above and further advantages of this invention may be better understood by referring to
the following description taken in conjunction with the accompanying drawings, in
which:

FIG. 1 is a function block diagram of a computer network including an
arrangement constructed in accordance with the present invention for facilitating the
obtaining, dynamic loading and use of “‘stub” information to enable a program operating
in one address space to invoke processing of a remote method or procedure in another
address space;

FIGs. 2 and 3 are flow charts depicting the operations performed by the
arrangement depicted in FIG. 1, with FIG. 2 depicting operations performed in
connection with obtaining and dynamic loading of the stub information and FIG. 3
depicting operations performed in connection with use of the stub information to invoke
processing of the remote method or procedure;

FIG. 4 is a diagram illustrating a lookup service consistent with the present
invention;

F1G. 5 is a flowchart illustrating a method of adding a stub to the lookup service
consistent with the present invention;

FIG. 6 is a flowchart illustrating a method for retrieving a stub from a lookup
service by systems consistent with the present invention;

FIG. 7 depicts a data processing system suitable for use with a second alternative
embodiment of the present invention;

FIG. 8 depicts a flowchart of the steps performed when the network proxy
depicted in FIG. 7 registers an orphan service with the lookup service depicted in FIG.

7 in accordance with methods and systems consistent with the present invention;

10

15

20

25

30

WO 00/77635 PCT/US00/16080

FIG. 9 depicts a flowchart of the steps performed when the network proxy
depicted in FIG. 7 registers an orphan service with the lookup service depicted in FIG.
7 in accordance with an alternative embodiment of the present invention; and

FIG. 10 depicts a flowchart of the steps performed when the network proxy
depicted in FIG. 7 manages resource allocation on behalf of the orphan service.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

FIG. 1 isaschematic diagram of a computer network 10 including an arrangement
for facilitating dynamic loading of “stub” information to enable a program operating in
one address space to remotely invoke processing of a method or procedure in another
address space, where this method or procedure represents a network service. With
reference to FIG. 1, computer network 10 includes a plurality of client computers 11(1)
through 11(N) (generally identified by reference numeral 11(n)), a plurality of server
computers 12(1) through 12(M) (generally identified by reference numeral 12(m)), all of
which are interconnected by a network represented by a communication link 14. In
addition, the network 10 may include at least one nameserver computer 13, which may
also be connected to communication link 14, whose purpose will be described below. As
is conventional, at least some of the client computers 11(n) are in the form of personal
computers or computer workstations, each of which typically includes a system unit, a
video display unit and operator input devices such as a keyboard and mouse (all of which
are not separately shown). The server computers 12(m) and nameserver computer 13 also
typically include a system unit (also not separately shown), and may also include a video
display unit and operator input devices.

The client computers 11(n), server computers 12(m) and nameserver computer
13 are all of the conventional stored-program computer architecture. A system unit
generally includes processing, memory, mass storage devices such as disk and/or tape
storage elements and other elements (not separately shown), including network interface
devices 15(n), 16(m) for interfacing the respective computer to the communication link
14. The video display unit permits the computer to display processed data and processing
status to the operator, and an operator input device enables the operator to input data and

control processing by the computer. The computers 11(n) and 12(m) and 13 transfer

10

15

20

25

30

WO 00/77635 PCT/US00/16080

information, in the form of messages, through their respective network interface devices
15(n), 16(m) among each other over the communication link 14.

In one embodiment, the network 10 is organized in a “client-server”
configuration, in which one or more computers, shown in FIG. 1 as computers 12(m),
operate as servers, and the other computers, shown in FIG. 1 as computers 11(n) operate
as clients. In one aspect, one or more of the server computers 12(m) may, as “file
servers,” include large-capacity mass storage devices which can store copies of programs
and data which are available for retrieval by the client computers over the communication
link 13 for use in their processing operations. From time to time, a client computer 11(n)
may also store data on the server computer 12, which may be later retrieved by it (the
client computer that stored the data) or other client computers for use in their processing
operations. In addition, one or more of the server computers 12(m) may, as “compute
servers,” perform certain processing operations in response to a remote request therefor
from a client computer 11(n), and return the results of the processing to the requesting
client computer 11(n) for use by them (that is, the requesting client computers 11(n)) in
their subsequent processing. Ineither case, the server computers may be generally similar
to the client computers 11(n), including a system unit, video display unit and operator
input devices and may be usable by an operator for data processing operations in a
manner similar to a client computer. Alternatively, at least some of the server computers
may include only processing, memory, mass storage and network interface elements for
receiving and processing retrieval, storage or remote processing requests from the client
computers, and generating responses thereto. It will be appreciated a client computer
11(n) may also perform operations described herein as being performed by a server
computer 12(m), and similarly a server computer 12(m) may also perform operations
described herein as being performed by a client computer 11(n).

The network represented by communication link 14 may comprise any of a
number of types of networks over which client computers 11(n), server computers 12(m)
and nameserver computers 13 may communicate, including, for example, local area
networks (LANs) and wide area networks (WANSs) which are typically maintained within
individual enterprises, the public telephony system, the Internet, and other networks,

which may transfer digital data among the various computers. The network may be

10

15

20

25

30

WO 00/77635 PCT/US00/16080

implemented using any of a number of communication media, including, for example,
wires, optical fibers, radio links, and/or other media for carrying signals representing
information among the various computers depicted in FIG. 1. As noted above, each of
the computers typically includes a network interface which connects the respective
computer to the communications link 14 and allows it to transmit and receive information
thereover.

Systems consistent with the present invention facilitate the obtaining and dynamic
loading of “stub” information to enable a program operating in one address space to
invoke processing of a remote method or procedure in another address space, which may
be located on the same computer as the invoking program or on a different computer.
Reference will be made to programs provided in the Java™ programming language, as
described in James Gosling, Bill Joy, Guy Steele, “The Java™ Language Specification”,
Addison-Wesley, 1996, (hereinafter referred to as the “Java language specification™),
incorporated herein by reference, which are processed in connection with an execution
environment which is provided by a Java virtual machine. The Java virtual machine, in
turn, is specified in the Lindholm andYellin, “The Java Virtual Machine Specification”,
Addison-Wesley, 1996, incorporated herein by reference. As described in the Java
language specification, programs in the Java programming language define “classes” and
“Interfaces.” Classes are used to define one or more methods or procedures, each of
which may be invoked by reference to an interface. A class may be associated with and
extend a “super-class,” and in that regard will incorporate all of the interfaces and
methods of the super-class, and may also include additional interfaces and/or methods.
A class may also have one or more sub-classes (and thus will comprise a super-class of
each of its sub-classes), with each sub-class incorporating and possibly extending their
respective super-classes.

An interface provides a mechanism by which a set of methods may be declared.
In that connection, an interface identifies each method that is declared by the interface by,
for example, a name, identities the data type(s) of argument(s) that are to be provided for
the method, the data type(s) of return values that are to be returned by the method, and
identifiers for exceptions which can be thrown during processing of the method. A class

may indicate that it implements a particular interface, and in that connection will include

10

15

20

25

30

WO 00/77635 PCT/US00/16080

10

the program code which will be used in processing all of the methods which are declared
in the interface. In addition, different classes may indicate that they implement the same
interface, and each will have program code which will be used in processing all of the
methods which are declared in the interface, but the program code provided in each class
to for use in processing the methods may differ from the program code provided in the
other classes which is used in processing the same methods; thus, an interface provides
amechanism by which a set of methods can be declared without providing an indication
of the procedure which will be used in processing any of the methods. An interface may
be declared independently of the particular class which implements the method or
methods which can be invoked using the interface. In that regard, a class that invokes the
method and a class that actually implements the method will not need to share a common
super-class.

During processing of a Java program, as described in the Java virtual machine
specification, a client computer 11(n) provides an execution environment 20 for
interpreting the Java program. The Java virtual machine includes a class loader 21 that,
under control of a control module 19, can dynamically link instances of classes, generally
identified in FIG. 1 by reference numeral 22, into the running program's execution
environment while the program is being executed. In that operation, the control module
19 effectively enables the class loader to retrieve uninstantiated classes, which generally
identified by reference numeral 23, instantiate them and link them as class instances 22
into the execution environment's address space at the Java program's run time as the
methods which the respective classes 23 implement are called. In addition, the class
loader 21 can discard ones of the class instances 22 when they are not needed or to
conserve memory. It will be appreciated that, if a class instance 22 has been discarded,
it may be reloaded by the class loader 21 at a later point if it is then needed.

Systems consistent with the present invention provide an arrangement which
facilitates the remote invocation, by a program executing in an execution environment
20 by a client computer 11(n), of methods implemented by classes on a server computer
12(m). In executing a method, the server computer 12(m) will also provide an execution
environment 24 for processing, under control of a control module 28, the Java method.

In that operation, the Java virtual machine which provides the execution environment 21

10

15

20

25

30

WO 00/77635 PCT/US00/16080

11

includes a class loader 25 (which may be similar to the class loader 21) that, under
control of the control module 28, can dynamically link an instance of the class 26, to
enable the method to be processed in the execution environment 24, and instances of
other classes (also generally represented by reference numeral 26) which may be needed
to process the remotely-invoked method. In that operation, the control module 28
effectively enables the class loader 25 to retrieve an uninstantiated class for the method
to be invoked, from a plurality of uninstantiated classes which are generally identified by
reference numeral 27, instantiate it (that is, the uninstantiated class which provides the
method to be invoked) and link it as a class instance 26 into the execution environment.
In addition, the class loader 25 can discard the class instances 26 when processing of the
method has terminated. It will be appreciated that, if class instances 26 has been
discarded, it may be reloaded by the class loader 25 at a later point if it is then needed.

The structure of nameserver computer 13, if provided, is generally similar to that
of the server computer 12(m), and will not be separately described.

To facilitate remote invocation of a method, the control module 19 of the client
computer's execution environment 21 makes use of one or more stub class instances
generally identified by reference numeral 30 which are provided as part of the execution
environment 21 in which the various class instances 22, including the class instance
which is invoking the remote method, are being processed. Each stub class instance 30
is an instance of an uninstantiated stub class 31, which the server computer 12(m) may
maintain for the various class instances 26 and uninstantiated classes 27 which the server
computer 12(m) has “exported,” that is, which the server computer 12(m) makes
available to client computers 11(n) for use in remote invocation of methods provided
thereby. An uninstantiated stub class 31 includes declarations for the complete set of
interfaces for the particular remote uninstantiated class 27 which implements the remote
method to be invoked, and also provides or invokes methods which facilitate accessing
of the remote method(s) which are implemented by the remote class. The uninstantiated
stub class 31, when it is instantiated and provided to the execution environment 20 of the
client computer 11(n) as a stub class instance 30, effectively provides the information
which is needed by the control module 19 of the execution environment 20 of the

invoking Java program, so that, when a remote method that is implemented by its

10

15

20

25

30

WO 00/77635 PCT/US00/16080

12

associated class is invoked by a Java program running in a particular execution
environment, the remote method will be processed and the return value(s) provided to the
invoking Java program. In one embodiment, the arrangement by which the stub class
instance may be provided to the execution environment 20 is similar to that described in
the aforementioned Waldo, et al., patent application.

In addition, the server computer 12(m) provides a skeleton 32, which identifies
the particular classes and methods which have been exported by the server computer
12(m) and information as to how it (that is, the server computer 12(m)) may load the
respective classes and initiate processing of the particular methods provided thereby.
Additionally, the server computer 12(m) contains a lookup service 400 for registering
services on a network. The lookup service 400 will be discussed below.

When a class instance invokes a remote method maintained by a server computer
12(m), it will provide values for various parameters to the stub class instance 30 for the
remote method, which values the remote method will use in its processing. If the remote
method is implemented on the same computer as the invoking Java program, when the
invoking Java program invokes a remote method, the computer may establish an
execution environment, similar to the execution environment 20, enable the execution
environment's class loader to load and instantiate the class which implements the method
as a class instance similar to class instances 22, and process the remote method using
values of parameters which are provided by the invoking class instance in the remote
invocation. After processing of the method has been completed, the execution
environment in which the remote method has been processed will provide the results to
the stub class instance 30 for the remote method that was invoked, which, in turn, will
provide to the particular class instance 22 which invoked the remote method.

Similar operations will be performed if client computer 11(n) and server computer
12(m) are implemented on different physical computers. In that case, in response to a
remote invocation, the client computer 11(n) that is processing the invoking class
instance 22, under control of the control module 19 for the execution environment 20 for
the invoking class instance 22, will use the appropriate stub class instance 30 to
communicate over the network represented by the communication link 14 with the server

computer 12(m) which implements the remote method to enable it (that is, the server

10

15

20

25

30

WO 00/77635 PCT/US00/16080

13

computer 12(m)) to establish an execution environment 24 for the class which
implements the remote method, and to use the class loader 25 to load an instance of the
class as a class instance 26. In addition, the client computer 11(n), also using the
appropriate stub class instance 30, will provide any required parameter values to the
server computer 12(m) over the network 14. Thereafter, the server computer 12(m) will
process the remote method using parameter values so provided, to generate result value(s)
which are transferred over the network to the client computer 11(n), in particular to the
appropriate stub class instance 30. The client computer 11(n) will, after it receives the
result value(s) from the network, provide them to the invoking class instance 22 for its
processing.

In any case, when the control module 19 of the client computer's execution
environment 20 determines that a reference to the remote object has been received, if it
determines that the stub class instance 30 is not present when it receives the reference,
it will attempt to obtain the stub class instance 30 from, for example, the server computer
12(m) which implements the remote method, and enable the stub class instance 30 to be
dynamically loaded in the execution environment 20 for the invoking class instance 22.
A reference to the remote object may be received, for example, either as a return value
of another remote method invocation or as a parameter that is received during another
remote method invocation. The stub class instance may be dynamically loaded into the
execution environment in a manner similar to that used to load class instances 22 in the
execution environment 22. The execution environment 20 is provided with a stub class
loader 33 which, under control of the control module 19, will attempt to find and load the
stub class instances 30 as required by the class instances 22 processed in the execution
environment. The location of a particular server computer 12(m) that maintains the class
that implements a method to be invoked remotely may be included in the call from the
invoking class instance or may be made known to the stub class loader 33 through
another mechanism (not shown) maintained by the client computer 11(n).

However, if the stub class loader 33 is not otherwise notified of which server
computer 12(m) maintains the class which implements a method which may be invoked
remotely, it may use the nameserver computer 13 to provide that identification. The

identification may comprise any identifier which may be used to identify a server

10

15

20

25

30

WO 00/77635 PCT/US00/16080

14

computer 12(m) or other resource which is available on the network 14 and to which the
server computer 12(m) can respond. [Illustrative identifiers include, for example, a
network address which identifies the server computer and/or resource, or, if the network
14 is or includes the Internet, an identifier to, for example, a World Wide Web resource
which may provide the identification or a “uniform resource locator” (“URL”) which
provides a uniform mechanism for identifying resources that are available over the
Internet. The server computer 12(m) which implements the remote method, in response
to a request from the client computer 11(n) will provide stub class instance 30 which the
client computer 11(n) may load into the execution environment 21 to thereafter enable
the remote invocation to be initiated.

Asnoted above, if the stub class loader 33 does not know which server computer
12(m) implements the remote method which may be invoked (and thus does not know
which computer is to provide the stub class code for the remote invocation), it may, under
control of the control module 19, obtain the identification from the nameserver computer
13. In that operation, the stub class loader 33 may use a previously-provided default stub
class which is provided for use in such cases. The default class stub, when used by the
invoking Java program, enables the computer that is processing the invoking Java
program to communicate with the nameserver computer 13 to obtain information which
can be used in invoking the remote method. This operation is essentially the same as the
invocation of a remote method to be processed by the nameserver computer 13, with the
remote method including a parameter identifying the class and method to be remotely
invoked, and enabling the nameserver computer 13 to provide the identification of a
server computer 12(m) which can process the method to the requesting client computer
11(n) and other information which may be helpful in communicating with the server
computer 12(m) and invoking the particular method. It will be appreciated that the
nameserver computer 13 will maintain a table (not separately shown) of “exported”
resources, that is, resources, such as classes and methods, that are available to client
computers 11(n) connected to the network 14, and information, such as the identifications
of the particular server computers 12(m) which provide those resources, which will be

useful to the client computers 11(n) in making use of the exported resources.

10

15

20

25

30

WO 00/77635 PCT/US00/16080

15

It will be appreciated that the nameserver computer 13 may create and maintain
the exported resource table in a number of ways that are known in the art. For example,
the nameserver computer 13 may periodically broadcast requests for exported resource
information over the network 14, to which the various server computers 12(m) which
maintain exported resources may respond; in that case, the nameserver computer 13 may
establish its exported resource table based on the responses from the server computers
12(m). Alternatively, each of the various server computers 12(m) which maintains an
exported resource may periodically broadcast information as to the exported resources
which it maintains, and the nameserver computer 13 can update its exported resource
table based on the broadcasts from the server computer. In addition, the nameserver
computer's exported resource table may be established by a system operator and may be
fixed until he or she updates it.

Inany case, the information provided by the nameserver computer 13 in response
to arequest initiated by the default stub would include such information as, for example,
the identification of a computer 12(m) which can provide a class which implements the
remote method to be invoked, particular information which the computer (that is, the
computer which implements the remote method) will require to provide the required stub
class code, and the like. After receiving the information from the nameserver computer
13, the computer 11(n) that is processing the invoking Java program may, under control
of the control module 19, use the information communicate with the computer (that is,
the computer which implements the remote method) to obtain the stub class, and may
thereafter invoke the method as described above.

With this background, the operations performed by client computer 11(n), server
computer 12(m) and, if necessary, nameserver 13 in connection with obtaining and
dynamic loading of a stub class instance when a reference to a remote method is received
will be described in connection with the flow chart depicted in FIG. 2. In addition,
operations performed by the client computer 11(n) and server computer in connection
with remote invocation of a method using the stub class instance will be described in
connection with the flow chart depicted in FIG. 3. With reference initially to FIG. 2, the
execution environment control module 19 will, when it receives a reference to a remote

method, will initially determine whether an appropriate stub class instance is present in

10

15

20

25

30

WO 00/77635 PCT/US00/16080

16

the execution environment 20 to facilitate invocation of the remote method (step 100).
If the control module 19 determines that such a stub class instance 30 for the remote
method is present in the execution environment, it may continue other operations (step
101). However, if the control module 19 determines in step 101 that such a stub class
instance is not present in the execution environment 20 for the remote method, the
control module 19 will use the stub class loader 33 to attempt to locate and load a stub
class instance 30 for the class to process the remote method. In that case, the control
module 19 will initially determine whether the invocation from the class instance 22
included a resource locator to identify the server computer 12(m) or other resource which
maintains the class for the method to be invoked, or whether it (that is, the control
module 19) or the stub class loader 33 otherwise are provided with such a resource
locator (step 102). If the control module 19 makes a positive determination in that step,
it will sequence to step 103 to enable the stub class loader 33 to initiate communications
with identified server computer 12(m) to obtain stub class instance for the class and
method to be invoked (step 103). When the stub class loader 33 receives the stub class
instance 30 from the server computer 12(m), it will load the stub class instance 30 into
execution environment 20 for the class instance 22 which initiated the remote method
invocation call in step 100 (step 104). After the stub class instance 30 for the referenced
remote method has been loaded in the execution environment, the method can be invoked
as will be described below in connection with FIG. 3.

Returning to step 102, if the control module 19 determines that the invocation
from the class instance 22 did not include a resource locator to identify the server
computer 12(m) or other resource which maintains the class for the method to be
invoked, and further that it (that is, the control module 19) or the stub class loader 33 is
not otherwise provided with such a resource locator, a “class not found” exception may
be indicated, at which point the control module 19 may call an exception handler. The
exception handler may perform any of a number of recovery operations, including, for
example, merely notifying the control module 19 that the remote method could not be
located and allow it to determine subsequent operations.

Alternatively, the control module 19 may attempt to obtain a resource locator

from the nameserver computer 13 or other resource provided by the network 14

10

15

20

25

30

WO 00/77635 PCT/US00/16080

17

(generally represented in FIG. 1 by the nameserver computer 13), using a call, for
example, a default stub class instance 30. The call to the default stub class instance 30
will include an identification of the class and method to be invoked and the name of the
nameserver computer 13(m). Using the default stub class instance 30, the control module
19 will enable the computer 11(n) to initiate communications with nameserver computer
13 to obtain an identifier for a server computer 12(m) which maintains the class and
method to be invoked (step 110). The communications from the default stub class
instance 30 will essentially correspond to a remote method invocation, with the method
enabling the nameserver computer to provide the identification for the server computer
12(m), if one exists associated with the class and method to be remotely invoked, or
alternatively to provide an indication that no server computer 12(m) is identified as being
associated with the class and method. During the communications in step 110, the
default stub class interface 30 will provide, as a parameter value, the identification of
class and method to be invoked.

In response to the communications from the default stub class instance 30, the
nameserver computer 13 will process the request as a remote method (step 111), with the
result information comprising the identification for the server computer 12(m), if one
exists that is associated with the class and method to be remotely invoked, or alternatively
an indication that no server computer 12(m) is identified as being associated with the
class and method. After finishing the method, the nameserver computer 13 will initiate
communications with the default stub class instance 30 to provide the result information
to the default stub class instance 30 (step 112).

After receipt of the result information from the nameserver computer 13, the
default stub class instance, under control of the control module 19, will pass result
information to the stub class loader 33 (step 113). Thereafter, the stub class loader 33
determines whether the result information from the nameserver computer comprises the
identification for the server computer 12(m) or an indication that no server computer
12(m) is identified as being associated with the class (step 114). If the stub class loader
33 determines that the result information comprises the identification for the server
computer 12(m), it (that is, the stub class loader 33) will return to step 101 to initiate

communication with the identified server computer 12(m) to obtain stub class instance

10

15

20

25

30

WO 00/77635 PCT/US00/16080

18

for the class and method that may be invoked. On the other hand, if the stub class loader
33 determines in step 114 that the nameserver computer 13 had provided an indication
that no server computer 12(m) is identified as being associated with the class and method
that may be invoked, the “class not found” exception may be indicated (step 115) and an
exception handler called as described above.

Asnoted above, the stub class instance 30 retrieved and loaded as described above
in connection with FIG. 2 may be used in remote invocation of the method. Operations
performed by the client computer 11(n) in connection with remote invocation of the
method will be described in connection with the flow chart in FIG. 3. As depicted in
FIG. 3, when a class instance 22 invokes a method, the control module 19 may initially
verify that a stub class instance 30 is present in the execution environment for remote
method to be invoked (step 120). Ifa positive determination is made in step 120, the stub
class instance 30 will be used for the remote invocation, and in the remote invocation will
provide parameter values which are to be used in processing the remote method (step
121). Thereafter, the stub class instance 30 for the remote method that may be invoked
will be used to initiate communications with the server computer 12(m) which maintains
the class for the remote method (step 122), in the process, the passing parameter values
which are to be used in processing the remote method will be passed. It will be
appreciated that, if the server computer 12(m) which is to process the method is the same
physical computer as the client computer 12(n) which is invoking the method, the
communications can be among execution environments which are being processed within
the physical computer. On the other hand, if the server computer 12(m) which is to
process the method is a different physical computer from that of the client computer 12(n)
which is invoking the method, the communications will be through the client computer's
and server computer's respective network interfaces 15(n) and 16(m) and over the
network 14,

In response to the communications from the stub class instance in step 122, the
server computer 12(m), if necessary establishes an execution environment 24 for the class
which maintains the method that may be invoked, and the uses the information provided
by the skeleton 32 to create a class instance 26 for that class (step 123). Thereafter, the

server computer 12(m), under control of the control module 28, will process the method

10

15

20

25

30

WO 00/77635 PCT/US00/16080

19

in connection with parameter values that were provided by stub class instance 30 (step
124). After completing processing of the method, the server computer 12(m), also under
control of the control module 28, will initiate communications with the client computer's
stub class instance 30 to provide result information to the stub class instance (step 125).
In a manner similar to that described above in connection with step 102, if the server
computer 12(m) which processed the method is the same physical computer as the client
computer 12(n) which invoked the method, the communications can be among execution
environments 24 and 20 which are being processed within the physical computer. On the
other hand, if the server computer 12(m) which processed the method is a different
physical computer from that of the client computer 12(n) which is invoking the method,
the communications will be through the server computer's and client computer's
respective network interfaces 16(m) and 15(n) and over the network 14. After the stub
class instance 30 receives the result information from the server computer, it may provide
result information to the class instance 22 which initiated the remote method invocation
(step 126), and that class instance 22 can continue processing under control of the control
module 19.

Returning to step 120, if the control module 19 determines in that step that it does
not have a stub class instance 30 that is appropriate for the remote method that may be
invoked, it may at that point call an exception handler (step 127) to perform selected error
recovery operations.

Methods and systems consistent with the present invention provide a number of
advantages. In particular, they provide a new system and method for facilitating dynamic
loading of a stub which enables a program that is operating in one execution environment
to remotely invoke processing of a method in another execution environment, so that the
stub can be loaded by the program when it is run and needed. In systems in which stubs
are compiled with the program, and thus are statically determined when the program is
compiled, they (the stubs) may implement subsets of the actual set of remote interfaces
which are supported by the remote references that is received by the program, which can
lead to errors and inefficiencies due to mismatches between the stub that is provided to
a program and the requirements of the remote procedure that is called when the program

isrun. However, since, in the dynamic stub loading system and method, the stub that is

10

15

20

25

30

WO 00/77635 PCT/US00/16080

20

loaded can be obtained from the particular resource which provides the remote method,
it (the stub) can define the exact set of interfaces to be provided to the invoking program
at run time, thereby obviating run-time incompatibilities which may result from mis-
matches between the stub that is provided and the requirements of the remote method that
is invoked.

It will be appreciated that a number of modifications may be made to the
arrangement as described above. For example, although the execution environment 20
has been described as obtaining and loading stub class instances to facilitate invocation
of remote methods when references to the remote methods are received, it will be
appreciated that stub class instances may instead be obtained and loaded when the remote
methods are initially invoked. Obtaining and loading of the stub class instance for a
remote method when a reference thereto is received will have the advantages that (I) the
stub class instance will be present in the execution environment when the remote method
is actually invoked, and (i) if the appropriate stub class instance can not be located, the
program or an operator may be notified at an early time. On the other hand, obtaining
and loading of the stub class instance for a remote method when the method is to be
invoked may result in a delay of the invocation until the correct stub class instance can
be found, if the method is in fact not invoked even if a reference to it is received the stub
class instance may not need to be located and loaded.

It will be appreciated that a system in accordance with the invention can be
constructed in whole or in part from special purpose hardware or a general purpose
computer system, or any combination thereof, any portion of which may be controlled by
a suitable program. Any program may in whole or in part comprise part of or be stored
on the system in a conventional manner, or it may in whole or in part be provided in to
the system over a network or other mechanism for transferring information in a
conventional manner. In addition, it will be appreciated that the system may be operated
and/or otherwise controlled by means of information provided by an operator using
operator input elements (not shown) which may be connected directly to the system or
which may transfer the information to the system over a network or other mechanism for
transferring information in a conventional manner.

Alternative Embodiment of the Present Invention

10

15

20

25

30

WO 00/77635 PCT/US00/16080

21

Although an embodiment consistent with the present invention has been
previously described that dynamically retrieves and loads stubs, an alternative
embodiment also consistent with the present invention loads and retrieves objectsin a
lookup service, where the objects contain code (stub information) for facilitating
communication with a particular service or the objects contain code that performs the
service. Although the alternative embodiment is described below as downloading objects
from the lookup service that represent stubs, the techniques described below are equally
applicable to downloading objects that actually perform the services. A lookup service
defines a network’s directory of services and stores references to these services. A user
desiring use of a service on the network accesses the lookup service, which returns the
stub information that facilitates the user’s access of the service.

The lookup service may contain a subset of all services available in the network,
referred to as a “Djinn” as described in copending U.S. Patent Application Serial No.

09/044,931, entitled “Dynamic Lookup Service in a Distributed System,” assigned to a

common assignee, filed on even date herewith, which has been previously incorporated
by reference. A “Djinn” refers to a logical grouping of one or more of the services or
resources that are provided by a network. Devices connected to the network may either
dynamically add themselves to the Djinn or dynamically remove themselves from the
Djinn. When added, a device provides zero or more of its services to the Djinn and may
utilize all of the services currently provided by the Djinn. The services provided by the
Djinn are defined by the lookup service, which provides a common way to both find and
utilize the services for the Djinn.

The lookup service is a fundamental part of the infrastructure for a Djinn or other
computer network offering a range of services. It is the primary means for programs to
find services available within the Djinn and is the foundation for providing stubs through
which users and administrators can discover and interact with services in the Djinn.

Reference will now be made to FIG. 4, which depicts lookup service 400 in
greater detail. Server computer 12(m), also includes a lookup service 400, further
described below. The lookup service 400, located on a server 12(m) as shown in FIG.
1, maintains a collection of “service items” 410-418. Each service item 410-418

represents an instance of a service available within the Djinn, and each service item 410

10

15

20

25

30

WO 00/77635 PCT/US00/16080

22

contains a service ID 402 that uniquely identifies the service item, a stub 404 providing
code that programs use to access the service, and a collection of attributes 406 that
describe the service.

Upon registering a new service with the lookup service 400, the lookup service
gives the new service item 410 a unique service ID 402, typically a number. This service
ID 402 can later be used to access the specific service, avoiding unnecessary searching
or locating several matching service items upon a query.

When a new service is created (e.g., when a new device is added to the Djinn), the
service registers itself with the lookup service 400, providing a stub 404 to be used by a
client to access the service and an initial collection of attributes 406 associated with the
service. For example, a printer might include attributes indicating speed (in pages per
minute), resolution (in dots per inch), color, and whether duplex printing is supported.
The lookup service administrator (not shown) might also add new attributes, such as the
physical location of the service and common names for it. Additionally, if a service
encounters some problem that needs administrative attention, such as a printer running
out of toner, the service can add an attribute that indicates what the problem is. In one
implementation consistent with the present invention, attributes are stored as multi-
entries, and the addition, modification and deletion of attributes can be made using multi-
templates and the techniques explained in co-pending U.S. Patent Application No.
09/044,839, entitled “Method and System for In-Place Modifications In A Database”,
previously incorporated herein.

An individual set of attributes is represented as an instance of a class, each

attribute being a field of that class. An example of an attribute set for a printer is:

public class Printer {

Integer ppm; // pages per minute

Integer dpi; // resolution in dots per inch
Boolean duplex; // supports two-sided printing
Boolean color; // color or black-only

}
The class provides strong typing of both the set and the individual attributes.

The attributes 406 of service items 410 can also be represented as a set of sets of

attributes. Attributes 406 of a service item 410 can contain multiple instances of the

10

15

20

25

30

35

WO 00/77635 PCT/US00/16080

23

same class with different attribute values, as well as multiple instances of different
classes. For example, the attributes 406 of a service item 410 might have multiple
instances of a Name class, each giving the common name of the service in a different
language, plus an instance of a Location class, a Type class, or various other service-
specific classes. Anexample of some added attributes to describe the printer may be the

Name, Type, or Location:
public class Name implements Entry |

String name; // the user-friendly name of the
service

String description; // free-form description of the
service

String language; // language (e.g., English, French)
used in the above

}
public class Type implements Entry ({

String type; // the general type of service

String vendor; // vendor of product that implements
the service

String model; // model number/name of product

String version; // version number of product

public class Location implements Entry {

Integer floor; // what floor the service is on
String building;// what building it’s in
String room; /7 what room it’s in

}
In this example, the attributes 406 for this service item 410 would be a set of attributes

containing the Printer, Name, Type, and Location class instances, each class containing
their own individual attributes. However, it should be noted that the scheme used for
attributes is not constrained by these examples.

Programs (including other services) that need a particular type of service can use
the lookup service 400 to find a stub that can be used to access the service. A match can
be made based on the type of service as well as the specific attributes attached to the
service. For example, a client could search for a printer by requesting a stub type
corresponding to the service desired or by requesting certain attributes such as a specific

location or printing speed. In one implementation consistent with the present invention,

10

15

20

25

30

WO 00/77635 PCT/US00/16080

24

attributes are stored as multi-entries, and a match on attributes can be made using multi-
templates, as explained in co-pending U.S. Patent Application No. 09/044,835, entitled
“Method and System For Multi-Entry and Multi-Template Matching In A Database”,
previously incorporated herein.

Accessing a Lookup Service Employing Dynamic Stub Loading and Retrieval

Referring back to FIG. 4, the stub 404 corresponding to a service is registered in
the lookup service 400 and is used by the client computer 11(n) to access the service
methods remotely. This stub 404 may also be a “smart proxy.” A smart proxy, code
within which a stub is embedded, helps the client more efficiently implement the stub and
the method to be remotely invoked. A smart proxy often performs some local
computation for efficiency before or after it actually calls the stub. For example, a smart
proxy may contain code to cache information, so if a client requested it again, instead of
going back to the server to get the information, it may have cached the answer and be able
to return it quickly. If the situation called for it, a smart proxy might also transform the
parameters received from the client into other types and then send the transformed types.
The smart proxy concept is further explained in co-pending U.S. Patent Application No.
09/044,930, entitled “Downloadable Smart Proxies for Performing Processing Associated
with a Remote Procedure Call in a Distributed System,” assigned to a common assignee,
filed on even date herewith, which is hereby incorporated by reference.

FIG. 5 depicts a flowchart illustrating the steps used by systems consistent with
the present invention for adding a service stub to the lookup service. When a device joins
the network, it typically registers a service with the lookup service (step 500). Upon
registration with the lookup service 400, the device supplies a stub 404 to the lookup
service, and it may also give its associated attributes 406 to the lookup service (step 502).
In response, the lookup service 400 assigns a unique service ID 402, typically a number
as previously stated, to the service registered with the lookup service (step 504). Once
the device has supplied the lookup service 400 with a stub 404 and attributes 406, and the
lookup service has assigned a unique service ID 402, the device has completed
registration of the service with the lookup service (step 506). After services are registered
with the lookup service 400, clients can use the lookup service to obtain stub information

needed to access the registered services.

10

15

20

25

30

WO 00/77635 PCT/US00/16080

25

FIG. 6 depicts a flowchart illustrating steps used by systems and methods
consistent with the present invention to download a service item from the lookup service.
In one implementation, the client computer 11(n) sends a request for a service to the
server 12(m) with the lookup service 400 (step 600). The request originates from the
remote method invocation of a class instance 22 on client computer 11(n), and the
requested service may reside on a remote server as the exemplary service 38 resides on
server 12(I). In one implementation consistent with the present invention, the client
computer 11(n) may request one or more services from the lookup service 400. The
client’s request comes in the form of a specific service ID 402, a type of stub 404, or a
set of attributes 406, or any combination thereof (step 602). In response to the request,
control 19 directs the stub class loader 33 to locate the corresponding stub 404 from the
server 12(m). To do so, the control 19 enables the stub class loader 33 to initiate
communication with the server 12(m) to obtain a stub 404 for the service to be obtained.

Upon receipt of the request from the client computer 11(n), the control 28 in the
server 12(m) searches the lookup service 400 for the stub 404 corresponding to the
requested service (step 604). If there are no matches found, the control 28 returns a null
value (steps 606 and 608). Otherwise, if it locates the stub 404 corresponding to the
service that the client computer 11(n) is attempting to access, the server 12(m) returns the
stub to the stub class loader 33 on the client computer (step 612). If more than one stub
was located matching the client’s request (step 610), in one embodiment consistent with
the present invention, any one of the stubs is returned (step 616). In another
implementation where the client requests more than one service, the server 12(m) returns
the requested number of the stubs with their attributes (steps 614 and 618).

When the stub 404 is received by the stub class loader 33, the stub class loader
loads it into the execution environment 20. After it is loaded, the service 38 can be
remotely invoked. The use of the stub information to invoke remote processing of the
service 38 is performed in the same manner as previously discussed in connection with
FIG. 3.

Generally, the class instance 22 can use the stub 404 to access the service 38 on
the server 12(I). When the class instance 22 requires use of the service 38 corresponding

to the returned stub 404, control 19 verifies that the stub 404 is present in the execution

10

15

20

25

30

WO 00/77635 PCT/US00/16080

26

environment 20. If so, the class instance 22 can then use the stub 404 to initiate
communications with the server 12(I) that maintains the service 38, and parameters will
be passed to the service 38 for implementation.

This lookup service implementation is one application of the dynamic loading and
retrieval of stub information to enable a program operating in one address space to invoke
processing of a procedure in another address space. This implementation of using the
dynamic stub loading on the lookup service allows a client to receive stub information
to facilitate use of that service directly. Unlike previous lookup services, the lookup
service consistent with the present invention returns the code needed to access the service
directly. Using the dynamic loading of stub information in this way allows the client to
receive all the code necessary to facilitate use of the service on a remote server.

Second Alternative Embodiment of the Present Invention.

In accordance with a second alternative embodiment of the present invention, a
network proxy is provided that enables orphan services to utilize the lookup service and
become integrated into the network environment previously described. An "orphan
service" runs on a device that typically has too little memory to support the Java™
runtime system, including the Java ™ Virtual Machine and Remote Method Invocation
(RMI), discussed further below. To integrate such services into the network
environment, the network proxy facilitates lookup-service registration and manages
resource allocation on behalf of the services. The network proxy thus integrates devices
with limited capabilities, as well as their services, into the network environment
described above with little retrofitting.

Figure 7 depicts a data processing system 700 suitable for use with this
embodiment. Data processing system 700 includes a lookup server 702, a computer 704,
adevice 706, and a proxy server 708, all of which are interconnected via a network 709.
Lookup server 702 includes a memory 710 containing lookup service 400 and Java™
Runtime System (JRS) 736 and also includes other standard components, such as
secondary storage, a CPU, a video display, and an input device. JRS 736 includes the
Java™ Virtual Machine (JVM) 738 and RMI 740. JRS 736, JVM 738, and RMI 740 are
provided as part of the Java™ software development kit available from Sun

Microsystems of Mountain View, CA. JVM 738 facilitates platform independence by

10

15

20

25

30

WO 00/77635 PCT/US00/16080

27

acting like an abstract computing machine, receiving instructions from programs in the
form of byte codes and interpreting these byte codes by dynamically converting them into
a form for execution, such as object code, and executing them. RMI 740 facilitates
remote method invocation by allowing objects executing on one computer or device to
invoke methods of an object on another computer or device.

Computer 704 includes a memory 712 containing a client program 714 and JRS
742 and includes other standard components. Device 706 includes a memory 716
containing a protocol stack 720 as well as an orphan service 721 and also includes a CPU
718. Proxy server 708 includes a memory 722 containing a network proxy 726, a
protocol stack 728, and JRS 730 and also includes other standard components. Network
proxy 726 is responsible for registering orphan service 721 in lookup service 400 so that
client program 714 can utilize the orphan service. Additionally, network proxy 726
provides orphan service 721 with access to various other services provided via lookup
service 400.

Figure 8 depicts a flowchart of the steps performed when the network proxy
registers the orphan service with the lookup service so that the client program may utilize
it. The first step performed is for the network proxy to obtain a reference to the lookup
service (step 802). This step is performed by accessing the discovery server as described
in co-pending U.S. Patent Application No. 09/044,939, entitled "Apparatus and Method
for Providing Downloadable Code for Use in Communicating with a Device in a
Distributed System," filed on March 20, 1998, assi gned to acommon assignee, which has
previously been incorporated by reference. After obtaining a reference to the lookup
service, the network proxy utilizes protocol stack 728 to communicate with the orphan
service via protocol stack 720 (step 804). In this step, the network proxy and the orphan
service enter into a peer-to-peer communication session using a protocol such as TCP/IP.
During this session, the orphan service provides the network proxy with sufficient
information to construct a stub (or object) for registration in the lookup service as
previously described. This information, typically stored on the device (e. g., PROM),
includes the code for the object, in the form of byte codes, as well as the Java™
programming language object type. Next, the network proxy registers this object in the

lookup service as described above (step 806).

10

15

20

25

30

WO 00/77635 PCT/US00/16080

28

After the network proxy registers the orphan service, the client program may
access the lookup service to retrieve the object that was registered (step 808). After
retrieving the object, the client program can communicate with and utilize the orphan
service by invoking the methods on the object (step 810). In this step, the methods of the
objectregistered in the lookup service may communicate directly with the orphan service
if the device resides on the same type of network as the client program. Otherwise, if the
client resides on a different type of network, the methods may communicate with the
network proxy, who will in turn perform a protocol conversion and use the protocol stack
to communicate with the orphan service.

Figure 9 depicts a flow chart of the steps performed by an alternative embodiment
when the network proxy registers the orphan service with the lookup service so that the
client program may utilize it. In this embodiment, the code for the object is stored
remotely with respect to the device. For example, the code may be stored on the proxy
server. Since the code is not stored on the device, a peer-to-peer communication session
is not necessary, thus relieving the need for the proxy server to utilize a protocol stack
and anything else specific to the device, such as a device driver, and allowing the code
to be modified without having to access the device. As aresult, if the code were burned
in PROM, significant processing would be avoided.

In this embodiment, the orphan service broadcasts a multicast packet to a
predefined port on the devices on the network (step 902). The network proxy listens on
this port and receives the multicast packet containing a location identifier, suchasa URL,
indicating a location on the network of where the object is located and the object type.
The network proxy then responds to the device indicating a successful receipt of the
packet (step 904). After receiving the location identifier and the object type, the network
proxy registers the orphan service in the lookup service (step 906). In this step, the
network proxy may access the object at the specified location and store both the object
as well as an indication of its type in the lookup service. Alternatively, the network proxy
may store the location identifier and the object type in the lookup service. In this case,
when the client program requests the object from the lookup service, RMI retrieves the
entry in the lookup service, containing the location identifier (e.g., the URL), accesses the

object at that location, and returns the object to the client program, as previously

10

15

20

25

30

WO 00/77635 PCT/US00/16080

29

described. Later, the client program may access the object that is either stored in or
referenced in the lookup service and communicate directly with the orphan service as
stated above (step 908).

Figure 10 depicts a flow chart of the steps performed by the network proxy when
managing services on behalf of an orphan service. The first step performed is for the
network proxy to receive a request from the orphan service for use of another service
identified in the request (step 1002). In this step, the network proxy receives the request
by listening on the predefined port or by receiving a packet via the protocol stack,
depending on the embodiment used. Responsive to this request, the network proxy
obtains an object representing the requested service from the lookup service, as
previously described, entering into a lease (step 1004). Services in the lookup service are
utilized on a lease basis, meaning that the client who is requesting use of the service
requests its use for a particular time period, and the service then determines whether it
will allow a lease for (1) the entire requested period, (2) less than the entire requested
period, or (3) not at all. Leasing of services and resources is further described in
copending U.S. Patent Application No. 09/044,923, entitled "Method and System for
Leasing Storage," U.S. Patent Application No. 09/044,838, entitled “Method, Apparatus,
and Product for Leasing of Delegation Certificates in a Distributed System," U.S. Patent
Application No. 09/044,834, entitled "Method, Apparatus, and Product for Leasing of
Group Membership in a Distributed System," and U.S. Patent Application No.

09/044,916, entitled "Leasing for Failure Detection,” all of which have been previously

incorporated by reference. The network proxy may then receive requests from the orphan
service to manipulate the object and the network proxy responds by manipulating the
object accordingly, thus making use of the requested service (step 1006). In this
situation, the network proxy may renew the lease when it is near expiration and may
cancel the lease when the orphan service has completed its use of the requested service.

Although aspects of the present invention are described as being stored in
memory, one skilled in the art will appreciate that these aspects can also be stored on or
read from other types of computer-readable media, such as secondary storage devices,
like hard disks, floppy disks, or CD-ROM,; a carrier wave from a network, such as the

Internet; or other forms of RAM or ROM either currently known or later developed. Sun,

WO 00/77635 PCT/US00/16080

30

Sun Microsystems, the Sun logo, Java™, and Java™-based trademarks are trademarks
or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

The foregoing description has been limited to specific embodiments of the present
invention. It will be apparent, however, that various variations and modifications may
be made. It is the object of the appended claims to cover these and such other variations

and modifications as come within the true spirit and scope of the invention.

WO 00/77635 PCT/US00/16080

31

What is Claimed is:

1. A method in a data processing system containing a service on a device, a
service registry and a proxy, the method performed by the proxy comprising the steps of:
receiving a request from the service to register with the service registry;

obtaining information that facilitates accessing the service; and

storing the information in the service registry to register the service.

2. The method of claim 1, wherein the information is an object containing
code for communicating with the service.

3. The method of claim 2, wherein the code comprises byte codes suitable
for running on an abstract computing machine.

4, The method of claim 1 wherein the information is a location identifier
indicating a location of an object containing code for communicating with the service.

5. The method of claim 1, wherein the receiving step includes:

receiving a location identifier indicating a location of an object containing code
for communicating with the service,

wherein the obtaining step includes retrieving the object from the location, and

wherein the storing step includes storing the retrieved object in the service
registry.

6. The method of claim 1, further including the steps of:

receiving a request to access a resource from the service; and

providing the service with access to the resource.

7. The method of claim 6, wherein the service registry contains an object
with methods for accessing the resource and wherein the providing step includes the steps
of:

retrieving the object from the service registry; and

invoking a method on the object to facilitate accessing the resource.

8. The method of claim 6 wherein the providing step includes the step of:

leasing the resource.

9. The method of claim 8, further including the steps of:

accessing the resource on behalf of the service;

determining when the lease is near expiration; and

WO 00/77635 PCT/US00/16080

32

renewing the lease when it is determined that the lease is near expiration.

10. A method in a data processing system having a service on a device and a
service registry, the method for registering the service in the service registry comprising
the steps performed by the service of:

sending a request for registration in the service registry to a proxy server,
whereupon the proxy server registers the service in the service registry to enable a client
program to access the service; and

receiving a request from the client program for accessing the service.

11. The method of claim 10 wherein the receiving step includes the step of:

receiving the request via the proxy server.

12 A method in a data processing system containing a client program, a
service registry containing a reference to a service on a device, and a proxy server, the
method comprising the steps performed by the client program of:

retrieving the reference from the service registry; and

using the reference to send a request to access the service to the proxy server.

13. A method in a data processing system containing an orphan service on a
device, a network proxy, a lookup service, and a client program, the method comprising
the steps of:

sending a request from the orphan service to the network proxy for registration
in the lookup service;

receiving the request by the network proxy;

registering the orphan service in the lookup service by the network proxy;

accessing the lookup service by the client program to obtain the registration of the
orphan service; and

accessing the orphan service by the client program using the registration.

14, The method of claim 13 wherein the sending step includes:

sending an object to the network proxy for registration in the lookup service, and
wherein the registering step includes:

registering the object.

15. The method of claim 13 wherein the sending step includes:

WO 00/77635 PCT/US00/16080

33

sending a location identifier to the network proxy, and
wherein the registering step includes registering the location identifier.
16. The method of claim 13 wherein the sending step includes:
sending a location identifier to the network proxy, wherein the location identifier
identifies the location of an object, and
wherein the registering step includes accessing the object using the location
identifier and registering the object in the lookup service.
17. The method of claim 13 wherein the client program communicates using
a first protocol and the orphan service communicates using a second protocol, and
wherein the accessing the orphan service step includes:
requesting the network proxy to access the orphan service on behalf of the client
program, wherein the request is communicated using the first protocol;
converting the request into a format suitable to the second protocol by the network
proxy; and
sending the request to the orphan service by communicating to the orphan service
using the second protocol.
18. A data processing system, comprising:
a lookup server containing:
a memory with a lookup service containing registrations that facilitate
access to corresponding services, and
a processor for running the lookup service;
a device containing:
a memory including an orphan service that requests registration in the
lookup service, and
a processor for running the orphan service; and
a proxy server containing:
amemory containing a network proxy that receives the registration request
from the orphan service and that registers the orphan service in the lookup service, and

a processor for running the network proxy.

WO 00/77635 PCT/US00/16080

34

19. The data processing system of claim 18 wherein the network proxy
registers the orphan service by storing in the lookup service an object containing methods
that facilitate access to the orphan service.

20. The data processing system of claim 19 further including:

a computer containing:

amemory with a client program that retrieves from the lookup service the
object corresponding to the orphan service and that invokes the methods to access the
orphan service; and

a processor for running the client program.

21. The data processing system of claim 20 wherein the methods access the
orphan service via the network proxy.

22. The data processing system of claim 21 wherein the network proxy
performs protocol conversion when accessing the orphan service on behalf of the client
program.

23. Thedataprocessing system of claim 18 wherein the memory of the lookup
server and the proxy server include the Java™ runtime system, and wherein the lookup
service and the network proxy utilize the Java runtime Ssystem.

24. A computer-readable medium containing instructions for controlling a
data processing system to perform a method, the data processing system containing a
service on a device, a service registry and a proxy, the method performed by the proxy
comprising the steps of:

receiving a request from the service to register with the service registry;

obtaining information that facilitates accessing the service; and

storing the information into the service registry to register the service.

25. The computer-readable medium of claim 24, wherein the information is
an object containing code for communicating with the service.

26. The computer-readable medium of claim 25, wherein the code comprises
bytecodes suitable for running on a Java™ Virtual Machine.

27. The computer-readable medium of claim 24 wherein the information is
alocation identifier indicating a location of an object containing code for communicating

with the service.

WO 00/77635 PCT/US00/16080

35

28. The computer-readable medium of claim 24, wherein the receiving step
includes:

receiving a location identifier indicating a location of an object containing code
for communicating with the service, wherein the obtaining step includes:

retrieving the object from the location, and wherein the storing step includes:

storing the retrieved object into the service registry.

29. The computer-readable medium of claim 24, further including the steps
of:

receiving a request to access a resource from the service; and

providing the service with access to the resource.

30. The computer-readable medium of claim 29, wherein the service registry
contains an object with methods for accessing the resource and wherein the providing
step includes the steps of:

retrieving the object from the service registry; and

invoking a method on the object to facilitate accessing the resource.

31. The computer-readable medium of claim 29 wherein the providing step
includes the step of:

leasing the resource.

32. The computer-readable medium of claim 31, further including the steps
of:

accessing the resource on behalf of the service;

determining when the lease is near expiration; and

renewing the lease when it is determined that the lease is near expiration.

33. A computer-readable medium containing instructions for controlling a
data processing system to perform a method for registering a service located on a device
in a service registry, the method comprising the steps performed by the service of:

sending a request for registration in the service registry to a proxy server,
whereupon the proxy server registers the service in the service registry to enable a client
program to access the service; and

receiving a request from the client program for accessing the service.

WO 00/77635 PCT/US00/16080

36

34. The computer-readable medium of claim 33 wherein the receiving step
includes the step of:

receiving the request via the proxy server.

35. A computer-readable medium containing instructions for controlling a
data processing system to perform a method, the data processing system containing a
client program, a service registry containing a reference to a service on a device, and a
proxy server, the method comprising the steps performed by the client program of:

retrieving the reference from the service registry; and

using the reference to send a request to access the service to the Proxy server.

36. A data processing system containing an orphan service on a device, a
network proxy, a lookup service, and a client program, comprising:

means for sending a request from the orphan service to the network proxy for
registration in the lookup service;

means for receiving the request by the network proxy;

means for registering the orphan service in the lookup service by the network
proxy;

means for accessing the lookup service by the client program to obtain the
registration of the orphan service; and

means for accessing the orphan service by the client program using the

registration.

PCT/US00/16080

WO 00/77635

1/13

W)zl ¥3LNdWOD Y¥3AY3S

-

$Z LNIWNOHIANT NOILNDIXT VAVF .." Iz
oop [SSVY10
JOIAYIS dMIOOT JOmm.w_.Nzoo “_ LNVLSNINA
@N | T
SIONVLSNI 5¢ " _
SSY1D d43avol | 4
. SsSY10 | ! L€
WV . J 3SSV10
anis
ce "INVLSNINN
NOL3N3AS L —————

(W91 4LNIMMN

8¢
JOINY3S

9¢
TOHLINOD

e
y3LNdWOD
SENYELS

0l XHOM13N

'

€l

d31NdNOD
HINYASANVYN

(N)L 1L ¥31LNdWOD IN3AITD

€C

"LNVLSNINN

(N)SE 41NI ¥MN
70z INGWNOWIANT T
i
| NOILNO3X3 VAVF cuIavol
| SSV10 8n1s
" e \Z
! SIDNVLSNI ¥3avOo1SSVY10
| SSY10
| 0§
" SIAONVLSNI
i SSVY10
|
! TOYLNOD anis
|

|
I
!
|
|
|
I
I
|
I S3SSVI0
|
!
i
|
|
|
{
I
I
I

147

(it
d3LNdWNOD
AIN3ND

I "Old

WO 00/77635 PCT/US00/16080

2/13

100. EXECUTION ENVIRONMENT CONTROL DETERMINES
WHETHER IT HAS A STUB CLASS APPROPRIATE FOR THE
REMOTE METHOD FOR WHICH IT HAS A REFERENCE

FIG. 2

YES

No !

101. CONTINUE

102. CONTROL MODULE DETERMINES WHETHER
INVOCATION INCLUDED A RESOURCE IDENTIFIER OR IF
A RESOURCE IDENTIFIER FOR THE CALL IS OTHERWISE
PROVIDED

|
YES

¥

103. CONTROL MODULE ENABLES STUB CLASS LOADER
TO INITIATE COMMUNICATIONS WITH IDENTIFIED
SERVER COMPUTER TO OBTAIN STUB CLASS INSTANCE
FOR THE CLASS AND METHOD TO BE INVOKED

A

104. WHEN STUB CLASS LOADER RECEIVES STUB
CLASS INSTANCE, CONTROL MODULE LOADS IT INTO
EXECUTION ENVIRONMENT

WO 00/77635 PCT/US00/16080

3/13

FIG. 2 (CONT. A)

110. CONTROL MODULE USES STUB CLASS LOADER IS
CALLED TO, IN TURN, CALL DEFAULT STUB CLASS
INSTANCE IS TO LOCATE APPROPRIATE SERVER
COMPUTER, INCLUDING IDENTIFICATION OF CLASS AND
METHOD TO BE INVOKED

Y

111. NAMESERVER COMPUTER PROCESSES
COMMUNICATIONS FROM DEFAULT STUB CLASS
INSTANCE AS A REMOTE METHOD INVOCATION, TO
OBTAIN RESULT INFORMATION

112. NAMESERVER COMPUTER INITIATES
COMMUNICATIONS TO PROVIDE THE RESULT
INFORMATION TO THE DEFAULT STUB CLASS INSTANCE

WO 00/77635 PCT/US00/16080

4/13

FIG. 2 (CONT. B)

113. RESULT INFORMATION IS PROVIDED TO STUB

CLASS LOADER RESOURCE
IDENTIFIER

A

114, STUB CLASS LOADER DETERMINES WHETHER
RESULT INFORMATION IS A RESOURCE IDENTIFIER OR
AN INDICATION THAT NO RESOURCE IDENTIFIER EXISTS
FOR THE CLASS AND METHOD

NO RESOURCE
IDENTIFIER

l

115. EXCEPTION

WO 00/77635 PCT/US00/16080

5/13

FIG. 3

METHOD WHICH HAS BEEN INVOKED

|

YES

y

121. CALL INTERFACE PROVIDED BY STUB CLASS
INSTANCE TO INVOKE REMOTE METHOD PROVIDING
PARAMETER VALUES WHICH ARE TO BE USED IN
PROCESSING THE REMOTE METHOD

120. EXECUTION ENVIRONMENT CONTROL VERIFIES
THAT IT HAS STUB CLASS INSTANCE FOR REMOTE

y

122. STUB CLASS INSTANCE FOR REMOTE METHOD TO
BE INVOKED INITIATES COMMUNICATIONS WITH SERVER
COMPUTER WHICH MAINTAINS CLASS FOR REMOTE
METHOD, IN THE PROCESS PASSING PARAMETER
VALUES WHICH ARE TO BE USED IN PROCESSING THE
REMOTE METHOD

123. SERVER COMPUTER ESTABLISHES AN EXECUTION
ENVIRONMENT FOR METHOD TO BE INVOKED, USES
INFORMATION PROVIDED BY SKELETON TO CREATE A
CLASS INSTANCE FOR THE CLASS WHICH MAINTAINS
THE METHOD TO BE INVOKED

WO 00/77635

PCT/US00/16080

6/13

FIG. 3 (CONT. A)

124. SERVER COMPUTER PROCESSES THE METHOD IN
CONNECTION WITH PARAMETER VALUES PROVIDED BY
STUB CLASS INSTANCE

125. SERVER COMPUTER INITIATES COMMUNICATIONS
WITH THE STUB CLASS INSTANCE TO PROVIDE RESULT
INFORMATION TO THE STUB CLASS INSTANCE

126. STUB CLASS INSTANCE RECEIVES RESULT AND
PROVIDES RESULT INFORMATION TO CALLING CLASS

INSTANCE

127. EXCEPTION

WO 00/77635

FIG. 4

Service ltem
410

Service ltem
412

Service ltem
414

Service ltem
416

Service ltem
418

400

PCT/US00/16080

Lookup Service
402 404 406
c - <
P P 7
Service ID 1 Stub 1 Attributes 1
Service ID 2 Stub 2 Attributes 2
Service ID 3 Stub 3 Attributes 3
Service ID 4 Stub 4 Attributes 4
Service ID 5 Stub 5 Attributes 5
)) ®
° ® ®
() ' e

WO 00/77635

FIG. 5

8/13

(START)

Service joins the network

L~ 500

A

Service gives a stub to

the lookup service. It may

also give associated
attributes

b~ 502

Lookup service assigns a
unique service 1D

L~ 504

Yy

The service is now
registered in the lookup
service

ko~ 506

END

PCT/US00/16080

WO 00/77635

No

(START)

A

Client sends a
service requestto a
server

600

Server receives the
request

602

A

Server searches for
the stub in the
Lookup Service

L ~604

Is there a

Return Null

h~608

match ?

More
than 1 stub

610

606

Yes

9/13

match the
reques

612

Server returns the
matching stub to the
client

Request

for more
than 1 to be
returned

Server returns
any one of the
matching stubs

~JS616

!

3

PCT/US00/16080

FIG. 6

618

Server returns
multiple matching
stubs and their
attributes, up to the
requested number

END

PCT/US00/16080

WO 00/77635

10/13

81L

0¢.
LeL

9L

Reidsig
0BpIA aoIna Indu|
INY WAT
004 cur L 'Old
/ ndo ~J~0¢.L
%oe)s [00030id N 821
abeiois Axoid }IOMJON (N~92/
Aepuooas Aowes\ \U~zz,
B Janag Axold
20, Kejdsiq aolAed
09pIA induy
60.
ov.L 8¢l
s g
INY | NAP
10M}D
Ndo HOMEN Ndo By Sdr
| 9L 90IM8S
¥oe)g 1000j0.1d 0. S| dn-joo7
aoIneg ueydiQ s 0ov
£ Reidsig aolneq sbeiois
owa ! !
0OPIN . \ndu| Aepuooag Aowa
801N S
< Janiag dn-4007 0vL
90 Nda NS | WAP <
0L
SHf - Li~eps
welboid |~
weyg [7H
ebeio)g
Aiepuooasg Kowe N~2L.s

WO 00/77635 PCT/US00/16080

11/13

(Begin)

A

Network Proxy Obtains |
Reference to Look-up Service ~~802
A
Network Proxy Receives
Code and Object Type ~~804
A
Network Proxy Registers | ~806
Orphan Service
Y
Client
Retrieves Object ~~808
Client Communicates ~810

With Orphan Service

A

C End) FIG. 8

WO 00/77635 PCT/US00/16080

12/13

{ Begin)

A
Orphan Service :
Broadcasts Multicast ~~~902
Packet

Y

Network Proxy
Responds

~—~904

Y
Network Proxy
Registers Orphan ~~906
Service

Y

Client Accesses

Object ~908

End

FIG. 9

WO 00/77635

13/13

C Begin j

\ 4

Orphan Service Requests
Use of Another Service

~~ 1002

A 4

Network Proxy
Obtains Object

~~ 1004

A

Network Proxy
Manipulates Object

~~ 1006

FIG. 10

PCT/US00/16080

INTERNATIONAL SEARCH REPORT

Intern....unat Application No

PCT/US 00/16080

CLASSIFICATION OF SUBJECT MATTER

A.
IPC 7 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, COMPENDEX, IBM-TDB

Electronic data base consuited during the international search (name of data base and. where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document. with indication, where appropriate, of the relevant passages Relevant to claim No.
Y SUN MICROSYSTEMS: "Jini (TM) 1-36
Architectural Overview"
TECHNICAL WHITE PAPER,
January 1999 (1999-01), XP002152110
the whole document
Y SUN MICROSYSTEMS: "Jini (TM) Device 1-36
Architecture Specification”
JINI SPECIFICATIONS 1.0, <“Online!
25 January 1999 (1999-01-25), XP002153332
Retrieved from the Internet:
<URL:http://www-rohan.sdsu.edu/doc/jini/do
c/specs/device-arch/deviceArch.pdf>
‘retrieved on 2000-11-20!
the whole document
-/--
Further documents are listed in the continuation of box C. D Patent family members are listed in annex.

° Special categories of cited documents :

‘A" document defining the general state of the art which is not
considered to be of particular relevance

“E* earlier document but pubtished on or after the international e
filing date

invention

which is cited to establish the publication date of another e
citation or other special reason (as specified)

'T* later document published afier the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

document of particular relevance; the ctaimed invention
cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

document of particular relevance: the claimed invention
cannot be considered 10 invoive an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

‘0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
20 November 2000 04/12/2000
Name and mailing address of the ISA Authorized officer

Fax: (+31-70) 340-3016 Carciofi, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intern. unal Application No

PCT/US 00/16080

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

JASON KRAUSE: "What the Hell is....Jini?"
THE INDUSTRY STANDARD,

27 July 1998 (1998-07-27), XP002125806
the whole document

1-36

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

