METHOD OF MAPPING INTO TRIANGLES AN AREA OF WIRELESS LAN AND PORTABLE DEVICE THEREOF

The invention provides a method of mapping into tessellating triangles an area from a set of sample points spaced over the area. First, each point is connected to every other point to create a group of lines, then the number of intersections of each line is counted. The line or lines with the greatest number of intersections is removed from the group. The counting and line removal steps are repeated until the group is confined to lines with no intersections, these lines defining the triangles. The invention has particular application to the division into triangles of an area served by a wireless LAN, in order to display the variation of a radio signal parameter across the area.

Published:
— with international search report

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHOD OF MAPPING INTO TRIANGLES AN AREA OF A WIRELESS LAN AND PORTABLE DEVICE THEREOF

Field of the Invention

5 This invention relates to area mapping and in particular to a method of mapping into triangles an area from a set of sample points spaced over the area.

Background to the Invention

10 The invention arose from the need to represent, as a group of tessellating triangles, an area of a building served by a wireless LAN (local area network). The quality of radio coverage over the area will normally vary, and it is helpful to be able to display this variation on a map of the area, for example on a computer display unit. Interpolation procedures are easier and faster to implement if the area is divided into triangles.

Summary of the Invention

20 According to the invention there is provided a method of mapping into triangles an area from a set of sample points spaced over the area, comprising:

(a) connecting each point to every other point such that a group of lines is created,

(b) for each line, counting the number of intersections, if any, of that line with any other line,

30 (c) removing from the group the line, or one of the lines, with the greatest number of intersections, and
(d) for the remaining lines, repeating steps (b) and (c) until the group is confined to lines with no intersections, these lines defining said triangles.

5 Preferably, the method is performed by a portable site survey tool provided with software for performing the method. The portable site survey tool may have a display unit capable of displaying the mapped area.

In the preferred method, the sample points are locations in an area served by a wireless LAN, in which case the portable site survey tool is in radio communication with an access point of the LAN.

The variation of a parameter may be mapped over the area of each triangle to provide a variation of the parameter over the area. The parameter is preferably related to quality of radio communication provided by a wireless LAN serving the area.

According to another aspect of the invention there is provided a portable computer serving as a site survey tool and programmed to carry out the inventive method.

Brief Description of the Drawings

The invention will now be further described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a block diagram showing a site survey tool linked by radio to a LAN, for performing a method according to the invention,

Figures 2 to 4 illustrate three possible presentations shown on a display unit of the site survey tool of Figure 1,
Figure 5 shows a number of sample points distributed over an area of a building served by a wireless LAN,

Figure 6 shows the area after each point has been joined to all other points,

Figure 7 shows the area represented as a group of tessellating triangles, and

Figure 8 is a flow diagram illustrating the computational steps of the preferred method according to the invention.

Detailed Description

When a building is equipped with a wireless LAN, computers within the building communicate by radio with access points of the LAN, the access points being distributed over the area of radio coverage. In Figure 1, an access point 1 of a LAN is connected by hard wiring 2 to the remainder 3 of the LAN. At the access point 1, there is hardware 4, routing or bridging firmware 5, a wired LAN card 6 (hardware) at the interface with the remainder 3 of the wireless LAN and a LAN card 7 (hardware) at the radio interface 8 with portable computers. In Figure 1, a sample area of a building covered by the wireless LAN is being surveyed, so the access point 1 is in radio communication with a portable computer in the form of a site survey tool 9 having software 10, a personal computer 12 including a display unit and a wireless LAN card 13 (hardware) at the radio interface 8. It will be appreciated that this radio interface 8 provides two-way transmission of data between the site survey tool 9 and the access point 1 of the LAN.

By the use of the site survey tool 9, the quality of radio coverage over a sample area of the building can be detected and shown as a visual
presentation on the display unit of the site survey tool 9, and also on a display unit of any other computer linked to the LAN.

Referring to Figures 2, 3 and 4, suppose the area of the building to be surveyed is that within the polygonal shape whose outline is indicated at 12. The outline shape is defined by straight lines drawn between five sample points, and additional sample points are located within the area. The sample points are shown by the flag symbols in Figures 2 to 4. A map of the area to be surveyed is entered into the site survey tool software, typically being loaded into the site survey tool 9 from another computer linked to the access point 1. The locations of the sample points are then loaded into the site survey tool software. The site survey tool is then taken to each sample point in turn and a signal parameter is measured at each sample point.

In the described method, two parameters are measured and recorded, namely signal stability and signal throughput. Stability is representative of the variation of signal throughput from an average throughput. Throughput is representative of the rate of received data and is measured in bits per second. Having detected these parameters at the sample points, the software in the site survey tool is able to provide a visual representation (on the display unit of the site survey tool 9) of the variation of each parameter over the sample area. This is done by interpolation, using a gradient fill algorithm. The presentation on the display unit is in colour, green being used to show a desirable value of the parameter and red being used to show an undesirable value of the parameter, the display showing variations in intensity of green and red and showing any transition between red and green as a progressive variation in hue.

Figure 2, which shows the variation of stability over the sample area, shows red areas as dark and green areas as light, the transition being shown as a variation of a grey colour.
Figure 3 shows the same area but with the illustrated parameter being throughput, and Figure 4 shows a composite presentation where the combination of throughput and stability is represented, with each of these parameters providing a 50% weighting to the combined presentation.

In order to provide the display shown in Figures 2 to 4, the sample area is first divided into a group of tessellating triangles, and the invention lies in the way in which the sample area is so divided. Considering the simplified rectangular sample area shown in Figure 5, a number of sample points, distributed over the area, are chosen and the locations of these sample points are fed into the site survey tool 9, as indicated at 15 in Figure 8. The site survey tool software is then operative to connect every sample point with every other sample point to create, in a list, a group of m lines. This is indicated pictorially in Figure 6 and by the step indicated at 16 in Figure 8. Of the m lines, some will have no intersections, some may have only one intersection and some may have multiple intersections with other lines. For each line of the group of m lines, the number of intersections are counted (step 17 in Figure 8) and the line with the largest number of intersections is discarded from the group, as indicated at 18 in Figure 8. If more than one line has the greatest number of intersections, one of the lines with this greatest number is discarded. After step 18, a decision (step 19) is taken as to whether any intersection remains. If there is a remaining intersection (branch 20 in Figure 8) steps 17 and 18 are repeated until the result of decision 19 is that no intersection remains, (branch 22). Each individual triangle is then identified by finding, for each line, two further lines connecting the ends of the line to a common third point so that the remaining lines define the tessellating triangle, as indicated pictorially in Figure 7 and by block 23 in Figure 8. Having divided the sample area up into the pattern of tessellating triangles as shown in Figure 7, the sequence of logic steps terminates, as indicated at 24 in Figure 8.

Having divided the sample area up into tessellating triangles, the variation of throughput or stability is mapped over the area of each triangle by a gradient
fill routine (which may be linear, logarithmic or any chosen variation), to
provide the visual variation of the parameter over the complete area, in the
way previously described with reference to Figures 2 to 4.
CLAIMS

1. A method of mapping into triangles an area from a set of sample points spaced over the area, comprising:

(a) connecting each point to every other point such that a group of lines is created,

(b) for each line, counting the number of intersections, if any, of that line with any other line,

(c) removing from the group the line, or one of the lines, with the greatest number of intersections, and

(d) for the remaining lines, repeating steps (b) and (c) until the group is confined to lines with no intersections, these lines defining said triangles.

2. A method according to claim 1, wherein the method is performed by a portable site survey tool provided with software for performing the method.

3. A method according to claim 2, wherein the portable site survey tool has a display unit which displays the mapped area.

4. A method according to any of the preceding claims, wherein the sample points are locations in a wireless LAN.

5. A method according to claims 2 and 4, wherein the portable site survey tool is in radio communication with an access point of the wireless LAN.
6. A method according to any of the preceding claims, in which each individual triangle is identified by finding, for each line, two further lines connecting the ends of said line to a common, third point.

7. A method according to any of the preceding claims, wherein the variation of a parameter is mapped over the area of each triangle to provide a variation of the parameter over said area.

8. A method according to claims 3 and 7, wherein the variation of the parameter is displayed on the display unit.

9. A method according to claim 8, wherein the display is in colour.

10. A method according to any of claims 7 to 9 as appendant to claim 4, wherein the said parameter is representative of the quality of radio communication over the area, provided by a wireless LAN serving said area.

11. A portable computer serving as a site survey tool and programmed to carry out the method of any of the preceding claims.
RECEIVE SAMPLE POINTS

CONNECT EACH POINT TO EVERY OTHER POINT

FOR EACH LINE, COUNT NUMBER OF INTERSECTIONS

DISCARD LINE WITH GREATEST NUMBER OF INTERSECTIONS

ANY INTERSECTION?

REMAINING LINES DEFINE TRIANGLES

STOP

FIG. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H04L12/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H04L H04B G06T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 439 714 A (IBM) 7 August 1991 (1991-08-07) column 2, line 27 - line 41 column 3, line 36 - line 46 claim 1 figure 3</td>
<td>1,3,6-9</td>
</tr>
<tr>
<td>A</td>
<td>US 5 623 429 A (FORTUNE STEVEN J ET AL) 22 April 1997 (1997-04-22) column 1, line 57 - column 2, line 16 column 3, line 59 - line 67 claim 1 figures 2,4,5</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Additional information:

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "M" member of the same patent family

- Date of the actual completion of the international search: 14 September 2001
- Date of making of the international search report: 20/09/2001
- Name and mailing address of the ISA: European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016
- Authorized officer: Barel, C

Form: PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6 006 089 A (NAGAI MASAaki ET AL)</td>
<td>2-5,7-11</td>
</tr>
<tr>
<td></td>
<td>21 December 1999 (1999-12-21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 4 - line 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 39 - line 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 9, line 40 - line 58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 10, line 20 - line 34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-7</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69019723 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0439714 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3252778 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1619095 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2143592 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19512296 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7288495 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9243690 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1168473 A</td>
</tr>
</tbody>
</table>