wo 2014/022397 A1 [N DDA R0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date

(10) International Publication Number

WO 2014/022397 A1l

6 February 2014 (06.02.2014) WIPO I PCT
(51) International Patent Classification:
GO6F 12/08 (2006.01)
(21) International Application Number: (74)
PCT/US2013/052730
(22) International Filing Date: (81)
30 July 2013 (30.07.2013)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/677,905 31 July 2012 (31.07.2012) US
61/780,494 13 March 2013 (13.03.2013) US
13/900,187 22 May 2013 (22.05.2013) US
(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD.
[CN/CN]; Huawei Administration Building Bantian, Long- (84)
gang District, Shenzhen, Guangdong 518129 (CN).
(71) Applicant (for US ornly): FUTUREWEI TECHNOLO-
GIES, INC. [US/US]; 5340 Legacy Drive, Suite 175, Pla-
no, Texas 75024 (US).
(72) Inventors: LIH, Iulin; 5845 West Walbrook Drive, San

Jose, California 95129 (US). HE, Chenghong; 10, Gao
Xin 4th Boulevard, Nashan District, Shenzhen, Guangdong
(CN). SHI, Hongbo; 216, Qing-Men-Ziao-Qu, Lianhu

District, Xian, Shanxi 710000 (CN). ZHANG, Naxin; 35
Jalan Mutiare #07-05, Singapore 249210 (SG).

Agents: WILKINS, Clint et al.; Conley Rose, P.C., 5601
Granite Parkway, Suite 500, Plano, Texas 75024 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: HANDLING CACHE WRITE-BACK AND CACHE EVICTION FOR CACHE COHERENCE

500

N

!

(57) Abstract: A method implemented by
a computer system comprising a first
memory agent and a second memory agent
coupled to the first memory agent, wherein
the second memory agent has access to a
cache comprising a cache line, the method

second memory agent

In a memory system comprising first and second
memory agents, change a state of a cache line by the

comprising changing a state of the cache
line by the second memory agent, and
sending a non-snoop message from the
second memory agent to the first memory
agent via a communication channel as-

510

signed to snoop responses, wherein the
non-snoop message informs the first

channel assigned to snoop responses

Send a non-snoop message from the second memory
agent to the first memory agent via a communication

memory agent of the state change of the
cache line.

End

FIG. 5

520

WO 2014/022397 A1 W00V A0 0O R O A

Published:
— with international search report (Art. 21(3))

WO 2014/022397 PCT/US2013/052730

Handling Cache Write-back and Cache Eviction for Cache Coherence

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. Non-Provisional Patent Application No.
13/900,187 filed May 22, 2013 by Iulin Lih et al. and entitled “Handling Cache Write-back and Cache
Eviction for Cache Coherence”, which claims priority to U.S. Provisional Patent Application No.
61/677,905 filed July 31, 2012 by Iulin Lih et al. and entitled “Handling Cache Write-back and Cache
Eviction for Cache Coherence” and U.S. Provisional Patent Application No. 61/780,494 filed March
13, 2013 by lulin Lih et al. and entitled “Handling Cache Write-back and Cache Eviction for Cache

Coherence,” all of which are incorporated herein by reference as if reproduced in their entirety.

STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT
[0002] Not applicable.

REFERENCE TO A MICROFICHE APPENDIX
[0003] Not applicable.

BACKGROUND
[0004] As clock speeds for processors increase and main memory becomes larger, longer latency
periods may occur when a processor accesses main memory. Cache hierarchies (e.g. different cache
levels) may be implemented to reduce latency and performance bottlenecks caused by frequent access
to main memory. Cache may be one or more small high speed associative memories that reduce the
average time to access main memory. To reduce the average time to access main memory, cache
provides a copy of frequently referenced main memory locations. When a processor reads or writes a
location in main memory, the processor first checks to see if a copy of the data already resides in the
cache memory. When present, the processor is directed to the cache memory rather than the slower
main memory. For cache to be effective, a processor needs to continually access the cache rather than
main memory. Unfortunately, the size of cache is typically smaller and limited to storing a smaller
subset of the data within the main memory. The size limitation may inherently limit the “hit” rate

within the cache. A “hit” occurs when the cache holds a valid copy of the data requested by the

1

WO 2014/022397 PCT/US2013/052730

processor, while a “miss” occurs when the cache does not hold a valid copy of the requested data.
When a “miss” occurs within the cache, the processor may subsequently access the slower main
memory.

[0005] In particular, in a multi-processor computer system, there may be a main memory shared
by all processors and a separate cache memory for each of the processors or processing cores. Thus, it
is possible to have many copies of any one instruction or data: one copy in the main memory and one
in each of the cache memories. In this case, when one copy of data or instruction is changed, the
other copies should also be changed to maintain coherence. Cache coherence protocols may help
ensure that changes in shared data or instruction are propagated throughout the system in a timely
fashion. For example, when the computer system writes a block of data to a cache, it needs to write
that block of data back to the main memory at some point. The timing of this write is controlled by a
write policy, which may be a write-through policy or write-back policy.

[0006] When a state of a cache line in a cache is changed (e.g., data in the cache line needs to be
evicted or replaced by new data) by a cache agent (CA), the updated data may need to be written back
to the main memory by a home agent (HA). Multiple rounds of message exchanges may be needed
between a CA and a HA to complete a coherent transaction, some of which may not always be
necessary. For example, a conventional write-back transaction may include a handshake procedure
including completion and acknowledgement messages. Since the handshake is implemented after the
write-back is already done, it may add unnecessary traffic overhead to the system. In addition,
regardless of different properties of certain messages such as cache line request and write-back or
eviction messages, conventional transactions may transmit these messages via a same request channel,
which may lead to potential deadlock issues and overloading of the HA. Thus, it is desirable to

simplify cache coherence transactions to reduce system traffic, while improving system performance.

SUMMARY
[0007] In one embodiment, the disclosure includes a method implemented by a computer system
comprising a first memory agent and a second memory agent coupled to the first memory agent,
wherein the second memory agent has access to a cache comprising a cache line, the method
comprising changing a state of the cache line by the second memory agent, and sending a non-snoop
message from the second memory agent to the first memory agent via a communication channel
assigned to snoop responses, wherein the non-snoop message informs the first memory agent of the

state change of the cache line.

WO 2014/022397 PCT/US2013/052730

[0008] In another embodiment, the disclosure includes an apparatus comprising a first memory
agent, and a second memory agent coupled to the first memory agent and configured to change a state
of a cache line accessible to the second memory agent, and send a non-snoop message to the first
memory agent via a communication channel assigned to snoop responses, wherein the non-snoop
message informs the first memory agent of the state change of the cache line.

[0009] In yet another embodiment, the disclosure includes a method implemented by a computer
system comprising a HA and at least one CA, wherein the at least one CA comprises a CA having
access to a cache comprising a cache line, the method comprising changing a state of the cache line by
the CA, and sending either a write-back message comprising data stored in the cache line or an
eviction message from the CA to the HA, wherein, in a transaction comprising the state change and
sending the write-back or eviction message, no handshake is performed between the HA and the CA
following the write-back or eviction message.

[0010] These and other features will be more clearly understood from the following detailed

description taken in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] For a more complete understanding of this disclosure, reference is now made to the
following brief description, taken in connection with the accompanying drawings and detailed

description, wherein like reference numerals represent like parts.

[0012] FIG. 1 illustrates an embodiment of a memory system.
[0013] FIG. 2 illustrates an embodiment of a coherence domain implementation.
[0014] FIG. 3A illustrates an embodiment of a cache coherent write transaction.

[0015] FIG. 3B illustrates an embodiment of a cache coherent read transaction.

[0016] FIG. 4A illustrates an embodiment of a cache coherent write-back transaction.
[0017] FIG. 4B illustrates an embodiment of a cache coherent eviction transaction.
[0018] FIG. 5 illustrates an embodiment of a cache coherent message handling method.

[0019] FIG. 6 illustrates an embodiment of a computer system.

DETAILED DESCRIPTION
[0020] It should be understood at the outset that, although an illustrative implementation of one or
more embodiments are provided below, the disclosed systems and/or methods may be implemented
using any number of techniques, whether currently known or in existence. The disclosure should in no

3

WO 2014/022397 PCT/US2013/052730

way be limited to the illustrative implementations, drawings, and techniques illustrated below,
including the exemplary designs and implementations illustrated and described herein, but may be
modified within the scope of the appended claims along with their full scope of equivalents.

[0021] A cache memory (in short as cache) may typically comprise a plurality of cache lines,
which serve as basic units or blocks of data access including read and write accesses. A cache line
may comprise data as well as a state. For example, there may be two flag bits per cache line or cache
row entry: a valid bit and a dirty bit. The valid bit indicates whether the cache line is valid, and the
dirty bit indicates whether the cache line has been changed since it was last read from a main memory.
If the cache line has been unchanged since it was last read from a main memory, the cache line is
"clean"; otherwise if a processor has written new data to the cache line, and the new data has not yet
made it all the way to a main memory, the cache line is "dirty".

[0022] Depending on the protocol, the state of a cache line may be described using various terms.
For example, a MESI protocol defines the states of Modified, Exclusive, Shared, and Invalid.
According to the MESI protocol, a cache line is in a modified (M) state when the cache line is present
only in the current cache, and is dirty (i.e., the cache line has been modified from the value in main
memory). The cache may need to write the data back to the main memory sometime in the future,
before permitting any other read of the corresponding address in the main memory (now invalid). A
write-back may change the cache line to the exclusive state. A cache line is in an exclusive (E) state
when the cache line is present only in the current cache, and is clean (i.e., data in the cache matches
main memory). The cache line may be changed to the S state at any time, in response to a read
request. Alternatively, it may be changed to the M state when being written to. A cache line is in a
shared (S) state when the cache line may be stored in another cache or caches of the memory system,
and is clean (i.e., data in the cache matches main memory). The cache line may be discarded by
changing to the I state at any time. An invalid (I) state indicates that the cache line is invalid or
unused. Although MESI is used as an example, it should be understood that any protocol of states
may be used within the scope of the present disclosure.

[0023] A cache line request may refer to a message from a CA to another memory agent (a HA
or a CA), due to an internal event. For example, the cache line request may be a read request or a
write request from the CA to the other memory agent, responding to a read or write miss in a cache
of the CA, to ask for cache line data and/or permission to read or write. A write-back message
(sometimes referred to in short as write-back) may refer to a message from a cache agent (CA) to a
home agent (HA), e.g., due to an internal event, to update a cache line including data and cache line

4

WO 2014/022397 PCT/US2013/052730

state (e.g., when the CA changes the cache state from modified to clean or invalid). An eviction
message (sometimes referred to in short as eviction) may refer to a message from a CA to another
memory agent (a HA or a CA) when invalidating a cache line, ¢.g., due to an internal event. A
snoop response may refer to a message from a CA to another memory agent (a HA or a CA) when
changing the state of a cache line, e.g., due to an external event or a snoop request from the other
memory agent. Considering the difference in message classes, the write-back and eviction messages
may be classified herein as non-snoop messages (note that a non-snoop message herein cannot be a
cache line request).

[0024] In a coherence protocol, non-snoop messages including write-back and eviction may be
treated as special requests. One of the properties is in the order in which the non-snoop messages are
handled with respect to other messages. To comply with the principle of cache coherence, different
requests should be processed in different orders. For example, if a cache line request following a
write-back or eviction has the same target cache line address and same sender, they may need to
behave as if the delivery ordering is preserved. Otherwise, the cache line request may have priority
over the write-back or the eviction, since the cache line request may reduce the response latency of the
request. A commonly seen solution to preserve the cache line request to write-back/eviction ordering
is to use the same resources, such as a routing channel, for them and to enforce the ordering for
messages within this channel if they have the same sender and target address. To simplify the
implementation, sometimes the ordering may be enforced tighter than necessary.

[0025] The above solution may lead to the issue of deadlock. Suppose, for example, that a cache
line request is first sent from a CA to a HA, and a volunteer write-back is then sent from the same CA
to the same HA. According to a delivery order, the HA should process the cache line request first and
then the write-back. Further, suppose that the cache line request requires the result of the write-back
before the cache line request can be processed by the HA. However, if the HA has limited resources
(e.g., memory space and/or bandwidth), the HA cannot process the write-back to get the required
result, thus leading to a deadlock.

[0026] To avoid deadlock, some coherence protocols may pre-allocate the HA with a large
amount of resources, such as a large buffer size and/or a large bandwidth, such that all write-back
messages received by the HA will be able to be processed. For instance, if the HA has been read 100
times previously, there is a maximum of 100 write-backs or evictions to be received by the HA. In
this case, the HA can be pre-allocated with enough resources to simultaneously process 200 operations
(including 100 cache line requests and 100 write-backs or evictions). Although the deadlock can be

5

WO 2014/022397 PCT/US2013/052730

avoided using this solution, the solution may require a large amount of resources (e.g., buffer size
and/or bandwidth), which may raise system cost. Another approach to avoid deadlock may be to
implement end-to-end flow control, such as having complicated sending/receiver handshaking
mechanisms to restrict the number of outstanding requests at any time. Such as a solution may
increase system complexity due to the handshaking mechanisms. Sometimes pre-allocation of
resources and end-to-end flow control may be implemented together, but it still does not solve the
deadlock issue without raising system cost or complexity.

[0027] Disclosed herein are apparatuses, systems, protocols, and methods for simplified and
improved handling of cache write-back and cache eviction notice messages in a cache coherence
system. According to an embodiment disclosed herein, a cache write-back or cache eviction
message may be treated with the same channel and priority as a snoop response instead of being
treated as a read or write request. This procedure may transmit write-back and eviction messages
via a communication channel assigned to snoop responses and grant them ordering priorities that
best fit their needs. The unification of the write-back and eviction messages with the snoop
response may simplify the approach to avoid deadlock, thereby resulting in improved system
performance, simplified implementation, and reduced cost. When handling a transaction comprising
a write-back or eviction message between a source and a destination, a disclosed handling method
may also eliminate the handshake procedure, which may reduce packet traffic and latency.

[0028] FIG. 1 illustrates an embodiment of a memory system 100, in which disclosed coherence
protocols may be implemented. As shown in FIG. 1, the memory system 100 may be part of a
computer system and may comprise a HA 110 and a plurality of CAs, including a CA 120 (also
denoted as C0), a CA 130 (also denoted as C1), a CA 140 (also denoted as C2), and a CA 150 (also
denoted as C3). The HA 110 may comprise a main memory 112 or include a memory controller that
is able to access the main memory 112. Each of the CAs 120, 130, 140, and 150 may comprise or
have access to each of cache memories (in short as cache) 122, 132, 142, and 152. Although shown as
a main memory for illustrative purposes, the memory 112 may be any suitable type of memory or
memory component, as long as it corresponds to a higher hierarchical level compared to the cache
memories 122, 132, 142, and 152, each of which may also be any suitable type of memory or memory
component. Examplary memory types may include, but are not limited to, integrated on-chip cache
memory (i.e., cache memories integrated within a same die, e.g., level 1 (L1), level 2 (L2), or level 3
(L3) caches), memories on separate computer chips, magnetic storage devices, optical storage devices,
and any other types of memory storage devices, and combinations thereof. For instance, the lower-

6

WO 2014/022397 PCT/US2013/052730

level memory 122 may be a level 1 cache, while the higher-level memory 112 may be a level 2 or
level 3 cache.

[0029] It should be understood that CA and HA (generally referred to as memory agents) are
relative terms and not bound to any particular level of cache or memory. For example, the HA on a
lower level may be a CA on a higher-level, while a CA on a higher level may be a HA on a lower
level. A memory agent, which may be a CA or a HA, may be implemented as any memory controller
or manager. In addition, depending on the application, the topology of the memory system 100 may
take various forms. For example, there may be a point-to-point connection between any two of the
agents. The CAs 120-150 may be coupled to one another and to the HA 110. Alternatively, some of
the CAs may be directly connected to the HA 110, while other CAs may be indirectly coupled to the
HA 110 through other CA(s). It should be understood that the memory system 100 may function in
concert with other components of the computer system, such as multi-core processor, input/output
(I/0) device, etc.

[0030] FIG. 2 illustrates an embodiment of a coherence domain implementation 200. Specifically,
a coherence domain may be configured prior to the initiation of a task and removed once the task is
completed. A coherence domain may be limited to a particular address range and may be mapped to a
specific memory or memories, such as any of the caches 122, 132, 142, and 152. As a result, data to
be stored in a given address range may only be stored in the caches that are mapped to the range in the
coherence domain. The reconfiguration of the coherence domain before or after a task may allow a
system to designate components that may store a given data set while providing a consistent storage
address scheme for higher level memory and processes. Suppose, as shown in FIG. 2, that a system
comprises five caches denoted as Cache 0 to Cache 4. Further, suppose that the system comprises
address ranges of 0x0000-0xOFFF, 0x1000-0x1FFF, 0x2000-0x2FFF, and 0x3000-0x3FFF
(hexadecimal representation). A first coherence domain may map address range 0x0000-0xOFFF to
Caches 0-2, while a second coherence domain may map address range 0x1000-0x1FFF to Caches 2-4.
Likewise, a third and fourth coherence domain may map address ranges 0x2000-0x2FFF and 0x3000-
0x3FFF to Caches 0, 2, and 4 and Caches 1 and 3, respectively. Each coherence domain can be
reconfigured to map to different caches at the beginning of a process, the end of a process, or as
needed for a given application.

[0031] Different from a cache line request (e.g., read or write request), which may require a
subsequent snoop procedure, a write-back message or an eviction message may not require any
subsequent snoop procedure. A completion response and an acknowledgement may be sent after the

7

WO 2014/022397 PCT/US2013/052730

write-back or eviction without a snoop. In a coherence protocol disclosed herein, a write-back
message and an eviction message may be treated as special requests, that is, treated differently from
cache line requests. Specifically, the write-back and eviction may be considered as if they were snoop
responses for system resource and policy (e.g., ordering priority, transmission channel) purposes.
[0032] A write-back or eviction message may be initiated due to an external event. For example,
a read or write request sent by a first CA to a HA may prompt the HA to get a write-back or eviction
from a second CA as part of a snoop response. Alternatively, a write-back or eviction message may be
initiated due to an internal event. For example, a first CA may send a volunteer write-back or eviction
message to the HA, e.g., as part of a replacement notice, without responding to any snoop request.
Both the external and internal event scenarios are further described below.
[0033] FIG. 3A illustrates an embodiment of a cache coherent write transaction 300. The
protocol may be employed between the HA 110, the CA 120, the CA 130, and the main memory
112. These components may reside on a single processor or a processor cluster, and may be
associated with L1 cache, L.2 cache, and/or L3 cache depending on the implementation.
[0034] As shown in FIG. 3A, in the event of a write miss in a cache line managed by the CA 120,
a write request may be sent from the CA 120 to the HA 110 to write data at a certain memory location
or address. The HA 110 may keep a directory of all cache lines in the caches, thus the HA 110 may be
aware of any cache(s) that has checked out data from the corresponding memory address.
Accordingly, upon receiving the write request, the HA 110 may send a snoop request (sometimes
referred to simply as a snoop) to the CA 130 (also any other CA that has checked out the data),
wherein a copy of the data may be stored. The snoop request may contain instructions for the CA 130
to evict or invalidate any data stored in the corresponding cache line. The CA 130 may then send back
to the HA 110 a snoop response comprising an eviction message, which indicates that the cache line in
the CA 130 has been changed to an invalid state and that any data in the cache line is obsolete. In this
case, the eviction message is initiated due to an external event. Since the eviction message is part of
the snoop response, a snoop response channel may be used for the transmission of the eviction
message.
[0035] After receiving the snoop response from the CA 130, the HA 110 may grant the
outstanding write request by writing in the main memory 112. Then, the main memory 112 may
confirm the write with an OK message. In a conventional transaction, the HA 110 may further send a
completion message back to the CA 120, and the CA 120 may respond with an acknowledge back to
the HA 110. The transaction 300 ends when the HA 110 receives the acknowledgement. In
8

WO 2014/022397 PCT/US2013/052730

comparison, according to an embodiment disclosed herein, the handshaking procedure, including
completion and acknowledgment messages exchanged between the HA 110 and the CA 130, is
removed or eliminated from the transaction. The handshake procedure in the transaction 300 can be
removed since it is communicated between the HA 110 and the CA 120, thus the handshake procedure
is not intended for the CA 130, which issued the eviction message. In fact, a snoop procedure
including snoop request and snoop response does not require any subsequent handshake procedure.
Eliminating the handshake between the HA 110 and the CA 120 may reduce packet traffic and
latency, which in turn improves system performance.

[0036] FIG. 3B illustrates an embodiment of a cache coherent read transaction 350. A person of
ordinary skill in the art will recognize similarities between the transaction 350 and the transaction
300 described previously, thus the following description mainly focuses on aspects not yet covered.
As shown in FIG. 3B, in the event of a data read miss in a cache managed by the CA 120, a read
request may be sent from the CA 120 to the HA 110 to read data at a certain address(s). The HA 110
may keep a directory of all caches, thus the HA 110 may be aware of any cache(s) that has checked
out the requested data. Accordingly, upon receiving the read request, the HA 110 may send a snoop
request to the CA 130 (also any other CA that has checked out the data), wherein a copy of the data is
stored. The snoop request may contain instructions for the CA 130 to return an updated value of the
data, if any, to the HA 110. The CA 130 may then send a snoop response back to the HA 110, and
change its cache line state to clean or exclusive. The snoop response may comprise a write-back
message with updated data (if the corresponding cache line in the CA 130 is dirty) or no write-back
message (if the cache line in the CA 130 is clean). In this case, the write-back message is initiated due
to an external event. Since the write-back message is part of the snoop response, a snoop response
channel may be used for the transmission of the write-back message.

[0037] After receiving the snoop response from the CA 130, the HA 110 may update data by
writing the corresponding address in the main memory 112 if the snoop response has a write-back;
then, the main memory 112 may confirm the update with an OK message. The updated data in the
main memory 112 may be sent by the HA 110 to the CA 120 by a read response message (not shown
in FIG. 3). In prior art, after sending the read response, the HA 110 may further send another
completion message to the CA 120. The CA 120 may send an acknowledge back to the HA 110, upon
the reception of which the transaction concludes. In an embodiment disclosed herein, the handshaking
procedure, including sending/receiving of completion and acknowledgment messages, is removed
from the transaction. The handshake procedure can be removed since it is communicated between the

9

WO 2014/022397 PCT/US2013/052730

HA 110 and the CA 120, thus the handshake procedure is not intended for the CA 130, which issued
the write-back message.

[0038] FIG. 4A illustrates an embodiment of a cache coherent write-back transaction 400. A
person of ordinary skill in the art will recognize similarities between the transaction 400 and
transactions described previously, thus the following description mainly focuses on aspects not yet
covered. As shown in FIG. 4A, a volunteer write-back message may be sent from the CA 120 to the
HA 110, e.g., as part of a replacement notice, without responding to any third-party cache line request.
The write-back message may comprise updated data stored in the CA 120 that needs to be returned to
the HA 110. In a conventional approach, unless a write-back is part of a snoop response (e.g., the
write-back in transaction 350 is part of a snoop response, while the write-back in transaction 400 is not
part of a snoop response), the write-back may be treated the same as or similar to a cache line request
(read or write request). In comparison, according to an embodiment disclosed herein, the write-back
uses system resources and follows policy reserved for snoop responses, regardless of whether it is part
of a snoop response. In an embodiment, a snoop response channel instead of a request channel may be
used for the transmission of the write-back message in the transaction 400. Advantages of such
treatment will be described later.

[0039] Recall that the write-back message does not require any subsequent snoop procedure, thus,
in the transaction 400, the HA 110 may directly proceed to writing the updated data in the memory
112. The memory 112 may confirm the write with an OK message. In a conventional approach, the
HA 110 may further send a completion message back to the CA 120, and the CA 120 may respond
with an acknowledge to the HA 110. The transaction ends when the HA 110 receives the
acknowledgement. In comparison, according to an embodiment disclosed herein, the handshaking
procedure, including completion and acknowledgment messages exchanged between the HA 110 and
the CA 120, is eliminated or removed from the transaction 400. The handshake procedure in the
transaction 300 can be removed since the write-back procedure has already been completed before the
handshake.

[0040] FIG. 4B illustrates an embodiment of a cache coherent eviction transaction 450. A
person of ordinary skill in the art will recognize similarities between the transaction 450 and
transactions described previously, thus the following description mainly focuses on aspects not yet
covered. As shown in FIG. 4B, a volunteer eviction message may be sent from the CA 120 to the HA
110 without responding to any third-party cache line request, e.g., when a cache line in the CA 120
needs to be invalidated to make room for new data. In a conventional approach, unless an eviction is

10

WO 2014/022397 PCT/US2013/052730

part of a snoop response (e.g., the eviction in transaction 300 is part of a snoop response, while the
eviction in transaction 450 is not part of a snoop response), the eviction may be treated the same as or
similar to a cache line request (read or write request). In comparison, according to an embodiment
disclosed herein, the eviction uses system resources and follows policy reserved for snoop responses,
regardless of whether the eviction is part of a snoop response. In an embodiment, a snoop response
channel instead of a request channel may be used for the transmission of the eviction message in the
transaction 450. Advantages of such treatment will be described later.

[0041] Recall that the eviction message does not require any subsequent snoop procedure, thus, in
the transaction 450, the HA 110 does not need to perform such procedure. In a conventional approach,
the HA 110 may further send a completion message back to the CA 120, and the CA 120 may respond
with an acknowledge to the HA 110. The transaction ends when the HA 110 receives the
acknowledgement. In comparison, according to an embodiment disclosed herein, the handshaking
procedure, including completion and acknowledgment messages exchanged between the HA 110 and
the CA 120, is eliminated from the transaction 450. The handshake procedure in the transaction 300
can be removed since the eviction procedure has already been completed before the handshake.

[0042] Although transactions described above (e.g., transactions 300, 350, 400, and 450) are
between a HA and one or more CAs, it should be understood that the same principles disclosed herein
may be used for transactions between multiple CAs. Any memory agent (CA or HA) may be the
source or sender of a transaction, and any other memory agent may be the destination or receiver of
the transaction. For example, elimination of the handshake procedure may be implemented between
any sender and receiver to reduce packet traffic and latency. Further, the transactions described
above may be simplified illustrations of an actual transaction, thus additional messages or
information may be exchanged between the multiple agents.

[0043] As shown previously, a memory system may comprise a plurality of agents configured to
communicate with one another through cache coherence protocols. Since multiple messages may be
sent from one source to multiple destinations, or sent from one source to the same destination multiple
times, or from multiple sources to the same destination, ordering conflict can arise and thus needs to
be addressed via suitable order policies, which are described next.

[0044] When there are multiple read or write requests that target the same address, the ordering
between these operations or transactions should be handled consistently. The ordering policy may
follow either source ordering or destination ordering. The source ordering and the destination
ordering may not be the same, because the source and destination may prioritize operations differently.

11

WO 2014/022397 PCT/US2013/052730

For example, a source may consider a read request more important than a write-back message
(because the source needs to read data but may care less about delivery of the write-back message),
while a destination may consider the write-back message more important than the read request
(because the destination needs to update its data via the write-back message but may care less about a
data read from the source). A source ordering (or delivery ordering) policy may enforce the observed
consistency according to an order in which the operations are initiated at the source. Alternatively, a
destination ordering (or completion ordering) policy may enforce the observed consistency according
to an order in which the operations are served by the destination. There may be other variations to
deal with the difference between source and destination orderings, as a person of ordinary skill in the
art will recognize.

[0045] In a coherence protocol disclosed herein, write-back and eviction are special requests or
operations, thus their ordering should be handled differently from cache line requests. In an
embodiment, the write-back and eviction may take higher priority over any other outstanding read or
write requests initiated from a different source(s) but targeting the same destination. Accordingly,
sometimes the write-back and eviction may be reordered with respect to other cache line requests
targeting the same destination, either on the way towards the destination or at the destination, so that
they are set up to be completed before the other cache line requests. To an extent, the treatment of a
write-back or eviction may be the same with a snoop response, which may also take priority over an
outstanding read or write request targeting the same destination. In this case, the write-back and
eviction messages are treated as if they were self-initiated snoop responses.

[0046] When a write-back or eviction collides with a cache line request initiated from the same
source and targeting the same destination, or when a write-back or eviction collides with another
snoop response (regardless of whether from the same source), the original ordering policy should be
preserved. That is, no reordering may be performed.

[0047] In some embodiments, the handling of write-back and eviction messages may follow
some or all of the following rules. According to Rule 1, the transmission of write-back and eviction
messages may use a communication channel that is different from a communication channel used
for cache line requests. The communication channels may be different physical channels (sets of
wires) or virtual channels. For example, the transmission of a write-back or eviction message may
use a snoop response channel instead of a cache line request channel. In this case, since different
resources are used to handle the write-back/eviction and cache line requests, the potential issue of
deadlock may be effectively eliminated. Specifically, a number of write-back and/or eviction

12

WO 2014/022397 PCT/US2013/052730

messages are currently being processed by a HA may not affect the HA’s capability to process cache
line requests. In other words, write-back and cache line requests are not in the same queue or line
anymore. Accordingly, this disclosure may not require any form of end-to-end buffering flow control
to avoid deadlock, which may be costly in area and performance, and usually not scalable.

[0048] According to Rule 2, every message (including write-back, eviction, and regular snoop
response) in the snoop response channel should be able to be consumed by a destination, such as a
HA. Rule 2 may be implemented using various approaches. In a first examplary approach, every
message in the snoop response channel is a complete message comprising both command/instruction
and data. In other words, every message is a non-split message. In a second examplary approach, the
HA may be pre-allocated with certain storage space and/or bandwidth such that it may guarantee
sufficient space and/or bandwidth to handle all snoop response(s) for every snoop request issued by
the HA. Since the deadlock issue has been solved, the pre-allocation of resource in this case may
require relatively small amount of system overhead.

[0049] According to Rule 3, if a snoop response after a write-back or eviction shares the same
source and target addresses, the source ordering should be preserved. For example, when a snoop
response and a write-back/eviction regarding the same cache line in a cache (managed by a CA) and
targeting the same memory address in a main memory (managed by a HA) are sent from the CA to the
HA, the snoop response and the writeback/eviction messages may be processed by the HA following
an ordering in which the snoop response and the writeback/eviction messages are initiated by the CA.
According to Rule 4, if a cache line request after a write-back or eviction ordering shares the same
source and target address, there may be several ordering options. For example, Option 1 is back-
snooping. This option may enforce destination ordering instead of source ordering. In an
embodiment, if the HA receives a cache line request and decides or determines that there may be a
write-back or eviction from the same source running behind the cache line request, the HA may issue a
snoop request to the source (may also issue other snoop requests to other CAs). In this case, the cache
line request may need to wait for all snoop responses from all CAs to be received and processed by the
HA. The HA may make the decision according to a cache snoop filter, or the HA may simply
broadcast snoop requests to all CAs coupled to the HA. In use, any processing scheme may be used
by the HA as long as responding to the cache line request takes into account the effect of the snoop
responses (e.g., data updated according to a snoop response containing most updated data, or directory
updated after receiving a snoop response comprising an eviction message) For another example,
Option 2 is to preserve the source ordering. This option may enforce the source ordering, e.g., when a

13

WO 2014/022397 PCT/US2013/052730

cache line request trails a write-back or eviction and they have the same source and destination.
Further, Option 2 may enforce the ordering across the request channel and the snoop response channel.
[0050] FIG. 5 illustrates an embodiment of a cache-coherent message handling method 500,
which may be implemented by a computer system comprising a memory system (e.g., the memory
system 100). Suppose, for illustrative purposes, the memory system comprises a first memory agent
and a second memory agent. Recall that a memory agent herein may refer to a HA or a CA, thus we
may further suppose that the first memory agent is a HA or CA, while the second memory agent is a
CA having access to a cache comprising a cache line. The method 500 starts in step 510, in which
the second memory agent changes a state of the cache line. In step 520, in which the second memory
agent sends a non-snoop message to the first memory agent via a communication channel assigned to
snoop responses, wherein the non-snoop message informs the first memory agent of the state change
of the cache line in step 510. Note that a transaction shown by the method 500 does not include any
handshake (completion response and/or acknowledgment) between the first and second memory
agents.

[0051] Depending on the transaction, the steps in the method 500 may mean a number of
different things. In a first example, the first memory agent is a HA and the second memory agent is a
CA. In step 510, the state of the cache line may be changed from dirty (e.g., modified) to clean or
invalid, in which case the non-snoop message in step 520 is a write-back message comprising data
stored in the dirty cache line. In a second example, the first memory agent is a HA or CA, while the
second memory agent is a CA. In step 510, the state of the cache line may be changed from clean to
invalid, in which case the non-snoop message in step 520 is an eviction message.

[0052] In use, since multiple transactions may occur between the first and second memory agents
(may also involve additional memory agents in the memory system), a person of ordinary skill in the
art will understand that additional steps may be added to the method 500 as appropriate. For example,
cache line requests (read or write) may be communicated between the first and second memory agent
via an additional communication channel assigned for cache line requests. Source ordering or
destination ordering policy may be enforced by the first memory agent in processing the multiple
messages or requests.

[0053] The schemes described above may be implemented on a network component, such as a
computer or network component with sufficient processing power, memory resources, and network
throughput capability to handle the necessary workload placed upon it. FIG. 6 illustrates an
embodiment of a network component or computer system 600 suitable for implementing one or

14

WO 2014/022397 PCT/US2013/052730

more embodiments of the methods disclosed herein, such as the write transaction 300, the read
transaction 350, the write-back transaction 400, the eviction transaction 450, and the message
handling method 500. Further, components in the computer system 600 may be configured to
implement any of the apparatuses described herein, such as the memory system 100, the coherence
domain implementation 200.
[0054] The computer system 600 includes a processor 602 that is in communication with
memory devices including a memory agent 603, a memory agent 605, a memory agent 607,
input/output (I/O) devices 610, and transmitter/receiver 612. Although illustrated as a single
processor, the processor 602 is not so limited and may comprise multiple processors. The processor
602 may be implemented as one or more central processor unit (CPU) chips, cores (e.g., a multi-
core processor), field-programmable gate arrays (FPGAs), application specific integrated circuits
(ASICs), and/or digital signal processors (DSPs), and/or may be part of one or more ASICs. The
processor 602 may be configured to implement any of the schemes described herein, including the
write transaction 300, the read transaction 350, the write-back transaction 400, the eviction
transaction 450, and the message handling method 500. The processor 602 may be implemented
using hardware or a combination of hardware and software.
[0055] Each of the processor 602 and the memory agents 603, 605, and 607 may communicate
with one another via a bus 609. The bus 609 may comprise multiple communication channels, some
of which are assigned to snoop responses and some of which are assigned to cache line requests.
The memory agent 603 may be a HA comprising or having access to a secondary storage 604. The
memory agent 605 may be a CA comprising or having access to a read only memory (ROM) 606.
The memory agent 605 may be a CA comprising or having access to a random access memory
(RAM) 608. The secondary storage 604 is typically comprised of one or more disk drives or tape
drives and is used for non-volatile storage of data and as an over-flow data storage device if the
RAM 608 is not large enough to hold all working data. The secondary storage 604 may be one or
more flash memories. The secondary storage 604 may be used to store programs that are loaded into
the RAM 608 when such programs are selected for execution. The ROM 606 is used to store
instructions and perhaps data that are read during program execution. The ROM 606 is a non-volatile
memory device that typically has a small memory capacity relative to the larger memory capacity of
the secondary storage 604. The RAM 608 is used to store volatile data and perhaps to store
instructions. Access to both the ROM 606 and the RAM 608 is typically faster than to the secondary
storage 604.

15

WO 2014/022397 PCT/US2013/052730

[0056] The transmitter/receiver 612 may serve as an output and/or input device of the computer
system 600. For example, if the transmitter/receiver 612 is acting as a transmitter, it may transmit
data out of the computer system 600. If the transmitter/receiver 612 is acting as a receiver, it may
receive data into the computer system 600. The transmitter/receiver 612 may take the form of
modems, modem banks, Ethernet cards, universal serial bus (USB) interface cards, serial interfaces,
token ring cards, fiber distributed data interface (FDDI) cards, wireless local area network (WLAN)
cards, radio transceiver cards such as code division multiple access (CDMA), global system for
mobile communications (GSM), long-term evolution (LTE), worldwide interoperability for
microwave access (WiMAX), and/or other air interface protocol radio transceiver cards, and other
well-known network devices. The transmitter/receiver 612 may enable the processor 602 to
communicate with an Internet or one or more intranets. I/O devices 610 may include a video
monitor, liquid crystal display (LCD), touch screen display, or other type of display. 1/O devices
610 may also include one or more keyboards, mice, or track balls, or other well-known input
devices.

[0057] It is understood that by programming and/or loading executable instructions onto the
computer system 600, at least one of the processor 602, the secondary storage 604, the RAM 608,
and the ROM 606 are changed, transforming the computer system 600 in part into a particular
machine or apparatus (e.g., a server system having the novel functionality taught by the present
disclosure). The executable instructions may be stored on the secondary storage 604, the ROM 606,
and/or the RAM 608 and loaded into the processor 602 for execution. It is fundamental to the
electrical engineering and software engineering arts that functionality that can be implemented by
loading executable software into a computer can be converted to a hardware implementation by well-
known design rules. Decisions between implementing a concept in software versus hardware typically
hinge on considerations of stability of the design and numbers of units to be produced rather than any
issues involved in translating from the software domain to the hardware domain. Generally, a design
that is still subject to frequent change may be preferred to be implemented in software, because re-
spinning a hardware implementation is more expensive than re-spinning a software design. Generally,
a design that is stable that will be produced in large volume may be preferred to be implemented in
hardware, for example in an application specific integrated circuit (ASIC), because for large
production runs the hardware implementation may be less expensive than the software
implementation. Often a design may be developed and tested in a software form and later
transformed, by well-known design rules, to an equivalent hardware implementation in an application

16

WO 2014/022397 PCT/US2013/052730

specific integrated circuit that hardwires the instructions of the software. In the same manner as a
machine controlled by a new ASIC is a particular machine or apparatus, likewise a computer that has
been programmed and/or loaded with executable instructions may be viewed as a particular machine
or apparatus.

[0058] At least one embodiment is disclosed and variations, combinations, and/or modifications of
the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the
art are within the scope of the disclosure. Alternative embodiments that result from combining,
integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure.
Where numerical ranges or limitations are expressly stated, such express ranges or limitations may be
understood to include iterative ranges or limitations of like magnitude falling within the expressly
stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10
includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, R;, and
an upper limit, Ry, is disclosed, any number falling within the range is specifically disclosed. In
particular, the following numbers within the range are specifically disclosed: R = Ry + k * (Ry- R)),
wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1
percent, 2 percent, 3 percent, 4 percent, 5 percent, ..., 50 percent, 51 percent, 52 percent, ..., 95
percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range
defined by two R numbers as defined in the above is also specifically disclosed. The use of the term
“about” means +/- 10% of the subsequent number, unless otherwise stated. Use of the term
“optionally” with respect to any element of a claim means that the element is required, or alternatively,
the element is not required, both alternatives being within the scope of the claim. Use of broader terms
such as comprises, includes, and having may be understood to provide support for narrower terms
such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope
of protection is not limited by the description set out above but is defined by the claims that follow,
that scope including all equivalents of the subject matter of the claims. Each and every claim is
incorporated as further disclosure into the specification and the claims are embodiment(s) of the
present disclosure. The discussion of a reference in the disclosure is not an admission that it is prior
art, especially any reference that has a publication date after the priority date of this application. The
disclosure of all patents, patent applications, and publications cited in the disclosure are hereby
incorporated by reference, to the extent that they provide exemplary, procedural, or other details

supplementary to the disclosure.

17

WO 2014/022397 PCT/US2013/052730

[0059] While several embodiments have been provided in the present disclosure, it may be
understood that the disclosed systems and methods might be embodied in many other specific forms
without departing from the spirit or scope of the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the intention is not to be limited to the details given
herein. For example, the various elements or components may be combined or integrated in another
system or certain features may be omitted, or not implemented.

[0060] In addition, techniques, systems, subsystems, and methods described and illustrated in the
various embodiments as discrete or separate may be combined or integrated with other systems,
modules, techniques, or methods without departing from the scope of the present disclosure. Other
items shown or discussed as coupled or directly coupled or communicating with each other may be
indirectly coupled or communicating through some interface, device, or intermediate component
whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and
alterations are ascertainable by one skilled in the art and may be made without departing from the

spirit and scope disclosed herein.

18

WO 2014/022397 PCT/US2013/052730

CLAIMS

What is claimed is:
1. A method implemented by a computer system comprising a first memory agent and a second
memory agent coupled to the first memory agent, wherein the second memory agent has access to a
cache comprising a cache line, the method comprising:

changing a state of the cache line by the second memory agent; and

sending a non-snoop message from the second memory agent to the first memory agent via a
communication channel assigned to snoop responses, wherein the non-snoop message informs the first

memory agent of the state change of the cache line.

2. The method of claim 1, wherein the first memory agent is a home agent and the second
memory agent is a cache agent, wherein the state of the cache line is changed from dirty to clean or
invalid, and wherein the non-snoop message is a write-back message comprising data stored in the

dirty cache line.

3. The method of claim 1, wherein the first memory agent is a home agent or a first cache agent,
and the second memory agent is a second cache agent, wherein the state of the cache line is changed

from clean to invalid, and wherein the non-snoop message is an eviction message.

4. The method of claim 1, wherein, in a transaction comprising the sending of the non-snoop
message, no handshake is performed between the first and second memory agents following the non-

SNoop message.

5. The method of claim 4, further comprising:

sending, from the second memory agent to the first memory agent via the communication
channel, a snoop response in another transaction regarding the cache line; and

processing, by the first memory agent, the non-snoop message and the snoop response
following an ordering in which the non-snoop message and the snoop response are initiated by the

second memory agent.

19

WO 2014/022397 PCT/US2013/052730

6. The method of claim 4, further comprising:

receiving, by the first memory agent, a cache line request regarding the cache line sent from
another memory agent via an additional communication channel that is assigned for cache line
requests; and

processing, by the first memory agent, the non-snoop message prior to the cache line request
regardless of the order in which the non-snoop message and the cache line request are received by the

first memory agent.

7. The method of claim 4, further comprising:
sending a cache line request regarding the cache line from the second memory agent to the first
memory agent via an additional communication channel that is assigned for cache line requests; and
processing, by the first memory agent, the non-snoop message and the cache line request
following an ordering in which the non-snoop message and the cache line request are initiated by the

second memory agent.

8. An apparatus comprising:
a first memory agent; and
a second memory agent coupled to the first memory agent and configured to:
change a state of a cache line accessible to the second memory agent; and
send a non-snoop message to the first memory agent via a communication channel
assigned to snoop responses, wherein the non-snoop message informs the first memory agent

of the state change of the cache line.

0. The apparatus of claim 8, wherein the first memory agent is a home agent and the second
memory agent is a cache agent, wherein the state of the cache line is changed from dirty to clean or
invalid, and wherein the non-snoop message is a write-back message comprising data stored in the

dirty cache line.

10. The apparatus of claim 8, wherein the state of the cache line is changed from clean to invalid,

and wherein the non-snoop message is an eviction message.

20

WO 2014/022397 PCT/US2013/052730

11. The apparatus of claim 8, wherein, in a transaction comprising the sending of the non-snoop
message, no handshake is performed between the first and second memory agents following the write-

back or eviction message.

12. The apparatus of claim 11, wherein the first memory agent is a home agent (HA) configured
to:

receive a plurality of messages, including snoop responses and the non-snoop message, from
the communication channel, wherein each of the plurality of messages contains all information needed
for processing by the HA; and

process each of the plurality of messages.

13. The apparatus of claim 11, wherein the first memory agent is a home agent (HA) configured
to:

receive a plurality of messages, including snoop responses and the non-snoop message, from
the communication channel; and

process each of the plurality of messages,

wherein the HA is pre-allocated with sufficient resources including storage space and

bandwidth such that processing each of the plurality of messages is executed by the HA without delay.

14. The apparatus of claim 13, wherein the HA is further configured to:

receive read requests and write requests regarding the cache line sent from the second memory
agent or any other cache agent via an additional communication channel that is assigned for the read
requests and the write requests; and

process each of the read requests and the write requests following a first order, and wherein

processing the plurality of messages follows a second order that is independent of the first order.

21

WO 2014/022397 PCT/US2013/052730

15. A method implemented by a computer system comprising a home agent (HA) and at least one
cache agent (CA), wherein the at least one CA comprises a CA having access to a cache comprising a
cache line, the method comprising:

changing a state of the cache line by the CA; and

sending either a write-back message comprising data stored in the cache line or an eviction
message from the CA to the HA, wherein, in a transaction comprising the state change and sending the
write-back or eviction message, no handshake is performed between the HA and the CA following the

write-back or eviction message.

16. The method of claim 15, wherein the handshake comprises exchange of completion and
acknowledgement messages, and wherein no exchange of the completion and acknowledgement

messages is performed between the HA and the CA following the write-back or eviction message.

17. The method of claim 15, wherein the write-back or eviction message is a volunteer message
initiated by the CA without responding to any prior cache line request sent from any of the at least one
CA to the HA in the transaction, wherein sending the write-back or eviction message uses a

communication channel assigned to snoop responses.

18. The method of claim 15, further comprising, prior to sending the write-back or eviction
message,

sending a cache line request from the CA to the HA via an additional communication channel
that is assigned for cache line requests;

sending a snoop request from the HA to the CA in response to the cache line request; and

sending a snoop response from the CA to the HA in response to the snoop request via the

communication channel, wherein the write-back or eviction message is part of the snoop response.
19. The method of claim 18, further comprising processing, by the HA, the write-back or eviction

message prior to the cache line request regardless of the order in which the write-back or eviction

message and the cache line request are received by the HA.

22

WO 2014/022397 PCT/US2013/052730

20. The method of claim 19, wherein either the write-back message corresponds to the cache line
request being a read request or the eviction message corresponds to the cache line request being a

write request.

23

WO 2014/022397 PCT/US2013/052730
1/5
100
\4 Main memory N 112
Home agent \
110
Co C2
Cache 122 Cache 142
N\ N\
120 140
Cl C3
Cache 132 Cache 152
AN AN
130 150
FIG. 1
200
Cache 0 Cache 1 Cache 2 Cache 3 Cache 4 address range
o o 0 0x0000-0xOFFF
L 0 0 0x1000-0x 1 FFF
o 0 o 0x2000-0x2FFF
. 0 0x3000-0x3FFF
FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2014/022397

300

PCT/US2013/052730
2/5
130 120 110 112
/ / / /
Cl Co HA Memory
Write request
B
P
Snoop request
\Snoop response
with eviction —
\
% rite>
/OK
‘/
. \
H(Telfnsgji{g)lg cknowledgement
\

FIG. 34

SUBSTITUTE SHEET (RULE 26)

WO 2014/022397

350

PCT/US2013/052730
3/5
130 120 110 112
/ / / /
Cl Co HA Memory
Read request
P
Snoop request
i Snoop response
(with Write-back)\
\
Write>
/OK
‘/
. \
H(e; Eils(},lj;r)lg cknowledgement
\
FIG. 3B

SUBSTITUTE SHEET (RULE 26)

WO 2014/022397 PCT/US2013/052730
4/5

400

N

130 120 110 112

/ / / /

Cl CO HA Memory

\ .
Write-back

Write>
/OK
Handshaking

(removed) cknowledge@t‘

/N

FIG. 44
450
130 120 110 112
/ / / /
Cl Co HA Memory

\Eviction\L

\

Write>
OK
&«

‘/
Handshaking \| >~

(removed) cknowledge@t‘

FIG. 4B

SUBSTITUTE SHEET (RULE 26)

WO 2014/022397

500

600

PCT/US2013/052730
5/5

l

In a memory system comprising first and second
memory agents, change a state of a cache line by the
second memory agent N

510

Send a non-snoop message from the second memory
agent to the first memory agent via a communication
channel assigned to snoop responses N

520

End

FIG. 5

— 610
Vo 609
/ Memory agent
602
|| Sccondary | — 603
“| | storage 604
Processor N Memory agent
© || ROM606 | [605
Memory agent
© | LRAMGO8 | L 607
Transmitter
/Receiver
— 612

FIG. 6

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/052730

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 7 600 080 Bl (BHATTACHARYYA BINATA [IN] 1-20
ET AL) 6 October 2009 (2009-10-06)
the whole document

A WO 2005/109206 A2 (INTEL CORP [US]; CEN 1-20
LING [US]) 17 November 2005 (2005-11-17)
page 6, lines 3-6; figures 1-8

A US 6 874 065 B1 (PONG FONG [US] ET AL) 1-20
29 March 2005 (2005-03-29)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

24 October 2013 07/11/2013

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, s ..
Fax: (+31-70) 340-3016 Fi] 1P, Liviu

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/052730
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7600080 Bl 06-10-2009 NONE
WO 2005109206 A2 17-11-2005 CN 1690986 A 02-11-2005
DE 112005000974 T5 29-03-2007
GB 2427730 A 03-01-2007
GB 2447119 A 03-09-2008
JP 4789926 B2 12-10-2011
JP 2007535037 A 29-11-2007
KR 20070007865 A 16-01-2007
W 1274998 B 01-03-2007
US 2007022252 Al 25-01-2007
WO 2005109206 A2 17-11-2005
US 6874065 Bl 29-03-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

