CONTROL DEVICE FOR ELECTRICAL BODY CARE

Michel A. Moret and Claude R. Rosset, Geneva, Switzerland, assignors to Etablissements AESUP, Vaduz, Liechtenstein, a company. Filed July 8, 1968, Ser. No. 743,081

Claims priority, application Switzerland, July 7, 1967, 9,726/67

Int. Cl. H01H 21/28

U.S. Cl. 335—205

3 Claims

ABSTRACT OF THE DISCLOSURE

This disclosure concerns a control device for an electrical body care apparatus having a source of magnetic flux formed by a permanent magnet slidingly mounted inside the casing of the apparatus, with means provided for bringing said magnet into two positions, one for opening and the other for closing an operating switch. The latter comprises a waterproof housing containing a pair of contact terminals and a bar of magnetizable material having a conductive surface facing the terminals. The bar is actuated by the magnet, and is slidably guided by the walls of the housing between limits determined by the contact terminals and an end wall of the housing.

This invention is concerned with a control device for an electrical body care device and constitutes an improvement over that disclosed in co-pending application Ser. No. 638,997 (Swiss patent application No. 7,413/66) which has for subject a control device for an electrical body care apparatus comprising a switch with magnetic contact blades and at least one source of a magnetic flux for the control of said switch.

The present invention has for its object an improvement over the device of that application wherein the source is formed by a permanent magnet slidingly mounted inside the casing of the apparatus, means being provided for bringing said magnet into two positions, one for the opening and the other for closing the switch.

The accompanying drawing represents by way of example one embodiment of the present invention.

FIG. 1 is a partial longitudinal cross section of an apparatus for body care seen from one side.

FIG. 2 is a partial longitudinal cross sectional view of this apparatus seen from above.

FIG. 3 is a cross section taken along line III—III of FIG. 1.

The body care apparatus shown in the drawings comprises a casing 1 and in said casing means for driving an accessory, for example a tooth brush, which can be secured at the end of shaft 2. The other end of this shaft is attached to a cylindrical rotor 3 of an oscillating electric motor comprising an energizing coil 4 surrounding a core 5, the core having two pole pieces 6 and 7 extending to and partially encircling a rotor 3. One of the extremities of each of pole pieces 6, 7 is fixed on the edge of an element 8 of insulating material which is pivoted about 2, while the other extremity of each piece is secured to core by a mass of insulating material 9 which is also embedded the coil 4.

The supply cord 10 comprises two wires 11 and 12. As shown in FIG. 2, the wire 11 is directly connected to one end of coil 4, while wire 12 is connected to the other end 14 of the coil through the switch of the invention. Specifically, wire 14 is connected to the lower end of terminal 15 and wire 12 is connected to the lower end of terminal 16 of the switch.

This switch is constituted by fixed conductive terminals 15 and 16 which can be connected by a movable bar 17. This bar is made of magnetizable material and the side thereof in contact with the terminals is covered with a good conductor in order to obtain a better contact when the bar is held against terminals 15 and 16 under the urging of helical spring 18.

Terminals 15 and 16 extend into a watertight housing 19 of insulating material, and bar 17 and spring 18 are mounted therein. The connections of wires 11, 12 to terminals 15, 16 are embedded in insulating material, and this may be part of the mass of insulating material 9 in which coil 4 is embedded. This arrangement makes it possible to prevent all dangers of penetration of water or water vapor into the parts of the apparatus receiving a voltage.

Magnetizable bar 17 is subjected to a magnetic field emanating from a permanent magnet 20 which can slide longitudinally and which is located between pole pieces 6 and 7 on a flat section of the insulating mass 9 of the coil. Magnet 20 has the shape of a U and its two poles are disposed on each side of spring 18 outside the watertight housing 19. This magnet is attached by an insulating piece 21 to a rod 22 mounted for longitudinal movement inside casing 1. Rod 22 terminates in a point 23 and is subjected to the urging of a spring 24 which presses the point 23 against a sliding piece 25.

Piece 25 slides perpendicularly to the axis of the apparatus and is controlled by two pushers 26 constituted by a flexible element 27 the periphery of which is fluid-tightly secured to casing 1 and which has in its central part a pusher head 28 passing through the casing in a corresponding opening.

With the slide 25 in its upper position as seen in FIG. 1, rod 22 is to the left and permanent magnet 20 is away from housing 19, thereby allowing bar 19 to be held against contact terminals 15, 16 by spring 18 and closing the circuit to coil 4. When the slide is moved to its lower position, the inclined surface thereof bearing against point 23 moves rod 22 to the right. This moves permanent magnet 20 toward the housing 19, thereby producing a sufficient magnetic attraction on bar 17 to pull it away from contact terminals 15, 16 and open the circuit.

It is thus possible by simple pressure on one or the other of pushers 26 to command the starting or the stopping of the apparatus.

In a modification, there can also be provided to actuate a magnetizable part located on the side of the terminals opposite the movable magnet, that is to say by inverting the system.

Any other system for moving the rod is also possible. It would be possible for example to effect the command of this rod by means of a bistable switch operated from outside the casing.

As will be appreciated from the foregoing description and the drawings, the switch mechanism is very simple. Permanent magnet 20 moves rectilinearly toward and away from one end of the waterproof housing 19. Fixed contact terminals 15 and 16 in the housing 19 are spaced apart laterally of the direction of movement of magnet 20. The bar 17 is slidably guided by the walls of housing 19 for rectilinear movement in the same direction as magnet 20, between limits determined by the contact terminals 15, 16 and the adjacent end wall of the housing. Spring 18 biases bar 17 toward the limit of travel away from magnet 20. Movement of magnet 20 toward the housing 19 pulls bar 17 to its limit of travel near the magnet, and movement of the magnet away from the housing allows bar 17 to return to its other limit.

What is claimed is:

1. In an electrically operated hand appliance including a casing, an electric motor mounted within said casing,
and connecting means for connecting said appliance to an external power source, switch means mounted in said casing for making and breaking a circuit between said connecting means and motor which comprises
(a) a watertight housing of insulating material, 5
(b) a permanent magnet,
(c) mounting means for mounting said permanent magnet externally of said watertight housing for substantially rectilinear movement in a predetermined direction toward and away from one end of the housing,
(d) a pair of fixed contact terminals in said housing spaced apart laterally of said predetermined direction,
(e) a bar of magnetizable material in said housing between said contact terminals and an end wall of the housing and having a conductive surface facing the contact terminals,
(f) said bar being slidably guided by the walls of said housing for substantially rectilinear movement in said predetermined direction between limits determined by said contact terminals and the adjacent end wall of the housing,
(g) a spring mounted within said housing for biasing said bar toward the limit of travel away from said permanent magnet,
(h) said permanent magnet and said bar being arranged and adapted so that movement of the magnet toward said housing pulls the bar to the limit nearer

the magnet and movement away from the housing allows the bar to return to the other limit.
(i) and actuating means for moving said permanent magnet toward and away from said housing.
(2) Apparatus in accordance with claim 1 in which said bar of magnetizable material is located between said contact terminals and the end of said waterproof housing toward said permanent magnet, and said permanent magnet has a pair of poles forming a U-shaped structure with the poles facing said bar.
(3) Apparatus in accordance with claim 2 in which said spring is a compression spring mounted in a projection of said housing lying between the poles of the U-shaped permanent magnet.

References Cited

UNITED STATES PATENTS

2,767,278 10/1956 Collins 335—302 X
3,176,097 3/1965 Wood 335—205 X

BERNARD A. GILHEANY, Primary Examiner
R. N. ENVALL, Jr., Assistant Examiner

U.S. Cl. X.R.

200—51.16, 168