
(19) United States
US 20050165837A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0165837 A1
Dmitrovich et al. (43) Pub. Date: Jul. 28, 2005

(54) SYSTEM AND METHOD FOR EMBEDDED
JAVA MEMORY FOOTPRINT
PERFORMANCE IMPROVEMENT

(75) Inventors: Janet Dmitrovich, Round Rock, TX
(US); Philip Lee Langdale, Austin, TX
(US); James Patrick Robbins, Austin,
TX (US); William J. Tracey, Round
Rock, TX (US)

Correspondence Address:
IBM CORPORATION- AUSTIN (JVL)
C/O VAN LEEUWEN & VAN LEEUWEN
PO BOX 90609
AUSTIN, TX 78709-0609 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY (US)

(21) Appl. No.: 10/763,090

(22) Filed: Jan. 22, 2004

Publication Classification

(51) Int. Cl. .. G06F 7700

Virtual Machine Paging
100

(52) U.S. Cl. .. 707/104.1

(57) ABSTRACT

A System and method are provided to allow demand loading
and discarding of Java executable image (JXE) files. The
Virtual machine allocates an address Space for a requested
JXE program. The read-only portion of the JXE file is
memory mapped from its nonvolatile location to the allo
cated memory Space using read-only mapping and the
read/write section of the JXE file are loaded into memory.
When a page of the JXE program is needed, a page fault
occurs if the read-only portion has not been loaded into
memory. The operating System's page fault handler retrieves
the needed page(s) from the nonvolatile Storage location
based upon the mapping data that resulted from the previ
ously performed memory mapping. Because the read-only
Section of the JXE file is memory mapped using read-only
mapping, the operating System's paging proceSS is free to
discard previously loaded memory pages that contain read
only portions of the JXE file.

-
Receive Wirtual Machine

Method Request
110

Yes

- F
Decide Whether to Compile

(e.g., JIT) the Method
120

Compile?
130

135

Process Paging for Process Paging for
Compiled Code Interpreted Code
(See Figures 5-9) (See Figures 3-4)

140 150

7-ye
170

No

More Requests?
160

180

Patent Application Publication Jul. 28, 2005 Sheet 1 of 10 US 2005/0165837 A1

Virtual Machine Paging
100

Receive Virtual Machine
Method Request

110

Decide Whether to Compile
(e.g., JIT) the Method

120

Compile?
130

Yes No

Process Paging for
Compiled Code
(See Figures 5-9)

140

Process Paging for
Interpreted Code
(See Figures 3-4)

150

More Requests?
160

Yes
170

180
No

End
195

Figure 1

Patent Application Publication Jul. 28, 2005 Sheet 2 of 10

Special JITFilesystem
(JITFSD)

220

JIT Cache
225

Real Filesystem
235

JXE File
240

Program
Library
260

Java Virtual
Machine
(JVM)
280

Memory Map
200 N

Figure 2

Kernel
202

Filename of Program
204

Environment
206

Arguments
208

Data Binding info.
210
Stack
212

Memory Mapped
JIT Pages

230

Memory Mapped
JXE File
250

22 C
T e X t 2 76

Java Heap
292

BSS 294
Data 296

Text 298

US 2005/0165837 A1

270

290

Patent Application Publication Jul. 28, 2005 Sheet 3 of 10 US 2005/0165837 A1

Memory Needed

O/S Selects and Discards
Previously Loaded Pages.

Allows System Paging to
be Applied to Java
Bytecodes

370

Memory Map
Map Entire RIO
(Code) Section of
File to Memory

Using RIO Mapping
330

Device Memory (RAM) mmap
Read-Only Section
(e.g., byteCodes)

310
Read Pages (as needed) (See Figure 2

for Memory Map Details)
350

Read-Write Section
(e.g., variables)

320
Page Reads

Startup, e.g., call of main(),
or Call of Any Unloaded
Code Causes Page Fault

• OIS Page Fault Handler
Reads in Needed Page
Due to Memory Mapping

Executable image
(e.g., JXE file)

300

360

Figure 3

Patent Application Publication Jul. 28, 2005 Sheet 4 of 10 US 2005/0165837 A1

Virtual Machine (JVM)
Program Loader

400 Operating System (OIS) and Filesystem Components

Receive Program Request
(Program Stored in
Nonviolatile Storage)

410 OS Pace Mappinds Filesystem mmap
Setup Mappings NonVolatile LOCation

Allocate Address Space 430 Page Address
for Program 435

(Physical Memory Can Be
Smaller than Program Size)

420

Map (mmap) Program from
NonVolatile Storage Location to
Allocated Memory Location

Nonviolatile
Storage

425

LoadRW Section of Program
(e.g., variables, etc.) ---------

440 OS Page Fault Handler
Load Page(s)

470
Initialize Program

(e.g., Branch to Beginning
Causes Page Fault)

460 f JXEPages
(See Figure 2

for Memory Map Details) O
Execute Code 480 OS Paging Process

(Needed Pages Automatically -
Loaded by OS When Page OS Selects and

Faults Occur) Discards Previously
475 --- Loaded Pages

i. No Need to Write Pages
to Nonvolatile Storage
as Pages Already
Mapped R/O to

9 re 4 NonVolatile File
490

Patent Application Publication Jul. 28, 2005 Sheet 5 of 10

Filesystem
(JITFSD)

540

i- 2) -----------------------
...-Mapping Data-----------------

Mapping of
Files & Pages

560

Initialize JVM
500

Initialize Virtual Machine
(e.g., JVM)

510

Execute Programs Ying Virtual Machine

JIT Compiler

530

Exception Handler
o Retrieves COdeBased

Upon Faulting Page
Address After Page
Discarded by O/S

570

Figure 5

(See Figure 6) ------------

US 2005/0165837 A1

JTed Code
(Discardable

by OIS)
550

Patent Application Publication Jul. 28, 2005 Sheet 6 of 10

608

Yes

Initialize Mapping Data
to Track Compiles

610

Initialize New
Filesystem (JITFSD)

Supports Memory
Mapping (mmap)
When OIS Calls to
Load Page:
0 fills page with

zeros (0s)
0 returns OK
When O/S Calls to
Discard (Swap)
Page:
0 returns OK
0 does not

actually Write
page to
nOnvolatile
Storage
620

Setup Error Handler
for Invalid Opcode
(opcode="0")

625

Using JITFSD
630

mmap Special File
(OIS Returns Address
of Address Space)

640

CreateJITSpecial File

US 2005/0165837 A1

JIT Compiler
600

Need to initialize?
605

Check Mapping Data for
Method being Compiled

Mapping Data. 650
- Method
Name

- Address Aeaeapped
Range
615 654

Retrieve Allocated
Page Addresses

655
Special File
(JITFSD)

635
Compile Code to
Allocated Pages

660

JITAddress
Space

(See Fig. 2)
645

- sesse- - - - - - - - - - -

678 More
IT Address Space

Needed?
670

No

!-------s Allocate Pages
680

Compile Code to
--------------- Allocated Pages

685

Write Mapping
i.-- Data

690

Return
695

672 Yes

Increase JIT
Address Space
(See Figure 7)

675

Figure 6

Patent Application Publication Jul. 28, 2005 Sheet 7 of 10

Increase JIT Address Space
700

Retrieve Usage Statistics
for Compiled (JITed) Code

710

JVMUsage
Statistics

720

Seldom
Used JTed Method(s)?

725

Mapping Data Reclaim Address Space by Removing Entry

US 2005/0165837 A1

758

No

740
Enough

Space Reclaimed?

Special File
(JITFSD)

New JT
Address
Space

Map for New
Address l..........
Space

- Method for Each lodentified Seldom Used Method
Name 730

- Address mm.

Range

Create Another JIT Special

(OIS Returns Address of
Another Address Space)

Initialize Mapping Data to
Track Compiles into Newly
Created Address Space

NO

File Using JITFSD
760

mmap Special File

770

780

Figure 7

Patent Application Publication Jul. 28, 2005 Sheet 8 of 10 US 2005/0165837 A1

Filesystem (JITFSD)
840

Receive Notification
• Do Nothing with

Page(s)
• Do Not Swap to

Disk, etc.
850

OS Memory Manager
(Memory Reclamation)

800

Identify JIT Heap Page(s)
to Discard (Reclaim)

80

Instruct Filesystem to Write
Pages to Disk

830

Receive Return Code
880

Discard JIT Heap Page(s)
890

Return "OK"Reply
(i.e., "Successful"
Return Code)

860

Address Space
820

End
(Memory Reclamation)

895

Figure 8

Patent Application Publication Jul. 28, 2005 Sheet 9 of 10

OS Memory Manager
(Page Fault Handler)

900

JVM Detect Page Fault
ir airn L------------------- (Code Branch to Application s Non-Loaded Page)
910 905

Error Handler
(Invalid Opcode "O")

960

Call Filesystem to
Handle

Page Fault
915

Receive Error and
Page Address

965 Receive "OK"
Reply from
Filesystem

940 Lookup Method Name
in Mapping Table

970
Restart Instruction
that Caused Page

Fault
945

988

Fault at
Beginning of Method

975
NO

Receive Error:
Yes 978 Invalid Opcode

950

Re-JIT Code?
980 1 || -------- Call Registered

Error Handler
No. 982 || Re-JIT Code 955

(See Figure6)
Run Java Bytecode, 990

Remove Mapping Data
985

Restart instruction
that Caused
Page Fault

995

US 2005/0165837 A1

Filesystem (JITFSD)
920

Receive Read Request
925

Fill Page(s) Requested
to Load with Zeros (0s)

930

Return"OK"Reply
(i.e., "Successful"
Return Code)

935

Figure 9

Patent Application Publication Jul. 28, 2005 Sheet 10 of 10 US 2005/0165837 A1

1022 1001

JTAGI2C Busses Processor(s) -
1000

1002

Host BuS

Level TWO Cache
TAG12C Busses tagnac Busse)

1004 - MainM

lices nom. Host-to-PC U -- Bridge 1006
JTAGI2C Busses -- 1

Service Processor
Interface & ISA Access LAN Card

Passthru 1030
1012

101

-1 4

Service
Processor
1016

PC-to-ISA

US 2005/0165837 A1

SYSTEM AND METHOD FOR EMBEDDED JAVA
MEMORY FOOTPRINT PERFORMANCE

IMPROVEMENT

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The present invention relates in general to a system
and method for improving memory usage for Java execut
able (JXE) files. More particularly, the present invention
relates to a System and method for memory mapping the
read-only portion of the JXE file So that the operating System
can reclaim the memory when needed.
0003 2. Description of the Related Art
0004 Pervasive computing devices are available to per
form a wide variety of tasks in today's busineSS arena.
Semiconductor technology has enabled devices Such as
mobile telephones and personal digital assistants (PDAS) to
perform tasks that, until recently, were reserved for more
traditional computers.
0005 These pervasive computing devices include more
powerful operating Systems. Some of these operating SyS
tems Support middleware applications, Such as “virtual
machines' that are adapted to run platform-neutral applica
tions. A popular example of a virtual machine is the Java
Virtual Machine (JVM). Programs written to execute using
a JVM will operate on any JVM regardless of the underlying
hardware and operating System used by the computing
device. Underlying operating Systems include MicroSoft's
WindowsTM based operating systems as well as Unix-based
operating Systems. Such as IBM's AIX operating System and
the Linux operating System.
0006. One challenge that is encountered when running an
embedded virtual machine on many pervasive computing
devices, especially Smaller pervasive computing devices, is
the Smaller amount of available memory on these devices.
This challenge is being addressed by the introduction of
pre-linked executable images of the applications written for
the Virtual machine environment. In the Java environment,
these pre-linked executable images are referred to as “JXE”
files. The JXe file wraps the Java classes into one executable
file, which makes the Startup and distribution of Java pro
grams easier.
0007 While using JXE files improves the startup and
distribution of Java programs, it adds particular memory
challenges. When running a JXE file from a filesystem, the
entire JXE image is loaded into memory in order to execute
the program. Thus, using JXE files requires the computing
device to have Sufficient amounts of memory to Store and
load into RAM all of the bytecodes included in the JXE file.
This can be especially challenging when a user is using
multiple JXE files on a Smaller pervasive computing device,
with each JXE file needing to be loaded into the limited
amount of available memory.
0008 JXE files include both read-only data, such as the
bytecodes, and read/write data, Such as the variables used by
the program. Because of this, the memory in which the JXE
file resides is typically not Swappable without first writing
all the JXE data stored in memory back to nonvolatile
Storage, Such as a hard disk drive. This is the case even
though the read/write portion of the JXE file is often quite

Jul. 28, 2005

Small in comparison to the read-only portion of the file.
Swapping the entire JXE file out to disk takes considerable
computing resources and decreases System performance. In
addition, many pervasive computing devices do not have
Swap Space to even allow Swapping of the JXE file. Like
wise, when the application is Subsequently needed, having to
read the entire JXE file from disk and load it back into
memory is also expensive in terms of time and computing
CSOUCCS.

0009 What is needed, therefore, is a system and method
for allowing page faults to occur with the read-only portion
of JXE files using an operating System that Supports paging.
What is further needed is a system and method to load JXE
pages when needed and allow the operating System to
discard JXE pages according to the System's normal paging
proceSS.

SUMMARY

0010. It has been discovered that read-only portions of
Java executable image (JXE) files can be memory mapped
from their nonvolatile Storage location to a memory location
using read-only mapping. In this manner, the operating
System is free to discard memory pages occupied by the
read-only section of the JXE file without having to instruct
the filesystem to write the JXE file back to the nonvolatile
Storage.

0011 When a JXE program request is made, the virtual
machine allocates an address space for the program. The
JXE file is then memory mapped from its nonvolatile
location to the allocated memory Space. In addition, the
read/write section (i.e., variables) of the JXE file are loaded
into memory.
0012. When the JXE program is initialized, a page fault
occurs because the read-only portion has not yet been loaded
into memory. The operating System's page fault handler
retrieves the needed page(s) from the nonvolatile storage
location based upon the mapping data that resulted from the
previously performed memory mapping. When Subsequent
pages are needed that have not yet been loaded, they too
cause page faults that are handled by the operating System's
page fault handler. Because the read-only Section of the JXE
file is memory mapped using read-only mapping, the oper
ating System's paging proceSS is free to discard previously
loaded memory pages that contain read-only portions of the
JXE file. When pages that have been discarded by the
operating System are once again needed, another page fault
occurs whereupon the code is loaded by the page fault
handler.

0013 The foregoing is a Summary and thus contains, by
necessity, Simplifications, generalizations, and omissions of
detail; consequently, those skilled in the art will appreciate
that the Summary is illustrative only and is not intended to
be in any way limiting. Other aspects, inventive features,
and advantages of the present invention, as defined Solely by
the claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. The present invention may be better understood,
and its numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the

US 2005/0165837 A1

accompanying drawings. The use of the same reference
Symbols in different drawings indicates Similar or identical
items.

0015 FIG. 1 is a high level flowchart showing how
Virtual machine code can be compiled or interpreted with
each type of code being effectively paged in order to manage
memory;

0016 FIG. 2 is a memory map of a Unix-type operating
System which includes memory mapped JITed pages as well
as a memory mapped Java Executable Image (JXE) file;
0017 FIG. 3 is a diagram showing memory mapping,
page reads, and memory reclamation of a Java Executable
Image (JXE) file;
0.018 FIG. 4 is a flowchart showing the steps taken to
load a Java Executable Image (JXE) file, mapping the file to
an allocated memory area, and loading pages from the JXE
file into the allocated memory when a page fault occurs,
0019 FIG. 5 is a high level flowchart showing a virtual
machine being initialized and executing programs, Some of
which are compiled using a Just-in-Time (JIT) compiler;
0020 FIG. 6 is a flowchart showing steps taken by the
JIT compiler when a Java program running by the Java
Virtual Machine (JVM) is compiled;
0021 FIG. 7 is a flowchart showing steps taken to
increase the amount of address Space used to Store compiled
programs resulting from the JIT compiler;
0022 FIG. 8 is a flowchart showing the interaction
between the operating Systems memory manager (perform
ing memory reclamation tasks) and a special filesystem that
is used in conjunction with JITed code;
0023 FIG. 9 is a flowchart showing interaction between
the operating System's memory manager (performing page
fault handling), the Special filesystem that is used in con
junction with JITed code, and an error handler that is used
to reload code that was removed from memory during a prior
memory reclamation task; and
0024 FIG. 10 is a block diagram of an information
handling System capable of implementing the present inven
tion.

DETAILED DESCRIPTION

0.025 The following is intended to provide a detailed
description of an example of the invention and should not be
taken to be limiting of the invention itself. Rather, any
number of variations may fall within the scope of the
invention which is defined in the claims following the
description.
0.026 FIG. 1 is a high level flowchart showing how
Virtual machine code can be compiled or interpreted with
each type of code being effectively paged in order to manage
memory. Processing commences at 100 whereupon, at Step
110, the virtual machine, Such as a Java Virtual Machine
(JVM), receives a request to execute a virtual machine
application, Such as an applet or other method that includes
bytecode.

0027. At step 120, the virtual machine decides whether to
compile the requested method, using a Just-in-Time (JIT)
compiler, or whether to execute the method by interpreting

Jul. 28, 2005

the bytecode that comprises the method. This decision is
based upon a variety of factors, Such as how often the
method is requested.

0028. A determination is made as to whether to compile
the method using the Virtual machine's Just-in-Time com
piler (decision 130). If the method is to be compiled using
the virtual machine's JIT compiler, decision 130 branches to
“yes” branch 135 whereupon a paging proceSS is performed
to keep track of the JITed code pages and recompile the
JITed code if the JITed code pages are reclaimed by the
operating system (predefined process 140, see FIGS. 5-9
and corresponding text for processing details). On the other
hand, if the requested method is being interpreted rather than
compiled, decision 130 branches to “no” branch 145 where
upon a paging process is performed that memory maps the
interpretable code to a nonvolatile Storage location and reads
in pages from the nonvolatile Storage location when needed
(predefined process 150, see FIGS. 3-4 and corresponding
text for processing details).
0029. A determination is made as to whether there are
more method requests for the Virtual machine to process
(decision 160). If there are more requests, decision 160
branches to “yes” branch 170 whereupon processing loops
back to receive and process the next request. This looping
continues until there are no more requests to process (i.e.,
the computer System and/or the virtual machine is shut
down), at which point decision 160 branches to “no” branch
180 and processing ends at 195.
0030 FIG. 2 is a memory map of a Unix-type operating
System which includes memory mapped JITed (compiled)
pages as well as a memory mapped interpretable Java
Executable Image (JXE) file. Memory map 200 includes a
variety of processes and data. Kernel 202 is the kernel of the
operating System. Filename of program 204 is a memory
location in which the name of the program is Stored.
Environment 206 includes environment settings for the
program. Arguments 208 are parameters that are passed to
the program. Data binding information 210 is information
used to bind data that is read or written by the program.
Stack 212 is a FIFO memory that stores the program stack
for the program.
0031 Memory mapped JIT pages 230 are memory pages
used by the JIT compiler to Store compiled programs. AS
shown, the JIT pages are memory mapped to JIT cache 225
that is maintained by special JIT filesystem 220 (JIT file
system driver, or JITFSD). A mapping is maintained to
identify the method name that corresponds to JIT pages. The
JIT filesystem is a limited filesystem that memory maps the
compiled JIT program to a cache within the JIT filesystem.
When the memory manager running in the operating System
(i.e., the kernel) needs more space, it determines that one or
more of the memory mapped JIT pages can be reclaimed and
requests that the JIT filesystem write the data from memory
back to the JIT filesystem. Acting as a special filesystem, the
JIT filesystem does not actually write the data from the
memory mapped JIT pages back to the JIT cache. Instead,
the JIT filesystem simply replies that the operation com
pleted Successfully whereupon the operating System
reclaims the pages. When a branch is Subsequently made to
an instruction that existed in one of the reclaimed pages, a
page fault occurs. The operating System responds to the page
fault by requesting that the special JIT filesystem reload the

US 2005/0165837 A1

page(s). However, Since the special filesystem never wrote
the page(s) to nonvolatile storage in the first place, the
Special filesystem does not have the code that belongs in the
page(s). Instead, the special filesystem initializes the pages
and writes an invalid operation code (opcode) to the initial
ized pages. In one embodiment, the invalid opcode is X'00'
and is written to the entire page (or pages). In this manner,
regardless of the instruction being branched to on the page,
the instruction is always the same invalid (i.e., x' 00")
instruction. The Special filesystem then returns a response to
the operating System indicating that the page(s) was/were
Successfully loaded. The operating System then tries to
re-execute the instruction that caused the page fault. Now,
however, the System encounters an invalid opcode, causing
a special error handler to be called to handle the invalid
opcode. The error handler uses mapping data to determine
which method used to reside at the discarded page(s) and
recompiles the method (using the JIT compiler) and stores
the recompiled code back to the same memory mapped JIT
pages that stored the original compiled code (i.e., the error
handler recreates the compiled code and Stores it in the same
location that it occupied before the pages were discarded).
The address that originally caused the page fault is branched
to once again, however this time the recompiled code
occupies the pages and the instructions execute Successfully.

0.032 The read-only portion of a Java Executable Image
(JXE) file 240 stored in nonvolatile storage managed by real
filesystem 235 is memory mapped “read-only” to memory
address 250 in memory map 200. Because the file is mapped
“read-only, the operating System is free to reclaim the
memory space (250) in which the JXE resides in the memory
map as no dynamic data, Such as variables, are Stored in
memory address range 250. When code within discarded
pages is called, the operating System's page fault handler
reads the needed page from nonvolatile Storage location 240
to which the memory page is mapped.

0.033 Program library 260, such as a C Program Library,
is Stored in nonvolatile Storage managed by filesystem 235.
The library is stored to memory region 270 in three memory
areas. BSS (Block Started by Symbol) memory area 272
includes uninitialized data Segments produced by a linker
operating in a Unix-type operating environment. An unini
tialized data Segment has a name and a size but no value
(until a value is set by the program). Data memory area 274
includes initialized data, Such as variables, that have a name,
size and a value. Text memory area 276 includes the
program code (i.e., the instructions used to perform the
library functions).
0034) Java virtual machine 280 is a program that is also
managed by filesystem 235. The program is stored to
memory region 290 in four memory areas. Java heap 292 is
a memory region used to Store objects managed by the Java
Virtual Machine (JVM) program. BSS memory area 294
Stores uninitialized data Segments, data memory area 296
stores initialized data, and text memory area 298 stores the
program code for the JVM program.
0.035 FIG. 3 is a diagram showing memory mapping,
page reads, and memory reclamation of a Java Executable
Image (JXE) file. Executable image (JXE file) 300 is stored
in nonvolatile Storage and includes two Sections. The first
Section is read-only Section 310 that includes Static instruc
tions Such as Java bytecodes. The Second Section is read

Jul. 28, 2005

write Section 320 that includes dynamic data, Such as
variables, that need to be both read and written.

0036) The first process (step 330) memory maps the
read-only Section of the executable image (i.e., the byte
codes) to memory location 350 (see FIG. 2, memory
mapped location 240, and corresponding text for further
detail). Read-only mapping is used So that the operating
System's paging process will be able to discard pages
without first needing to request that the pages be Swapped
out to nonvolatile Storage.
0037. The second process (step 360) occurs when instruc
tions in any of the memory mapped pages are called before
the page is loaded into memory. When the program is
Started, the initial instruction of the code is called. Because
that code has not yet been written to device RAM 350, a
page fault occurs. The operating System's page fault handler
uses the memory mapping that was performed in the first
Step in order to fetch the needed page(s) and write the
page(s) to memory 350.
0.038. The third process (step 370) only occurs if the
operating System needs to reclaim memory. When the oper
ating System needs additional memory, a paging process is
used to identify least-recently used pages from memory 350.
If the identified least-recently used pages are pages that have
been memory mapped to read-only section 310 of the Java
executable, then the pages are simply discarded and the
memory reused. The pages are not written back to nonvola
tile storage because the pages have been memory mapped
(mmap-ed) to read-only Section 310 as read-only pages,
indicating that the pages are Static and can be discarded
without losing data that already exists on the nonvolatile
Storage device.

0039 FIG. 4 is a flowchart showing the steps taken to
load a Java Executable Image (JXE) file, mapping the file to
an allocated memory area, and loading pages from the JXE
file into the allocated memory when a page fault occurs. The
processing of the virtual machine program loader, Such as
the JVM program loader, commences at 400. At step 410,
the program loader receives a request to load a program that
is currently stored in nonvolatile storage 450.
0040. At step 420, the loader allocates address space for
the program being loaded. The actual amount of physical
memory allocated can be Smaller than the program size as
pages of the program will be read into the allocated address
Space when needed. The loader memory maps (mmaps) the
read-only Section of the program Stored on nonvolatile
Storage to the allocated address Space at Step 425 and
indicates that the mapping is read-only mapping. The file
System being used by the operating System performs the
memory mapping (Step 430) and stores nonvolatile locations
and corresponding page addresses in operating System page
mapping table 435. At step 440, the loader also loads the
read/write section of the program into memory 445. The
read/write Section of the program is not memory mapped
because this Section includes dynamic elements, Such as
variables, that would need to be Swapped (i.e., Stored back
to the nonvolatile storage device) before the pages used by
the read/write Section can be discarded and reused.

0041 At step 460, the program whose data has been
loaded and whose read-only Section (i.e., the bytecode data)
has been memory mapped is initialized. However, when

US 2005/0165837 A1

processing branches to the beginning of the program (i.e.,
the page/address where the program is Supposed to reside),
a page fault occurs because the page of the program has not
yet been read from nonvolatile Storage and loaded in
memory 480 (see FIG. 2, location 250, and corresponding
text for a description of the memory used to store the JXE
file). The page fault results in the operating System's page
fault handler 470 being invoked and loading the needed
page(s). Page fault handler 470 reads the memory mapping
data stored in mapping table 435 to determine where in the
nonvolatile Storage the requested page resides. The page
fault handler reads the data from the nonvolatile Storage
locations and writes the data to the page addresses within
memory 445 that have been allocated for the nonvolatile
location.

0.042 At step 475, the code is executed. When an instruc
tion is called that has not yet been loaded from nonvolatile
Storage 450, the page fault handler once again retrieves the
needed pages by checking the page mappings and identify
ing the nonvolatile Storage location that corresponds to the
page address being called, reading the needed page(s) from
nonvolatile Storage, and writing the page(s) to the appropri
ate allocated address space in JXE memory space 480.
0043. Throughout the execution of the program, operat
ing System paging proceSS 490 is able to Select and discard
previously loaded JXE pages. The discarded JXE pages are
not written back to nonvolatile Storage before being dis
carded because the paging proceSS recognizes that the pages
are already mapped read-only to a nonvolatile Storage loca
tion. When discarded pages are once again needed, a page
fault occurs and page fault handler 470 takes care of
retrieving and loading the needed page(s) as described
above.

0044 FIG. 5 is a high level flowchart showing a virtual
machine being initialized and executing programs, Some of
which are compiled using a Just-in-Time (JIT) compiler. The
Virtual machine processing commences at 500 whereupon,
at step 510, the virtual machine, such as a Java Virtual
Machine (JVM) is initialized.
0045. At step 520, programs (such as applets) that run
within the Virtual machine environment are executed. Some
programs are interpreted using the Virtual machine's inter
preter. However, based on a variety of factors including
program usage Statistics, the virtual machine may decide to
compile a program using a Just-In-Time (JIT) compiler
(predefined process 530, see FIG. 6 and corresponding text
for processing details). The compiled JIT program (JITed
code 550) is stored in memory and memory mapped using
a special JIT filesystem (JITFSD 540). During the compi
lation process, a mapping is maintained that maps the JITed
code pages back to the method (i.e., the program name) that
correspond to the JITed code. The mapping data is Stored in
mapping table 560.
0046) The operating system is able to discard pages
occupied by JITed code 550. Because the JITed code is
memory mapped to a file using the Special filesystem, the
operating System instructs the Special filesystem to write
pages of JITed code that are about to be discarded to
nonvolatile Storage. The Special filesystem does not write the
pages to the nonvolatile Storage, but informs the operating
System that the pages were written Successfully. When a
branch is Subsequently made to an address included in one

Jul. 28, 2005

of the discarded pages, a page fault occurs. The operating
System responds by instructing the Special filesystem to load
the page(s). Because the special filesystem never actually
Swapped the pages in the first place, it does not have the data
needed to load the pages. Instead, the Special filesystem
loads the memory pages with one or more occurrences of a
Special invalid operation code (opcode) and informs the
operating System that the code was loaded Successfully.
Now, when the operating System attempts to branch to the
code, an invalid operation exception occurs. The invalid
operation exception is handled by error handler 570 which
retrieves the name of the program (i.e., the method name)
that corresponds to the faulting pages and either interprets
the instructions or instructs the JIT compiler to recompile the
program and Store the program at the memory address that
corresponds to the method in mapping data 560.
0047 The virtual machine (or the entire computer sys
tem) is eventually shutdown. At this point, Virtual machine
processing ends at 595.
0048 FIG. 6 is a flowchart showing steps taken by the
JIT compiler when a Java program running by the Java
Virtual Machine (JVM) is compiled. JIT compiler process
ing commences at 600 whereupon a determination is made
as to whether the JIT compiler needs to be initialized
(decision 605). If the JIT compiler needs to be initialized,
decision 605 branches to “yes” branch 608 in order to
initialize the JIT compiler.
0049. Initialization of the JIT compiler begins at step 610
where mapping data structure 615, used to track JIT com
pilations, is initialized. At Step 620, the Special filesystem
that is used for memory mapping JITed code is initialized.
The special filesystem Supports memory mapping (the
mmap instruction). When the operating System instructs the
Special filesystem to load a page of data, the Special file
System fills all or a part of the page with an invalid operation
code (opcode) and returns a Successful completion code. In
one embodiment, the special invalid opcode is x 00'. When
the Special filesystem is called upon to write one or more
pages from memory back to nonvolatile Storage, the Special
filesystem returns a Successful completion code without
actually writing the code to nonvolatile Storage.
0050. At step 625, an error handler is registered with the
operating System to handle the invalid opcode (e.g., x'00")
that is written to pages loaded with the Special filesystem. At
step 630, a special file (file 635) is created using the special
filesystem and, at Step 640, the entire Special file is memory
mapped (mmap-ed) whereupon the operating System returns
an address space (JIT address space 645, see FIG.2, address
space 230, and corresponding text for more details). The JIT
compiler uses this address Space for Storing all JITed code
resulting from the JIT compiler.
0051. At step 680, the JIT compiler allocates pages
within JIT address space 645 for storing the code resulting
from compiling the code. At step 685, the JIT compiler
compiles the code and writes the resulting compiled code to
the allocated pages that reside within the JIT address Space.
At Step 690, mapping data Such as the program name (i.e.,
method name) and the address range are written to mapping
data 615 and processing returns to the routine that called the
JIT compiler at 695.
0.052 Returning to decision 605, if the JIT compiler has
already been initialized, decision 605 branches to “no”

US 2005/0165837 A1

branch 648 whereupon, at step 650, the mapping data is
checked to determine whether the method being compiled
was previously compiled. If the method was previously
compiled and the pages Storing the JITed code were reused
by the operating System, then the method name and address
range already exists in the mapping table. A determination is
made as to whether the method is already mapped (decision
655). If the method is already mapped, decision 655
branches to “yes” branch 654 whereupon the previously
allocated page addresses are retrieved (step 655) and the
code is compiled to the allocated pages (step 660) before
processing returns to the calling program (i.e., the error
handler that called the JIT compiler when a page that used
to Store JITed code no longer the JITed code an, instead,
contained an invalid opcode written to the page by the
special filesystem) at 665.
0053) Returning to decision 655, if the method is not
already mapped (i.e., the method has not previously been
compiled), decision 655 branches to “no” branch 668 where
upon, another determination is made as to whether more JIT
address Space is needed in order to compile the requested
method (decision 670). If additional JIT address space is
needed, decision 670 branches to “yes” branch 672 where
upon the amount of JIT address space is increased (pre
defined process 675, see FIG. 7 and corresponding text for
processing details). If additional JIT address space is not
needed, decision 670 branches to “no” branch 678 bypassing
predefined process 675.
0054 As described above, steps 680 through 690 are
performed in order to allocate pages from the JIT address
Space, compile the method to the allocated pages, and write
mapping data to record the method name that was compiled
and the address range within the JIT address Space used by
the JIT-compiled method. Processing then returns to the
calling routine (i.e., the virtual machine) at 695.
0055 FIG. 7 is a flowchart showing steps taken to
increase the amount of address Space used to Store compiled
programs resulting from the JIT compiler. The processing
shown in FIG. 7 is called from predefined process 675
shown on FIG. 6. FIG. 7 processing commences at 700
whereupon, at step 710, usage statistics for JITed code are
retrieved from usage statistics data store 720 maintained by
the virtual machine (e.g., JVM).
0056. A determination is made as to whether, based on
the usage Statistics, there are Seldom used JITed methods
that can be removed (decision 725). If there are seldom used
JITed methods that can be removed, decision 725 branches
to “yes” branch 728 whereupon, at step 730, the address
Space occupied by the Seldom used methods is reclaimed by
removing the entry for each Seldom used method from
mapping data tables 740. After the address space used by the
Seldom used methods has been reclaimed, a determination is
made as to whether enough Space has been reclaimed from
the JITed code address Space. If enough Space has not been
reclaimed, decision 750 branches to “no” branch 752 in
order to allocate additional JITed code address space. On the
other hand, if enough space has been reclaimed, decision
750 branches to “yes” branch 790 bypassing steps taken to
allocate additional JITed code address Space.
0057) If either there were no seldom used JITed methods
to remove (i.e., decision 725 branching to “no” branch 758)
or enough address Space for JITed code was not reclaimed

Jul. 28, 2005

by removing seldom used JITed code (i.e., decision 750
branching to “no” branch 752), then steps to provide addi
tional address space for JITed code commence at step 760.
At step 760, another JIT special file (file 765) is created
using the special filesystem (JITFSD). At step 770, the
Special file that was created is memory mapped (mmap-ed),
whereupon the operating System returns an address of
address space 775 that is memory mapped to the newly
created special file. At step 780, either a new map table 785
or the existing mapping table (see map 615 in FIG. 6) is
initialized in order to inform the JIT compiler of the newly
created JIT address Space. The JIT compiler now manages
the address space of the original JIT address space (see
address space 645 in FIG. 6) as well as the newly created
address space 775 to store compiled code resulting from the
JIT compiler (JITed code). The space in both the original JIT
address Space and the newly created JIT address Space can
be reclaimed by the operating System when needed (see
FIG. 8 for operating system memory reclamation details).
0058 Processing thereafter returns to the calling program
at 795. The calling routine being predefined process 675
shown in FIG. 6.

0059 FIG. 8 is a flowchart showing the interaction
between the operating System's memory manager (perform
ing memory reclamation tasks) and a special filesystem that
is used in conjunction with JITed code. The operating
System, Such as a Unix-based operating System, has a
memory manager to manage memory. One aspect of
memory management deals with reclaiming memory that is
currently allocated for other processes. FIG. 8 shows how
the memory reclamation routine of the operating System's
memory manager identifies and reclaims memory currently
being used to store JITed code.
0060 Processing commences at 800 whereupon, at step
810, the operating System's memory manager identifies
pages in the JIT memory area that to reclaim. One way in
which the memory manager identifies pages to reclaim is by
using a least recently used algorithm So that pages of
memory that are not used as often are paged out before pages
that are used more often. JITed address space 820 is the
address Space used by the JIT compiler to Store compiled
code resulting from the compiler (see FIG. 2, memory area
230, and corresponding text for further detail). These JITed
pages are memory mapped to a file created using a special
filesystem used for handling JIT compiled code pages (see
FIGS. 5-7 and corresponding text for details regarding the
creation of the JIT address Space by memory mapping a file
maintained by the special filesystem).
0061 The operating system notes that pages within JIT
address Space 820 are memory mapped to a file maintained
by the Special filesystem using read-write memory mapping.
Because read-write memory mapping was used to map the
file, the operating System instructs the filesystem, in this case
the Special filesystem, to write the pages that are about to be
discarded before the operating System's memory manager
discards the pages. At Step 830, the memory manager
instructs the Special filesystem to write the pages that are
about to be discarded and reclaimed by the operating System
to nonvolatile Storage.
0062 Special filesystem processing commences at 840
whereupon, at step 850, the special filesystem receives the
request from the operating System. The Special filesystem

US 2005/0165837 A1

does not actually maintain a file in nonvolatile Storage that
includes the data from the JIT address Space. Instead, the
memory mapping was used So that the operating System
interfaces with the Special filesystem to handle page faults
and other file actions pertaining to the JIT address Space. The
Special filesystem, therefore, does not do anything with the
pages in response to the request and does not write any of the
data to disk. However, the special filesystem, at step 860,
returns a response to the operating System indicating that the
pages were Successfully written to nonvolatile Storage,
clearing the way for the operating System to discard the
pages and reuse the memory Space. Special filesystem
processing of the “write” request then ends at 870.
0.063 Returning to operating System processing, at Step
880, the operating System's memory manager receives the
completion code from the Special filesystem indicating that
the pages were Successfully written to nonvolatile Storage.
In response to receiving the Successful completion response,
at step 890, the memory manager discards the identified
pages from the JIT address Space and is able to reuse the
memory for another application. Operating System memory
reclamation processing thereafter ends at 895.

0.064 FIG. 9 is a flowchart showing interaction between
the operating System's memory manager (performing page
fault handling), the Special filesystem that is used in con
junction with JITed code, and an error handler that is used
to reload code that was removed from memory during a prior
memory reclamation task. After a page containing JITed
code has been reclaimed by the operating System's memory
manager (see FIG.8 for details), the code that used to reside
in the discarded pages can still be called (i.e., branched to)
by another process or code instruction that is currently being
executed, such as JVM method 910. When a branch is made
to an address within a discarded page, a page fault results.
The operating System's page fault handler commences at
900, whereupon at step 905, the page fault is detected.

0065. At step 915, the page fault handler calls the special
filesystem and instructs the Special filesystem to load the
pages. Special filesystem processing of the load request
commences at 920 whereupon, at step 925, the special
filesystem receives the load request from the page fault
handler. The request includes the address of the page or
pages that the page fault handler needs to have loaded by the
Special filesystem. Because the Special filesystem did not
write the code to nonvolatile Storage when the memory
manager discarded the pages (see FIG. 8 and corresponding
text for details), the special filesystem does not have the data
needed to load the pages. Instead, at Step 930, the Special
filesystem writes an invalid operation code (opcode), or a
Series of the Same invalid opcode, to the page or pages that
the page fault handler is requesting to have loaded. After
writing the invalid opcode to the page(s), at Step 935, the
Special filesystem replies with returns with a Successful
completion code indicating that the page(s) were Success
fully loaded. Special filesystem processing of the load
request thereafter ends at 938.

0.066 Returning to the page fault handler, at step 940 the
page fault handler receives the response from the Special
filesystem indicating that page(s) were Successfully loaded
(even though the page(s) were not actually loaded and an
invalid opcode was actually written to the page(s)). At Step
945, the operating System attempts to restart the instruction

Jul. 28, 2005

that caused the page fault to occur. This time, however, the
page contains an invalid opcode which results in an invalid
operation exception that occurs in response to restarting the
instruction and is detected at step 950. When the JIT
compiler was initialized, an error handler was registered
with the operating System to handle the invalid opcode (see
FIG. 6, step 625, and corresponding text for details regard
ing the initialization of the error handler). At step 955, the
operating System calls the registered error handler in order
to handle the invalid opcode. Processing of the page fault
handler thereafter ends at 958.

0067 Error handler processing commences at 960 where
upon, at step 965, the error handler receives the error and the
page address where the error occurred. At step 970, the error
handler retrieves the method name that corresponds to the
page address from the mapping data table(s). A determina
tion is made, at decision 975 as to whether the page fault
occurred at the beginning of the method (i.e., the fault
address being the same as the Starting address for the
method). If the fault occurred at the beginning of the
method, decision 975 branches to “yes” branch978 where
upon the virtual machine can determine whether to recom
pile the code using the JIT compiler or interpret the code
(decision 980). For example, the code may have been
extensively used during Shortly after the virtual machine was
initialized, but hardly used thereafter. Using this example,
the Virtual machine may decide to interpret the code instead
of re-compiling it. If the virtual machine decides not to
recompile the code, decision 980 branches to “no” branch
982 whereupon, at step 985, the interpretable version of the
code is executed using the Virtual machine's interpreter and
the mapping data corresponding to the method is removed to
indicate that a JIT compiled version of the code is no longer
being maintained in the JIT address Space.
0068 If either (1) the faulting address was not at the
beginning of the method (i.e., decision 975 branching to
“no” branch 988), or (2) the virtual machine decided to
recompile the code even though the fault occurred at the
beginning of the method (i.e., decision 980 branching to
“yes” branch986), then the method is recompiled using the
JIT compiler (predefined process 990, see FIG. 6 steps
655-665 and corresponding text for processing details).
When the code has been recompiled, at step 995, the
instruction that caused the page fault is restarted. This time,
because the code was recompiled into the same address
Space, the address contains a valid instruction allowing the
compiled method to restarted.
0069 FIG. 10 illustrates information handling system
1001 which is a simplified example of a computer system
capable of performing the computing operations described
herein. Computer system 1001 includes processor 1000
which is coupled to host bus 1002. A level two (L2) cache
memory 1004 is also coupled to host bus 1002. Host-to-PCI
bridge 1006 is coupled to main memory 1008, includes
cache memory and main memory control functions, and
provides bus control to handle transfers among PCI bus
1010, processor 1000, L2 cache 1004, main memory 1008,
and host bus 1002. Main memory 1008 is coupled to
Host-to-PCI bridge 1006 as well as hostbus 1002. Devices
used solely by host processor(s) 1000, such as LAN card
1030, are coupled to PCI bus 1010. Service Processor
Interface and ISA Access Pass-through 1012 provides an
interface between PCI buS 1010 and PCI bus 1014. In this

US 2005/0165837 A1

manner, PCI bus 1014 is insulated from PCI bus 1010.
Devices, such as flash memory 1018, are coupled to PCI bus
1014. In one implementation, flash memory 1018 includes
BIOS code that incorporates the necessary processor execut
able code for a variety of low-level system functions and
System boot functions.
0070 PCI bus 1014 provides an interface for a variety of
devices that are shared by host processor(s) 1000 and
Service Processor 1016 including, for example, flash
memory 1018. PCI-to-ISAbridge 1035 provides bus control
to handle transfers between PCI bus 1014 and ISAbus 1040,
universal serial bus (USB) functionality 1045, power man
agement functionality 1055, and can include other func
tional elements not shown, Such as a real-time clock (RTC),
DMA control, interrupt Support, and System management
bus support. Nonvolatile RAM 1020 is attached to ISA Bus
1040. PCI-to-SCSI bridge 1080 provides bus control to
handle transfers between PCI buS 1014 and SCSI bus 1085.
SCSI device 1090 (i.e. a SCSI hard drive) communicates
with other parts of computer system 1001 using SCSI bus
1085.

0.071) Service Processor 1016 includes JTAG and I2C
busses 1022 for communication with processor(s) 1000
during initialization steps. JTAG/I2C busses 1022 are also
coupled to L2 cache 1004, Host-to-PCI bridge 1006, and
main memory 1008 providing a communications path
between the processor, the Service Processor, the L2 cache,
the Host-to-PCI bridge, and the main memory. Service
Processor 1016 also has access to System power resources
for powering down information handling device 1001.
0072 Peripheral devices and input/output (I/O) devices
can be attached to various interfaces (e.g., parallel interface
1062, serial interface 1064, keyboard interface 1068, and
mouse interface 1070 coupled to ISA bus 1040. Alterna
tively, many I/O devices can be accommodated by a Super
I/O controller (not shown) attached to ISA bus 1040.
0073. In order to attach computer system 1001 to another
computer System to copy files over a network, LAN card
1030 is coupled to PCI bus 1010. Similarly, to connect
computer system 1001 to an ISP to connect to the Internet
using a telephone line connection, modem 1075 is connected
to serial port 1064 and PCI-to-ISA Bridge 1035.
0074) While the computer system described in FIG. 10 is
capable of executing the processes described herein, this
computer System is simply one example of a computer
System. Those skilled in the art will appreciate that many
other computer System designs are capable of performing
the processes described herein.
0075 One of the preferred implementations of the inven
tion is an application, namely, a set of instructions (program
code) in a code module which may, for example, be resident
in the random access memory of the computer. Until
required by the computer, the Set of instructions may be
Stored in another computer memory, for example, on a hard
disk drive, or in removable Storage Such as an optical disk
(for eventual use in a CD ROM) or floppy disk (for eventual
use in a floppy disk drive), or downloaded via the Internet
or other computer network. Thus, the present invention may
be implemented as a computer program product for use in a
computer. In addition, although the various methods
described are conveniently implemented in a general pur

Jul. 28, 2005

pose computer Selectively activated or reconfigured by Soft
ware, one of ordinary skill in the art would also recognize
that Such methods may be carried out in hardware, in
firmware, or in more specialized apparatus constructed to
perform the required method Steps.
0076 While particular embodiments of the present
invention have been shown and described, it will be obvious
to those skilled in the art that, based upon the teachings
herein, changes and modifications may be made without
departing from this invention and its broader aspects and,
therefore, the appended claims are to encompass within their
Scope all Such changes and modifications as are within the
true Spirit and Scope of this invention. Furthermore, it is to
be understood that the invention is solely defined by the
appended claims. It will be understood by those with skill in
the art that if a specific number of an introduced claim
element is intended, Such intent will be explicitly recited in
the claim, and in the absence of Such recitation no Such
limitation is present. For a non-limiting example, as an aid
to understanding, the following appended claims contain
usage of the introductory phrases “at least one' and “one or
more' to introduce claim elements. However, the use of Such
phrases should not be construed to imply that the introduc
tion of a claim element by the indefinite articles “a” or “an”
limits any particular claim containing Such introduced claim
element to inventions containing only one Such element,
even when the Same claim includes the introductory phrases
“one or more' or “at least one' and indefinite articles Such
as “a” or “an’; the same holds true for the use in the claims
of definite articles.

What is claimed is:
1. A computer implemented method of loading pages of a

Java executable image, Said method comprising:
mapping a read-only Section of the Java executable image

Stored on a nonvolatile Storage device to an address
Space located in a System memory;

Storing mapping data resulting from the mapping in a
page map,

branching to an address within the address Space, the
branching causing a page fault;

loading one or more pages from the nonvolatile Storage
device to the address Space in response to the page
fault; and

executing instructions included on the loaded pages, the
executing commencing at the address.

2. The method of claim 1 further comprising:
Selecting, based upon a System paging policy, one or more

of the loaded pages, and
discarding the loaded pages.
3. The method of claim 2 further comprising:
branching to a Second address that was included in one of

the discarded pages, the branching causing a Second
page fault,

retrieving one or more of the pages from the Java execut
able image Stored on the nonvolatile Storage device,
wherein the retrieved pages correspond to one or more
of the discarded pages, and

US 2005/0165837 A1

loading the retrieved pages into the address Space,
wherein the address Space includes the Second address.

4. The method of claim 1 further comprising:
receiving a request to load the Java executable image; and
allocating the address Space in the System memory prior

to the branching.
5. The method of claim 4 wherein the size of the address

Space is less than the Size of the Java executable image
Stored on the nonvolatile Storage device.

6. The method of claim 1 wherein the storing further
comprises:

Writing one or more page addresses to the page map; and
Writing a nonvolatile Storage location corresponding to

each of the written page addresses to the page map.
7. The method of claim 1 further comprising:
initializing the Java executable image by branching to the

address, wherein the address is the initial address of the
Java executable image.

8. An information handling System comprising:
one or more processors,

a memory accessible by the processors,
a nonvolatile Storage device accessible by the processors

that includes one or more Java executable images, the
Java executable images including a read-only Section;

a tool for loading the Java executable images, the tool
including Software code effective to:
receive a request to load one of the Java executable

images,

allocate an address Space in the System memory;
map a read-only Section of the Java executable image

to the address Space;
Store mapping data resulting from the mapping in a

page map,

cause a page fault by branching to an address within the
address Space,

load one or more pages from the nonvolatile Storage
device to the address Space in response to the page
fault; and

execute instructions included on the loaded pages, the
executing commencing at the address.

9. The information handling system of claim 8 wherein
the tool includes Software code effective to:

Select, based upon a System paging policy, one or more of
the loaded pages, and

discard the loaded pages.
10. The information handling system of claim 9 wherein

the tool includes Software code effective to:

branch to a Second address that was included in one of the
discarded pages, the branching causing a Second page
fault;

retrieve one or more of the pages from the Java executable
image Stored on the nonvolatile Storage device, wherein
the retrieved pages correspond to one or more of the
discarded pages, and

Jul. 28, 2005

load the retrieved pages into the address Space, wherein
the address Space includes the Second address.

11. The information handling system of claim 8 wherein
the size of the address Space is less than the Size of the Java
executable image loaded from the nonvolatile Storage
device.

12. The information handling system of claim 8 wherein
the Software code effective to Store the mapping data further
comprises Software code effective to:

write one or more page addresses to the page map; and
write a nonvolatile Storage location corresponding to each

of the written page addresses to the page map.
13. The information handling system of claim 8 wherein

the tool includes Software code effective to:

initialize the Java executable image by branching to the
address, wherein the address is the initial address of the
Java executable image.

14. A computer program product Stored on a computer
operable media for loading pages of a Java executable
image, Said computer program product comprising:

means for mapping a read-only Section of the Java execut
able image Stored on a nonvolatile Storage device to an
address Space located in a System memory;

means for Storing mapping data resulting from the map
ping in a page map;

means for branching to an address within the address
Space, the branching causing a page fault,

means for loading one or more pages from the nonvolatile
Storage device to the address Space in response to the
page fault, and

means for executing instructions included on the loaded
pages, the executing commencing at the address.

15. The computer program product of claim 14 further
comprising:

means for Selecting, based upon a System paging policy,
one or more of the loaded pages, and

means for discarding the loaded pages.
16. The computer program product of claim 15 further

comprising:

means for branching to a Second address that was
included in one of the discarded pages, the branching
causing a Second page fault;

means for retrieving one or more of the pages from the
Java executable image Stored on the nonvolatile Storage
device, wherein the retrieved pages correspond to one
or more of the discarded pages, and

means for loading the retrieved pages into the address
Space, wherein the address Space includes the Second
address.

17. The computer program product of claim 14 further
comprising:

means for receiving a request to load the Java executable
image; and

means for allocating the address Space in the System
memory prior to the branching.

US 2005/0165837 A1

18. The computer program product of claim 17 wherein
the size of the address Space is less than the Size of the Java
executable image Stored on the nonvolatile Storage device.

19. The computer program product of claim 14 wherein
the means for Storing further comprises:

means for writing one or more page addresses to the page
map, and

Jul. 28, 2005

means for writing a nonvolatile Storage location corre
sponding to each of the written page addresses to the
page map.

20. The computer program product of claim 14 further
comprising:
means for initializing the Java executable image by

branching to the address, wherein the address is the
initial address of the Java executable image.

k k k k k

