SYNERGISTIC SILICA SCALE CONTROL

A method for controlling colloidal/amorphous silica scale deposition in an aqueous system is described, which comprises adding to the aqueous system an effective amount of a synergistic combination comprising: A) 10% to 90% by weight of at least one carboxylate polymer comprising units derived from one or more carboxylate monomers; and B) 90% to 10% by weight of at least one chelating agent, based on the total weight of said synergistic combination. The carboxylate polymer may be a homopolymer of (meth)acrylic acid, maleic acid, itaconic acid, or their salts, or a copolymer of one or more monomers selected from (meth) acrylic acid, maleic acid, itaconic acid, and their salts and, optionally, one or more sulfonic- free ethylenically unsaturated monomers. The chelating agent may be one or more of: methylamine, ethanolamine, methylethanolamine (MEA), ethylenediamine (EDA), diethylenetriamine (DETA), ethylenediamine tetraacetate acid (EDTA), ethylenediamine disuccinic acid (EDDS), iminodiacetic acid (IDA), tetrasodium ethylene diaminetetraacetate acid, and derivatives thereof, among others.
發明專利說明書
（本說明書格式，順序，請勿任意更動）

【發明名稱】（中文/英文）
矽石垢之協同性控制
SYNERGISTIC SILICA SCALE CONTROL

【技術領域】

【0001】本發明關於一種用以控制於具有中性 pH 之水性系統中非晶形的矽石垢之沉積之方法。該方法包含：添加有效量的至少一種羧酸根聚合物及至少一種螯合劑之協同性組合。

【先前技術】

【0002】於水處理設備（諸如含有水系統之鍋爐、冷卻、及純化系統）之內表面上的矽石垢之沉積及堆積，由於其降低熱傳導及液體流過此等設備，因而成爲問題。因此，以牽涉水處理之工業而言，對於預防矽石垢之形成及沉積，以及當此等垢沉積並堆積時之移除有極大興趣。

【0003】水性系統中矽石垢之形成受到水性系統之各種特性，諸如 pH、溫度、金屬離子之濃度等影響。此等特性本身可能因特殊的操作環境（例如，冷卻塔、鍋爐、逆滲透、地熱等）在各系統之間有大幅變化。此等特性，特別是 pH 及溫度，亦決定會產生及沉積兩種主要型態之矽石垢（膠態的/非晶形的或矽酸鹽）之何種。所有種類之矽石垢起始於溶液中膠態的二氧化矽粒子之形成，接著該粒子會聚合並沉積成爲膠態的或非晶形的矽石，或可與任何存在的金屬離子（諸如鎂或鈣）組合，以形成矽酸鹽垢沉積物。
【0004】更具體而言，矽石垢之聚合反應速度通常依賴 pH，
以最大速度約為 8.0 至 8.5。第 II 族金屬，特別是鈣、鎂及鐵幾乎
總是與二氧化碳共同存在，並且此等金屬離子亦影響矽石垢生長
之速度。此外，於具有高於約9.5之pH之水性系統中，矽酸鹽種
類的垢(諸如高度不溶解的矽酸鎂)為所形成的矽石垢之主要種
類，具有非常少的非晶形的矽石垢(SiO₂)。因此，矽酸鹽垢傾向在
較高溫度及鹼性 pH 形成。在 pH 約為7.5時，非晶形的矽石垢(SiO₂)
為所形成並沉積的矽石垢之主要種類，且當 pH 低於7.0時，僅有
非常少的矽酸鹽垢形成。因此，甚至當金屬(諸如鈣、鎂及鐵)存
在時，在較低溫度及 pH，不太可能形成矽酸鹽垢，使非晶形的矽
石垢成爲主要的問題。在任一種情況，一旦矽石垢形成，將其移
除會非常困難及昂貴。

【0005】抑制矽石垢之形成及沉積通常藉由一種或多種技
術而完成，該技術包括能夠減少或防止矽石垢之形成及沉積之抑
制、分散、溶解，及縮小粒子尺寸。有關傾向發生於中性或微鹼
性 pH 條件之非晶形的矽石垢的控制之研究少於針對抑制及移除
矽酸鹽垢者。

【0006】已知許多種聚丙烯酸根化合物成功地作爲用於抑制
水性系統中各種類之垢的形成及沉積之抑制劑。聚丙烯酸根為一
類衍生自一種或多種丙烯酸系單體(諸如丙烯酸、甲基丙烯酸、
丙烯腈、及其等之衍生物)之聚合反應之聚合物。各丙烯酸系單體
含有高度反應性的乙烯基(-C=C-)。由於此乙烯基之碳雙鍵之高度
反應性，丙烯酸系單體毫無困難地聚合，以製造許多種尤其是對
於塑膠、黏合劑及化學結合劑應用有益之聚丙烯酸根聚合物。
【0007】例如，美國專利案第 4,536,292 號記載一類由不飽和羧酸、不飽和磺酸及不飽和四級銨化合物所製造之丙烯酸系聚合物，作為適合用以抑制水性系統中複數種垢之分散劑。美國專利案第 4,510,059 號揭示一種減少水性系統中二氧化矽沉積物形成之方法，係藉由加入有效量的聚兩性電解質(polyampholyte)，即含有衍生自至少一種羧酸單體與至少一種含陽離子性單體之聚合單元之聚合物。美國專利案第 5,658,465 號記載一種用於抑制水系統中二氧化矽及矽酸鹽垢之方法，係藉由加入具有 N, N-雙取代醯胺官能基之聚合物。

【0008】此外，國際專利已申請案公開第 WO 2010005889 號記載烷氧化胺類或聚(烷氧)胺類對於水性系統中二氧化矽及矽酸鹽垢之抑制有效。此等聚(烷氧)胺類抑制劑具有以環氧丙烷(PO)、環氧乙烷(EO)、或其等之混合物為基礎之骨架，並且可進一步含有衍生自例如丙烯酸或馬來酸之懸垂的羧酸基。

【0009】國際專利已申請案公開第 WO 2011028662 號亦提供一種抑制二氧化矽及矽酸鹽垢沉積之方法，係藉由在水性系統中添加包含衍生自烷氧化乙烯醚及至少一種具有烴基、磺酸根或磷酸根之單體之單元之聚合物。

【0010】含有磺酸基(-SO₂OH)之羧酸多元聚合物，諸如市售以商標名稱 ACUMER 5000(可由 Dow Chemical Company, Midland, Michigan, U.S.A.)獲得者，係水性系統中常見的矽酸鎂抑制劑及屬態的二氧化矽及矽酸鎂垢之分散劑。該產業亦已知不具有磺酸基(-SO₂OH)之羧酸根均聚物及共聚合物，諸如市售能以商標名稱 ACUMER 1000 及 ACUMER 4300 獲得者(亦來自 Dow Chemical
Company)皆为典型避免砂石垢沉积效率较差者。

【0011】除了分散剂之外，已知加入其他化合物至水性系统中，藉由与金属阳离子结合形成螯合物，以控制垢的堆積。此種結合及螯合物之形成通常可描述为鉄合(sequestering)，然而，一般稱为“螯合”。能夠與金屬離子有此種鉄合交互作用之化合物已知為“螯合劑”，並且使形成並沉積垢的金屬陽離子無法被獲得。

【0012】已知的螯合化合物包括但不限於胺基酸及其衍生物，（諸如乙胺四乙酸(EDTA))及其他聚伸烷基多胺多乙酸，包括多胺的烷醇取代基之多酸。其他螯合化合物具有由羰基、磺酸基、胺基、膦酸基，及類似者所組成之活性基。

【0013】已知聚合分散剂及螯合剂之掺合物或混合物有效地抑制於水性系统中，以鈣為基礎的垢之形成及沉積。例如，日本專利案第 JP200763687A 號記載一種用於抑制之無磷抑制劑絮合物，係以聚合物：螯合劑之比例從 95:5 至 60:40 包含聚合物及螯合劑。日本專利案第 JP200763687A 號表明聚合物及螯合劑能夠以每百萬介於 90 份及 500 份之有效量分開且彼此獨立地添加至水性系統，或可在添加至水性系統前預先彼此混合。在日本專利案第 JP200763687A 號中，當該螯合劑辨認為胺類、乙二胺四乙酸(EDTA)及類似的錯合物含聚乙酸之胺類時，適當的聚合物定義為聚丙烯酸均聚物或丙烯酸(AA)/2-丙烯酰胺 2-甲基丙磺酸(AMPS)共聚物。此種技術特別是針對，且成功地解決水鍋爐系統中鈣垢之形成及沉積。

【0014】具有螯合功能性的丙烯酸系聚合物在各種應用中對於結合金屬離子有用。例如，對於尋找用於洗衣、自動洗碗劑之
無磷助洗劑取代品，已發現對於此種水性系統，胺基羧酸鹽化合物為有效的螯合劑。美國專利案第 3,331,773 號中教示藉由將水溶性螯合單體接合於具有脂肪族聚合骨架之水溶性聚合物，而製備具有螯合功能性的水溶性聚合物。二仲乙基三胺、乙二胺四乙酸（EDTA），及其它聚伸烷基多胺多乙酸於美國專利案第 3,331,773 號中舉例作爲適合接合於水溶性聚合物之螯合單體。所產生之具有螯合功能性之丙烯酸系聚合物，對於水性系統中抑制鹼土金屬鹽類（諸如以鎂及鈣為基礎者）之沉澱有用。

【0015】本發明提供一種方法，係控制水性系統中膠態或非晶形類型之矽石垢的沉積。

【發明內容】

【0016】本發明提供一種方法，係控制水性系統中膠態或非晶形類型之矽石垢的沉積。該水性系統可能具有從 7.0 至 9.0 之 pH。該方法包含添加有效量的協同性組合至水性系統中，該組合包含:

A) 10 重量%至 90 重量%之至少一種包含衍生自一種或多種羧酸根單體之單元之羧酸根聚合物；以及
B) 90 重量%至 10 重量%之至少一種螯合劑。該重量百分比係基於上述協同性組合之總重量，且成分 A) 與 B)之重量百分比之和等於 100%。

【0017】羧酸根聚合物所衍生自之羧酸根單體可選自由下列所成之群組：(甲基)丙烯酸、馬來酸、伊康酸，及其等之鹽類。此外，羧酸根聚合物可包含從 50 重量%至 99 重量%之羧酸根單體，以及 1 重量%至 50 重量%之至少一種其他另外一種選自由無磺酸乙烯系不飽和單體及其衍生物所成群組之單體。

【0018】該螯合劑係選自由：甲胺、乙醇胺(2-胺基乙醇)、二
甲胺(DMA)、甲基乙醇胺(MEA)、三甲胺(TEA)、仲乙基胺、乙二胺(EDA)、二仲乙基三胺(DETA)、胺基乙基乙醇胺(AEEA)、乙二胺三乙酸(ED3A)、乙二胺四乙酸(EDTA)、乙二胺二乙琥珀酸(EDDS)、亚胺二乙酸(IDA)、亚胺二琥珀酸(IDS)、氨基三乙酸(NTA)、麸胺酸二乙酸(GLDA)、甲基甘胺酸二乙酸(MGDA)、羟乙基亚胺二乙酸(HEIDA)、羟乙基二乙胺三乙酸(HEDA)、二乙基三胺五乙酸(DTPA)、乙二胺四乙酸四钠盐、及其等之衍生物、及其等之组合所成之群组。

【0019】在某些具体例中，此等聚合物与一种螯合剂物理性地掺合在一起。在其他具体例中，该螯酸根聚合物可已经包含衍生自至少一种螯合剂之聚合单元。

【0020】添加至水性系统中之该同性组合之有效量从0.1ppm至400ppm。

【0021】将从后文中讨论的具体例及参阅附函的第1图更加完整了解本发明。

【图式简单说明】

【0022】

第1图表示记载于实施例中验证控制组及比较例1实验时，通率比随时间之型态之图表。

【实施方式】

【0023】除非有特别指明，本文所载明的百分比为重量百分比(wt%)。

【0024】除非有特别声明，温度为摄氏度(°C)，且“周围温度”意指介于20°C及25°C。
【0025】用於本文中之用語“(甲基)丙烯酸系”包括丙烯酸及甲基丙烯酸。

【0026】“乙烯系不飽和單體”意指具有一個或更多個使其可聚合的碳-碳雙鍵之分子。單乙烯系不飽和單體具有一個碳-碳雙鍵，而多乙烯系不飽和單體具有兩個或更多個碳-碳雙鍵。用於本文中，乙烯系不飽和單體包括但不限於羧酸、羧酸的酯類、順丁烯二酸、苯乙烯及磺酸。羧酸單體例如包括丙烯酸、甲基丙烯酸，及其混合物。順丁烯二酸單體例如包括馬來酸、順丁烯二酸酐，及其經取代之形式。磺酸單體包括例如 2-(甲基)丙烯醯胺-2、甲基丙磺酸、4-苯乙烯磺酸、乙烯磺酸、(甲基)丙烯酸2-磺乙酯、(甲基)丙烯酰2-磺丙酯、(甲基)丙烯酸3-磺丙酯、及(甲基)丙烯酸4-磺丁酯。乙烯系不飽和單體進一步的實例包括但不限於乙酸、巴豆酸、乙烯乙酸、丙烯醯氧基丙酸、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯及甲基丙烯酸異丁酯；丙烯酸或甲基丙烯酸之烷烴酯(諸如丙烯酸烷乙酯、丙烯酸烷丙酯、甲基丙烯酸烷乙酯，及甲基丙烯酸烷丙酯)；丙烯醯胺、甲基丙烯醯胺、N-第三丁基丙烯醯胺、N-甲基丙烯醯胺、N,N-二甲基丙烯醯胺；丙烯腈、甲基丙烯腈、烯丙醇、烯丙基磺酸、烯丙基膦酸、乙烯膦酸、丙烯酸二甲基胺基乙酯、甲基丙烯酸二甲基胺基乙酯、甲基丙烯酸二氧磷乙酯(phosphoethyl methacrylate)、甲基丙烯酸膦醯基乙酯(phosphonoethyl methacrylate, PEM)，及甲基丙烯酸磺乙酯(SEM)、N-乙烯吡咯酮、N-乙烯甲醯胺、N-乙烯咪唑、乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸脂、酞酸二烯丙酯、乙酸乙烯酯、苯乙烯、2-丙烯醯胺
基-2-甲基丙磺酸(AMPS)及其鹽類或其等之組合。

【0027】“聚合物”意指聚合化合物或藉由將不論是相同或不同種類之單體經聚合而製備的“樹脂”。用於本文中，通用語“聚合物”包括由一種或更多種單體製造的聚合化合物。用於本文中“均聚物”意指由一種單體製備之聚合化合物。類似地，“共聚物”為由兩種或多種不同單體製造的聚合化合物。例如，包含僅衍生自丙烯酸單體之聚合單元之聚合物為均聚物，而包含衍生自甲基丙烯酸與丙烯酸丁酯之聚合單元之聚合物為共聚物。

【0028】用於本文中之“衍生自…之聚合單元”係指依照聚合反應技術所合成之聚合物分子，其中產生的聚合物含有“衍生自…之聚合單元”，構成單體係用於聚合反應之起始材料。構成單體之比例，以全部作爲聚合反應起始材料所使用之構成單體之總量計，係指設會產生具有相同比例之衍生自個別構成單體之單元之聚合物產物。例如，若提供 80 重量%之丙烯酸單體及 20 重量%之甲基丙烯酸單體至聚合反應，所產生的聚合物產物將包含 80 重量%之衍生自丙烯酸之單元及 20 重量%之衍生自甲基丙烯酸之單元。此等經常寫成 80%AA/20%MMA 之簡寫形式。類似地，例如若特定聚合物包含衍生自 50 重量%之丙烯酸、40 重量%之甲基丙烯酸及 10 重量%之伊康酸 (即，50%AA/40%MMA/10%IA)之單元，則可假設以全部三種構成單體之總重量計，提供至聚合反應之組成的單體之比例會是 50 重量%之丙烯酸、40 重量%之甲基丙烯酸及 10 重量%之伊康酸。

【0029】用於後文之用語“羧酸根單體”意指含有-COOH 或-CO₃⁻基之可聚合性單體。例如但不限於羧酸根單體包括:丙烯酸、
甲基丙烯酸、馬來酸、伊康酸、巴豆酸、及其鹽類。

【0030】用於本文中，用語“羧酸根聚合物”意指包含衍生自至少一種羧酸根單體之單元之聚合物。

【0031】用於本文中用以描述羧酸根單體及共聚物之用語“無磺酸”意指該羧酸根單體或共聚物實質上無任何磺酸基(-SO₂OH 或-SO₂O⁻)。更具體而言，以聚合物之總重量計，羧酸根單體或共聚物具有少於 5 重量%之磺酸基時，為適合用於發明方法之“無磺酸”羧酸根單體或共聚物。

【0032】用於本文中，用語“水性系統”意指任何含水系統包括但不限於冷卻水、鍋爐水、淡化、氣體洗滌器、高爐、下水道污泥熱調理設備、過濾、逆滲透、糖蒸發器、紙加工、礦業線路及類似者。

【0033】用語“矽石垢”意指沉積並堆積在水處理設備之內表面上之含有二氧化矽的固體物質。“矽石垢”通常包括複數種矽石垢(諸如膠態的或非晶形的二氧化矽(SiO₂))及矽酸鹽(諸如矽酸鈣)。該堆積的矽石垢可能及通常為二氧化矽及矽酸鹽種類之垢的組合，通常其中一種類或另一種類之垢佔優勢。“膠態的/非晶形的矽石垢”在後文中係用於描述主要於膠態的/非晶形的矽酸鹽種類之矽石垢沉積物。除了二氧化矽種類以外，取決於存在於水性系統中之金屬及其他離子的種類，可能有其他種垢存在，諸如碳酸鈣、硫酸鈣、磷酸鈣、膦酸鈣、草酸鈣、硫酸鋇、二氧化矽、沖積沉積物、金屬氧化物、及金屬氫氧化物。

【0034】膠態的/非晶形的矽石垢形成之化學反應機制牽涉，以氫氧離子催化將矽酸縮合聚合成聚矽酸鹽。此反應機制過
程通常如下:

\[
\text{Si(OH)}_4 + \text{OH}^- \rightarrow (\text{OH})_2\text{SiO}^- + \text{H}_2\text{O}
\]

\[
\text{Si(OH)}_3^+ + \text{Si(OH)}_4 + \text{OH}^- \rightarrow (\text{OH})_2\text{Si-O-Si(OH)}_3\text{(二聚物)} + \text{OH}^-
\]

\[
(\text{OH})_3\text{Si-O-Si(OH)}_3\text{(二聚物)} \rightarrow \text{環狀} \rightarrow \text{膠態的} \rightarrow \text{非晶形的二氧化矽(垢)}
\]

【0035】由於此反應機制以氫氧根離子催化，在低 pH 時過程較慢，但 pH 約 7 時顯著增快。因此，預防在具有“中性” pH(諸如介於 7.0 及 8.5) 之水性系統中矽石垢形成，係特別受到關注。

【0036】阻斷上述機制以控制矽石垢，可藉由一種或多種化學作用包括抑制、分散、溶解及縮小粒子尺寸而達成。抑制矽石垢之形成及沉積，一般而言，意指在二氧化矽化合物在溶液中形成但在沉澱或沉積之前的時間點阻斷上述矽石垢形成機制。在一種或更多種二氧化矽化合物凝集並自溶液沉澱出之時間點阻斷上述形成機制，因此預防矽石垢之沉積，稱為分散體。

【0037】鉤合作用係以離子、原子或分子形成螯合物或其他化合物之作用，使得其無法被獲得以與其他化合物或分子而反應。當會凝集、沉澱、或兩者之化合物在溶液中維持分散時產生分散體，以至於彼此不會自由地沉澱或交互反應。

【0038】本發明之方法適於控制在具有中性 pH 之水性系統中膠態的/非晶形的矽石垢之沉積。此方法包括將有效量的協同性組合添加至水性系統中，該組合包含：(A) 至少一種 無磺酸之羧酸根聚合物；以及(B) 至少一種螯合劑。協同性組合中成分 A)及 B) 之重量百分比之總和等於 100%。

【0039】在某些具體例中，該水性系統可能具有 pH 介於 7.0
及 9.5，舉例而言，諸如介於 7.0 及 9.0，或介於 7.0 及 8.0 或甚至介於 7.0 及 8.5。在其他具體例中，該水性系統可能具有 pH 介於 7.5 及 9.0，或介於 8.0 及 9.0，或甚至介於 7.5 及 8.5。

【0040】一般而言，羧酸根聚合物作具有衍生自至少一種羧酸根單體，或其鹽或其他衍生物之聚合單元之聚合化合物。已知某些羧酸根聚合物作爲用於抑制各種類型的垢(包括以鎂及鈣為基礎的垢)之形成及沉積之分散劑成效良好。然而，亦已知不包括磺酸官能性之羧酸根聚合物，諸如聚丙烯酸與羧酸根共聚物，諸如丙烯酸/馬來酸聚合物，其效果較差之矽石垢抑制劑。適用於本發明之羧酸根單體爲無磺酸基，並於以下進一步討論。

【0041】用於依照本發明方法之協同性組合中之適合包含的螯合劑包括非環狀胺、丙烯酸醯亞胺及丙烯酸醯胺，包括其初級、二級及三級的形式，及其衍生物。適當的胺類例如包括但不限於甲胺、乙醇胺(2-胺基乙醇)、二甲胺(DMA)、甲基乙醇胺(MEA)、三甲胺(TEA)、仲乙基胺、乙二胺(EDA)、二仲乙基三胺(DETA)、胺基乙基乙醇胺(AEEA)、乙二胺三乙酸(ED3A)、乙二胺四乙酸(EDTA)、乙二胺二琥珀酸(EDDS)。適當的亞胺例如包括但不限於亞胺二乙酸(IDA)、及亞胺二琥珀酸(IDS)。其他適合的螯合劑尤其包括但不限於氮基三乙酸(NTA)、嚢胺酸二乙酸(GLDA)、甲基甘胺酸二乙酸(MGDA)、醯乙基亞胺二乙酸(HEIDA)、醯乙基乙二胺三乙酸(HEDA)、以及二仲乙基三胺五乙酸(DTPA)、乙二胺四乙酸四鈉鹽。

【0042】在某些具體例中，用於本發明方法之協同性組合，以協同性組合之總重量計，包含從 90 重量% 至 10 重量% 之至少
一種羧酸根聚合物及從 10 重量%至 90 重量%之至少一種螯合劑。
若該協同性組合包含兩種或更多種羧酸根聚合物，以協同性組合
之總量計，上述存在聚合的總量從 90 重量%至 10 重量%。類似地，
若該協同性組合包含兩種或更多種螯合劑，以協同性組合之總量
計，上述存在螯合剤之總量從 10 重量%至 90 重量%。

【0043】舉例而言，協同性組合可能總共包含至少 30 重量
%，或至少 40 重量%，或至少 60 重量%，或甚至至少 75 重量%之
至少一種羧酸根聚合物。此外，該協同性組合可能總共包含上至
80 重量%，或上至 60 重量%，或上至 40 重量%，或上至 30 重量%，
或甚至上至 20 重量%之至少一種羧酸根聚合物。

【0044】該協同性組合可總共包含例如，至少 20 重量%，或
至少 40 重量%，或至少 60 重量%，或至少 80 重量%之至少一種
螯合剤。同樣地，以協同性組合之總重量計，該至少一種螯合剤
可能以總共上至 80 重量%，或上至 60 重量%，或上至 40 重量%，
或甚至上至 20 重量%之量存在於協同性組合中。

【0045】用於本文中，用語“有效量”意指協同性組合用以
控制所處理之水性系統中膠態的/非晶形的砂石垢之沉積的必須
量。在某些具體例中，以所處理之水性系統的總重量計，該協同
性組合的有效量可為每百萬 0.1 至 400 份(ppm)。在其他具體例中，
例如但不限於，協同性組合之有效量可能至少 0.5ppm，或至少
1.0ppm，或至少 5.0ppm，或至少 10ppm，或至少 20ppm，或至少
50ppm，或甚至至少 100ppm。在某些具體例中，例如但不限於，
協同性組合之有效量可能不超過 300ppm，或不超過 200ppm，或
甚至不超過 150ppm。
【0046】添加協同性組合之成分(A)至少一種羧酸根聚合物
及(B)至少一種螯合劑之手法並無特別限制。例如，該羧酸根聚合物
及該螯合劑可分開及彼此獨立地以上述比例添加至水性系統。
在本發明方法之其他具體例中，協同性組合之成分(A)羧酸根聚合物
及(B)螯合劑，在添加至所處理的水性系統之前，以上述比例物
理性地摻合在一起成爲單一的組成物。此外，在某些具體例中，
在羧酸根聚合物之單體成分聚合的期間，將螯合劑併入羧酸根聚
合物，使得上述協同性組合之羧酸根聚合物包含衍生自上述螯合
劑與一種或更多種羧酸根單體之聚合單元。

【0047】誠如上述，適用於本發明之方法的羧酸根聚合物為
羧酸均聚物或至少一種羧酸根單體及視需要的其他選自由無磺酸
乙烯系不飽和單體，其鹽類及其等之衍生物所成群組之單體之共
聚合物。進一步而言，令人驚訝地發現將螯合劑包含於羧酸根聚合物
成功地取代磺酸基之官能性，以及產生的組合表現控制水性系
統中膠態的/非晶形的砂石垢之協同性。由於，承上所述，已知羧
酸根聚合物無法滿足砂石垢之沉積之預防，因此，結合至少一種
羧酸根聚合物及至少一種螯合劑產生之協同性組合能夠成功地控
制在具有中性 pH 之水性系統中膠態/非晶形砂石垢之沉積的發現
係令人驚訝且無法預期的。

【0048】如所屬技術領域具有通常知識者所知，羧酸根單體
係含有羧基(-COOH)之化合物之廣泛的一種分類。丙烯酸系單體亦
具有羧基-COOH，並含有易於聚合之乙烯基(-C=C-)。將接在(甲基)
丙烯酸或其衍生物之羧基上的氫移除，形成“羧酸根”亦即，式
RCO⁻(其中 R 為有機基)之陰離子。接著，羧酸根陰離子形成對應
的羧酸鹽或羧酸酯。羧酸鹽類具有通式 M(RCOO)n，其中 M 爲金屬且根據金屬的價數，n 為 1、2、3。另一方面，羧酸酯具有通式 RCOOR'，其中 R 及 R'為有機基及 R'不為氫。

【0049】特別是，適用於本發明方法之羧酸根聚合物為無磺酸及包含衍生自至少一種下列羧酸根單體之單元：(甲基)丙烯酸、馬來酸、伊康酸及鹽類。

【0050】此外，在某些具體例中，羧酸根聚合物可包含 50 重量%至 99 重量%之羧酸根單體，及 1 重量%至 50 重量%之至少一種其他包含無磺酸乙烯系不飽和單體，或其鹽類或其衍生物之單體。適合的其他單體之衍生物括但不限於醚胺類、醯亞胺類、烷氧鹽類、四級胺、吡咯啶酮、嘧啶啉、甲醯胺、乙醯胺、胺類、以磷為基礎的基。

【0051】用以製備用於本發明方法之控制沉積之羧酸根聚合物之聚合方法並無特別限制且可為任何目前或未來所屬技術領域具有通常知識者知曉的方法，包括但不限於乳化、溶解、加成及自由基聚合技術。無論是藉由聚合反應將至少一種單體組成及螯合劑併入包含用於本發明方法之協同性組合之羧酸根聚合物，或該至少一種羧酸根單體及視需要的至少一種其他單體彼此聚合，接著與螯合劑物理性混合，以形成協同性組合時，上述皆成立。進一步思索，該螯合劑可首先與羧酸根單體或其他單體反應，隨後藉由單體彼此的聚合而產生羧酸根聚合物。

【0052】例如，在某些具體例中，該羧酸根聚合物可藉由施行自由基聚合反應而製備。在此等具體例中，某些牽涉使用一種或更多種起始劑。起始劑為一種在特定條件下，產生至少一種能
夠起始自由基聚合反應之自由基的分子或分子的聚合物。尤其是
光起始劑、熱起始劑，及“氧化還原(redox)”起始劑適用於與本
發明連接。特定起始劑的選擇係依據將聚合之特定單體並在所屬
技術領域具有通常知識者之能力範圍內。另外種類的適合的起始
劑為過硫酸鹽之群，例如包括過硫酸鈉。在某些具體例中，在一
種或更多種還原劑存在時使用一種或更多種過硫酸鹽，例如包括
金屬離子(諸如亞鐵離子)、含硫之離子(諸如 $S_2O_3^2-$、HSO_3^-)
及$
SO_3^2-$、$S_2O_3^2-$、及其混合物)，以及其混合物。

【0053】對於本發明方法有益之羧酸根聚合物的製造亦可能
涉及鍵調節劑之使用。鍵調節劑為扮演限制成長的聚合物鍵之長
度之化合物。某些適當的鍵調節劑例如為硫化合物，諸如醜乙醇、
硫乙二醇 2-乙基己酯、硫代乙醇酸，及十二基硫醇。在某些具體
例中，該鍵調節劑包括偏二亞硫酸鈉。其他適合的鍵調節劑例如
包括但不限於適合用於與水之混合物，以形成溶劑(諸如異丙醇及
丙二醇)之含 OH 化合物。

【0054】此外，在某些具體例中，該羧酸根聚合物可藉由水
性乳化聚合技術而製造。一般而言，水性乳化聚合涉及單體、起
始劑，及在水存在下之界面活性劑。此乳化聚合可藉由包括添加
一種或更多種單體(其可為不摻水，於溶液中，於水性乳化聚合
中，或其組合)至含有水及視需要時與其他原料之容器中步驟之方
法而實行。

【0055】適用於乳化聚合處理之起始劑例如包括水溶性過氧
化物，諸如過硫酸鈉或過硫酸銨;氧化劑，諸如過硫酸鹽或過氧化
氫，在還原劑存在下，諸如亞硫酸氫鈉或異抗壞血酸及/或多價金
屬離子，形成氧化/還原對以引起自由基在任何廣泛變化之溫度；水溶性偶氮起始劑，包括陽離子性偶氮起始劑，諸如 2,2’-偶氮雙(2-甲基丙醯胺)氯化二氫化物。此外，該乳化聚合處理可利用一種或更多種油溶性起始劑，例如包括油溶性偶氮起始劑。

【0056】在乳化聚合期間亦可利用一種或更多種界面活性劑。例如，至少一種界面活性劑可選自烷基磺酸鹽、烷芳基磺酸鹽、烷基或芳基聚氧乙烯非離子性界面活性劑，及其混合物。

【0057】藉由以下本發明例示性的具體例之討論及描述闡名本發明之使用、應用及優勢。

實施例

【0058】測試各種砂石垢抑制劑，包括現存的市售基準品，具有陰離子性、陽離子性及非離子性基團之其他共聚物及三元共聚物。此外，測試各種含有均聚物、共聚物及三元共聚物之摻合物；其細節如下。

【0059】本發明關注的摻合物為至少一種羧酸均聚物或無磺酸共聚物與至少一種螯合劑之組合。其細節如下。

實施例 1

【0060】組合 1 為 50:50 具有重量平均分子量 4500g/mol 之膦基羧酸聚合物，與乙二胺四乙酸四鈉鹽之組合。

實施例 2

【0061】組合 2 為 50:50 以膦醯端基封端並具有重量平均分子量 2000g/mol 之丙烯酸與馬來酸之聚合產物，與乙二胺四乙酸四鈉鹽之組合。

【0062】如下，測試另外兩種未顯示協同效果之比較性摻合
物。

比較例 1

【0063】摻合物 1 為 50:50 由丙烯酸、第三丁基丙烯醯胺及 2-丙烯醯胺基-2-甲基丙磺酸所製造之具有重量平均分子量 4500g/mol 之三元共聚物，與乙二胺四乙酸四钠鹽之組合。

比較例 2

【0064】下述之摻合物 2 為 50:50 由丙烯酸、第三丁基丙烯醯胺及 2-丙烯醯胺基-2-甲基丙磺酸所製造之具有重量平均分子量 4500g/mol 之三元共聚物，與二乙烯三胺五乙酸五钠(pentasodium diethylenetriaminepentaacetate)之組合。

【0065】此外，測試由工業改善並為所屬技術領域者所知以提供良好砂石垢抑制的存在效果的市售聚合物(細節如下)，並提供作爲與本發明比較之基準品。

比較例 3

【0066】基準品 1 為丙烯酸、第三丁基丙烯醯胺及具有重量平均分子量 5000g/mol 之 2-丙烯醯胺基-2-甲基丙磺酸之聚合產物。

比較例 4

【0067】基準品 2 為丙烯酸、丙烯酸乙酯及具有重量平均分子量 35000g/mol 之 2-丙烯醯胺基-2-甲基丙磺酸之聚合產物。

比較例 5

【0068】基準品 3 為馬來酸與二異丁烯之具有重量平均分子量 15000g/mol 之聚合產物。

【0069】協同摻合物一同測試成效之其他共聚物及三聚物為陰離子性、陽離子性及非離子性基之組合。其細節如下。
比較例 6

【0070】聚合物 1 爲丙烯酸及 2-丙烯醯胺基-2-甲基丙磺酸之
具有重量平均分子量 11000g/mol 之聚合產物。

比較例 7

【0071】聚合物 2 爲丙烯酸、第三丁基丙烯醯胺及 2-丙烯醯
胺基-2-甲基丙磺酸之具有重量平均分子量 4500g/mol 之聚合產物。

比較例 8

【0072】聚合物 3 爲丙烯酸、二烯丙基二甲基氯化銨及 2-丙
烯醯胺基-2-甲基丙磺酸之具有重量平均分子量 15000g/mol 之聚合
產物。

比較例 9

【0073】聚合物 4 爲丙烯酸及二烯丙基二甲基氯化銨之具有
重量平均分子量 13400g/mol 之聚合產物。

比較例 10

【0074】聚合物 5 爲丙烯酸及二甲基胺基丙基甲基丙烯醯胺
之具有重量平均分子量 10800g/mol 之聚合產物。

比較例 11

【0075】聚合物 6 爲丙烯酸、聚乙二醇丙烯酸甲酯及 2-丙烯
醯胺基-2-甲基丙磺酸之具有重量平均分子量 20900g/mol 之聚合產
物。

比較例 12

【0076】聚合物 7 爲從丙烯酸、2-丙烯醯胺基-2-甲基丙磺酸
及含乙烯基之螯合部分 (chelant moiety) 之乙烯二胺三乙酸合成之
具有重量平均分子量 5200g/mol 之聚合物。
【0077】評估組合1及2、結合物1至2、基準品1至3及聚合物1至7以測定下述之特性，包括：在pH為8及溫度為20℃，來包括水、溶解的二氧化硅(如矽酸鈉)、鈣離子(Ca²⁺)、鎂離子(Mg²⁺)及二碳酸根離子(HCO₃⁻)來源之水性成分之二氧化硅及/或矽酸鹽化合物之抑制及/或分散。用以抑制/分散來自水性成分之二氧化硅/矽酸鹽化合物之沉積之試劑的能力係由膜測定量測，以測定通過膜之通量作作為初始通量之函數。爲了執行該測試，製備含有200mg/L SiO₂、300mg/L Ca的 CaCO₃、250mg/L Mg的 CaCO₃及150mg/L HCO₃的 CaCO₃之水性原液(鹼水)。該鹼水需需要以濃度50mg/L活性試劑量(即有效量爲50ppm)添加抑制劑試劑。

【0078】按照上述條件製備含有50ppm試劑溶液之10L測試水性成分。該測試水性溶液調整為pH8.0，且在測試過程中維持。將該測試水性成分置於膜測試裝置之水槽。該水槽含有以馬達操作的攪拌器、pH計、溫度探針及給水出口及循環水入/出口。該水性溶液維持在20℃及pH8並持續攪拌，以確保狀態之均勻。

【0079】由水槽從給水出口經由活塞式泵在壓力0.7MPa給水。以流速計量器測時，給水流動速率維持5L/min。給水至由SS316製造並含有平坦薄片邊緣之平板膜成單元。該成薄膜上可爲陰離子性、陽離子性或非離子性或其組合。該單元具有一個上述給水所進入之入口，及具有兩個各自在膜兩側的出口。與入口(有關於膜劃分)在同一側之出口稱爲濃縮出口，以及在入口側另一側之出口稱爲滲透出口。從滲透出口側收集的水再循環回到水槽，以及從濃縮出口側流出來的水則餵入下一個平板膜單元。隨後的平坦
膜單元具有與上述第一個類似的配置。一個接一個的串連三個平
坦膜單元，並且第三個及最後設備之濃縮側出口再循環回到水
槽。藉由稱重從此等單元之滲透側收集的水流(通量)而量測。將
在任何特定時間點的通量除以從相同滲透側在時間零點所收集到
的水流，且該比例表示為 Flux₁₉₆/Flux₀₀。該量作爲比較抑制劑/分
散劑試成效的度量。該比例越高，則對於抑制/分散二氧化矽/矽酸
鹽垢之抑制劑/分散劑成效越佳。

【0080】測試開始後，在 2 小時、4 小時、8 小時、24 小時、
48 小時、72 小時及 90 小時量測通率比。在實驗開始時，通率比
為 1。隨著實驗進行，取決於抑制劑/分散劑作用的程度，該通率
比會維持在 1 抑或將會開始下降。若該值維持在 1，則表示該試
劑對於防止二氧化矽/矽酸鹽沉澱的作用良好。若該試劑未作用，
則會顯示通率比值減少。一旦通率比開始下降，將會持續下降且
本質上不會再增加。此外，通常 90 小時視為在此等實驗的條件下
觀測試試劑成效夠長的時間。因此，對於比較各種試剝而言，在 90
小時之通率比值作爲參考點。此處記載實驗的期間所驗證之通率
比隨時間的典型型態表示於第 1 圖。第 1 圖表示對於沒有添加任
何聚合物或螯合剝(即，“控制組”) 的水性系統，通率比隨時間
迅速下降，而相對於在以根據本發明之協同性組合(即，摻合物 1,
比較例 1)處理之系統，則明顯輕微的下降。由於所有試剝之濃度
維持在定值，通率比變化之比較可有效地作爲試剝對於抑制/分散
之有效性之度量。

【0081】表 1 所示之用於實驗之膜的化學分析係藉由能量分
散 X-射線光譜儀(EDS)，於 Hitachi 3400 儀器上使用 Thermo Noran
NSS，在加速電壓15 keV，零光圈及每秒5000至7000發下而執行，以測定垢之化學組成。由於試樣含有25wt%二氧化矯，但非常少的鎂(0.5wt%)，膜及沉積於其上之矯石垢之分析顯示形成於膜上的主要種類的垢為膠態的/非晶形的矯石垢，而不是矯酸鹽種類。

【0082】表1

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>Cl</th>
<th>Ca</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>控制組</td>
<td>74</td>
<td>16</td>
<td>0.1</td>
<td>9.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>實施例9</td>
<td>26</td>
<td>42</td>
<td>0.5</td>
<td>1.2</td>
<td>25</td>
<td>2.3</td>
<td>0.2</td>
<td>2.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

【0083】上述組合、基準品及聚合物在上述條件，使用通率比量測之比較成效表示於下列表2之數據。

【0084】表2

<table>
<thead>
<tr>
<th>實施例</th>
<th>試劑</th>
<th>Flux(t=90小時)/Flux(t=0小時)</th>
</tr>
</thead>
<tbody>
<tr>
<td>控制組</td>
<td>無</td>
<td>0.07</td>
</tr>
<tr>
<td>實施例1</td>
<td>組合1</td>
<td>0.83</td>
</tr>
<tr>
<td>實施例2</td>
<td>組合2</td>
<td>0.8</td>
</tr>
<tr>
<td>比較例1</td>
<td>摻合物1</td>
<td>摻合物不相容未進行實驗</td>
</tr>
<tr>
<td>比較例2</td>
<td>摻合物2</td>
<td>0.68</td>
</tr>
<tr>
<td>比較例3</td>
<td>基準品1</td>
<td>0.8</td>
</tr>
<tr>
<td>比較例4</td>
<td>基準品2</td>
<td>0.86</td>
</tr>
<tr>
<td>比較例5</td>
<td>基準品3</td>
<td>0.87</td>
</tr>
<tr>
<td>比較例6</td>
<td>聚合物1</td>
<td>0.5</td>
</tr>
<tr>
<td>比較例7</td>
<td>聚合物2</td>
<td>0.55</td>
</tr>
<tr>
<td>比較例8</td>
<td>聚合物3</td>
<td>0.45</td>
</tr>
<tr>
<td>比較例9</td>
<td>聚合物4</td>
<td>0.1</td>
</tr>
<tr>
<td>比較例10</td>
<td>聚合物5</td>
<td>0.18</td>
</tr>
<tr>
<td>比較例11</td>
<td>聚合物6</td>
<td>0.8</td>
</tr>
<tr>
<td>比較例12</td>
<td>聚合物7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

【0085】從表2可知，組合1、2及3(實施例1、2及3)皆驗證極佳的膠態/非晶形矯石垢的控制，在類似於市售基準品聚合物
(亦即，比較例 3、4 及 5)程度。於比較例 1 中，摻合物 1 在聚合物及螯合劑之間顯示不相容的問題，且無法被測試。比較例 2 之摻合物 2 相較於市售基準品(亦即，比較例 3、4 及 5)顯示較差成效。其他測試的聚合物試劑，在聚合物中未存在螯合劑或螯合功官能性時，相較於市售基準品通常顯示較差成效或僅相當的成效。

【符號說明】

無
公告本

發明摘要

※申請案號：102109605
※申請日：102/03/19
※IPC分類：C02F5/10 (2006.01)

【發明名稱】（中文/英文）
矽石垢之協同性控制
SYNERGISTIC SILICA SCALE CONTROL

【中文】
本發明提供一種用以控制膠態的/非晶形的矽石垢於水性系統中沉積之方法，係包含：將有效量的協同性組合加入至水性系統中，以該協同性組合之總重量計，該組合包含：A) 10 重量%至90 重量%之至少一種包含有衍生自一種或多種羧酸根單體之單元之羧酸根聚合物；以及 B) 90 重量%至 10 重量%之至少一種螯合劑。該羧酸根聚合物可為 (甲基)丙烯酸、馬來酸、伊康酸、或其等之鹽類之單聚物，或一種或多種選自 (甲基)丙烯酸、馬來酸、伊康酸、及其等之鹽類之單體以及視需要地一種或多種無磺酸乙烯系不飽和單體之共聚物。螯合劑可為一種或多種其中包括：甲胺、乙醇胺、甲基乙醇胺(MEA)、乙二胺(EDA)、二乙基三胺(DETA)、乙二胺四乙酸(EDTA)、乙二胺二琥珀酸(EDDS)、亞胺二乙酸(IDA)、乙二胺四乙酸四鈉鹽，及其等之衍生物。
A method for controlling colloidal/amorphous silica scale deposition in an aqueous system is described, which comprises adding to the aqueous system an effective amount of a synergistic combination comprising: A) 10% to 90% by weight of at least one carboxylate polymer comprising units derived from one or more carboxylate monomers; and B) 90% to 10% by weight of at least one chelating agent, based on the total weight of said synergistic combination. The carboxylate polymer may be a homopolymer of (meth)acrylic acid, maleic acid, itaconic acid, or their salts, or a copolymer of one or more monomers selected from (meth)acrylic acid, maleic acid, itaconic acid, and their salts and, optionally, one or more sulfonic-free ethylenically unsaturated monomers. The chelating agent may be one or more of: methylamine, ethanolamine, methylethanolamine (MEA), ethylenediamine (EDA), diethylenetriamine (DETA), ethylenediamine tetraacetic acid (EDTA), ethylenediamine disuccinic acid (EDDS), iminodiacetic acid (IDA), tetrasodium ethylene diaminetetraacetic acid, and derivatives thereof, among others.
申請專利範圍

1. 一種用以控制於水性系統中膠態的/非晶形的砂石垢之沉積之方法，該方法包含將有效量的協同性組合加入至該水性系統中，該組合包含：

 A) 10 重量%至 90 重量%之至少一種羧酸根聚合物係包含衍生自至少一種或更多種羧酸根單體之單元，其中，以該聚合物之總重量計，該羧酸根聚合物包含少於 5 重量%之磺酸基；以及

 B) 90 重量%至 10 重量%之至少一種螯合劑，

其中，該重量百分比係以該協同性組合之總重量計，以及該成分 A)與 B)之重量百分比之總和等於 100%。

2. 如申請專利範圍第 1 項所述之方法，其中，該協同性組合中之該至少一種聚合物及該至少一種螯合劑為物理性地摻合在一起。

3. 如申請專利範圍第 1 項所述之方法，其中，該協同性組合之該至少一種羧酸根聚合物包含衍生自該至少一種螯合劑之聚合單元。

4. 如申請專利範圍第 1 項所述之方法，其中，該一種或更多種羧酸根單體係選自由：(甲基)丙烯酸、馬來酸、伊康酸、及其鹽類所成之群組。

5. 如申請專利範圍第 1 項所述之方法，其中，該至少一種羧酸根聚合物包含從 50 重量%至 99 重量%之羧酸根單體，以及 1 重量%至 50 重量%之至少一種選自由無磺酸乙烯系不飽和單體及其衍生物所成群組之其他另一種單體。
6. 如申請專利範圍第1項所述之方法，其中，該至少一種螯合劑
係選自由：甲胺、乙醇胺(2-胺基乙醇)、二甲胺(DMA)、甲基
乙醇胺(MEA)、三甲胺(TEA)、仲乙基胺、乙二胺(EDA)、二仲
乙基三胺(DETA)、胺基甲基乙醇胺(AEEA)、乙二胺三乙酸
(EDTA)、乙二胺四乙酸(EDTA)、乙二胺二琥珀酸(EDDS)、亞
胺二乙酸(IDA)、亞胺二琥珀酸(IDS)、氨基三乙酸(NTA)、醜胺
酸二乙酸(GLDA)、甲基甘胺酸二乙酸(MGDA)、羥乙基亞胺二
乙酸(HEIDA)、羥乙基乙二胺三乙酸(HEDA)、二仲乙基三胺五
乙酸(DTPA)、乙二胺四乙酸四鈉鹽、及其等之衍生物、及其等
之組合所成群組。

7. 如申請專利範圍第1項所述之方法，其中，該有效量為從0.1
至100ppm之該協同性組合。

8. 如申請專利範圍第1項所述之方法，其中，該有效量為從1至
50ppm之該協同性組合。

9. 如申請專利範圍第1項所述之方法，其中，該水性系統具有從
7.0至9.0之pH。
【代表圖】

【本案指定代表圖】：第（ ）圖。無
【本代表圖之符號簡單說明】：

本案圖式為實驗數據故無代表圖。

【本案若有化學式時，請揭示最能顯示發明特徵的化學式】：

本案無化學式