wo 20147200521 A 1[I I PO O

(43) International Publication Date
18 December 2014 (18.12.2014)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2014/200521 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 9/50 (2006.01) GO6F 11/34 (2006.01)

International Application Number:
PCT/US2013/060243

International Filing Date:
18 September 2013 (18.09.2013)

English
English

Filing Language:
Publication Language:

Priority Data:
13/917,634 13 June 2013 (13.06.2013) Us

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052-6399 (US).

Inventors: BARAKAT, Youssef; ¢/o Microsotft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). BROWN, Tristan; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, WA 98052-6399 (US).
FATEMIEH, Omid; c¢/o Microsoft Corporation, LCA -
International Patents, One Microsott Way, Redmond, WA
98052-6399 (US). KIM, Minsang; c/o Microsott Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). RAFFMAN, Andrew;
c/o Microsoft Corporation, LCA - International Patents,

(74

(8D

(84)

One Microsott Way, Redmond, WA 98052-6399 (US).
WOHLGEMUTH, Jason; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, WA 98052-6399 (US).

Agent: BANOWSKY, James R.; Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052, (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: OPERATING SYSTEM-MANAGED INTERRUPT STEERING IN MULTIPROCESSOR SYSTEMS

208

¥ ¥

PROCESSOR PROCESSOR PROCESSOR PROCESSOR
200 202 204 206
INTERRUPT INTERRUPT INTERRUPT INTERRUPT
HANDLERS 220 HANDLERS 222! {HANDLERS 224! |HANDLERS 226
INTERRUPT INTERRUPT INTERRUPT INTERRUPT
DATA 210 DATA 212 DATA 214 DATA 216
¥
INTERRUPT ROUTER 250

FIG. 2

(57) Abstract: An operating system is provided
in which an interrupt router dynamically steers
each interrupt to one or more processors within
set of processors based on overall load informa-
tion from the set of processors. An interrupt
source is assigned to a processor based on the
load imposed by the interrupt source and the tar-
get overall load for the processor. For example,
each processor can maintain information about
each interrupt it processes over time. The oper-
ating system receives this historical load inform-
ation to determine an expected load for inter-
rupts of a given type from a given device, an
overall load on the system, and a target load for
each processor. Given a set of interrupt sources,
their expected loads, and target load for each
processor, each interrupt source can be assigned
dynamically to a processor during runtime of the
system. On a regular basis, these assignments
can be changed given current operating condi-
tions of the system.

WO 20147200521 A1 W00V 00 0 00 R

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, __
KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

OPERATING SYSTEM-MANAGED INTERRUPT STEERING
IN MULTIPROCESSOR SYSTEMS

BACKGROUND
[0001] All modern computing platforms implement a mechanism called interrupt
handling. In general, a device generates a signal, called an interrupt, to the system to
request an asynchronous service to be performed. In response to the interrupt, the system
executes an interrupt handler. An interrupt handler is a computer program that, when
executed by a processor, causes the system to perform the requested service, or other
appropriate action, in response to that interrupt. The interrupt handler may in turn
schedule additional operations to be performed to assist in responding to, or processing the
data associated with, that interrupt.
[0002] In modern computing platforms, there typically are several devices that can
generate interrupts, each with its own interrupt handler. The rate at which each device
generates interrupts generally is variable. The amount of time taken to process each
interrupt also can vary.
[0003] In a multiprocessor system, each individual interrupt is typically directed at a
single processor; however some interrupt architectures allow an interrupt to be directed at
a cluster of processors. In general, multiprocessor systems are designed such that
interrupts are distributed among a subset of the system’s processors while attempting to
optimize one or more of overall system throughput, latency and power consumption. For
example, in some systems, all interrupts are directed to a dedicated processor that executes
the interrupt handlers. In some systems, each device or process that generates an interrupt,
1.e., an interrupt source, is statically assigned a processor for its interrupt handler.
[0004] In some systems, a hardware-based interrupt controller can dynamically assign
each interrupt to one of the processors based on information local to the interrupt
controller. In some systems, the interrupt controller assigns a set of processors to handle
cach interrupt in a round robin fashion among the set of processors, each of which is
programmed with the various interrupt handlers. In some systems, the interrupt controller
broadcasts each interrupt to a set of processors, each of which selects whether to accept
the interrupt. In some systems, the interrupt is directed to the processor, within a subset of

processors, which is currently handling the lowest priority task.

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

SUMMARY
[0005] This Summary introduces selected concepts in simplified form that are further
described below in the Detailed Description. This Summary is intended neither to identify
key or essential features of the claimed subject matter, nor to limit the scope of the
claimed subject matter.
[0006] An operating system is provided in which an interrupt router dynamically steers
each interrupt source to a processor within set of processors based on overall load
information from the set of processors. An interrupt source is assigned to a processor
based on the load imposed by the associated interrupts and the target overall load for the
processor. For example, each processor can maintain information about each interrupt it
processes over time. The operating system receives this historical load information to
determine an expected load due to interrupts of a given type from a given device, an
overall load on the system, and a target load for each processor. Given a set of interrupt
sources, their expected loads, and target load for each processor, each interrupt source can
be assigned dynamically to a processor during runtime of the system. On a regular basis,
these assignments can be changed given current operating conditions of the system. The
assignments also can be determined based on the current power state of each processor, so
as to avoid activating an idle processor solely to process an interrupt, and to allow
processors to become idle, to save power.
[0007] One challenge is measuring the overall load due to an interrupt source, because an
interrupt handler can invoke additional processing on the same processor in response to
handling an interrupt.
[0008] Accordingly, in one aspect, in a computer including a plurality of processors, an
interrupt router receives information about interrupts. The interrupt router determines a
load on the computer due to interrupt handling by the plurality of processors for the
interrupts. The interrupt router assigns each interrupt source to a selected one or more of
the plurality of processors, such selection being a function of the determined load so as to
distribute the load among the processors. The interrupt router can periodically repeat
determining a load on the computer due to interrupt handling, and assigning each interrupt
source to a selected one of the plurality of processors.
[0009] In one implementation, the interrupt router identifies a number of processors, from
among the plurality of processors, available for processing interrupts, and selects a number
of processors, from among the identified number of processors available for processing

interrupts, such that the number of selected processors matches the determined load

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

divided by a target per-processor load. The load can be determined by, in response to each
interrupt, executing an interrupt handler for the interrupt on the processor assigned to the
interrupt, and storing, in memory associated with the processor assigned to the interrupt,
data indicating an amount of processing time consumed due to executing the interrupt
handler. The interrupt router aggregates the stored data from the plurality of processors
for the interrupts.
[0010] The amount of processing time can be determined by storing a system time stamp
when beginning execution of the interrupt handler, computing a difference between a
system time stamp observed when ending execution of the interrupt handler, and storing
the computed difference. Determining the amount of processing time can further include,
for any process invoked by the interrupt handler, storing a system time stamp when
beginning execution of the process, computing a difference between a system time stamp
observed when ending execution of the process, and storing data indicative of the
computed difference for the process and the computed difference for the interrupt handler.
Determining the amount of processing time can further include, for any preemptive
activity, such as an interrupt or other process preempting interrupt processing by another
interrupt handler or process performing associated work, computing a difference between
system time stamps observed when pausing the preempted interrupt processing and when
restarting the preempted interrupt processing to have an amount of time for executing the
preemptive activity, such that the computed difference for the interrupt handler excludes
the amount of time for executing the preemptive activity.
[0011] These various aspects and implementations can be embodied in a computer-
implemented process, computer, or an article of manufacture including computer storage
media.
[0012] In the following description, reference is made to the accompanying drawings
which form a part hereof, and in which are shown, by way of illustration, specific example
implementations of this technique. It is understood that other embodiments may be
utilized and structural changes may be made without departing from the scope of the
disclosure.

DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a block diagram of an example computer in which operating system-
manage interrupt steering can be implemented.
[0014] FIG. 2 is a block diagram of an example multi-processor system implementing an

operating system-based interrupt router.

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

[0015] FIG. 3 illustrates a data structure used in tracking interrupt handlers on processors.
[0016] FIG. 4 is a flow chart of an example implementation of identifying available
processors to assign to interrupt sources.
[0017] FIG. 5 is a flow chart of an example implementation of assigning interrupt sources
to processors.
[0018] FIG. 6 is a flow chart of an example implementation of reassigning interrupt
sources to processors.
[0019] FIG. 7 is a flow chart of an example implementation of tracking impact of interrupt
sources on a computer system.

DETAILED DESCRIPTION
[0020] The following section provides an example operating environment in which
operating-system based interrupt steering can be implemented.
[0021] Referring to Fig. 1, the following description is intended to provide a brief, general
description of a general purpose computer that may use such an interrupt router. The
computer can be any of a variety of general purpose or special purpose computing
hardware configurations. Examples of well-known computers that may be suitable
include, but are not limited to, personal computers, server computers, hand-held or laptop
devices (for example, media players, notebook computers, cellular phones, personal data
assistants, voice recorders), multiprocessor systems, microprocessor-based systems, set
top boxes, game consoles, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed computing environments that include
any of the above systems or devices, and the like.
[0022] FIG. 1 illustrates an example of a suitable computer. This is only one example of a
suitable computer and is not intended to suggest any limitation as to the scope of use or
functionality of such a computer.
[0023] With reference to FIG. 1, an example computer 100, in a basic configuration,
includes at least one processing unit 102 and memory 104. The computer may include
multiple processing units and/or additional co-processing units such as graphics
processing unit 120. Depending on the exact configuration and type of computer, memory
104 may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or
some combination of the two. This configuration is illustrated in FIG. 1 by dashed line
106.
[0024] Additionally, computer 100 may also have additional features/functionality. For

example, computer 100 may also include additional storage (removable and/or non-

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

removable) including, but not limited to, magnetic or optical disks or tape. Such additional
storage is illustrated in FIG. 1 by removable storage 108 and non-removable storage 110.
Computer storage media includes volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage of information such as
computer program instructions, data structures, program modules or other data. Memory
104, removable storage 108 and non-removable storage 110 are all examples of computer
storage media. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store the
information and which can accessed by computer 100. Any such computer storage media
may be part of computer 100.

[0025] Computer 100 may also contain communications connection(s) 112 that allow the
device to communicate with other devices over a communication medium.
Communication media typically carry computer program instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism and include any information delivery media. The term "modulated
data signal" means a signal that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal, thereby changing the configuration
or state of the receiving device of the signal. By way of example, and not limitation,
communication media includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared and other wireless media.
Communications connections 112 are devices that interface with the communication
media to transmit data over and receive data from communication media, such as a
network interface.

[0026] Computer 100 may have various input device(s) 114 such as a keyboard, mouse,
pen, camera, touch input device, and so on. Output device(s) 116 such as a display,
speakers, a printer, and so on may also be included. All of these devices are well known in
the art and need not be discussed at length here. Various input and output devices can
implement a natural user interface (NUI), which is any interface technology that enables a
user to interact with a device in a “natural” manner, free from artificial constraints
imposed by input devices such as mice, keyboards, remote controls, and the like.

[0027] Examples of NUI methods include those relying on speech recognition, touch and

stylus recognition, gesture recognition both on screen and adjacent to the screen, air

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

gestures, head and eye tracking, voice and speech, vision, touch, gestures, and machine
intelligence, and may include the use of touch sensitive displays, voice and speech
recognition, intention and goal understanding, motion gesture detection using depth
cameras (such as stercoscopic camera systems, infrared camera systems, and other camera
systems and combinations of these), motion gesture detection using accelerometers or
gyroscopes, facial recognition, three dimensional displays, head, eye , and gaze tracking,
immersive augmented reality and virtual reality systems, all of which provide a more
natural interface, as well as technologies for sensing brain activity using electric field
sensing electrodes (EEG and related methods).

[0028] Each component of this system that operates on a computer generally is
implemented by software, such as one or more computer programs, which include
computer-executable instructions and/or computer-interpreted instructions, such as
program modules, being processed by the computer. Generally, program modules include
routines, programs, objects, components, data structures, and so on, that, when processed
by a processing unit, instruct the processing unit to perform particular tasks or implement
particular abstract data types. This computer system may be practiced in distributed
computing environments where tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment,
program modules may be located in both local and remote computer storage media
including memory storage devices.

[0029] Alternatively, or in addition, the functionality described herein can be performed,
at least in part, by one or more hardware logic components. For example, and without
limitation, illustrative types of hardware logic components that can be used include Field-
programmable Gate Arrays (FPGAS), Program-specific Integrated Circuits (ASICs),
Program-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs),
Complex Programmable Logic Devices (CPLDs), etc.

[0030] Given a computer such as described above, an operating system based interrupt
router that performs dynamic interrupt steering at runtime among multiple processors
assumes that the computer includes a central processing unit (e.g., 120 in Fig. 1) above
with multiple processors. The use of the term “processor” herein is intended to include
any logical processor, including but not limited to a single instance of a hardware
processor, one of multiple processors, a “core” in a multiple core processor or any other

processing unit that can be managed independently of other processing units.

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

[0031] Interrupt handling generally is managed by the operating system, firmware or other
low level software on the computer. In one implementation, the operating system includes
an interrupt router in the kernel that is executed on one or more of the processors and that
dynamically steers interrupts to a subset of processors which may include the processor on
which the interrupt router is executed. Alternatively, other components of an operating
system, hardware abstraction layer, firmware or other low level computer programs of a
computer can implement such functionality.

[0032] Referring now to Fig. 2, an example implementation of such a system will now be
described in the context of an illustrative example. In Fig. 2, there are four processors
200, 202, 204 and 206, interconnected by a bus 208, each with a respective interrupt data
210,212, 214 and 216 for tracking information about interrupts processed by that
processor. Each processor also has a set of one or more interrupt handlers 220, 222, 224,
226, respectively, for processing interrupts from various interrupt sources. The system
also includes an interrupt router 250 which is part of the operating system that manages
access to the resources in the multiprocessor computer. The interrupt router 250
periodically obtains the interrupt data 210, 212, 214, 216 from the processors. The
interrupt router may be a software component executing on one or more of the processors,
or may be implemented or supported by hardware components. The interrupt router
determines an interrupt source-to-processor assignment based on the interrupt data, and
sets an interrupt controller (not shown) with the assignments to direct interrupts in the
system to their assigned processors.

[0033] It should be understood that the number of processors, i.¢., four, in Fig. 2 is
merely illustrative and not limiting of the present invention. Further, interrupt routing can
be performed by a subset of the processors in the system. Fig. 2 illustrates merely an
example of a subset of the processors of a multiprocessor system that participate in
interrupt routing.

[0034] Referring now to Fig. 3, an example implementation of a data structure 300
maintained and used by interrupt router 250 for aggregating interrupt data from multiple
processors, will now be described. The data structure 300 includes a list 302 of interrupt
sources. Each entry 304 in the list 302 represents an interrupt source and points to an
array 306 representing the interrupt handler(s) for interrupts from that source. The array
306 includes an entry 308 that represents each interrupt handler. The entry 308 points to a
list 310 of pointers 314 to data structures 312 maintained by each processor for that

interrupt handler for storing the interrupt data for that processor, which includes data about

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

the load placed on the processor related to that interrupt handler. How this data structure
is used by each processor and the interrupt router to monitor current system status will be
described in more detail below. It should be understood that other data structures can be
used to aggregate and store the per-processor, per-interrupt handler performance data for
use by the interrupt router and that the foregoing is merely an example.

[0035] Other data structures, not shown, include, for each processor, a count of the
number of interrupt sources assigned to the processor as part of the interrupt data for each
processor. Additionally, a current list of interrupt source-to-processor assignments also is
stored by the interrupt router.

[0036] Steering of interrupts to different processors generally involves four steps. First,
the interrupt router identifies which processors, of the available processors in the system,
are to be used. Second, the interrupt router determines how to distribute interrupts among
the identified processors. This interrupt source-to-processor assignment is set in an
interrupt controller and used for a period of time. Third, the interrupt router dynamically
changes the distribution of interrupts in response to system conditions during runtime.
The result of this process changes the current interrupt source-to-processor assignments to
new assignments. Fourth, the interrupt router tracks the impact of the interrupts from the
various interrupt sources on system performance, which is used to determine future
interrupt source-to-processor assignments. It should be understood that the process may
assign interrupt sources to individual processor clusters as well as or instead of individual
processors.

[0037] Referring now to Fig. 4, an example implementation of a way to identify
processors to be used for handling interrupts will now be described. The output of this
process is an indication of the set of processors to which interrupts are distributed.

[0038] This process begins by identifying 400 an initial set of available processors. This
initial set can be all of the available processors, a predetermined subset of the available
processors, or other set of processors identified based on a specified characteristic. As an
example, the initial set of processors can be all active, i.e., non-idle, processors. Next,
some of these processors can be eliminated 402 based on the time for which they have
been active. The amount of time can be a tunable parameter, which, when set to zero,
disables this step.

[0039] The interrupt router then determines 404 the load on the system due to interrupt

handling, in a manner described in more detail below. Then, a number of processors to be

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

used for handling interrupts, given a target per-processor load and the determined load, is
then computed 406.

[0040] In one example implementation, a total sum of all processor time used to handle all
interrupt-related work is computed. This total amount of time is divided by the actual
elapsed time for the entire system to process the interrupts, to determine a percent of time
spent processing interrupts and related work. This percent of time is then divided by a
target per-processor load, which can be a tunable parameter, to determine a target number
of processors to handle that load. For example, if each of eight processors handled
interrupts for 20ms, the total load is 160ms. If this processing occurred in 100ms, then the
total load is 160% (of one of the processors). If the target processing load is 40%, then the
target number of processors is four.

[0041] Other algorithms can be used to select the number of processors. For example,
statistics about which interrupt sources are primarily responsible for the load can be
examined. If one interrupt source is responsible for a load that is significantly greater than
the target per-processor load, then it is possible that this interrupt source can be assigned
to one processor and fewer processors can be used for the remaining interrupts.

[0042] The computed number can be capped 408 to the number of processors in the initial
set of processors identified at 400. If this number of processors is less than the size of the
initial set, as determined at 410, then a subset of the initial set is selected 412.

[0043] In one example implementation, the subset can be selected by using a same
algorithm used by the kernel to assign threads to processors thus maximizing a number of
processors that can be idle to reduce power consumption.

[0044] In this example implementation, a set of processors is selected (see Fig. 4) and then
interrupts are distributed among the selected processors. An example implementation of
this distribution process will now be described in connection with Fig. 5.

[0045] First, interrupt sources are sorted 500 in order of the load imposed on the system
by the interrupt source. Next, an interrupt source from the list is selected 502. A
processor from the set of processors is selected 504 and assigned to the selected interrupt
source in the sorted list. If interrupt sources remain, as determined in 506, the process
continues by repeating the selection steps 502 and 504, until all interrupt sources are
assigned one of the processors. After assignments are completed, the interrupt controller
is set 508 to direct interrupts to their assigned processors.

[0046] There are a variety of different ways to match processors and interrupts, and the

process in Fig. 5 is merely one way of implementing such a matching.

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

[0047] Using the example of Fig. 5, the selection of the interrupt source in step 502 and
the selection of a processor in step 504 can be performed using the following example
implementation. The processors are selected in a serpentine manner: stepping through the
list from beginning to end and then from the end to the beginning, and so on, assigning the
next interrupt source in the sorted list to the selected processor, until all of the interrupt
sources are assigned.

[0048] Other implementations are possible, with the general objective of evenly dividing
the load due to handling interrupts among the processors, trading off computational
complexity against a more optimal distribution.

[0049] In one example, a worst-fit bin packing algorithm can be used. In this algorithm,
cach subsequent interrupt source is assigned to the processor that will have the least total
load after the assignment.

[0050] In another example, the serpentine selection of the next processor is followed, with
the condition that the current processor has a higher total load than the next processor;
otherwise the current processor is used again for the next interrupt.

[0051] In another example, an entire processor is first reserved for each interrupt for
which the load is greater than the target per-processor load. Then, the remaining interrupts
are assigned to the remaining processors.

[0052] In another example, interrupt sources having little impact on the system can be
assigned permanently to certain processors and removed from this process of assigning
interrupt sources to processors.

[0053] Given an assignment of interrupt sources and processors, this assignment can be
dynamically changed during operation of the computer as system conditions change. The
result of this process is to allow the system to transition active processors into idle states
and idle processors into active states, while not missing interrupts.

[0054] An example implementation is shown in Fig. 6. Other implementations are
possible, and depend on the nature of the processors being used. In the implementation
shown in Fig. 6, the processors have both non-interruptible and interruptible idle states,
and, in either idle state, a “wake” command is issued to the processor in order to query the
processor and/or cause it to change state. In general, the process involves identifying the
differences between the current interrupt source-to-processor assignments and the new
interrupt source-to-processor assignments, and determining whether any of these
differences involve changing the state of the processor. If a processor has a state change,

the state is changed before allowing interrupt sources to be assigned to it.

10

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

[0055] Thus, in Fig, 6, in this implementation, each interrupt source-to-processor
assignment is processed 600 to identify interrupt sources for which the target processor
changed. For each interrupt source for which the current target processor is to be
changed, the count of interrupt sources for the new target processor is incremented 602.
On each such increment, if the target processor’s count of interrupt sources changes from
zero to one, as determined in 604, the processor is added 606 to a list of processors to be
“awakened”. “Wake” instructions then are sent 608 to each processor on this list. In some
implementations, waiting for an acknowledgement from the processor ensures that an
interrupt is not lost.

[0056] Each interrupt source-to-processor assignment is again processed 610 and the
current assignment is set to the new assignment in the interrupt controller. For each
interrupt source where the target processor changed, the count of interrupt sources
assigned to the previous target processor for that interrupt is decremented 612. On each
such increment, if the previous target processor’s count of interrupt sources changes from
one to zero, as determined at 614, the processor is added to a list. Instructions are then
sent 616 to each processor on this list, in response to which each processor can evaluate
whether it is idle and can transition into a power saving state due to no longer having any
interrupts targeted at it.

[0057] The process in Fig. 6 can be modified depending on how the processors handle
interrupts, power saving states, and transitions among those states. The state of each
processor can be identified during this process. For example, if processors do not support
wake commands or non-interruptible states, then other steps can be eliminated.

[0058] An example implementation of a process for tracking the impact of interrupt
handling as associated work on the system will now be described in connection with Fig.
7.

[0059] A challenge with measuring the impact of interrupts is the fact that an interrupt
handler can invoke additional processes and generate additional interrupts, or other work
generated by an interrupt handler that is performed on the same processor as the interrupt
handler. Such additional work, in turn, can create yet more additional work on a
processor. Measurement and tracking of such work uses the data structure described
above, an example of which is shown in Fig. 3.

[0060] For each interrupt source and processor in the system, fields are allocated 700 in
this data structure to accumulate the amount of time consumed by the interrupt source’s

associated interrupt handler and any additional work it invokes on the processor.

11

10

15

20

25

30

WO 2014/200521 PCT/US2013/060243

[0061] When an interrupt handler is executed, the amount of time it spends executing is
tracked and stored 702 on its processor. For example, a time stamp is read both prior to
and after such execution. The difference is calculated and stored in the data structure. If
the interrupt handler schedules additional work, such as by invoking another process, the
amount of time the additional work is performed also is determined. For example, when
additional work is queued on the processor, a pointer to the data structure can be queued
along with that work. If the interrupt handler, or its related work, is preempted by another
higher priority task, then the higher priority task adjusts the time stamp data of the
preempted interrupt handler or related work.

[0062] Periodically, the interrupt data from the processors is accumulated 704 by the
interrupt router, and stored 706 in the allocated data structure so as to accumulate the
interrupt handling statistics across the system.

[0063] It should be understood that the foregoing is only an example implementation and
that other implementations of tracking also are possible. In general, each interrupt handler
and its additional work track the amount of time spent processing the related interrupt.
This data is collected over the multiple interrupts and multiple processors.

[0064] With such information, interrupt sources can be dynamically assigned to
processors, and such assignments can be dynamically changed, during runtime of the
computer. By managing the assignments efficiently, interrupts can be distributed among
processors while maximizing a number of processors that can be idle to reduce power
consumption.

[0065] Any or all of the aforementioned alternate embodiments described herein may be
used in any combination desired to form additional hybrid embodiments. It should be
understood that the subject matter defined in the appended claims is not necessarily
limited to the specific implementations described above. The terms “article of
manufacture”, “process”, “machine” and “composition of matter” in the preambles of the
appended claims are intended to limit the claims to subject matter deemed to fall within
the scope of patentable subject matter defined by the use of these terms in 35 U.S.C. §101.
The specific implementations described above are disclosed as examples only.

[0066] What is claimed is:

12

WO 2014/200521 PCT/US2013/060243

CLAIMS

1. A process performed by a computer including a plurality of processors, comprising;:

receiving, into memory for an interrupt router, information about interrupts;

the interrupt router determining a load on the computer due to interrupt handling
by the plurality of processors for the interrupts; and

the interrupt router assigning each interrupt source to a selected one of the plurality
of processors, such selection being a function of the determined load so as to distribute the

load among the processors.

2. The computer-implemented process of claim 1, wherein assigning comprises:

the interrupt router identifying a number of processors, from among the plurality of
processors, available for processing interrupts;

the interrupt router selecting a number of processors, from among the identified
number of processors available for processing interrupts, such that the number of selected

processors matches the determined load divided by a target per-processor load.

3. The computer-implemented process of claim 1, wherein determining the load
comprises:

in response to each interrupt from an interrupt source, executing an interrupt
handler for the interrupt on the processor assigned to the interrupt source;

storing, in memory associated with the processor assigned to the interrupt source,
data indicating an amount of processing time consumed due to executing the interrupt
handler;

the interrupt router aggregating stored data from the plurality of processors for the

interrupts.

4. The computer-implemented process of claim 3, further comprising determining the
amount of processing time by:
storing a system time stamp when beginning execution of the interrupt handler;
computing a difference between a system time stamp observed when ending
execution of the interrupt handler; and

storing the computed difference.

13

WO 2014/200521 PCT/US2013/060243

5. The computer-implemented process of claim 4, wherein determining the amount of
processing time further comprises:

for any process invoked by the interrupt handler,

storing a system time stamp when beginning execution of the process;

computing a difference between a system time stamp observed when ending
execution of the process; and

storing data indicative of the computed difference for the process and the

computed difference for the interrupt handler.

6. The computer-implemented process of claim 5, wherein determining the amount of
processing time further comprises:

for any preemptive activity preempting interrupt processing by the interrupt
handler and associated processes,

computing a difference between system time stamps observed when pausing the
preempted interrupt processing and when restarting the preempted interrupt processing to
have an amount of time for executing the preemptive activity; and

wherein the computed difference for the interrupt handler excludes the amount of

time for executing the preemptive activity.

7. The computer-implemented process of claim 1, further comprising the interrupt router
periodically repeating the steps of:

determining a load on the computer due to interrupt handling by the plurality of
processors for the interrupts since a previous assignment of interrupt sources to
processors; and

assigning cach interrupt source to a selected one of the plurality of processors, such
selection being a function of the determined load since a previous assignment of interrupt

sources to Proccssors.

8. An article of manufacture comprising;:

a computer storage medium,;

computer program instructions stored on the computer storage medium which,
when read from storage and processed by a processing device, instruct the processing
device to perform a process comprising:

receiving, into memory for an interrupt router, information about interrupts;

14

WO 2014/200521 PCT/US2013/060243

the interrupt router determining a load on the computer due to interrupt handling
by the plurality of processors for the interrupts; and

the interrupt router assigning each interrupt source to a selected one of the plurality
of processors, such selection being a function of the determined load so as to distribute the

load among the processors.

9. A computer comprising:

a plurality of processors, each processor being programmed to maintain
information about interrupts handled on the processor, such information including an
amount of processor time consumed due to executing the interrupt handler;

an interrupt router executed on one or more of the plurality of processors, the
interrupt router being configured to:

receive the information about interrupts from the processors;

determine a load on the computer due to interrupt handling by the plurality of
processors for the interrupts; and

assign each interrupt source to a selected one of the plurality of processors, such
selection being a function of the determined load so as to distribute the load among the

Proccessors.

10. The computer of claim 9, wherein the interrupt router is configured to identify a
number of processors, from among the plurality of processors, available for processing
interrupts, and select a number of processors, from among the identified number of
processors available for processing interrupts, such that the number of selected processors

matches the determined load divided by a target per-processor load.

15

WO 2014/200521 PCT/US2013/060243
1/7
~100
~106 108
~104 Fj 102 REMOVABLE o
A / STORAGE i
- - ~110
SYSTEM . PROCESSING NONREMOVABLE +
MEMORY i UNIT STORAGE
120 e
VOLATILE FJ’ INPUT DEVICE(S)
MEMORY GRAPHICS 116
PROCESSING OUTPUT DEVICE(S) |~
NONVOLATILE UNIT
MEMORY COMMUNICATION |i 112

CONNECTION(S) i+

FIG. 1

WO 2014/200521

2/7

PCT/US2013/060243

208
il k2
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
200 202 204 206
INTERRUPT INTERRUPT INTERRUPT INTERRUPT
HANDLERS 220! |HANDLERS 222 |HANDLERS 224 |HANDLERS 226
INTERRUPT INTERRUPT INTERRUPT INTERRUPT
DATA 210 DATA 212 DATA 214 DATA 216
i i] {
INTERRUPT ROUTER 250

FIG. 2

WO 2014/200521

LIST OF
INTERRUPT
SOURCES
302

ENTRY 304
POINTS TO
LIST OF
INTERRUPT

3/7

ki

HANDLERS
FOR THIS
INTERRUPT
SOURCE

<more interrupt
entries>

ARRAY 306

ENTRY 308
POINTS TO
LIST OF
PROCESSORS’
DATA
STRUCTURES

300

k 4

<more interrupt
handler entries>

LIST 310 OF
PER-
PROCESSOR
DATA
STRUCTURES
FOR THIS
INTERRUPT
HANDLER

PROCESSOR 0

POINTER 314

PROCESSOR

N POINTER

PCT/US2013/060243

INTERRUPT
DATA 312
FROM
PROCESSOR 0

FIG. 3

INTERRUPT
DATA 312
FROM
PROCESSOR N

WO 2014/200521 PCT/US2013/060243

4/7

~ 400
i
IDENTIFY INITIAL SET OF PROCESSORS !

¥

L~ 402
ELIMINATE PROCESSORS BASED ON ../

ACTIVITY

¥

L~ 404
DETERMINE LOAD ON SYSTEM DUETO -/
INTERRUPTS

¥

- 406
DETERMINE NUMBER OF PROCESSORS TO USE -/

FOR INTERRUPTS

ki

LIMIT NUMBER TO SET OF AVAILABLE -
PROCESSORS

,,,,,,,,,,,, IS e USE

<_NUMBER LESS THAN INITIAL e New INITIAL
~~~~~~ e SET? SET

]

SELECT SUBSET OF AVAILABLE PROCESSORS i~

FIG. 4



WO 2014/200521 PCT/US2013/060243

/7

A 500
SORT INTERRUPT SOURCES BY LOAD

I 502
SELECT INTERRUPT SOURCE FROM LIST -

ki

I 504
SELECT PROCESSOR

AN
e ~
/ ~.

_~INTERRUPT ™« _
~" SOURCES >

“~. REMAIN? 7
'\,\ /,/'

¥ 508

SET INTERRUPT CONTROLLER WITH ’
ASSIGNMENTS

FIG. 5



WO 2014/200521 PCT/US2013/060243

6/7
IDENTIFY INTERRUPT SOURCES WITH 600
CHANGED ASSIGNMENTS -
¥ [" 602
LS

INCREMENT COUNT OF INTERRUPT SOURCES
FOR NEW TARGET PROCESSOR

¥

i 604
IDENTIFY PROCESSORS HAVING COUNT | /
CHANGING FROM ZERO TO ONE ‘
¥ ~ 606
ADD IDENTIFIED PROCESSORS TO WAKE LIST |
¥ -~ 608
SEND WAKE INSTRUCTIONS -
TO IDENTIFIED PROCESSORS
W IS 610
SET ASSIGNMENTS IN INTERRUPT —
CONTROLLER
¥ 612
DECREMENT COUNT OF INTERRUPT SOURCES | /
FOR PREVIOUSLY ASSIGNED PROCESSOR
¥ 614
IDENTIFY PROCESSORS HAVING COUNT | /
CHANGING FROM ONE TO ZERO

¥ I 616
SEND INSTRUCTIONS TO PROCESSOR TO
EVALUATE WHETHER IT IS IDLE

FIG. 6



WO 2014/200521

/7

PCT/US2013/060243

ALLOCATE DATA STRUCTURE TO STORE
DATA FROM EACH PROCESSOR FOR EACH
INTERRUPT SOURCE

~700

¥

STORE DATA WHEN INTERRUPT HANDLER,
AND ASSOCIATED PROCESSES, ARE
EXECUTED

¥

ACCUMULATE STATISTICS ACROSS
PROCESSORS

¥

STRUCTURE

STORE ACCUMULATED STATISTICS IN DATA |

Ia 706
v

H

FIG. 7



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/060243

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50 GO6F11/34
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0034], [0035]
paragraphs [0075] - [0081]

25 August 2009 (2009-08-25)
column 2, lines 58-65
column 9, lines 13-20
column 9, line 65

column 15, lines 63-66
column 16, lines 50-56

X US 2010/057967 Al (MURAKAMI TAKEO [JP] ET
AL) 4 March 2010 (2010-03-04)

X US 7 581 052 B1 (SOLOMITA ETHAN [US])

column 24, Tine 37 - column 25, line 5

1,2,7-10

1-10

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 February 2014

Date of mailing of the international search report

25/02/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kamps, Stefan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/060243

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

WO 2013/066124 Al (SAMSUNG ELECTRONICS CO
LTD [KR]) 10 May 2013 (2013-05-10)
paragraph [0007]

paragraphs [0033] - [0037]

paragraph [0042]

figure 3

US 2006/123422 Al (FELTER WESLEY M [US] ET
AL) 8 June 2006 (2006-06-08)

the whole document

Richard Mcdougall: "Solaris (TM)
Internals: Solaris 10 and OpenSolaris
Kernel Architecture, Second Edition -
Chapter 3.11"

In: "Solaris (TM) Internals: Solaris 10
and OpenSolaris Kernel Architecture,
Second Edition - Chapter 3.11",

10 July 2006 (2006-07-10), Prentice Hall,
XP055102096,

ISBN: 978-0-13-148209-8

* section 3.11.6 *

"Non-legal human translation of
W02013066124",

17 February 2014 (2014-02-17),
XP055102434,

Retrieved from the Internet:
URL:http://dummy.net
[retrieved on 2014-02-17]

the whole document

1,2,7-10

1-10

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/060243
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010057967 Al 04-03-2010 JP 2010055296 A 11-03-2010
US 2010057967 Al 04-03-2010
US 7581052 Bl 25-08-2009  NONE
WO 2013066124 Al 10-05-2013 KR 20130049110 A 13-05-2013
WO 2013066124 Al 10-05-2013
US 2006123422 Al 08-06-2006 US 2006123422 Al 08-06-2006
US 2008184256 Al 31-07-2008

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report
	Page 27 - wo-search-report

