【发明名称】
一种筛选降解黄曲霉毒素 B1 细菌的方法

【摘要】
本发明涉及一种筛选降解黄曲霉毒素 B1 细菌的方法，该方法使用香豆素作为筛选培养基的唯一碳源，培养样品，最后筛选得到能降解黄曲霉毒素 B1 细菌。本发明筛选方法不用接触黄曲霉毒素毒物质，就能筛选出能降解毒素的细菌，特异性强，筛选效率高，价格低廉，准确性强，适用于大规模筛选降解黄曲霉毒素 B1 细菌。
1. 香豆素在筛选降解黄曲霉素B1细菌中的应用。

2. 一种筛选降解黄曲霉素B1细菌的方法，其特征在于，该方法使用香豆素作为筛选培养基的唯一碳源，培养样品，最后筛选得到能降解黄曲霉素B1细菌。

3. 如权利要求2所述的筛选降解黄曲霉素B1细菌的方法，其特征在于，所述筛选培养基是以香豆素为唯一碳源，添加硝酸铵，氯化钙，琼脂，制成的贫瘠培养基，pH调整为中性。

4. 如权利要求3所述的筛选降解黄曲霉素B1细菌的方法，其特征在于，所述贫瘠培养基配方为：0.1-0.5 g KH₂PO₄，0.2-2 g NH₄NO₃，0.1-1 g CaCl₂，15-20 g 琼脂，0.1-2 g 香豆素。

5. 如权利要求4所述的细菌降解黄曲霉素B1的方法，其特征在于，所述贫瘠培养基配方为：0.25 g KH₂PO₄，1.0 g NH₄NO₃，0.25 g CaCl₂，17 g 琼脂，1.0 g 香豆素。

6. 如权利要求2~5任一项所述的筛选降解黄曲霉素B1细菌的方法，其特征在于，该方法包括下述步骤：

1）制备筛选培养基

2）菌群的稀释：将从自然界中收集得到的样品用无菌水溶解，富集培养，稀释；

3）菌群的涂布：将稀释样品涂布于上述培养基制成的固体平板；

4）细菌的纯化分离：置于25-30℃生化培养箱培养3-10天，将可见的不同形态的单菌落挑出，并在如上培养基平板中进行连续三代培养，最终将可生长的细菌挑出。

7. 如权利要求6所述的筛选降解黄曲霉素B1细菌的方法，其特征在于，所述步骤2）菌群的稀释中，将自然界中收集得到的动物粪便、发霉粮食和饲料、土样和朽木，分别称取1g，磨碎，置于灭菌18 mm×180 mm试管中，加无菌水9 mL，用棉塞封口，振荡过夜。
8. 如权利要求6所述的筛选降解黄曲霉毒素B1细菌的方法，其特征在于，所述步骤3)菌群的涂布中，吸取上清液1mL，梯度稀释10⁻¹、10⁻²、10⁻³、10⁻⁴、10⁻⁵，分别取0.2mL各样品溶液，涂布于种子培养基的平板。

9. 如权利要求6所述的筛选降解黄曲霉毒素B1细菌的方法，其特征在于，所述步骤4)细菌的纯化分离中，将上述平板在37°C恒温箱培养3-10天，将能够生长的菌落逐一挑出，在新鲜的种子培养基平板上划线纯化，分别编号并转接至肉汤培养基斜面保存；将上述分离纯化的菌株用灭菌竹签接于装有香豆素溶液的灭菌36孔接种器中，然后接种于香豆素培养基平板，将其置于37°C培养箱中培养一周，观察菌株的生长情况。为避免细菌在原环境中的碳源干扰，挑取有生长现象的菌株，在初筛培养基平板上进行连续三代培养，能够在香豆素培养基上生长的细菌挑出，保存于斜面。
一种筛选降解黄曲霉毒素B1细菌的方法

技术领域

本发明涉及微生物筛选与纯化，特别是，涉及筛选高效降解黄曲霉毒素B1细菌的方法。

背景技术

自从1960年代黄曲霉毒素被发现以来，科学工作者便不断地研究该类毒素的预防和去毒方法。从自然界各种样品中筛选微生物进行脱毒的报道，多集中近十年。国内研究不多，只有刘大岭筛选出一种真菌代谢产物具有降解毒素的作用。国外的研究报道比较多的筛选出的解毒菌株包括乳酸菌，双歧杆菌，酵母菌和白腐真菌等，还有橙色黄杆菌，红球菌，假密环菌，根霉菌等。对于乳酸菌，双歧杆菌和酵母菌的研究表明，大部分去除毒素的效率在50％以下，而且最关键的是这种去除机制是可逆的结合，而不是对毒素的降解。其他一些细菌和真菌的解毒研究表明，大部分菌的降解效率不高，降解效率受作用时间，溶液pH值，菌体数量，毒素浓度，金属离子浓度等影响；到目前还没有一种微生物筛选方法，能高效筛选黄曲霉毒素降解菌株。

从自然界中筛选具有降解毒素功能的微生物，是一项耗时，费力且高度危险的工作。国内外的研究人员筛选微生物大多采用含毒素的培养基进行特异筛选，工作量巨大，效率低，长时间接触毒素对操作人员的健康有危害，而且毒素对实验室和周边环境产生潜在污染。

发明内容

本发明的目的在于提供一种用于筛选降解黄曲霉毒素B1细菌的方法，以解决现有技术中存在的上述问题。

本发明提供香豆素在筛选降解黄曲霉毒素B1细菌中的应用。
本发明还提供一种筛选降解黄曲霉毒素B1细菌的方法，该方法使用香豆素作为筛选培养基的唯一碳源。培养样品，最后筛选得到能够降解黄曲霉毒素B1细菌。

所述筛选培养基是以香豆素为唯一碳源，添加硝酸铵，氯化钙，琼脂，制成的贫瘠培养基，pH调整为中性。

所述贫瘠培养基配方为：0.1-0.5 g KH₂PO₄，0.2-2 g NH₄NO₃，0.1-1 g CaCl₂，15-20 g 琼脂，0.1-2 g 香豆素。

优选地，所述贫瘠培养基配方为：0.25 g KH₂PO₄，1.0 g NH₄NO₃，0.25 g CaCl₂，17 g 琼脂，1.0 g 香豆素。

在制备得到固体平板培养基后，进行下述步骤：
1）菌群的稀释：将自然界中收集得到的各种样品用无菌水溶解，富集培养，稀释；
2）菌群的涂布：将稀释样品涂布于上述培养基制成的固体平板；
3）细菌的纯化分离：置于25-30°C生化培养箱培养3-10天，将可见的不同形态的单菌落挑出，并在如上培养基平板中进行连续三代培养，最终将可生长的菌株挑出。

所述步骤1）菌群的稀释中，将自然界中收集得到的动物粪便，发酵粮食和饲料，土样，朽木等各种样品，分别称取1g，磨碎，置于灭菌18 mm x 180 mm试管中，加无菌水9 mL，用棉塞封口，振荡过夜。

所述步骤2）菌群的涂布中，吸取上清液1 mL，梯度稀释10⁻¹、10⁻²、10⁻³、10⁻⁴、10⁻⁵，分别取0.2 mL各样品溶液，涂布于种子培养基的平板。

所述步骤3）细菌的纯化分离中，将上述平板在37°C恒温箱培养3-10天，将能够生长的菌落逐一挑出，在新鲜的种子培养基平板上划线纯化，分别编号并转接至肉汤培养基斜面保存；将上述分离纯化的菌株用灭菌竹签接种于装有香豆素溶液的灭菌36 孔接种器中，然后接种于香豆素培养基平板，将其置于37°C培养箱中培养一周，观察菌株
的生长情况。为避免细菌在原环境中的碳源干扰，挑取有生长现象的菌株，在初筛培养基平板上进行连续三代培养，将能够在香豆素培养基上生长的菌株挑出，保存于斜面。

本发明还提供利用所述的纯化分离得到的菌株降解黄曲霉毒素B1的方法，包括如下步骤：取细菌发酵液0.8ml，加入黄曲霉毒素B1甲醇溶液0.2ml，用磷酸盐缓冲溶液将反应体系调整至pH7.2，在25-30℃反应72h后即可去除溶液中的黄曲霉毒素。

本发明具有以下有益效果：采用该发明方法筛选毒素降解菌不用接触黄曲霉毒素致病物质，就能筛选出能降解毒素的细菌，特异性强，筛选效率高，价格低廉，准确性强，适用于大规模筛选降解黄曲霉毒素B1菌株，用于在饲料工业中黄曲霉毒素的控制。

附图说明

图1 各菌株在香豆素培养基上培养三代的形态；
图2 由香豆素培养基法筛选得到的高效降解黄曲霉毒素B1的菌株35-3；
图3 由香豆素培养基法筛选得到的高效降解黄曲霉毒素B1的菌株068。

具体实施方式

以下实施例用于说明本发明，但不用来限制本发明的范围。

本发明方法使用的主要实验仪器和设备有：
Sartorius 1702型分析天平 北京医疗设备厂
YX-280D型高压蒸汽灭菌器 合肥华泰医疗设备有限公司
Class 2 Type B2型生物安全柜 北京东联哈尔仪器制造有限公司
LRH-250A型生化培养箱 湖北黄石医疗仪器厂
超净工作台 哈尔滨东联电子设备有限公司
恒温水浴锅 北京医疗设备厂
显微摄像系统 Motic B Series/Panasonic
高速离心机
电热式压力蒸汽消毒器
HZQ-Q 全温振荡器
752 分光光度计
TGL-16C 离心机
光化学衍生池
L2130型高效液相色谱仪

北京医用离心机厂
上海博迅设备厂
哈尔滨东联电子设备有限公司
上海精密科学仪器厂
上海安亭科学仪器厂
美国AURA公司
日本日立公司

实施例 1 用于降解黄曲霉毒素B1细菌的筛选方法

1) 培养基的制备：以香豆素为唯一碳源，添加磷酸铵，氯化钙，
琼脂，制成贫瘠培养基，调 pH 为中性；培养基配方为：0.25 g
KH₂PO₄，1.0 g NH₄NO₃，0.25 g CaCl₂，17 g 琼脂，1.0 g 香豆素，pH
7.0；121℃蒸汽灭菌 20 min 后加入香豆素；

2) 菌群的稀释：将自然界中收集得到的动物粪便，发霉粮食和
饲料，土样，朽木等各种样品，各种样品分别称取 1 g，磨碎，置于
灭菌 18 mm × 180 mm 试管中，加无菌水 9 mL，用棉塞封口，振荡过
夜；用无菌水溶解，富集培养，稀释；

3) 菌群的涂布：吸取上清液 1 mL，梯度稀释 10⁻¹，10⁻²，10⁻³，
10⁻⁴，10⁻⁵，分别取 0.2 mL 各样品溶液，涂布于种子培养基的平板；

4) 细菌的纯化分离：将上述平板在 37℃恒温箱培养 3-10 天，观
察结果，将有代表性的菌落逐一挑出，在新鲜的种子培养基平板上划
线纯化，分别编号并转接至肉汤培养基斜面保存；将上述分离纯化的
菌株用灭菌竹签接于装有香豆素溶液的灭菌 36 孔接种器中，然后接
种于香豆素培养基平板，将其置于 37℃培养箱中培养一周，观察菌株
的生长情况。为避免细菌在原环境中的碳源干扰，挑取有生长现象的
菌株，在初筛培养基平板上进行连续三代培养，将能够在香豆素培养
基上生长的菌株挑出，保存于斜面。

用本方法从自然界54个样品中初筛得到199株细菌（表1）。通
进一步复筛，得到26株有降解活力的菌株（表2）。

表1 黄曲霉素降解菌株的初筛分离

<table>
<thead>
<tr>
<th>菌种来源</th>
<th>菌株数（株）</th>
<th>菌种来源</th>
<th>菌株数（株）</th>
</tr>
</thead>
<tbody>
<tr>
<td>黑叶猴粪</td>
<td>4</td>
<td>黄猴粪</td>
<td>5</td>
</tr>
<tr>
<td>灰叶猴粪</td>
<td>4</td>
<td>南美猴粪</td>
<td>4</td>
</tr>
<tr>
<td>白頷粪</td>
<td>4</td>
<td>豚鹿粪</td>
<td>5</td>
</tr>
<tr>
<td>免粪</td>
<td>5</td>
<td>土壤</td>
<td>10</td>
</tr>
<tr>
<td>剑羚粪</td>
<td>3</td>
<td>花根土</td>
<td>3</td>
</tr>
<tr>
<td>黑麂粪</td>
<td>4</td>
<td>栎木</td>
<td>3</td>
</tr>
<tr>
<td>赤斑羚粪</td>
<td>2</td>
<td>发霉饲料</td>
<td>4</td>
</tr>
<tr>
<td>尾尾鹿粪</td>
<td>5</td>
<td>发霉大米</td>
<td>4</td>
</tr>
<tr>
<td>驼鸟粪</td>
<td>5</td>
<td>发霉花生</td>
<td>2</td>
</tr>
<tr>
<td>豚麂粪</td>
<td>5</td>
<td>发霉水稻</td>
<td>4</td>
</tr>
<tr>
<td>美洲豹粪</td>
<td>5</td>
<td>陈化粮</td>
<td>2</td>
</tr>
<tr>
<td>大羚羊粪</td>
<td>5</td>
<td>楠米</td>
<td>2</td>
</tr>
<tr>
<td>斑马粪</td>
<td>5</td>
<td>大麦米</td>
<td>2</td>
</tr>
<tr>
<td>牛羚粪</td>
<td>5</td>
<td>薏米</td>
<td>2</td>
</tr>
<tr>
<td>原驼粪</td>
<td>5</td>
<td>燕麦</td>
<td>4</td>
</tr>
<tr>
<td>马来貘粪</td>
<td>4</td>
<td>红宝石米</td>
<td>3</td>
</tr>
<tr>
<td>大耳羊粪</td>
<td>3</td>
<td>芥麦米</td>
<td>2</td>
</tr>
<tr>
<td>东北虎粪</td>
<td>5</td>
<td>玉米糠</td>
<td>1</td>
</tr>
<tr>
<td>牦牛粪</td>
<td>4</td>
<td>红花豇豆</td>
<td>3</td>
</tr>
<tr>
<td>中美貘粪</td>
<td>5</td>
<td>红花云豆</td>
<td>1</td>
</tr>
<tr>
<td>白颊长颈鹿粪</td>
<td>5</td>
<td>黄豆</td>
<td>2</td>
</tr>
<tr>
<td>山峭（石家庄）粪</td>
<td>3</td>
<td>花生米</td>
<td>2</td>
</tr>
<tr>
<td>黄颊粪</td>
<td>4</td>
<td>饲料</td>
<td>3</td>
</tr>
<tr>
<td>美洲虎粪</td>
<td>4</td>
<td>狗粮</td>
<td>3</td>
</tr>
<tr>
<td>山峭（刚果）粪</td>
<td>3</td>
<td>猫粮</td>
<td>2</td>
</tr>
<tr>
<td>斑羚粪</td>
<td>5</td>
<td>大豆粕</td>
<td>2</td>
</tr>
<tr>
<td>鹅喉羚粪</td>
<td>4</td>
<td>发霉大米</td>
<td>4</td>
</tr>
</tbody>
</table>

表2 降解黄曲霉素B1菌株的复筛

<table>
<thead>
<tr>
<th>菌株编号</th>
<th>菌株来源</th>
<th>AFB1降解率(%)± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-3</td>
<td>南美貘粪</td>
<td>82.50 ± 3.20<sup>a</sup></td>
</tr>
<tr>
<td>51-4</td>
<td>豚鹿粪</td>
<td>80.93 ± 2.65<sup>ab</sup></td>
</tr>
<tr>
<td>068</td>
<td>南美貘粪</td>
<td>78.61 ± 1.76<sup>bc</sup></td>
</tr>
<tr>
<td>编号</td>
<td>物种</td>
<td>数据值</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>S2</td>
<td>黄酵粪</td>
<td>78.10 ± 4.48<sup>bc</sup></td>
</tr>
<tr>
<td>C5</td>
<td>灰叶猴粪</td>
<td>77.80 ± 1.63<sup>bcd</sup></td>
</tr>
<tr>
<td>B3</td>
<td>兔粪</td>
<td>77.57 ± 4.36<sup>cd</sup></td>
</tr>
<tr>
<td>W3</td>
<td>剑羚粪</td>
<td>76.83 ± 0.72<sup>cd</sup></td>
</tr>
<tr>
<td>47-1</td>
<td>发霉饲料</td>
<td>75.92 ± 3.44<sup>cd</sup></td>
</tr>
<tr>
<td>S3-2</td>
<td>斑羚粪</td>
<td>74.83 ± 2.47<sup>cd</sup></td>
</tr>
<tr>
<td>50-4</td>
<td>鸵鸟粪</td>
<td>73.92 ± 5.48<sup>cd</sup></td>
</tr>
<tr>
<td>G2</td>
<td>斑马粪</td>
<td>73.75 ± 3.60<sup>d</sup></td>
</tr>
<tr>
<td>32-2</td>
<td>斑羚粪</td>
<td>67.64 ± 1.72<sup>e</sup></td>
</tr>
<tr>
<td>K2</td>
<td>尾恒鹿粪</td>
<td>67.64 ± 0.75<sup>e</sup></td>
</tr>
<tr>
<td>41-4</td>
<td>斑马粪</td>
<td>64.81 ± 4.84<sup>e</sup></td>
</tr>
<tr>
<td>K3</td>
<td>尾恒鹿粪</td>
<td>64.23 ± 1.44<sup>e</sup></td>
</tr>
<tr>
<td>I1</td>
<td>黑叶猴粪</td>
<td>58.76 ± 2.48<sup>f</sup></td>
</tr>
<tr>
<td>N1</td>
<td>土壤</td>
<td>51.50 ± 0.57<sup>g</sup></td>
</tr>
<tr>
<td>23-5</td>
<td>斑羚粪</td>
<td>48.69 ± 3.18<sup>gh</sup></td>
</tr>
<tr>
<td>G3</td>
<td>斑马粪</td>
<td>46.39 ± 1.25<sup>h</sup></td>
</tr>
<tr>
<td>42-1</td>
<td>饲料</td>
<td>45.18 ± 1.30<sup>h</sup></td>
</tr>
<tr>
<td>J1</td>
<td>赤斑羚粪</td>
<td>30.88 ± 2.82<sup>i</sup></td>
</tr>
<tr>
<td>39-3</td>
<td>白颊粪</td>
<td>28.08 ± 1.25<sup>i</sup></td>
</tr>
<tr>
<td>37-1</td>
<td>美洲豹粪</td>
<td>18.71 ± 0.87<sup>j</sup></td>
</tr>
<tr>
<td>H1</td>
<td>土壤</td>
<td>13.94 ± 1.01<sup>k</sup></td>
</tr>
<tr>
<td>31-3</td>
<td>饲料</td>
<td>11.91 ± 2.01<sup>k</sup></td>
</tr>
<tr>
<td>C1</td>
<td>灰叶猴粪</td>
<td>9.18 ± 1.54<sup>k</sup></td>
</tr>
</tbody>
</table>

注：前标字母不相同表示差异显著（P < 0.05）

本发明分离筛选的具有降解黄曲霉毒素B1的细菌，形态各异，种类分布广泛，经过细菌学鉴定以及生理生化试验研究，结果如下：

菌株35-3在LB培养基上生长为黄色的圆形菌落，菌落边缘整齐，表面湿润光滑，显微镜下细胞形态为细小短杆状，革兰氏染色阴性。对其进行部分生理生化特征测定，结果表明该菌株在37 ℃生长良好，但是在10 ℃和 55 ℃不能生长；能利用大部分单糖，如葡萄糖、麦芽糖和果糖等作为唯一碳源；除硝酸铵外，大部分无机氮源都不能利用；该菌能水解吐温80和明胶；在糖醇类发酵培养基上不产酸。

菌株068在VY/2培养基上为橙红色球形菌落，菌落细小，分布紧密，表面光滑粘稠，显微镜下细胞形态为杆菌状，革兰氏染色阴性。
菌株C5在LB培养基上生长为乳白色的圆形菌落，菌落大而整齐，表面光滑粘稠，显微镜下细胞形态为杆状，革兰氏染色阳性。

菌株53-2在LB培养基上为黄色的圆形菌落，菌落细小，显微镜下细胞形态为球形，革兰氏染色阳性。

菌株51-4在LB培养基上为暗白色不规则菌落，菌落大而扩展，革兰氏染色阳性。菌株47-1在LB培养基上为透明色椭圆形菌落，菌落光滑粘稠，革兰氏染色阳性。菌株B3的细胞呈球状，革兰氏染色阴性。菌株S2的细胞呈小球状，革兰氏染色阴性。菌株W3的细胞呈短杆状，革兰氏染色阴性。

实施例2 用于降解黄曲霉毒素B1细菌的筛选方法

1）培养基的制备：以香豆素为唯一碳源，添加硝酸铵，氯化钙，琼脂，制成斜面培养基，调整pH为中性；培养基配方为：0.5 g KH₂PO₄，1 g NH₄NO₃，0.5 g CaCl₂，15 g 琼脂，1 g 香豆素，pH 7.0；121℃蒸汽灭菌20 min后加入香豆素；

其余步骤基本同实施例1。

用本方法从表1所列20个样品中筛选得到65株细菌。通过进一步复筛，得到8株有降解活力的菌株。

实施例3 用于降解黄曲霉毒素B1细菌的筛选方法

1）培养基的制备：以香豆素为唯一碳源，添加硝酸铵，氯化钙，琼脂，制成斜面培养基，调整pH为中性；培养基配方为：0.2 g KH₂PO₄，0.5 g NH₄NO₃，1 g CaCl₂，15 g 琼脂，0.5 g 香豆素，pH 7.0；121℃蒸汽灭菌20 min后加入香豆素；

其余步骤基本同实施例1。

用本方法从表1所列17个样品中筛选得到79株细菌。通过进一步复筛，得到14株有降解活力的菌株。

实施例4 用于降解黄曲霉毒素B1细菌的筛选方法

1）培养基的制备：以香豆素为唯一碳源，添加硝酸铵，氯化钙，
琼脂，制成贫瘠培养基，调整pH为中性；培养基配方为：0.1 g KH₂PO₄，0.2 g NH₄NO₃，0.75 g CaCl₂，15 g 琼脂，0.2 g 香豆素，pH 7.0；121℃蒸汽灭菌20 min后加入香豆素；

其余步骤基本同实施例1。

用本方法从表1所列17个样品中筛选得到55株细菌。通过进一步复筛，得到4株有降解活力的菌株。

实验例 1

1）利用本发明实施例1筛选得到的活性细菌35-3降解黄曲霉毒素B1：

将菌株35-3接种到发酵培养基中，37℃发酵35 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50 %的甲醇水溶液(1:1，v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[
(1 - \frac{处理后AFB1 峰面积}{空白对照AFB1 峰面积}) \times 100\%
\]

结果表明，35-3的发酵液在37℃与AFB1培养72 h，对毒素的降解率达到82.5%。

2）利用本发明实施例1筛选得到的活性细菌068降解黄曲霉毒素B1：

将菌株068接种到发酵培养基中，30 ℃发酵50 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于30℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50 %的甲醇水溶液(1:1，v/v)溶解残余物，混匀后用
于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \frac{处理后AFB1 峰面积}{空白对照AFB1 峰面积}) \times 100\%\]

结果表明，068的发酵液在30 ℃与AFB1培养72 h，对毒素的降解率达到76.6 %。

3）利用本发明实施例1筛选得到的活性细菌C5降解黄曲霉毒素B1:

将菌株C5接种到发酵培养基中，37 ℃发酵24 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37 ℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氯仿挥干，用50 %的甲醇水溶液(1:1, v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \frac{处理后AFB1 峰面积}{空白对照AFB1 峰面积}) \times 100\%\]

结果表明，C5的发酵液在37 ℃与AFB1培养72 h，对毒素的降解率达到77.8 %。

4）利用本发明实施例1筛选得到的活性细菌53-2降解黄曲霉毒素B1:

将菌株53-2接种到发酵培养基中，37 ℃发酵24 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37 ℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氯仿挥干，用50 %的甲醇水溶液(1:1, v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \frac{处理后AFB1 峰面积}{空白对照AFB1 峰面积}) \times 100\%\]

结果表明，53-2的发酵液在37 ℃与AFB1培养72 h，对毒素的降解
率达到74.83%。

5) 利用本发明实施例1筛选得到的活性细菌51-4降解黄曲霉毒素B1:

将菌株51-4接种到发酵培养基中，37℃发酵24 h，分别取800 μL发酵液，与200 μL黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50%的甲醇水溶液(1:1，v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \text{处理后 AFB1 峰面积} / \text{空白对照 AFB1 峰面积}) \times 100\%\]

结果表明，51-4的发酵液在37℃与AFB1培养72 h，对毒素的降解率达到80.93%。

6) 利用本发明实施例1筛选得到的活性细菌47-1降解黄曲霉毒素B1:

将菌株47-1接种到发酵培养基中，37℃发酵24 h，分别取800 μL发酵液，与200 μL黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50%的甲醇水溶液(1:1，v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \text{处理后 AFB1 峰面积} / \text{空白对照 AFB1 峰面积}) \times 100\%\]

结果表明，47-1的发酵液在37℃与AFB1培养72 h，对毒素的降解率达到75.92%。

7) 利用本发明实施例1筛选得到的活性细菌B3降解黄曲霉毒素B1:
将菌株B3接种到发酵培养基中，37℃发酵35 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37 ℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50 %的甲醇水溶液(1:1，v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \text{处理后 AFB1 峰面积} / \text{空白对照 AFB1 峰面积}) \times 100\%\]

结果表明，B3的发酵液在37℃与AFB1培养72 h，对毒素的降解率达到77.57%。

8）利用本发明实施例1筛选得到的活性细菌S2降解黄曲霉毒素B1：

将菌株S2接种到发酵培养基中，37℃发酵35 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置于37 ℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50 %的甲醇水溶液(1:1，v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[(1 - \text{处理后 AFB1 峰面积} / \text{空白对照 AFB1 峰面积}) \times 100\%\]

结果表明，S2的发酵液在37℃与AFB1培养72 h，对毒素的降解率达到78.10%。

9）利用本发明实施例1筛选得到的活性细菌W3降解黄曲霉毒素B1：

将菌株W3接种到发酵培养基中，37℃发酵24 h，分别取800 μL发酵液，与200 μL 黄曲霉毒素B1（500 μg/kg）置于灭菌的青霉素小瓶中，以不接菌的发酵培养基加黄曲霉毒素B1作为空白对照，将其置
于37 ℃培养箱培养72 h。

反应结束后，反应体系用等体积的氯仿萃取三次，取氯仿层室温下氮气挥干，用50 %的甲醇水溶液(1:1, v/v)溶解残余物，混匀后用于高效液相色谱分析。上样量20 μL。毒素降解率按照如下公式计算：

\[
(1 - \text{处理后AFB1 峰面积} / \text{空白对照AFB1 峰面积}) \times 100\%
\]

结果表明，W3的发酵液在37℃与AFB1培养72 h，对毒素的降解率达到76.83%。

实验例 2

本发明实施例2筛选得到的活性细菌降解黄曲霉毒素B1:

利用与实验例1类似的方法对筛选得到的活性细菌进行测试，结果表明，将其发酵液在37℃与AFB1培养72 h，对毒素的降解率大约在68.76-90.66 %。

实验例 3

本发明实施例3筛选得到的活性细菌降解黄曲霉毒素B1:

利用与实验例1类似的方法对筛选得到的活性细菌进行测试，结果表明，将其发酵液在37℃与AFB1培养72 h，对毒素的降解率大约在70.49-88.53 %。

实验例 4

本发明实施例4筛选得到的活性细菌降解黄曲霉毒素B1:

利用与实验例1类似的方法对筛选得到的活性细菌进行测试，结果表明，将其发酵液在37℃与AFB1培养72 h，对毒素的降解率大约在63.60-82.92 %。