(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
30 September 2004 (30.09.2004)

PCT

(10) International Publication Number

WO 2004/084070 A1

GO6F 11/00

(51) International Patent Classification’:

(21) International Application Number:

PCT/GB2004/001143
(22) International Filing Date: 17 March 2004 (17.03.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/392,382
10/779,805

20 March 2003 (20.03.2003)
18 February 2004 (18.02.2004)

us
Us

(71) Applicants (for all designated States except US): ARM
LIMITED [GB/GB]; 110 Fulbourn Road, Cherry Hinton,
Cambridge CB1 9NJ (GB). UNIVERSITY OF MICHI-
GAN [US/US]; Ann Arbor, MI 48109 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AUSTIN, Todd,
Michael [US/US]; 2395 Timbercrest Court, Ann Arbor,
MI 48105 (US). BLAAUW, David, Theodore [US/US];
1811 Glenwood, Ann Arbor, MI 48104 (US). MUDGE,
Trevor, Nigel [US/US]; 3801 Wynnstone Drive, Ann
Arbor, MI 48105-2880 (US). FLAUTNER, Krisztian
[US/GB]; 15 Kingston Street, Cambridge CB1 2NU (GB).

(74) Agents: ROBINSON, Nigel, Alexander, Julian et al.; D
Young & Co, 21 New Fetter Lane, London EC4A 1DA
(GB).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-

pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,

GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

INTEGRATED CIRCUIT

1014
(

ANV OO RO

1016

1026

(54) Title: SYSTEMATIC AND RANDOM ERROR DETECTION AND RECOVERY WITHIN PROCESSING STAGES OF AN

1020

Error

—t (57) Abstract: An integrated circuit includes a plurality of processing stages each including processing logic (1014), a non-delayed
signal-capture element (1016), a delayed signal-capture element (1018) and a comparator (1024). The non-delayed signal-capture
element (1016) captures an output from the processing logic (1014) at a non-delayed capture time. At a later delayed capture time,

@0 the delayed signal-capture element (1018) also captures a value from the processing logic (1014). An error detection circuit (1026)

& and error correction circuit (1028) detect and correct random errors in the delayed value and supplies an error-checked delayed value

% to the comparator (1024). The comparator (1024) compares the error-checked delayed value and the non-delayed value and if they

& are not equal this indicates that the non-delayed value was captured too soon and should be replaced by the error-checked delayed

& value. The non-delayed value is passed to the subsequent processing stage immediately following its capture and accordingly error
recovery mechanisms are used to suppress the erroneous processing which has occurred by the subsequent processing stages, such

e
=

as gating the clock and allowing the correct signal values to propagate through the subsequent processing logic before restarting the
clock. The operating parameters of the integrated circuit, such as the clock frequency, the operating voltage, the body biased voltage,
temperature and the like are adjusted so as to maintain a finite non-zero error rate in a manner that increases overall performance.

WO 2004/084070 A1 II}110 Y A080H0 T 0000 000 O A0

— before the expiration of the time limit for amending the Fortwo-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2004/084070

PCT/GB2004/001143

SYSTEMATIC AND RANDOM ERROR DETECTION AND RECOVERY
WITHIN PROCESSING STAGES OF AN INTEGRATED CIRCUIT

This invention relates to the field of integrated circuits. More particularly,
this invention relates to the detection of errors including both random errors and
systematic errors and the recovery from such errors within processing stages of an

integrated circuit.

It is known to provide integrated circuits that can be considered to be
formed of a series of serially connected processing stages (e.g. a pipelined circuit).
Between each of the stages is a signal-capture elemenf such as a latch or a sense
amp into which one or more signal values are stored. The processing logic of each
processing stage is responsive to input values received from preceding processing
stages or elsewhere to generate output signal values to be stored in an associated
output latch. The time taken for the processing logic to complete its processing
operations determines the speed at which the integrated circuit may operate. If the
processing logic of all stages is able to complete its processing operation in a short
period of time, then the signal values may be rapidly advanced through the output
latches resulting in high speed processing. The system cannot advance signals
between stages more rapidly than the slowest processing logic is able to perform its
processing operation of receiving input signals and generating appropriate output

signals. This limits the maximum performance of the system.

In some situations it is desired to process data as rapidly as possible and
accordingly the processing stages will be driven so as to advance their processing
operations at as rapid a rate as possible until the slowest of the processing stages is
unable to keep pace. In other situations, the power consumption of the integrated
circuit is more important than the processing rate and the operating voltage of the
integrated circuit will be reduced so as to reduce power consumption up to the point
at which the slowest of the processing stages is again no longer able to keep pace.

Both of these situations in which the slowest of the processing stages is unable to

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

keep pace will give rise to the occurrence of processing errors (i.e. systematic

errors).

One way of avoiding the occurrence of processing errors is to drive the
integrated circuit with processing clocks having a frequency known to be less than
the minimum permissible by a tolerance range that takes account of worst case
manufacturing variation between different integrated circuits, operating
environment conditions, data dependencies of the signals being processed and the
like. In the context of voltage level, it is normal to operate an integrated circuit at a
voltage level which is sufficiently above a minimum voltage level to ensure that all
processing stages will be able to keep pace taking account of worst case
manufacturing variation, environmental conditions, data dependencies and the like.
It will be appreciated that the conventional approach is cautious in restricting the
maximum operating frequency and the minimum operating voltage to take account

of the worst case situations.

Besides systematic processing errors that result from the slowest of the
processing stages being able to keep pace when a processor is run at too high a
frequency or too low an operating voltage, integrated circuits are also subject to
random errors known as single event upsets (SEUs). An SEU is a random error
(bit-flip) induced by an ionising particle such as a cosmic ray or a proton in a
device. The change of state is transient i.e. pulse-like so a reset or rewriting of the
device causes normal behaviour thereafter. It is known to use error correction
codes to detect and correct random errors. However, such error correction
techniques necessarily introduce delay as a result of the processing time required
for error detection and correction. This processing delay is justifiable in
environments such as noisy communication channels where error rates are high yet
it is important to suppress errors in the processed received data to within a
predetermined error rate. By way of contrast, in the case of integrated circuits
where it is generally desired to process data as rapidly as possible, it is undesirable

to introduce error correction to critical paths of the data processing operations due

10

15

20

25

30

WO 2004/084070

PCT/GB2004/001143

to the delay and associated negative performance impact that error correction

circuitry incurs.

Viewed from one aspect the present invention provides an integrated circuit
for performing data processing, said integrated circuit comprising:

a plurality of processing stages, a processing stage output signal from at
least one proclassing stage being supplied as a processing stage input signal fo a
subsequent processing ‘stage, wherein said at least one processing stage comprises:

processing logic operable to perform a processing operation upon at least
one coded input value to generate a processing logic output signal, said coded input

value being an input value to which an error correction code has been applied;

a non-delayed signal-capture element operable to capture a non-delayed
value of said processing logic output signal at a non-delayed capture time, said non-
delayed value being supplied to said subsequent processing stage as said processing
stage output signal following said non~dela§/ed capture time; |

a delayed signal-capture element operable to capture a delayed value of said
processing logic output signal at a delayed capture time later than said non-delayed
capture time;

error correction logic operable to detect an occurrence of a random error in
said delayed value of said processing logic output signal, to determine if said
detected random error is correctable using said error correction code and to either
generate an error-checked delayed value or to indicate that said detected random
error is not correctable;

a comparator operable to compare said non-delayed value with said error-
checked delayed value to detect a change in said processing logic output signal at a
time following said non-delayed capture time, said change being indicative of a
systematic error whereby said processing logic has not finished said processing

operation at said non-delayed capture time or of a random error in said non-delayed

value; and

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Jd

error-repair logic operable when said comparator detects said change in said
processing logic output signal to perform an error-repair operation suﬁpressing use
of said non-delayed value either by replacing said non-delayed value by said error-
checked delayed value in subsequent processing stages or by initiating repetition of
said processing operation and processing operations of subsequent processing
stages if said error correction logic indicates that said detected random error is not

correctable.

The present technique recognises that the operation of the processing stages
themselves can be directly monitored to find the limiting conditions in which they
fail. When actual failures occur, then these failures can be corrected such that
incorrect operation overall is not produced. The advantages achieved by the
avoidance of excessively cautious performance margins in the previous approaches
compared with the direct observation of the failure point in the present approach
more than compensates for the additional time and power consumed in recovering
the system when a failure does occur. Deliberately allowing such processing errors
to occur such that critical paths fail to meet their timing requirements is highly
couliter-intuitive in this technical field where it is normal to take considerable

efforts to ensure that all critical paths always do meet their timing requirements.

Furthermore, the invention recognises that random errors in the delayed
value may be detected and corrected by error correction logic deployed off the
critical path of the data processing operations. Thus, when no systematic
processing errors are detected by the comparator, the error correction logic has no
adverse impact on the rapid progress of the computation. However, in the event
that a processing error is in fact detected by the comparator, the delayed value
available for use by the error repair logic to ensure forward progress of the
computation is a reliable value on which a random error check and, where
appropriate, random-error correction has been performed. Regardless of the
presence of the error correction logic in the path of the delayed signal value, when

processing errors are detected by the comparator, there will be a delay in the

10

15

20

25

30

WO 2004/084070

PCT/GB2004/001143

processing due to the need to perform the error-repair operation,. Thus there is a
surprising synergy between the provision of delayed signal-capture elements that
enable repair of deliberately induced systematic processing errors and the
application of error correction coding to correct random errors in the delayed signal
values. The error correction logic provides the advantage of improving the
reliability of the delayed value by detecting and correcting random errors without

significantly delaying progress of the computation.

It will be appreciated that the processing operation performed by the processing
logic could be a non-trivial processing operation that results in the value of the

input signal changing relative to the value of the output signal, for example where

.the processing operation is a multiplication operation or a division operation with

non-trivial operands. However, according to one preferred arrangement the
processing operation performed by the processing logic is an operation for which
the processing logic output signal is substantially equal to the processing stage

input value when no errors occur in said processing operation.

For example, according to a first preferred arrangement the data processing
operation that does not ordinarily change the input value could be read or write
operation performed by a memory circuit. According to an alternative preferred
arrangement the at least one processing stage is performed by a register and said
processing operation is a read, write or move operation. According to a further
alternative preferred arrangement in which the output signal value should be equal
to the input signal value, the at least one processing stage is performed by a

multiplexer and the processing operation is a multiplexing operation.

Whilst the present technique is applicable to both synchronous and
asynchronous data processing circuits, the invention is well-suited to synchronous
data processing circuits in which the plurality of processing stages are respective

pipeline stages within a synchronous pipeline.

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Tt will be appreciated that a variety of different error correction codes could be
used to error correction encode the input value input value, for example, linear
block codes, convolutional codes or turbo codes. However, for arrangements in
which the output value is substantially equal to the input value of the processing
logic, it is preferred that the input value is error correction encoded using a
Hamming code and the error repair logic performs said correction and said
detection using said Hamming code. Hamming codes are simple to implement and
suitable for detecting and correcting single bit errors such as those typically

resulting from SEUs.

Although some preferred arrangements involve value-preserving processing
operations such as read/write operations and data moving operations, in alternative
preferred arrangements the processing operation performed by the processing logic
is a value-altering operation for which the processing logic output signal can be
different from said processing stage input value even when no errors occur in said
processing operation. Thus the present technique is suitable for application to

processing logic elements such as adders, multipliers and shifters.

In arrangements where the processing operation is a value-altering processing
operation, it is preferred that the input value is error correction encoded using an
arithmetic code comprising one of: an AN code, a residue code, an inverse residue
code or a residue number code. Such arithmetic codes facilitate detection and

correction of random errors in processing operations involving arithmetic operators.

It will be appreciated that the comparator alone could be relied upon to detect
the presence of systematic errors. However, in preferred arrangements the
integrated circuit comprises a meta-stability detector operable to detect meta-
stability in the non-delayed value and trigger the error-repair logic to suppress the

use of the non-delayed value if found to be meta-stable.

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Having detected the occurrence of a systematic error, via the comparator,
there are a variety of different ways in which this may be corrected or compensated.
In one preferred type of embodiment the error-recovering logic is operable to
replace the non-delayed value with the error-checked delayed value as the
processing stage output signal. The replacement of the known defective processing
stage output signal with the correct value taken from the error-checked delayed
value sample is strongly preferred as it serves to ensure forward progress through
the data processing operations even though errors are occurring and require

compensation.

A preferred arrangement is one in which the error-repair logic operates to
force the delay value to be stored in the non-delay latch in place of the non-delayed

value.

Whilst the present technique is applicable to both synchronous and
asynchronous data processing circuits, the invention is well suited to synchronous
data processing circuits in which the processing operations within the processing

stages are driven by a non-delayed clock signal.

In the context of systems in which the processing stages are driven by the
non-delayed clock signal, the error-repair logic can utilise this to facilitate recovery
from an error by gating the non-delayed clock signal to provide sufficient time for
the following processing stage to recover from input of the incorrect non-delayed

value and instead use the correct error-checked delayed value.

In the context of embodiments using a non-delayed clock signal, the capture
times can be derived from predetermined phase points in the non-delayed clock
signal and a delayed clock signal derived from the non-delayed clock signal. The
delay between the non-delayed capture and the delayed capture can be defined by
the phase shift between these two clock signals.

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

The detection and recovery from systematic errors can be used in a variety
of different situations, but is particularly well suited to situations in which it is
wished to dynarﬁically control operating parameters of an integrated circuit in
dependence upon the detection of such errors. Counter intuitively, the present
technique can be used to control operating parameters such that the system operates
with a non-zero systematic error rate being maintained as the target rate since this
may correspond to an improved overall performance, either in terms of speed or
power consumption, even taking into account the measures necessary to recover

from occurrence of both systematic and random errors.

The operating parameters which may be varied include the operating
voltage, an operating frequency an integrated circuit body biased voltage (which

controls threshold levels) and temperature amongst others.

In order to ensure that the data captured in the delayed latch is always
correct, an upper limit on the maximum delay in the processing logic of any stage is
such that at no operating point can the delay of the processing logic of any stage
exceed the sum of the clock period plus the amount by which the delayed capture is
delayed. As a lower limit on any processing delay there is a requirement that the
processing logic of any stage should have a processing time exceeding the time by
which the delayed capture follows the non-delayed capture so as to ensure that
following data propagated along short paths does not inappropriately corrupt the
delayed capture value. This can be ensured by padding short paths with one or

more delay elements as required.

The present technique is applicable to a wide variety of different types of
integrated circuit, such as general digital processing circuits, but is particularly well
suited to systems in which the processing stages are part of a data processor or

Microprocessor.

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

In order to facilitate the use of control algorithms for controlling the
operational parameters preferred embodiments include an error counter circuit
operable to store a count of the detection of errors corresponding to a change in the
delayed value compared with the non-delayed value. This error counter may be

reached by software to carry out control of the operational parameters.

It will be appreciated that the delayed signal-capture element and non-
delayed signal-capture element discussed above could have a wide variety of
different forms. In particular, these may be considered to include embodiments in
the form of flip-flops, D-type latches, sequential elements, memory cells, register
clements, sense amps, combinations thereof and a wide variety of other storage

devices which are able to store a signal value.

Viewed from another aspect, the present invention provides a method of
controlling an integrated circuit for performing data processing, said method
comprising the steps of}

supplying a processing stage output signal from at least one processing stage
of a plurality of processing stages as a processing stage input signal to a subsequent
processing stage, said at least one processing stage operating to:

perform a processing operation with processing logic upon at least one
coded input value to generate a processing logic output signal, said coded input

value being an input value to which an error correction code has been applied;

capturing a non-delayed value of said processing logic output signal at a
non-delayed capture time, said non-delayed value being supplied to said subsequent
processing stage as said processing stage output signal following said non-delayed
capture time;

capturing a delayed value of said processing logic output signal at a delayed
capture time later than said non-delayed capture time;

detect an occurrence of a random error in said delayed value of said

processing logic output signal using error correction logic, to determine if said

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

detected random error is correctable using said error correction code and to either
generate an error-checked delayed value or to indicate that said detected random
error is not correctable;

comparing said non-delayed value with said error-checked delayed value to
detect a change in said processing logic output signal at a time following said non-
delayed capture time, said change being indicative of a systematic error whereby
said processing logic has not finished said processing operation at said non-delayed
capture time or of a random error in said non-delayed value; and

when said change is detected, performing an error-repair operation using
error-repair logic suppressing use of said non-delayed value either by replacing said
non-delayed value by said error-checked delayed value in subsequent processing
stages or by initiating repetition of said processing operation and processing
operations of subsequent processing stages if said error correction logic indicates

that said detected random error is not correctable.

Embodiments of the invention will now be described, by way of example

only, with reference to the accompanying drawings in which:

Figure 1 schematically illustrates a plurality of processing stages to which

the present technique is applied;

Figure 2 is a circuit block diagram schematically illustrating a circuit for use

in the present technique;

Figure 3 is a circuit diagram schematically illustrating a non-delayed latch
and a delayed latch together with an associated comparator and error-recovery

logic;

Figures 4A and 4B are a flow diagram schematically illustrating the

operation of the circuit of Figure 1;

10

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Figure 5 schematically illustrates a memory circuit including a fast read

mechanism and a slow read mechanism;

Figure 6 illustrates an alternative circuit arrangement for a portion of the

circuit of Figure 5;

Figure 7 is a flow diagram schematically illustrating the operation of the

memory circuit of Figure 5;

Figure 8 illustrates a pipelined bus including non-delayed latches and

delayed latches between the bus stages;

Figure 9 is a flow diagram schematically illustrating the operation of the

pipelined bus of Figure 8;

Figure 10 schematically illustrates the generation of control signals for
controlling a microprocessor that are subject to both non-delayed latching and

output and delayed latching and output;

Figure 11 is a flow diagram schematically illustrating one example of the

operation of the circuit of Figure 10;
Figure 12 illustrates a processing pipeline including non-delayed latches and
delayed latches with those delayed latches being reused as data retention latches

during a lower power of operation;

Figure 13 is a flow diagram schematically illustrating the operation of the

circuit of Figure 12;

Figure 14 schematically illustrates a plurality of processing stages to which

error correction and delayed latches have been applied;

11

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Figure 15 schematically illustrates error correction for data passing through
a channel that simply passes the data value unchanged from input to output if no

€ITOrs OCCur,

Figure 16 schematically illustrates how error correction is performed for a

value-changing logic element such as an adder, multiplier or shifter;

Figure 17 is a flow chart schematically illustrating the operation of the

circuit of Figure 14;

Figure 18 schematically illustrates how delayed and non-delayed latches can

be used to control the relative phases of clock signals within a processing pipeline;

Figures 19 and 20 schematically illustrate respective uses of stalls and

bubble insertion in recovering from errors; and

Figure 21 illustrates a non-delayed and delayed latch for use between

processing stages with the delayed latch being reused as a serial scan chain latch.

Figure 1 illustrates a part of an integrated circuit, which may be a part of a
synchronous pipeline within a processor core, such as an ARM processor core
produced by ARM limited of Cambridge, England. The synchronous pipeline is
formed of a plurality of like processing stages. The first stage comprises processing
logic 2 followed by a non-delayed latch 4 in the form of a flip-flop together with a
comparator 6 and a delayed latch 8. The term latch used herein encompasses any
circuit element operable to store a signal value irrespective of triggering, clock and
other requirements. Subsequent processing stages are similarly formed. A non-
delayed clock signal 10 drives the processing logic and non-delayed latches 4
within all of the processing stages to operate synchronously as part of a

synchronous pipeline. A delayed clock signal 12 is supplied to the delayed latches

12

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

8 of the respective processing stages. The delayed clock signal 12 is a phase shifted
version of the non-delayed clock signal 10. The degree of phase shift controls the
delay period between the capture of the output of the processing logic 2 by the non-
delayed latch 4 and the capture of the output of the processing logic 2 at a later time
performed by the delayed latch 8. If the processing logic 2 is operating within
limits given the existing non-delayed clock signal frequency, the operating voltage
being supplied to the integrated circuit, the body bias voltage, the temperature etc,
then the processing logic 2 will have finished its processing operations by the time
that the non-delayed latch 4 is triggered to capture its value. Consequently, when
the delayed latch 8 later captures the output of the processing logic 2, this will have
the same value as the value captured within the non-delayed latch 4. Accordingly,
the comparator 6 will detect no change occurring during the delay period and error-
recovery operation will not be triggered. Conversely, if the operating parameters
for the integrated circuit are such that the processing logic 2 has not completed its
processing operation by the time that the non-delayed latch 4 captures its value,
then the delayed latch 8 will capture a different value and this will be detected by
the comparator 6 thereby forcing an error-recovery operation to be performed. It
will be seen that the error-recovery operation could be to replace the output of the
non-delayed latch 4 which was being supplied to the following processing stage
during the time following its capture with the delayed value stored within the
delayed latch 8. This delayed value may additionally be forced to be stored within
the non-delayed latch 4 replacing the previously erroneously captured value stored

therein.

A meta-stability detector 7 serves to detect meta-stability in the output of
the non-delayed latch 4, i.e. not at a clearly defined logic state. If such meta-
stability is detected, then this is treated as an error and the value of the delay latch 6

is used instead.

On detection of an error, the whole pipeline may be stalled by gating the

non-delayed clock signal 10 for an additional delayed period to give sufficient time

13

10

15

20

25

30

WO 2004/084070

PCT/GB2004/001143

for the processing logic in the following processing stage to properly respond to the
corrected input signal value being supplied to it. Alternatively, it is possible that
upstream processing stages may be stalled with subsequent processing stages being
allowed to continue operation with a bubble inserted into the pipeline in accordance
with standard pipeline processing techniques using a counterflow architecture (see
the bubble and flush latches of Figure 2). Another alternative is that the entire
processing pipeline may be reset with the delayed latch values being forced into the
non-delayed latches of each stage and processing resumed. The re-use of the
delayed latch value in place of the erroneous value rather than an attempted
recalculation ensures that forward progress is made through the processing

operations even though an error has occurred.

There are constraints relating to the relationship between the processing
time taken by the processing logic within the processing stages and the delay
between the non-delayed capture time and the delayed capture time. In particular,
the minimum processing time of any processing stage should not be less than the
delay in order to ensure that the delayed value captured is not corrupted by new
data being outputted from a short delay processing stage. It may be necessary to
pad short delay processing stages with extra delay elements to ensure that they do
not fall below this minimum processing time. At the other extreme, it needs to be
ensured that the maximum processing delay of the processing logic within a
processing stage that can occur at any operational point for any operating
parameters is not greater than the sum of the normal non-delayed operating clock
period and the delay value such that the delay value captured in the delay value

latch is ensured to be stable and correct.

There are a number of alternative ways in which the system may be
éontrolled to tune power consumption and performance. According to one
arrangement an error counter circuit (not illustrated) is provided to count the
number of non-equal detections made by the comparator 6. This count of errors

detected and recovered from can be used to control the operating parameters using

14

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

either hardware implemented or software implemented algorithms. The counter is
readable by the software. The best overall performance, whether in terms of
maximum speed or lowest power consumption can be achieved by deliberately
operating the integrated circuit with parameters that maintain a non-zero level of
errors. The gain from operating non-cautious operating parameters in such

circumstances exceeds the penalty incurred by the need to recover from errors.

According to an alternative arrangement, a hardware counter is provided as
a performance monitoring module and is operable to keep track of useful work and
of error recovery work. In particular, the counter keeps count of the number of
useful instructions used to progress the processing operations being executed and
also keeps count of the number of instructions and bubbles executed to perform
error recovery. The software is operable to read the hardware counter and to use
the count values to appropriately balance the overhead of error recovery and its
effects on system performance against the reduced power consumption achieved by

running the integrated circuit at a non-zero error rate.

Figure 2 is a circuit block diagram schematically illustrating a circuit for use
in the present technique. The top portion of Figure 2 illustrates circuit elements
provided within each processing stage, namely the non-delayed latch 4, the delayed
latch 8 and the comparator 6. A meta-stability detector 7 serves to detect meta-
stability in the output of the non-delayed latch 4 and this also triggers generation of
an error signal. Error signals from a plurality of such stages are supplied to
respective inputs of an OR gate 100 where a global error signal is generated if an
error is detected in any processor stage. The global error signal can be used to
trigger flush and bubble insertion signals as illustrated. The circuits 102 detect
whether the error signal itself is meta-stable. The error signal is latched with a
positively skewed latch, referencing at a higher voltage and a negatively skewed
latch, referencing at a lower voltage. If the two disagree in their latched value, this
indicates that the error signal was meta-stable and the panic signal is pulled. By

latching the error signal and waiting for an entire clock cycle before it sampled (i.e.

15

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

two latches in series), the probability of the panic signal being meta-stable is
negligible. It is significant that if the panic signal is pulled, then the restored value
from the delayed latch could be corrupted due to the meta-stability of the error
signal. In this case, the instruction is also invalidated and there is no forward
progress. Hence flush the pipeline restart the instruction and lower the clock
frequency to ensure that the error signal will not be meta-stable on the retry of the

same instruction (which could otherwise cause an infinite loop of retries).

Figure 3 is a circuit illustrating in more detail the non-delayed latch, the
delayed latch, the comparator and at least part of the error-recovery circuitry. The
non-delayed latch 4 can be seen to be in the form of a flip-flop provided by the two
latches 14, 16. The delayed latch 8 is in the form of a single feedback element. An
XOR gate 18 serves as the comparator. An error signal 20 emerges from the circuit
of Figure 3 and may be supplied to the error counter circuit as previously discussed
or to other operational parameter adjusting circuits or systems. The error signal 26
serves to switch a multiplexer 22 that forces the delayed value stored within the
delayed latch 8 to be stored within the latch 14 of the non-delayed latch 4. meta-
stability detecting circuits 24 serve to detect the occurrence of meta-stability within
the non-delayed latch 4 and also use this to trigger an error signal which will cause
the erroneous meta-stable value to be replaced by the delayed value stored within

the delayed latch 8.

Figures 4A and 4B are a flow diagram schematically illustrating the

operation of the circuits of Figures 1, 2 and 3.

At step 26 the processing logic from a stage i produces its output signal at a
time T;. At step 28 this is captured by the non-delayed latch and forms the non-
delayed value. At step 30 the non-delayed value from the non-delayed latch starts
to be passed to the following processing stage i + 1 which commences processing
based upon this value. This processing may turn out to be erroneous and will need

recovering from should an error be detected.

16

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Step 32 allows the processing logic to continue processing for a further time
period, the delay time, to produce an output signal at time Ti + d. This output
signal is latched in the delayed latch at step 34. The values within the delayed latch
and the non-delayed latch are compared at step 36. If they are equal then no error
has occurred and normal processing continues at step 37. If they are not equal, then
this indicates that the processing logic at time T; had not completed its processing
operations when the non-delayed latch captured its value and started to supply that
value to the subsequent processing stage i + 1. Thus, an error condition has arisen
and will require correction. At step 38 this correction is started by the forwarding
of a pipeline bubble into the pipeline stages following stage i. At step 40 the
preceding stages to stage i + 1 are all stalled. This includes the stage i at which the
error occurred. At step 42, stage i + 1 re-executes its operation using the defiayed
latch value as its input. At step 44 the operating parameters of the integrated circuit
may be modified as required. As an example, the operating frequency may be
reduced, the operating voltage increased, the body biased voltage increased etc.

Processing then continues to step 46.

If an insufficient number of errors is detected, then the operating paramneter
controlling circuits and algorithms can deliberately adjust the operating parameters

so as to reduce power consumption and to provoke a non-zero error rate.

Figure 5 illustrates a memory 100 containing an array of memory cells 102.
In this example, a single row of memory cells is illustrated, but as will be familiar
to those in this technical field such memory cell arrays are typically large two-
dimensional arrays containing many thousands of memory cells. In accordance
with normal memory operation, a decoder 104 serves to receive a memory address
to be accessed and to decode this memory address so as to activate one of the word
lines 106. The word lines serve to couple the memory cells 102 in that line to
respective bit line pairs 108. Depending upon the bit value stored within the

memory cell 102 concerned this will induce an electrical change (e.g. a change in

17

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

voltage and/or a current flow) in the bit lines 108 now coupled to it and the change
is sensed by a sense amplifier 110. The output of the sense amplifier 110 is stored
at a first time within a non-delayed latch 112 and subsequently stored at a delayed
time within a delayed latch 114. The non-delayed value stored within the non-
delayed latch 112 is directly passed out via a mutliplexer 116 to a further
processing circuit 118 before the delayed value has been stored into the delayed
latch 114. When the delayed value has been captured within the delayed latch 114,
a comparator 120 serves to compare the non-delayed value and the delayed value.
If these are not equal, then the delayed value is switched by the multiplexer 116 to
being the output value from the memory 100 for the particular bit concerned. A
suppression signal is also issued from the comparator 120 to the further processing
circuit 118 to suppress processing by that further processing circuit 118 based upon
the erroneous non-delayed value which has now been replaced. This suppression in
this example takes the form of controlling the clock signal CLK supplied to the
further processing circuit 118 to stretch the clock cycle concerned and to delay
latching of the new result by that further processing circuit until a time when the
delayed value has had a chance to propagate through the processing circuit

concemed to reach the latch at the output of that further processing circuit.

It will be seen that the sense amplifier 110 and the non-delayed latch 112
form part of the fast read mechanism. The sense amplifier 110 and the delayed
latch 114 form part of the slow read mechanism. In most cases, the fast read result
latched within the non-delayed latch 112 will be correct and no corrective action is
necessary. In a small number of cases, the fast read result will differ from the slow
read result latched within the delayed latch 114 and in this circumstance the slow
read result is considered correct and serves to replace the fast read result with
processing based upon that fast read result being suppressed. The penalty
associated with a relatively infrequent need to correct erroneous fast read results is
more than compensated for by the increased performance (in terms of speed, lower
voltage operation, lower energy consumption and/or other performance parameters)

that is achieved by running the memory 100 closer to its limiting conditions.

18

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Figure 6 illustrates a variation in part of the circuit of Figure 5. In this
variation two sense amplifiers 110°, 110”* are provided. These different sense
amplifiers 110°, 110°* are formed to have different speeds of operation with one
110° being relatively fast and less reliable and the other 110°” being relatively slow
and more reliable. These different characteristics can be achieved by varying
parameters of the sense amplifier 110°, 110”’, e.g. construction parameters such as
transistor size, doping levels, gain etc. A comparator 120° serves to compare the
two outputs. The output from the fast sense amplifier 110’ is normally passed out
via the multiplexer 116> prior to the output of the slow sense amplifier 110”* being
available. When the output of the slow sense amplifier 110°’ is available and the
comparator 120 detects this is not equal to the output of the fast sense amplifier
110’, then it controls the multiplexer 116° to switch the output value to be that
generated by the slow sense amplifier 110°’. The comparator 120 also triggers
generation of a suppression signal such that downstream processing based upon the

erroneous fast read result is suppressed.

Figure 7 is a flow diagram illustrating the operation of the circuit of Figure
5. At step 122, an address is decoded resulting in respective memory cells being
coupled to their adjacent bit lines using a signal passed by a word line. At step 124,
the bit values stored within the selected memory cells and their complements and
driven onto the bit line pairs. This causes current flows within the bit lines and
voltage changes in the bit lines. The sense amplifiers 110 are responsive to

detected currents and/or voltage level changes.

At step 126, the fast data read mechanism samples the value being output
from the memory cell at that time. At step 128 this fast read data value is passed to
subsequent processing circuits for further processing upon the assumption that it is
correct. At step 130, the slow data reading mechanism samples a slow read data
value. Step 132 compares the fast read value and the slow read value. If these are

the same, then normal processing continues at step 134. However, if the sampled

19

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

values are different, then step 136 serves to issue a suppression signal to the further
circuits to which the fast read value has been passed and also to issue the slow read
value in place of the fast read value to those further circuits such that corrective

processing may take place.

Figure 8 illustrates the use of the present techniques within a pipelined bus
140. The pipelined bus 140 contains a number of latches 142 which serve to store
data values being passed along the bus, As an example of such a pipelined bus 140
there is known the AXI buses designed by ARM Limited of Cambridge, England.
In this arrangement the destination for the data value being passed along the
pipelined bus 140 is a digital signal processing circnit 144. This digital signal
processing (DSP) circuit 144 does not in itself implement the non-delayed latching
and delayed latching techniques discussed previously. In alternative arrangements
the destination for the data value being passed along the pipelined bus could be a
device other than a DSPcircuit, for example, a standard ARM processor core that

does not itself implement the delayed and non-delayed latching techniques.

Associated with each of the non-delayed latches 142 is a respective delayed
latch 146. These delayed latches 146 serve to sample the signal value on the bus at
a time later than when this was sampled and. latched by the non-delayed latch 142 to
which they cbrrespond. Thus, a delay in the data value being passed along the bus
for whatever reason (e.g. too low an operational voltage being used, the clock speed
being too high, coupling effects from adjacent data values, etc) will result in the
possibility of a difference occurring between the values stored within the non-
delayed latch 142 and the delayed latch 146. The final stage on the pipeline bus
140 is illustrated as including a comparator 147 which compares the non-delayed
value and the delayed value. If these are not equal, then the delayed value is used
to replace the non-delayed value and the processing based upon the non-delayed
value is suppressed such that the correction can take effect (the bus clock cycle may

be stretched). It will be appreciated that these comparator and multiplexing circuit

20

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

elements will be provided at each of the latch stages along the pipeline bus 140, but
these have been omitted for the sake of clarity from Figure 8.

As the DSP circuit 144 does not itself support the non-delayed and delayed
latching mechanism with its associated correction possibilities, it is important that
the data value which is supplied to the DSP circuit 144 has been subject to any
necessary correction. For this reason, an additional buffering latch stage 148 is
provided at the end of the pipelined bus 140 such that any correction required to the
data value being supplied to that latch and the attached DSP circuit 144 can be
performed before that data value is acted upon by the DSP circuit 144. The
buffering latch 148 can be placed in sufficient proximity to the DSP circuit 144 that
there will be no issue of an insufficient available progation time etc. causing an
error in the data value being passed from the buffering latch 148 to the DSP circuit
144,

It will be appreciated that the bus connections between the respective non-
delayed latches 142 can be considered to be a form of processing logic that merely
passes the data unaltered. In this way, the equivalence between the pipelined bus
embodiment of Figure 8 and the previously described embodiments (e.g. Figure 1)

will be apparent to those familiar with this technical field.

Figure 9 is a flow diagram illustrating the operation of Figure 8. At stage
150 a non-delayed signal value is captured from the bus line. At step 152 the non-
delayed value is then passed to the next bus pipeline stage. At step 154 the
corresponding delayed latch 146 captures a delayed bus signal. At step 156 the
comparator 147 compares the delayed value with the non-delayed value. If these
are equal, then normal processing continues at step 158. If the two compared
values are not equal, then step 160 serves to delay the bus clock and replace the

non-delayed value with the delayed value using the multiplexer shown in Figure 8.

21

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Figure 10 illustrates a further example embodiment using the present
techniques. In this example embodiment an instruction from an instruction register
within a processor core is latched within an instruction latch 162. From this
instruction latch 162, the instruction is passed to a decoder 164 which includes a
microcoded ROM serving to generate an appropriate collection of processor control
signals for storage in a non-delayed control signal latch 166 and subsequent use to
control the processing performed by the processor core in accordance with the
instruction latched within the instruction latch 162. The control signals output from
the decoder 164 are also latched within-a delayed control signal latch 168 at a later
time to when they were latched within the non-delayed control signal latch 166.
The delayed control signal values and the non-delayed control signal values can
then be compared. If these are not equal, then this indicates that corrective action is
necessary. A suppression operation -is triggered by the detection of such a
difference and serves to stop subsequent processing based upon the inappropriate
latch control signal values. It may be that in some circumstances the only effective
recovery option is to reset the processor as a whole. This may be acceptable. In
other situations, the error in the control signals might be such that a less drastic
suppression and recovery mechanism is possible.. As an example, the particular
erroneous control signal may not yet have been acted upon, e.g. in the case of a
multi-cycle program instruction where some processing operations do not
commence until late in the overall execution of the multi-cycle instruction. An
example of this is a multiply-accumulate operation in which the multiply portion
takes several clock cycles before the final accumulate takes place. If there is an
error in the control signal associated with the accumulate and in practice an
accumulate is not required, but merely a pure multiply, then it would be possible to
suppress the accumulate by correcting the control signal being applied to the

accumulator before the adder had sought to perform the accumulate operation.
Figure 11 illustrates one example of the operation of the circuit of Figure

10. At step 170, a multiply-accumulate control signal is read from the decoder 164
(microcoded ROM). At step 172, this multiply-accumulate control signal is latched

22

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

within the non-delayed control signal latch 166 and output to the various processing
elements within the processor core. At step 174, the multiply operands are read
from the register file and the multiply operation is initiated. At step 176, the control
signals output by the instruction decoder 164 are re-sampled by the delayed control
signal latch 168. At step 178, the non-delayed control signals and the delayed
control signals are compared. If these are equal, then normal processing continues
at step 180. However, if these are not equal, then processing proceeds to step 182
where a determination is made as to whether the multiply operation has yet
completed. If the multiply operation has completed, then the erroneous accumulate
operation will have started and the best option for recovery is to reset the system as
a whole at step 184. However, if the multiply operation is still in progress, then
step 186 can be used to reset the adder and cancel the accumulate operation with the
desired multiply operation output result being generated at step 188, as was
originally intended by the program instruction stored within the instruction latch

162.

Figure 12 illustrates a modification of the circuit illustrated in Figure 1. In
this embodiment the delayed latches 190 serve the additional function of data
retention (balloon) latches for use during a standby/sleep mode of operation (low
power consumption mode). The function of the delayed latches 190 during normal
processing operations is as previously described. However, when a sleep controller
192 serves to initiate entry into a low power consumption mode of operation it
stops the non-delayed clock and the delayed clock such that the delayed latches 190
are all storing data values corresponding to their respective non-delayed latches. At
this point, the voltage supply to the non-delayed latches and the associated
processing circuits is removed such that they are powered down and lose their state.
However, the voltage supplied to the non-delayed latches 190 is maintained such
that they serve to retain the state of the processing circuit concerned. When the
system exits from the low power consumption mode, the processing logic and the
non-delayed latches are powered up again when the comparator detects a difference

in the values in the non-delayed latch and the delayed latch 190 it triggers

23

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

replacement of the erroneous value within the non-delayed latch with the correct
value held within the associated delayed latch 190. It will be appreciated that since
the delayed latches 190 are subject to less stringent timing requirements than their
non-delayed counterparts they can be formed in a way where they may have a lower
speed of operation but be better suited to low power consumption during the low
power consumption mode (e.g. high threshold voltages resulting in slower
switching but with a reduced leakage current). In this way, the error correcting
delayed latches which are used during normal processing can be reused during the
low power consumption mode as data retention latches thereby advantageously

reducing the overall gate count of the circuit concerned.

Figure 13 is a flow diagram schematically illustrating the operation of the
circuit of Figure 12. At step 194, the integrated circuit is in its normal operational
processing mode. At step 196, the processing logic stage produces an output signal
at a non-delayed time. At step 198, the non-delayed latch captures that output
signal. At step 200 the non-delayed signal within the non-delayed latch is passed to
the next processing stage. At step 202, the output from the processing stage at a
delayed time is generated and is available for capture by the delayed latch. At step
204, the integrated circuit is triggered to adopt a low power consumption mode and
the speed controller 192 serves to initiate the power down of the processing circuits
while maintaining the power to the delayed latches 190. At step 206, the delayed
latch 190 captures the delayed signal value. It may be that the capture of the
delayed signal value by the delayed latch at step 206 takes place before the switch
to the low power mode at step 204. At step 208, the non-delayed latch is powered
down and its stored value is lost. The integrated circuit can remain in this state for
a long period of time. When desired, step 210 triggers the sleep controller 192 to
exit the low power consumption mode and revert back to the operational mode. At
step 212, power is restored to the non-delayed latches and the associated processing
logic with the delayed data values within the delayed latches 190 being used to
repopulate the pipeline stages as necessary to restore the system to its condition

prior to the low power consumption mode being entered.

24

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Figure 14 schematically illustrates a plurality of processing stages to which
error correction control and delayed latches have been applied. The processing
stages form part of an integrated circuit that may be part of a synchronous pipeline
within a processor core, part of a communication bus or part of a memory system.
The first processing stage comprises either a channel for communication of data or
processing logic 1014, a non-delayed latch 1016, a delayed latch 1018, a
comparator 1024 that compares outputs of the delayed latch and the non-delayed
latch and outputs a control signal to a multiplexer 1020 determining whether the
delayed signal value or the non-delayed signal value is supplied as input to a
subsequent processing stage or channel 1016. The channel/logic 1014 and the non-
delayed latch 1016 are driven by a non-delayed clock signal whereas the delayed
latch 1019 is driven by a delayed clock signal which is a phase-shifted version of
the non-delayed clock signal:

If the comparator 1024 detects a difference between the non-delayed signal
value and the delayed signal value this indicates that either the processing operation
was incomplete at the non-delayed capture time in the case that element 1014
represents processing logic or that the signal from the previous pipeline stage had
not yet reached the present stage in the case of the element 1014 representing a data
channel. In the event that such a difference is in fact detected, the value stored in
the delayed latch 1018 is the more reliable data value since it was captured later
when the processing operation is more likely to have been completed or the data
from the previous stage is more likely to have arrived via the data channel. By
supplying the result from the delayed latch to the next processing stage 1030 and
suppressing use of the non-delayed value in subsequent processing stages, forward
progress of the computation can be ensured. However, the reliability of the delayed
signal value stored in the delayed latch 1018 can be compromised in the event that a
single event upset occurred and corrupted the delayed value. The single event upset
is effectively a pulse so it may well be missed by the non-delayed latch but picked

up by the delayed latch. Such a single event upset will result in the comparator

25

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

detecting a difference between the delayed and non-delayed values as a direct result
of the single event upset and will then propagate the éorrupted delayed value to
subsequent processing stages. A single event upset that corrupts the non-delayed
value will not be problematic since it will result in suppressing use of the erroneous

non-delayed value and propagating the delayed value to subsequent stages.

The arrangement of Figure 14 reduces the likelihood of a corrupted delayed
value progressing through the computation by providing a cross-check of data
integrity by provision of an error detection module 1026, an etror correction
module 1028 and a multiplexer 1022 that is controlled by the error detection
module 1026 to supply either the delayed value from the delayed latch directly to
the comparator 1024 or alternatively to supply an error corrected value output by
the error correction module 1028. Upstream of the channel/logic unit 1014 a data
payload of eight bits is error correction encoded and four redundancy bits are added
to tﬁe data payload to form a twelve-bit signal. The twelve-bit signal passes
through the channel/logic unit 1014 and its value is captured by both the non-
delayed latch 1016 and the delayed latch 1018. However, a delayed value of the
signal derived from the delayed latch 1018 is also supplied as input to the error
detection module 1026, which determines from the 12-bit error-correction encoded
signal whether any errors have occurred that affect the delayed value. . In an
alternative arrangement a further latch could be provided to supply a signal value to
the error detection module 1018, that captures the signal value at a time slightly
later than the delayed latch 1018. The error-checking must be performed on a value
captured at the same time as the delayed value is captured or slightly later to ensure
that any random error that occurred between capture of the non-delayed value and

capture of the delayed value is detected.

A given error correction code is capable of detecting a predetermined
number of errors and of correcting a given number of errors. Thus the error
detection module 1026 detects whether any errors have occurred and, if so, if the

number of errors is sufficiently small such that they are all correctable. If

26

10

15

20

WO 2004/084070 PCT/GB2004/001143

correctable errors are detected then the signal value is supplied to the error
correction module 1028 where the errors are corrected using the error correction
code and the corrected delayed value is supplied to the comparator 1024. If it is
determined by the comparator 1024 that the corrected delayed value differs from
the non-delayed value then the error recovery procedurs is invoked so that further
propagation of the non-delayed value is suppressed in subsequent processing stages
and the operations are instead performed using the corrected delayed value. On the
other hand, if the comparator 1024 determines that the corrected delayed value is
the same as the delayed value then there are two alternative possibilities for
progressing the calculation. Firstly, the error recovery mechanism could
nevertheless be invoked so that the non-delayed value is suppressed in subsequent
processing stages and replaced by the corrected delayed value. Alternatively, since
the non-delayed value is determined to have been correct (as evidenced by the
equality of the non-delayed value and the corrected delayed value), the error
recovery mechanism could be suppressed (despite the detection of an error in the
delayed value) thus allowing the non-delayed value to continue to progress through
the subsequent processing stages. However, if uncorrectable errors are detected in
the delayed value by the error detection module 1026 then a control signal is
supplied to suppress use of the corrupted delayed value. In this case forward
progress of the computation cannot be achieved. The type of error correction

encoding applied differs according to the nature of the channel/processing logic

1014.

27

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

Processing logic can be categorised as either value-passing or value-
altering. Examples of processing logic that is value-passing are memory, registers
and multiplexers. Examples of value-altering processing logic elements are adders,
multipliers and shifters. Error detection and correction for value-altering processing
logic elements is more complex than for value-passing processing logic elements
because even when no error has occurred the value output by the logic stage 1014 is

likely to be different from the input twelve-bit signal 1013.

Figure 15 schematically illustrates error correction for data passing through
a channel that simply passes the data value unchanged from input to output if no
errors occur. In the case of such value-passing processing logic it is convenient to
use a linear block code such as a Hamming code for error correction and detection.
Linear block codes typically involve forming a codeword in which the original data
payload bits remain in the codeword unchanged but some parity bits (or redundancy
bits) are added. Hamming codes are simple single-bit error correction codes and
for an (N, K) code, N is the total number of bits in the codeword and X is the
number of data bits to be encoded. The presence and location of an error is detected
by performing a number of parity checks on the output codeword. The Hamming
code comprises N-K parity bits, each of which is calculated from a different
combination of bits in the data. Hamming codes are capable of correcting one error
or detecting two errors. The number of parity bits (or redundancy bits required is
given by the Hamming rule K+p+1 < 2P | where p is the number of parity bits and
N=K-+p.

As illustrated in Figure 15 input to the channel is a 12 bit codeword
comprising eight data bits and four parity or redundancy bits. Parity checks are
performed by an error detection/correction module 1116 on the output from the
channel 1114. Any single-bit error in the 12-bit codeword is detected and corrected
prior to output of the codeword by the error detection/correction module 1116. If
detected errors are uncorrectable the error detection/correction module 1116 outputs

a signal indicating that this is the case. Although simple codes such as Hamming

28

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

codes have been described in relation to Figure 11 for use with value-passing
processing logic, it will be appreciated that other error correction codes such as

convolutional codes could alternatively be used.

Figure 16 schematically illustrates how error correction is performed for a
value-changing logic element such as an adder, multiplier or shifter. In the case of
value-altering processing logic arithmetic codes such as AN codes, residue codes,
inverse residue codes or residue number codes may be used to detect and correct

random errors in the output of the processing logic.

Arithmetic codes can be used to check arithmetic operators. Where ®

represents the operator to be checked the following relation must be satisfied:
Code (X ® Y)=code X ® code Y

AN codes are arithmetic codes that involve multiplying the data word by a
constant factor, for example a 3N code can be used to check the validity of an

addition operation by performing the following comparison:

3N(X) + 3N(Y) 2= 3N(X+Y)
3X +3Y 7= 3(X+Y).

A further example of a class of arithmetic codes are residue codes, in which
a residue (remainder of division by a constant) is added to the data bits as check bits
e.g. a 3R code involves modulo (MOD) 3 operations and the following check is

applied:
XMOD 3 +Y MOD 3 ?=(X+Y) MOD 3

Consider the numerical example of X=14 and Y=7:
14 MOD 3 =2 (codeword 111010, with last two bits as residue);

29

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

7MOD 3 =1 (codeword 011101);

X+Y =21 (10101);

and 21 MOD 3 = (;

sum of residues MOD 3 = (2 +1) MOD 3 =0 = residue of (X+Y).

Figure 16 schematically illustrates use of a 7R arithmetic code for checking
of an addition operation in the channel/logic units 1014 of Figure 10. The addition
operation to be checked is X + Y, where X and Y are eight-bit data words. Each
data word has a four check bits having values X MOD 7 and Y MOD 7
respectively. X MOD 7 and Y MOD 7 are supplied as operands to a first adder
1210 and the output of this adder is supplied to logic that determines the value (X
MOD 7 +Y MOD 7) MOD 7 and supplies the result as a first input to a comparator
1250. A second adder 1230 performs the addition (X + Y), supplies the result to a
logic unit 1240 that calculates (X+Y) MOD 7 and supplies the result as a second
input to the comparator 1250. If the comparator detects any difference between the

two input values then an error has occurred.

Figure 17 is a flow chart that schematically illustrates the operation of the
circuit of Figure 14 that comprises error correction control of the delayed latch
value. At stage 1310 a twelve-bit error correction encoded signal value is input to
the channel/logic unit 1014. Next, at stage 1320, the non-delayed latch 1016
captures the output from the channel/logic unit 1014 at time Ti and the captured
value is forwarded to subsequent processing logic stage I+1 at stage 1330. At stage
1340 the delayed latch 1018 captures the output signal at time Ti+d. At stage 1350,
the error detection logic captures the output from the channel/logic unit 1014 at
time Ti+(d + 8). Although § in preferred arrangements & is zero so that value
output by the delayed value itself is actually error checked, the output may
alternatively be captured a short after the delayed latch captures the output signal at
Ti+d. The capture of the value for supply to the error detection circuit is
appropriately timed to ensure that any random error in the delayed value is

detected. At stage 1360, the error detection module 1026 determines whether the

30

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

delayed output signal has an error using the redundancy bits. If an error is detected
it is then determined whether the error is correctable at stage 1370, which will
depend on how many bits are affected. For example, a Hamming code can only
correct a single bit error. If it is determined at stage 1370 that the error is
correctable then the process proceeds to stage 1390, whereupon the error is
corrected and the corrected delayed value is selected at the multiplexer 1022 and
supplied to the comparator 1024. However, if it is determined at stage 1370 that
detected errors are not correctable then a control signal is generated indicating that
an uncorrectable error has occurred. In this case forward progress of the
computation cannot be reliably performed. At stage 1392 the comparator 1024
determines whether the error-checked delayed value is equal to the non-delayed
value and if so forward progress of the computation continues. Otherwise the
process to the sequence of steps described in relation to Figure 4B, involving
suppression of the non-delayed value and its replacement by the delayed value in.

subsequent processing stages is carried out.

Figure 18 illustrates the use of the present technique to dynamically adjust
the relative timing between processing stages. It is known that in a pipelined
processing environment, the processing stages may take different times to complete
their respective operations. Ideally the processing stages would all be balanced to

take the same time and for their respective times to vary in the same way with

- changes in surrounding conditions. - However, this is not practical in many cases

and it may be that a collection of processing stages that are balanced at one
operational voltage or temperature are not balanced at another operational voltage
or temperature. Furthermore, manufacturing variation and other characteristics may
result in considerable differences between processing stage timings which upsets
the designed balance therebetween. In these cases, the clock frequency and other
operational parameters are .chosen with respect to a worst-case scenario such that
the processing stages will be sufficiently closely balanced so as to be operational

under all conditions.

31

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

The present technique allows a more selective and indeed dynamic approach
to be taken. A pipelined processing circuit 2000 includes delayed latches 2002
which can be used to detect the occurrence of errors in the signal values being
captured by the non-delayed latches. The occurrence of these errors is fed back to a
clock phase control circuit 204 which serves to adjust the relative phases of the
clock signals being supplied to respective latches within the main path, i.e. the non-
delayed latches. In this way, an adjustment is made whereby time is effectively
borrowed from one processing stage and allocated to another processing stage.
This may be achieved by tapping the clock signals to be used by the respective non-
delayed latches from selectable positions within a delay line along which the basic

clock signal is propagated.

The illustrated example, the processing logic between latch L, and latch Ly
is slower in operation than the processing logic in the subsequent stage.
Accordingly, the clock signal being supplied to the non-delayed latch Ly can be
phase shifted so as to delay the rising edge of that clock signal (assuming rising
edge latch capture) and thereby to extend the time available for the slow processing
logic. This reduces the time available for the processing logic within the
subsequent processing stage assuming that this is operating on the same basic clock

signal as the other stage elements excluding the latch Lg.

This timing balancing between processing stages can be performed
dynamically during the ongoing operation of the circuit using feedback from the
errors in operation detected using the delay latches. Alternatively, the balancing
can be performed as a one-off operation during a manufacturing test stage or during
a “golden boot” of the integrated circuit. The delayed latches shown in Figure 18
are used for the purpose of timing balancing between processing stages and can
thereafter be used for the control of operating parameters and error correction as
discussed above, e.g. in relation to Figure 1. In this way, the provision of the

delayed latches is further used to also control relative clock timings.

32

10

15

20

25

30

WO 2004/084070

PCT/GB2004/001143

Figure 19 illustrates a simple approach to pipeline error recovery based on
global clock gating. In the event that any stage detects an error, the entire pipeline
is stalled for one cycle by gating the next global clock edge. The additional clock
period allows every stage to recompute its result using the delayed latch as input.
Consequently, any previously forwarded errant values will be replaced with the
correct value from the delayed latch. Since all stages re-evaluate their result with
the delayed latch input, any number of errors can be tolerated in a single cycle and
forward progress is guarantsed. If all stages produce an error each cycle, the

pipeline will continue to run, but at % the normal speed.

It is important that errant pipeline results not be written to architectured
state before it has been validated by the comparator. Since validation of delayed
values takes two additional cycles (i.e., one for error detection and one for panic
detection), there must be two non-speculative stages between the last delayed latch
and the writeback (WB) stage. In our design, memory accesses to the data cache
are non-speculative, hence, only one additional stage labelled ST for stabilise is
required before writeback (WB). The ST stage introduces an additional level of
register bypass. Since store instructions must execute non-speculatively, they are

performed in the WB stage of the pipeline.

Figure 19 gives a pipeline timing diagram of a pipeline recovery for an
instruction that fails in the EX stage of the pipeline. The first failed stage
computation occurs in the 4™ cycle, but only after the MEM stage has computed an
incorrect result using the errant value forward from the EX stage. After the error is
detected, a global clock stall occurs in the 6" cycle, permitting the correct EX result
in the Razor shadow latch to be evaluated by the MEM stage. IN the 7t cycle,

normal pipeline operation resumes.
In aggressively clocked designs, it may not be possible to implement global

clock gating without significantly impacting processor cycle time. Consequently, a

fully pipelined error recover mechanism based on counterflow, pipelining

33

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

techniques has been implemented. The approach, illustrated in Figure 20, places
negligible timing constraints on the baseline pipeline design at the expense of
extending pipeline recovery over a few cycles. When a non-delayed value error is
detected, two specific actions must be taken. First, the errant stage computation
following the failing non-delayed latch must be nullified. This action is
accomplished using the bubble signal, which indicates to the next and subsequent
stages that the pipeline slot is empty. Second, the flush train is triggered by
asserting the stage ID of failing stage. In the following cycle, the correct value
from the delayed latch data is injected back into the pipeline, allowing the errant
instruction to continue with its correct inputs. Additionally, there is a counterflow
pipeline whereby the flush train begins propagating the ID of the failing stage in the
opposite direction of instructions. At each stage visited by the active flush train, the
corresponding pipeline stage and the one immediately preceding are replaced with a
bubble. (Two stages must be nullified to account for the twice relative speed of the
main pipeline.) When the flush ID reaches the start of the pipeline, the flush
control logic restarts the pipeline at the instruction following the errant instruction.
In the event that multiple stages experience errors in the same cycle, all will initiate
recovery but only the non-delayed error closest to writeback (WB) will complete.
Earlier recoveries will be flushed by later ones. Note that the counterflow pipeline
may not be the same length as the forward pipeline so that, for example, the flush
train of the counterflow pipeline could be two pipeline stages deep whereas the

forward pipeline may be twelve stages deep.

Figure 20 shows a pipeline timing diagram of a pipelined recovery for an
instruction that fails in the EX stage. As in the precious example, the first failed
stage computation occurs in the 4™ cycle, when the second instruction computes an
incorrect result in the EX stage of the pipeline. This error is detected in the 5%
cycle, causing a bubble to be propagated out of the MEM stage and initiation of the
flush train. The instruction in the EX, ID and IF stages are flushed in the 6%, 7%
and 8™ cycles, respectively. Finally, the pipeline is restarted after the errant

instruction in cycle 9, after which normal pipeline operation resumes.

34

10

15 |

20

25

WO 2004/084070 PCT/GB2004/001143

Recall from the description of Figure 2 above, that in the event that circuits
102 detect meta-stability in the eror signal then a panic signal is asserted. In this
case, the current instruction (rather than the next instruction) should be re-executed.
When such a panic signal is asserted, all pipeline state is flushed and the pipeline is
restarted immediately after the least instruction writeback., Panic situations
complicate the guarantee of forward progress, as the delay in detecting the situation
may result in the correct result being overwritten in the delayed latch.
Consequently, after experiencing a panic, the supply voltage is reset to a knoWn—
safe operating level, and the pipeline is restarted. One re-tuned, the errant
instruction should complete without errors as long as returning is prohibited until

after this instruction completes.

A key requirement of the pipeline recover control is that it not fail under
even the worst operating conditions (e.g. low voltage, high temperature and high
process variation). This requirement is met through a conservative design approach

that validates the timing of the error recovery circuits at the worst-case subcritical

voltage.

Figure 21 schematically illustrates the re-use of a delayed latch 2100 as a
serial scan chain latch. This is achieved by the provision of a multiplexer 2102
controlled by the scan enable signals which allow a serial scan data value to be
written into the delay latch or serially read from the delayed latch as required.
Furthermore, the normal mechanism which allows the delayed latch value to
replace the non-delayed latch value is exploited to allow a serial scan chain value to

be inserted into the operational path.

35

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

CLAIMS

1. An integrated circuit for performing data processing, said integrated circuit
comprising:
a plurality of processing stages, a processing stage output signal from at
least one processing stage being supplied as a processing stage input signal to a
subsequent processing stage, wherein said at least one processing stage comprises:
processing logic operable to perform a processing operation upon at least
one coded input value to generate a processing logic output signal, said coded input

value being an input value to which an error correction code has been applied;

a non-delayed signal-capture element operable to capture a non-delayed
value of said processing logic output signal at a non-delayed capture time, said non-
delayed value being supplied to said subsequent processing stage as said processing
stage output signal following said non-delayed capture time;

a delayed signal-capture element operable to capture a delayed value of said
processing logic output signal at a delayed capture time, later than said non-delayed
capture time;

error correction logic operable to detect an occurrence of a random error in
said delayed value of said processing logic output signal, to determine if said
detected random error is co_rrectable using said error correction code and to either
generate an error-checked delayed value or to indicate that said detected random
error is not correctable;

a comparator operable to compare said non-delayed value with said error-
checked delayed value to detect a change in said processing logic output signal at a
time following said non-delayed capture time, said change being indicative of a
systematic error whereby said processing logic has not finished said processing
operation at said non-delayed capture time or of a random error in said non-delayed
value; and

error-repair logic operable when said comparator detects said change in said

processing logic output signal to perform an error-repair operation suppressing use

36

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

of said non-delayed value either by replacing said non-delayed value by said error-
checked delayed value in subsequent processing stages or by initiating repetition of
said processing operation and processing operations of subsequent processing
stages if said error correction logic indicates that said detected random error is not

correctable.

2. An integrated circuit as claimed in claim 1, wherein said error repair logic is
operable to suppress use of said non-delayed value by replacing said non-delayed
value with said error-checked delayed value in the event that said error correction
logic detects a correctable random error in said delayed value and said comparator
detects that there is no difference between said non-delayed value and said error-

checked delayed value.

3. An integrated circuit as claimed in claims 1 and 2, wherein said processing
operation

performed Hy said processing logic is an operation for which said processing logic
output signal is substantially equal to said processing stage input value when no

errors occur in said processing operation.

4. An integrated circuit as claimed in claim 3, wherein said at least one
processing stage is performed by a memory circuit and said processing operation is

aread or write operation.

5. An integrated circuit as claimed in claim 3, wherein at least one processing
stage is performed by a register and said processing operation is a read, write or

move operation.

6. An integrated circuit as claimed in claim 3, wherein said at least one
processing stage is performed by a multiplexer and said processing operation is a

multiplexing operation.

37

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

7. An integrated circuit as claimed in any one of the preceding claims, wherein
said plurality of processing stages are respective pipeline stages within a

synchronous pipeline.

8. An integrated circuit as claimed in any one of claims 3 to 7, wherein said
input value is error correction encoded using a Hamming code and said error repair

logic performs said correction and said detection using said Hamming code.

9. An integrated circuit as claimed in any one of the preceding claims, wherein
said processing operation performed by said processing logic is a value-altering
operation for which said processing logic output signal can be different from said
processing stage input value even when no errors occur in said processing

operation.

10. An integrated circuit as claimed in claim 9, wherein said processing logic is

one of: an adder, a multiplier or a shifter.

11. Anintegrated circuit as claimed in claim 8, wherein said input value is error
correction encoded using an arithmetic code comprising one of: an AN code, a

residue code, an inverse residue code or a residue number code.

12. An integrated circuit as claimed in any one of the preceding claims,
comprising a meta-stability detector operable to detect meta-stability in said non-
delayed value and trigger said error-repair logic to suppress use of said non-delayed

value if found to be meta-stable.

13. Anintegrated circuit as claimed in any one of the preceding claims, wherein
when said comparator detects said change said error-repair logic is operable to

replace said non-delayed value with said error-checked delayed value as said

processing stage output signal.

38

10

15

20

25

30

WO 2004/084070

PCT/GB2004/001143

14 An integrated circuit as claimed in claim 13, wherein supply of said error-
checked delayed value to said following processing stage forces forward progress

through processing operations.

15. Anintegrated circuit as claimed in any one of the preceding claims, wherein
when said comparator detects said change said error-repair logic is operable to force
said error-checked delayed value to be stored in said non-delayed signal-capture

element in place of said non-delayed value.

16. An integrated circuit as claimed in any one of the preceding claims, wherein
processing operations within said at least one processing stage and said subsequent

processing stages are driven by a non-delayed clock signal.

17. An integrated circuit as claimed in claim 16, wherein when said comparator
detects said change said error-repair logic is operable to gate said non-delayed clock
signal to provide time for said following processing stage to recover from input of

said non-delayed value and instead use said error-checked delayed value.

18. An integrated circuit ‘as claimed in claim 16, wherein said non-deléyed
capture time is derived from a predetermined phase point of said non-delayed clock
signal, a phased delayed version of said non-delayed clock signal is used as a
delayed clock signal and said delayed capture time is derived from a predetermined

phase point of said delayed clock signal.

19. An integrated circuit as claimed in any one of the preceding claims, wherein
one or more operating parameters of said integrated circuit are controlled in

dependence upon detection of said systematic errors corresponding to said change.
20. An integrated circuit as claimed in claim 19, wherein said one or more

operating parameters are controlled to have a level at which a non-zero systematic

error rate is maintained.

39

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

21. An integrated circuit as claimed in claims 19 and 20, wherein said one or
more operating parameters include at least one of:

an operating voltage;

an operating frequency;

an integrated circuit body bias voltage; and

temperature.

22. An integrated circuit as claimed in any one of the preceding claims, wherein
a minimum processing time taken for said processing operation is greater than a
time separating said delayed capture time from said non-delayed capture time such
that said error-checked delayed value is not influenced by a processing operation

performed upon different input values.

23. An integrated circuit as claimed in claim 22, wherein said processing logic
includes one or more delay elements to ensure said minimum processing time is

exceeded.

24. An integrated circuit as claimed in any one of the preceding claims, wherein
a maximum processing time taken for said processing operation is less than a sum
of a time separating said delayed capture time from said non-delayed capture time
and a time between non-delayed capture times such that said processing logic will

have completed said processing operation by said delayed capture time.

25. Anintegrated circuit as claimed in any one of the preceding claims, wherein

said processing stages are part of a data processor.
26. An integrated circuit as claimed in any one of the preceding claims,

comprising an error counter circuit operable to store a count of detection of errors

corresponding to said change.

40

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

27. An integrated circuit as claimed in claim 26, wherein said count may be

read by software.

28. A method of confrolling an integrated circuit for performing data
processing, said method corprising the steps of:

supplying a processing stage output signal from at least one processing stage
of a plurality of processing stages as a processing stage input signal to a subsequent
processing stage, said at least one processing stage operating to:

perform a processing operation with processing logic upon at least one
coded input value to generate a processing logic output signal, said coded input

value being an input value to which an error correction code has been applied;

capturing a non-delayed value of said processing logic output signal at a
non-delayed capture time, said non-delayed value being supplied to said subsequent

processing stage as said processing stage output signal following said non-delayed

- capture time;

capturing a delayed value of said processing logic output signal at a delayed
capture time later than said non-delayed capture time;

detect an occurrence of a random error in said delayed value of said
processing logic output signal using error correction logic, to determine if said
detected random error is correctable using said error correction code and to either
generate an error-checked delayed value or to indicate that said detected random
error is not correctable;

comparing said non-delayed value with said error-checked delayed value to
detect a change in said processing logic output signal at a time following said non-
delayed capture time, said change being indicative of a systematic error whereby
said processing logic has not finished said processing operation at said non-delayed
capture time or of a random error in said non-delayed value; and

when said change is detected, performing an error-repair operation using
error-repair logic suppressing use of said non-delayed value either by replacing said

non-delayed value by said error-checked delayed value in subsequent processing

41

)

WO 2004/084070 PCT/GB2004/001143

10

15

20

25

30

stages or by initiating repetition of said processing operation and processing
operations of subsequent processing stages if said error correction logic indicates

that said detected random error is not correctable.

29. A method as claimed in claim 28, wherein said error repair logic is operable
to suppress use of said non-delayed value by replacing said non-delayed value with
said error-checked delayed value in the event that said error correction logic detects
a correctable random error in said delayed value and said comparator detects that

there is no difference between said non-delayed value and said error-checked

delayed value.

30. A method as claimed in any one of the preceding claims, wherein said
processing operation performed by said processing logic is an operation for which
said processing logic output signal is substantially equal to said processing stage

input value when no errors occur in said processing operation.

31. A method as claimed in claim 30, wherein said at least one processing stage

is performed by a memory circuit and said processing operation is a read or write

‘operation.

32. A method as claimed in claim 30, wherein at least one processing stage is
performed by a register and said processing operation is a read, write or move

operation.

33. A method as claimed in claim 30, wherein said at least one processing stage
is performed by a multiplexer and said processing operation is a multiplexing

operation.

34. A method as claimed in any one of the preceding claims, wherein said
plurality of processing stages are respective pipeline stages within a synchronous

pipeline.

42

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

35. A method as claimed in any one of claims 30 to 34, wherein said input value
is error correction encoded using a Hamming code and said error repair logic

performs said correction and said detection using said Hamming code.

36. A method as claimed in any one of the preceding claims, wherein said
processing operation performed by said processing logic is a value-altering
operation for which said processing logic output signal can be different from said
processing stage input value even when no errors occur in said processing

operation.

37. A method as claimed in claim 36, wherein said processing logic is one of:

an adder, a multiplier or a shifter.

38. A method as claimed in claim 36, wherein said input value is error
correction encoded using an arithmetic code comprising one of: an AN code, a

residue code, an inverse residue code or a residue number code.

39. A method as claimed in any one of the preceding claims, comprising a
meta-stability detection in said non-delayed value and triggering of said error-repair

logic to suppress use of said non-delayed value if found to be meta-stable.

40. A method as claimed in any one of claims 28 to 39, wherein when said
change is detected by said comparator said error-repair logic is operable to replace

said non-delayed value with said error-checked delayed value as said processing

stage output signal.

41. A method as claimed in any one of claims 28 to 40, wherein supply of said
error-checked delayed value to said following processing stage forces forward

progress through processing operations.

43

10

15

20

25

30

WO 2004/084070 PCT/GB2004/001143

42. A method as claimed in any one of claims 28 to 41, wherein when said
change is detected by said comparator, said error-repair logic is operable to force
said error-checked delayed value to be stored in said non-delayed signal-capture

element in place of said non-delayed value.

43. A method as claimed in any one of claims 28 to 42, wherein processing
operations within said at least one processing stage and said subsequent processing

stages are driven by a non-delayed clock signal.

44. A method as claimed in claim 43, wherein when said change is detected by
said comparator, said error-repair logic is operable to gate said non-delayed clock
signal to provide time for said following processing stage to recover from input of

said non-delayed value and instead use said error-checked delayed value.

45. A method as claimed in claims 43 and 44, wherein said non-delayed capture
time is derived from a predetermined phase point of said non-delayed clock signal,
a phased delayed version of said non-delayed clock signal is used as a delayed
clock signal and said delayed capture time is derived from a predetermined phase

point of said delayed clock signal.

46. A method as claimed in any one of claims 28 to 45, wherein one or more
operating parameters of said integrated circuit are controlled in dependence upon

detection of said systematic errors corresponding to said change.

47. A method as claimed in claim 46, wherein said one or more operating
parameters are controlled to have a level at which a non-zero systematic error rate is

maintained.

48. A method as claimed in claims 46 and 47, wherein said one or more
operating parameters include at least one of:

an operating voltage;

44

10

15

20

25

WO 2004/084070 PCT/GB2004/001143

an operating frequency;
an integrated circuit body bias voltage; and

temperature.

49. A method as claimed in any one of claims 28 to 48, wherein a minimum
processing time taken for said processing operation is greater than a time separating
said delayed capture time from said non-delayed capture time such that said error-
checked delayed value is not influenced by a processing operation performed upon

different input values.

50. A method as claimed in claim 49, wherein said processing logic includes

one or more delay eléments to ensure said minimum processing time is exceeded.

51. A method as claimed in any one of claims 28 to 50, wherein a maximum
processing time taken for said processing operation is less than a sum of a time
separating said delayed capture time from said non-delayed capture time and a time
between non-delayed capture times such that said processing logic will have

completed said processing operation by said delayed capture time.

52. A method as claimed in any one of claims 28 to 51, wherein said processing

stages are part of a data processor.

53. A method as claimed in any one of claims 28 to 52, comprising an error

counter circuit operable to store a count of detection of errors corresponding to said

change.

54, A method as claimed in claim 53, wherein said count may be read by

software.

45

WO 2004/084070 PCT/GB2004/001143

1/19

- S5
Flip-flop 3 5 D~
& ‘ii
2
(@)
Q
-4
¥
- ~ Y| S
> Flip-flop » §f§ D——
‘ f
~—
LL
o9}
¥ 9
S5
> P = [D—e—
h D: —
?

2 &

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/001143

WO 2004/084070
2/19
Clock éi» Laich data out
Ve ,
Meta-
Data D Main FF Q stability |——
Restore Restore detector l Local_error_1
data control ‘l— OR
XOR AND
del_clock,
Clk 3
D Shadow Q
latch g del_clock_bar
Clock Clock
'B)Z
C C
Pos Pos
—D skewed QD skewed Qf
latch ‘ latch
180
Clock , Clock | xoR |2
C C
Neg Neg |
OR ¢—80D srewed QD skewed Q
. global_erro latch latch
Clock Clock
Eluslwl VD VCIk Buble
S9N Iy Fush g D Buble of Signa
FF FF

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/001143

WO 2004/084070

Y yve o =
m @_M @ -= 340L1s3y
8 Hv8 340153y G= 13a°M10
N =
)
ou| ‘ {
5%2 G=
- 214 2]
Haa r@A] _
_ — e TNOA UIA|-8—8—, 0 —e
JERE mmgwmm- ¥VE 13070 ~u L L
N —>
mmozmm_ Nﬁ
- = ¥va 130 W10
m/@ N m.mul
% .
S
1
o 0a
o
= =
(49]
! G= 10 Ve Y10
el S —<]
Lul Ll
o
oul ! no
3 liv oyl
/ . Nﬁl.L NIQ
o} é . o JAOA Ul "
v7 IA]II..TO
S=M | G=MA
@—. =1 ‘=
4 vl T
G=M|| ¥vE 10 s
Nﬂ _QI, s p—1>10
~ 1
G
b u_u K
A

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070

4/19

Processing logic from stage i
produces output signal at time T,

7

Non-delayed latch captures output
signal at time T,

-~28

Y

Value from non-delayed latch
passed to stage i+1

-~30

A 4

Processing logic from stage i
produces output signal at time T,+d

A 4

Delayed latch captures output
signal at time T,+d

(~34

Delayed latch value =
non-delayed latch value?

Continue _~37

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/001143

WO 2004/084070 PCT/GB2004/001143

5719

Forward pipeline bubble to
succeeding pipeline stages

A

Stall all stages up to stage i+1 ——~40

A

Re-execute stage i+1 with delayed
latch value as input

_~42

y

Modify operating conditions ~44

A

Continue L —~46

FIG. 4B

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/001143

WO 2004/084070
6/19
1 100
04
108 , 108
AF A A Y-

2 102)(102 1/102 f 106
I N) 3

L\ i
o | | 139
10
DECODER f
106
!

110

116 CLK
1
114 __;
FIG. 5 [11 2120 118
R
|
L ~110"

~4¥____I____Jﬂf~116
FIG. 6.

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

7/19

Couple selected memory cell
122~ to adjacent bit line by
activating word line

:

Values of selected memory
124~ cells and their complements
driven onto bit lines

A4

Fast data reading mechanism

126~ samples data value at time t +51

!

Fast-read value V]c st passed to other
circuits for further processing

}

Slow data reading mechanism

128~

130 samples data value at time t +62

to give slow-read data value V

slow

134

132 Continue

N
Issue suppression signal

136~ to circuits which Vfast

has been passed Fﬂ G . 7

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143
8/19
140
"/ 144
1?2 1«.}2 132 148)
—_— >
DSP
» R » R

146 146

FIG. 8

Non-delayed latch captures
bus signal at time Tn

¥

Value from non-delayed
latch passed to next bus
pipeline stage

Y

Delayed latch captures
bus signal at time Tn + §

Delayed latch value=
non-delayed latch value?

Delay clock and replace
non-delayed latch value
with delayed latch value

—~—150
—~—152
—~—154
15}8
Continue

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

9719
162 164 166
From 3
instruction
register
RN » Control
N ROM - — signals

Y.

168

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070

10719

170~

Read multiply - accumulate
control signal from
memory at time Tk and store
in non-delayed latch

!

172—

Output multiply - accumulate
signal to processing logic

A 4

174~

Read multiply operands
from register and initiate
multiply operation

Y

176—

Read multiply control signal
from memory at time Tk + 6 and
store in delayed latch

Delayed value =
non-delayed value?

182

Has multiply operation
completed yet?

186~

Reset adder to cancel accumulate

188~

!

Output result of
multiply operation

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/001143

180
8

Continue

184

Reset

FIG. 11

WO 2004/084070

FIG. 12

PCT/GB2004/001143
11719
Sleep .; \Y VR
controller supply >
192 VO
7 CLK
i " [Oci 4 ’
o ' Yo ,\Vo
Logic Logic
s)
— R
RCLK RCLK R
CLK
V‘

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070

12719

PCT/GB2004/001143

IC is set to operational mode

—~—194

!

Processing logic from stage j
produces output signal at time Tj

—~—196

:

Non-delayed latch captures
output signal at time Tj

—~—198

T

Value from non-delayed latch
passed to stage j + 1

—~—200

!

Processing logic from stage j
produces output signal at time T}. +d

—~—202

!

Low power mode controller
initiates switch to standby mode

204

|

Delayed latch captures
output signal at time Tj +d

—~—206

!

Non-delayed latch is powered down
and stored value of output

signal at time Tj is lost

—~—208

:

Low power mode controller
switch from standby mode
back to operational mode

—~—210

!

IC initialised such that value
stored by delayed latch passed
as input value to stage j + 1

—~—212

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

13719
]
N 1014 1016 tfo‘ 1030
— Channel Channel
1 or logic or logic
_J g d
—
1 ~—1013
)
1018
1022
— R
Error Error
F'G 1 4 de‘;ect correct 1028
1026
Redundancy
Data bits bits
HEEEEREEREERR
Channel —~—1114

4
Error detection
. ~—1116
Error correction
TN

(TTTTTT7] 11
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

14 /19
X mod 7 X Y mod 7 Y
HEEEREEREEERE LT OITTTTITIT1]
+ 1210 + 1230
MOD 7 ~—1220 | MOD 7 |~~1240
1250
(1] r—«éﬁ—l EEEEEN
Xmod7+Ymod7 (X+Y)mod7

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070

15719

Input error correction encoded input value
to processing logic stage i

PCT/GB2004/001143

—~—1310

]

Non-delayed latch captures
output signal at time Ti

—~— 1320

!

Captured value forwarded to
subsequent processing logic stage i + 1

~— 1330

A

Delayed latch captures
output signal at time Ti + d

~— 1340

Y

Error correction logic captures
output signal at time Ti + (d + §)

—~ 1350

1360

Error detected in
output signal?

Error correctable?

1380

Issue control signal
indicating that delayed vaiue
uncorrectable

Correct error and supply corrected
delayed value to comparator

~— 1390

Error-checked delayed
value = non-delayed value?

Continue

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

16 /19
Clock
Phase ~—2004
, '_“ Control
D, gz} e T
FL Detected
Error
Derived
_@ Ao Control
N u |
L L L
C C C \2000
2002 2002 2002
lLA/LC lLA/LC lLA/LC
®A= @C"_- @1 4._.____91___}:‘.__._9_2__,

O =0,

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

17719

Clock Recover Recover Recover Recover

i]] .] ST E wB
1 IF s D i EX e MEM —{H- s (regr
O o) o o) o) i | mem)
o N N N N 5
| Error o | Error o | Error o |Error %
(4] Cw) e e f

A A A

Razor latch gets Correct value

. . - correct EX value provided to MEM
Time (in cycles)

/ ‘

T T I]] | T T |
2l IF | ID | EX | MEM | ST/: stall {" WB | { !
2 :' IF i ID E Ex* EMEM*S MEM | ST E WB E E

-

3 ! i IF | ID | EX | stal |MEM | ST | wg '
—_ } l I | I | I | |
! ! | IF | D ! stal | EX |MEM! ST !
J | | |] | | I | |

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070
18719
_ . — L
i L e el e L L e L2 [(read [+l e
Q 5 5 s| L] |5 A
0 N Bubble| N ~ Bubble| N Bubble| N| Bubble{a
4]
|Error | Error | Error e |Error) f=2
- eartartsartyy |
Recover Recover Recover Recover
Flush B] l—' l_'
control | flush IDINqre BN N e AN e

PCT/GB2004/001143

a)

Razor detects fault,
forwards bubble toward WB,

b

WB
(reg/
mem)

Pipeline flush

Instructions

i . initiates flush toward IF completes
Time (in cycles) /

T j T T] T T T T >

IF , D | EX{MEM:ST/: WB | : : : :

5 IF :' ID E EX* ibubblei MEM:' ST |: WB f :' !

I

: i IF 1 ID | EX \iflushg,iflushy iflush. | IF | ID |

1 | | 1 | | | | | 1

o i F D I R

1 1 I | I ! I ! |

FIG. 20

SUBSTITUTE SHEET (RULE 26)

WO 2004/084070 PCT/GB2004/001143

19/19

clk clk_b

| clk_del b Error_L

To scan in: assert Scan_EN and Error L

Scan_In

2100

FIG. 21

Shadow Latch

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

In ional Application No

Fu1/GB2004/001143

A. CLASSIFICATION OF SPBJECT MATTER
IPC 7 GO6F11}60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 6 476 643 B2 (VIVET PASCAL ET AL) 1-54
5 November 2002 (2002-11-05)
column 5, 1ine 8 — cotumn 8, Tine 29
figure 3
A EP 0 653 708 A (HITACHI LTD) 1-54
17 May 1995 (1995-05-17)
page 6, line 25 - line 31
page 20, 1line 51 - page 21, 1ine 30
figures 47-49
A WO 00/54410 A (UNIV JOSEPH FOURIER ; 1-b4
CENTRE NAT RECH SCIENT (FR); NICOLAIDIS
MICHAEL) 14 September 2000 (2000-09-14)
the whole document
-f—

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the arnt which is not
considered to be of particular relevance

E earlier document but published on or afterthe international
filing date

L document which may throw doubts on priority claim(s) or
which is cited 1o establish the publication date of another
citation or other special reason (as specified)

'O" document referring 1o an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
mell_fllts, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the inlernational search report
3 August 2004 10/08/2004
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340~3016 Bauer, R

Fom PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Int >nal Application No

Pu1/3B2004/001143

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

EP 0 366 331 A (ADVANCED MICRO DEVICES
INC) 2 May 1990 (1990-05-02)
page 2, line 1 — page 3, line 57

EP 0 374 420 A (IBM)
27 June 1290 (1920-06-27)
page 2, line 1 - Tine 52

1-54

1-54

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Int

al Application No

PL1,32004/001143

Patent document Publication

Patent family

Publication

cited in search report date member(s) date

US 6476643 B2 18-04-2002 FR 2815197 Al 12-04-2002
uUs 2002043989 Al 18-04-2002

EP 0653708 A 17-05-1995 JP 3279004 B2 30-04-2002
JP 7114520 A 02-05-1995
JP 3206275 B2 10-09-2001
JP 7234801 A 05-09-1995
DE 62425542 D1 21-09-2000
DE 69425542 T2 29-03-2001
DE 69431374 D1 17-10-2002
DE 69431374 T2 30-04-2003
DE 69433468 D1 05-02-2004
DE 69433468 T2 24-06~2004
EP 1016968 A2 05-07-2000
EP 1168178 A2 02-01-2002
EP 0653708 A2 17-05-1295
us 5802266 A 01-09-1998
us 6513131 Bl 28-01-2003
us 6092217 A 18-07-2000

WO 0054410 A 14-09-2000 FR 2790887 Al 15-09-2000
CA 2367151 Al 14-09-2000
EP 1159783 Al 05-12-2001
Wo 0054410 Al 14-09-2000
JP 2002539543 T 19-11-2002

EP 0366331 A 02-05-1990 US 4994993 A 19-02-1991
AT 136134 T 15-04-1996
DE 68926093 D1 02-05-1996
DE 68926093 T2 31-10-1996
EP 0366331 A2 02-05-1990
JP 2178738 A 11-07-1990

EP 0374420 A 27-06-1990 US 4926374 A 15-05-1990
DE 68920560 D1 23-02-1995
DE 68920560 T2 13-07-1995
EP 0374420 A2 27-06-1990
JP 1896736 C 23-01-1995
JP 2150921 A 11-06-1990
JP 6018040 B 09-03-1994

Form PCT/ISA/210 {patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

