
(19) United States
USOORE41072E

(12) Reissued Patent (10) Patent Number: US RE41,072 E
Kyler et al. (45) Date of Reissued Patent: Jan. 5, 2010

(54) PAGEABLE FILTER DRIVER FOR OTHER PUBLICATIONS

ESsy:MPLEMENTATION OF DISK European Search Report dated Jul. 22, 2004: Ref.
3.187 001 PCT/EP; Application No./Pat. No.

Inventors: Daniel B. Kyler, Colorado Springs, CO
(US); Najaf S. Husain, Great Falls, VA
(US)
Symantec Operating Corporation,
Cupertino, CA (US)

(75)

(73) Assignee:

10/771,539
Feb. 5, 2004

Related U.S. Patent Documents
Reissue of:
(64) Patent No.:

Issued:
Appl. No.:
Filed:

(21)
(22)

Appl. No.:
Filed:

6,092,163
Jul.18, 2000
09/205,066
Dec. 4, 1998

U.S. Applications:
(62) Division of application No. 10/186,419, filed on Jul. 2, 2002,

now Pat. No. Re. 39,201.
(60) Provisional application No. 60/067,671, filed on Dec. 5,

1997.

Int. C.
G06F 3/00

(51)
(2006.01)

(52) U.S. Cl. 710/36: 701/1: 701/205;
711/163

Field of Classification Search 710/5-6,
710/36; 707/1, 205: 711/163-173, 113, 151,

711/147; 713/200202
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,237,661 A
5,247,660 A
5,421,011 A

8, 1993 Kawamura et al.
9, 1993 Ashcraft et al.
5, 1995 Camillone et al.

(Continued)

26

27

28

2

EWALUATELO

WILLQUOIA
BEEXCEEDED

SPECFYPOST
PROCESSING

99964O66 7 1243 US9928595.
“Disk Quota Management Priviliges': IBM Technical Bulle
tin, IBM Corp. New York, US, vol. 37, No. 4B, Apr. 1, 1994,
p. 329, XP000451269; ISSN: 0018–8689, p. 329, line 4-line
6.
David Jones: “Introduction to the Internet, Remedy and
Implement'; May 1, 1996, pp. 13–14, XP002284666; URL:
http://www.home.cs.utwente.nl/jansen/courses/unix adm/
study guide/chap19/sec2p13.html; retrieved on Jun. 15,
2004.

(Continued)
Primary Examiner Christopher Shin
(74) Attorney, Agent, or Firm Rory D. Rankin; Meyertons
Hood Kivlin Kowert & Goetzel, P.C.
(57) ABSTRACT

A filter driver for implementing disk space quotas is
described. Quota limits on disk space taken up by files in the
file system are established for users and directories, and an
internal database is established to track quotas against actual
disk space utilization. A driver in accordance with the inven
tion uses kernel resources of the operating system to prevent
execution of file system I/O operations which would violate
any established quota. In doing so, the driver executes a
logic in kernel mode which serializes file allocation opera
tions and also serializes access to the internal database. The
first step in this logic is to intercept file system I/O requests
before they reach the file system driver. Then the driver
determines prospectively—before the I/O request is
completed—whether any quota would be exceeded by
completion of the I/O request. If a quota would be exceeded,
completion of the I/O request is blocked and an error status
is issued. If a quota would not be exceeded, the I/O request is
allowed to complete and the driver's internal database is
updated with revised disk space utilization data.

15 Claims, 3 Drawing Sheets

US RE41,072 E
Page 2

5,491,807
5,574,952
5,634,050
5,644,751
5,671,420
5,701,473
5,713,013
5,734,909
5,805,932
5,819,047
5,946,686
5,956,734
6,000,009
6,032,216

U.S. PATENT DOCUMENTS

2, 1996
11, 1996
5, 1997

* 7/1997
9, 1997

* 12, 1997
1, 1998
3, 1998
9, 1998

10, 1998
8, 1999
9, 1999

12, 1999
2, 2000

Freeman et al.
Brady et al.
Krueger et al.
Burnett T11 113
Bell et al.
Braseth et al. 707,205
Black
Bennett
Kawashima et al.
Bauer et al.
Schmucket al.
Schmucket al.
Brady
Schmucket al.

6, 192,471 B1 2/2001 Pearce et al. 713/2

OTHER PUBLICATIONS

David Jones: “An Introduction to Unix Systems Administra
tion-Cron, Accounting, and Quotas'; Jan. 27, 1996, pp.
1–13; XP002284667: Retrieved from URL: http://ww
whome.cs.utwente.nlansen/courses/unix adm/study guide/
textbook/chap16.html on Jun. 15, 2004.
“W. Quinn Makes The Quota” ENT, Cardinal Business
Media, Fort Washington, PA, US, Oct. 22, 1997
XPOO2955679 ISSN: 1085. 2395.
Communication pursuant to Article 96(2) EPC mailed Sep.
29, 2005.

* cited by examiner

U.S. Patent Jan. 5, 2010 Sheet 1 of 3 US RE41,072 E

11 3

ACCESS
DENIED

QUOTA
APPLICATION 17
SOFTWARE

VIOLATEFILE
PROTECTIONS

CHANGE FILE
PROTECTIONS RETURN

TO CALLER

EXECUTE
I/O REQUEST

5

UPDATENT
DIRECTORY

EVALUATE NT
QUOTAS DIRECTORY

FIG. 1
(PRIOR ART)

U.S. Patent Jan. 5, 2010 Sheet 2 of 3 US RE41,072 E

21

QUOTA
EXCEEDED

26

EVALUATE I/O

I/O MAY AFFECT
QUOTAS

WILL QUOTA
BE EXCEEDED

SPECIFYPOST
PROCESSING

29

27

28

FIG. 2

U.S. Patent Jan. 5, 2010 Sheet 3 of 3 US RE41,072 E

31
32

NT STATUS:
33 I/O PENDING

IS PASSIVE LEVEL

38

QUEUE TO WORKER
THREAD POST PROCESSING

ROUTINE

RETURNSTATUS:
MORE PROCESSING

REQUIRED

EXECUTE POST
PROCESSING ROUTINE

FIG. 3

US RE41,072 E
1.

PAGEABLE FILTER DRIVER FOR
PROSPECTIVE IMPLEMENTATION OF DISK

SPACE QUOTAS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

This patent application is a continuation in part of provi
sional application 60/067,671 of the same title filed on Dec.
5, 1997. This application is a Divisional of application Ser:
No. 10/186,419 filed on Jul. 2, 2002 now U.S. Pat. No. RE39,
201, which is a Reissue of Ser: No. 09/205,066, filed Dec. 4,
1998, now U.S. Pat. No. 6,092, 163, which is a continuation
in part of provisional application 60/067,671 of the same
title filed on Dec. 5, 1997.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to devices for
managing and controlling the allocation of disk space under
an operating system, and more particularly to filter driver
techniques for for implementing disk space quotas.

2. Background Description
Disk space quotas limit the amount of disk space that can

be consumed by users on a system. Disk space is a resource
that is necessary for proper system operation. In the absence
of an enforceable disk space quota System, users are free to
allocate as much disk space as they wish. This situation can
interfere with system operation, as other users, as well as the
operating system itself, may be unable to allocate disk space
when it is needed. A disk space quota System allows system
managers to set the maximum amount of disk space that
each user may consume, ensuring that there will always be
adequate space available for system operation.

While quota Systems are implemented in many operating
systems, some operating systems do not have quota Systems
or do not have robust quota functionality. For example, Win
dows NT (through version 4.0) does not provide a disk space
quota System. Since Windows NT is increasingly being used
in large multi-user server environments, it is necessary for
third parties to provide this functionality. Some have
attempted to provide this functionality using prior art
techniques, but the methods they have used do not satisfac
torily accomplish the goal of limiting disk space consump
tion by users.

For example, the prior art for implementing quotas under
an operating system such as Windows NT version 4.0, where
the operating system does not itself provide this
functionality, relies upon the operating systems directory
change notification mechanism to detect file allocation
changes. Under this approach, if a quota is exceeded file
protections are changed so that users may no longer create
files in the directory to which the quota applies. This method
is reactive; it detects changes after they have occurred, and
has several disadvantages which limit its usefulness:

1. An appropriate status code cannot be returned. Chang
ing file protections results in an "Access denied status.

2. Absolute enforcement of quotas is not possible. The
prior art method detects that a quota has already been
exceeded. It does not fail an operation which would
exceed a quota.

3. Files that are open cannot be affected. Once a user has
opened a file he may extend it to the limit of available

10

15

25

30

35

40

45

50

55

60

65

2
disk space, without being detected or prevented by the
prior art method.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to imple
ment disk space quotas in a manner which detects quota
violations before they are written to disk.
A further object of the invention is to fail a disk I/O opera

tion which would exceed a quota.
It is also an object of the invention to apply quotas to files

which have been opened.
Another object of the invention is to use facilities avail

able in the kernel of the operating system, including Syn
chronization facilities.

A further object of the invention is to be implemented in
pageable code.
The present invention is a filter driver for implementing

disk space quotas. Quota limits on disk space taken up by
files in the file system are established for users and
directories, and an internal database is established to track
quotas against actual disk space utilization. A driver in
accordance with the invention uses kernel resources of the
operating system to prevent execution of file system I/O
operations which would violate any established quota. In
doing so, the driver executes a logic in kernel mode which
serializes file allocation operations and also serializes access
to the internal database.

The first step in this logic is to intercept file system I/O
requests before they reach the file system driver. Then the
driver determines prospectively—before the I/O request is
completed—whether any quota would be exceeded by
completion of the I/O request. If a quota would be exceeded,
completion of the I/O request is blocked and an error status
is issued. If a quota would not be exceeded, the I/O request is
allowed to complete and the driver's internal database is
updated with revised disk space utilization data.
The invention includes a file system filter driver that has

the responsibility of monitoring disk space usage by users,
and enforcing the quotas established by the system manager
for each user. Quotas may also be established for directories
where files are stored. The invention’s file system filter
driver intercepts every cell bound for the file system driver
and processes each of them with respect to their effect on
disk space allocation in relation to the established quotas.
The invention keeps a persistent database of the estab

lished quotas and the amount of disk space used. This data
base is updated when file allocation changes, and it is used to
store the quota information across system boots.
By using a file system filter driver to implement quotas,

the invention is able to evaluate the effects of file system
operations before the operation is actually executed. This
allows the invention to enforce quotas in real time with a
high degree of precision. Since the invention is in the actual
I/O path, it can fail I/Os with the appropriate “Ouota
Exceeded status code and can maintain an exact record of
file allocation at any point in time.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 is a schematic of prior art techniques for imple
menting quotas.

US RE41,072 E
3

FIG. 2 is a flow chart for intercepting I/O requests in
accordance with the invention.

FIG. 3 is a flow chart for IRQL post processing in accor
dance with the invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Referring now to the drawings, and more particularly to
FIG. 1, there is shown a prior art method of implementing
quotas by monitoring changes to the file system directory. In
the prior art a kernel process receives an I/O request 11 and
checks the applicable file protections 12. If applicable file
protections are violated the I/O request returns Access
Denied'. If applicable file protections are not violated, the
I/O request is completed 13 and the NT directory 16 is
updated 15. The quota application software 17 detects that
an I/O event affecting quotas has been executed and then
evaluates 18 whether an affected file protection in NT direc
tory 16 should be changed as a result of the I/O event. If an
affected file protection should be changed the quota applica
tion software 17 then changes the file protections 19 in the
NT directory 16. This in turn affects whether a subsequent
I/O request will be executed.

In contrast to this prior art method, the present invention
uses a file system filter to implement a quota System. A
practical implementation of the invention can be described
with reference to the Windows NT 4.0 operating system. See
Inside the Windows NT File System by Helen Custer
(Microsoft Press, 1994), which is incorporated herein by this
reference, for a description of the environment within which
the invention is implemented, in particular Chapter 2 which
describes the layered driver model. The present invention is
implemented to provide a quota system for Windows NT 4.0
as a filter driver on top of the NTFS Driver provided by
Windows NT.
A file system filter is a kernel mode driver which inter

cepts file system I/O requests before they reach the file sys
tem driver, and may optionally specify a routine to be
executed after the file system driver completes a request. File
system filter drivers are old in the art and have been used for
on-disk data encryption/decryption, file system performance
monitoring, and other purposes.

Turning now to FIG. 2, when a file system driver in accor
dance with the invention (hereinafter called “QaFilter')
receives a file system I/O request 21, it processes it based on
the type of request. The I/O request is evaluated 22 to deter
mine whether the request, if completed, would have an effect
on a quota. Such requests (discussed below) cover file cre
ation or open, write, change of file ownership, file renaming,
and change of file compression status. If an I/O request 21 is
one of these types 23, QaFilter determines prospectively—
how the various quotas would be affected if the I/O request
were completed 24. If that determination 24 is that a quota
would be exceeded, then the I/O request is failed and the
routine returns to the caller 25 with an appropriate “Quota
Exceeded' status code 26. If the determination 22 is that no
quota would be exceeded, a post processing routine is speci
fied 27 which will determine the actual effect of the opera
tion on disk allocation, and the I/O request is completed 28.
If an I/O request is determined at the evaluation step 22 to be
not of a type which could have an effect on a quota 29, then it
is completed 28.

Further details of how QaFilter operates with respect to
I/O requests which may affect quotas will now be explained.

Create (Open)
A request to open a file causes Qafilter to create internal

data structures (not shown) describing the file and the space

10

15

25

30

35

40

45

50

55

60

65

4
currently allocated to the file. The allocation size of the file
to be opened is retrieved from the file system and stored in
the internal data structures so that the effect on file size of
Subsequent operations on the file can be accurately deter
mined.

Write, Set Information (Extend or Truncate)
A write which extends beyond the current allocated space

or a Set Information operation which changes the size of the
file will affect the allocation size of the file on disk. QaFilter
calculates the change the operation will have on file alloca
tion. If the change would result in exceeding any applicable
quota, the operation is failed immediately with "Quota
Exceeded status. If the change is permissible, a post pro
cessing routine is specified which will be executed after the
file system has completed the request. The post processing
routine examines the actual effect the operation had on disk
space allocation for the file and updates the data structures
for the file, both in memory and in the persistent database on
disk.

Set Security (Change Owner)
Since many quotas are based on file ownership, changing

the owner of a file can affect disk space allocation. When a
request to change file ownership is received, it is examined
to determine if it would put the new owner over his quota. If
so, the request is failed immediately with "Quota Exceeded
status. If the change is permissible, a post processing routine
is specified which will be executed after the file system has
completed the request. The post processing routine deter
mines whether the file system successfully changed the file
ownership, and if so, updates the in-memory data structures
and the persistent database. The allocation size of the file is
subtracted from the quota for the old owner, and added to the
quota for the new owner.

Set Information (Rename)
Renaming a file can cause a change in quotas. A file may

be renamed from one directory to another, which may
change the quotas which apply to the directory where the file
is located. Rename requests are intercepted, and they are
examined to determine whether they have any effect on quo
tas. If the request would result in exceeding any applicable
quota, it is failed immediately with a "Quota Exceeded sta
tus. If the change is permissible, a post processing routine is
specified which will execute after the file system has com
pleted the request. The post processing routine examines the
effects of the rename operation and updates the in-memory
data structures and persistent database appropriately. The
size of the renamed file (or multiple files in the case of a
directory rename operation) is subtracted from any quotas
which no longer apply, and added to any quotas which now
apply, but previously did not.

File System Control (Set Compression)
Changing the compression status of a file will affect its

allocation. When a compressed file is uncompressed, it may
cause a user to exceed his quota. If this would be the case,
the request is failed immediately with "Quota Exceeded
status. If the uncompress operation is permissible, or a file is
being compressed, a post processing routine is specified
which will execute after the file system has completed the
request. The post processing routine determines the effect of
the operation on disk space allocation and updates the
in-memory data structures and the persistent database appro
priately.

US RE41,072 E
5

Cleanup
When a user closes his handle to a file, QaFilter receives a

Cleanup request. This causes QaFilter to eliminate any
in-memory data structures for the file which are no longer
needed.
Synchronization Issues

In order to accurately detect changes in file size, opera
tions which might affect allocation must be serialized. In
order to effect serialization, it is necessary to synchronize
the operations which are related. In Windows NT, this can be
accomplished through the use of a kernel event, which is one
of the synchronization objects made available by the operat
ing system. A kernel event is associated with each open file.
A kernel event is in one of two states, signaled or non
signaled. Multiple processes can have a handle to a kernel
event. When an operation which might affect file size is
detected, the event for the file is cleared by QaFilter, i.e. reset
to the non-signaled or locked state. While the event is
locked, other operations on the file are blocked, waiting for
the event to be signaled. The event is signaled in the post
processing routing for the operation which cleared the event,
effectively serializing operations.
Additionally, QaFilter must serialize access to its internal
data structures. This is done through the use of a single ker
nel mutex, which is another synchronization object made
available by the Windows NT operating system. A mutex is
useful in coordinating mutually exclusive access to a shared
resource (thus the name “mutex). Only one thread at a time
can own a particular mutex. In order to access Qafilter's
internal data structures, a thread must own a single kernel
mutex. This mutex is in a signaled State when it is not owned
by any thread, and is reset to a non-signaled or locked state
by a thread which needs to access those data structures.
While so locked, no other thread can access those data
structures, thus serializing access.
Avoiding Recursive Operations

QaFilter must do file system I/O to acquire initial space
used values and to update its database when necessary. This
could cause recursive calls into QaFilter, resulting in dead
locks if a resource is held. To avoid this situation, the thread
id of the thread which accesses the quota database, and of a
thread created to do a file system Scan, is recorded, and any
I/O from those threads is ignored by QaFilter and passed
directly to the file system driver.
Paging I/O

Paging I/O does not cause file allocation to change and is
ignored. Ignoring paging I/O allows much of the driver's
code to be pageable (incurring a page fault while processing
a page fault causes a system crash), and improves perfor
mance by involving QaFilter only when necessary.
Retrieving Initial File Allocation

In some cases, e.g. when opening a file for overwrite
access, a QaFilter must retrieve the size of a file before the
file is actually opened. Ordinarily, QaFilter gets the size of a
file by doing an I/O against the file object which represents
the user's handle to the file. However, before the file is
opened, the file object does not represent a valid handle. In
this case, QaFilter opens the file before the user's open is
processed, getting its own handle to the file. This handle is
used to retrieve the allocation information. Then QaFilter's
handle is closed, and the user's open request is allowed to
proceed.
Renaming Directories
Renaming a directory which is Subject to quotas presents

special problems. When a directory is renamed, causing the
set of quotas which apply to the directory to change, the Sum
of the allocation of all the files in that directory and all of its

5

10

15

25

30

35

40

45

50

55

60

65

6
Subdirectories must be used to adjust the applicable quotas.
This is a case where an operation on one file (the directory)
affects many other files. When such an operation occurs,
QaFilter calculates the allocation size for the entire directory
by doing a 'scan’, the same operation which takes place
when a new quota is created. This Sum is Subtracted from all
quotas which previously applied to the directory and no
longer do, and it is added to all new quotas for the directory.
Flushing on Cleanup
When the user closes his handle to a file, some data he has

written may still be in cache. The size of a file may change
when this data is committed to disk, particularly in the case
of a compressed file, where the file allocation will decrease
significantly when the data is written to disk. Since QaFilter
can no longer effectively track the file after the users handle
is closed, it must force the data to be written to the disk at
this point to get an accurate final file size. It does this by
issuing a flush on the file object which represents the user's
handle when a cleanup operation occurs. This causes the file
size to be updated, and QaFilter can then retrieve an accurate
allocation for quota calculations.
IROL ISSues

Windows NT I/O post-processing routines may execute at
DISPATCH LEVEL (IRQL 2) or lower. This causes some
complications for QaFilter, because many routines should
not be called at DISPATCH LEVEL. For example, taking a
page fault or performing I/O at DISPATCH LEVEL may
cause a system crash. Since Qafilter must access pageable
file system data structures and do I/O to retrieve file sizes
and to update the quota database in I/O post-processing,
practice of the invention requires a method to perform these
operations without using DISPATCH LEVEL.

Turning now to FIG.3, if the filesystems dispatch routine
31 returned a status other 32 than STATUS PENDING 33,
then the NT I/O completion routine does not do post
processing. Instead, it just returns STATUS SUCCESS,
and the post processing is performed by QaFilter's dispatch
routine 37. This guarantees that the post-processing will be
done at PASSIVE LEVEL (IRQL 0).

If the filesystems dispatch routine returned STATUS
PENDING 33, then QaFilter's dispatch routine has already
returned, and the user's I/O may be asynchronous. This
means QaFilter must do other work to guarantee executing
the post-processing functions at PASSIVE LEVEL. If the
NT I/O completion routine is executing at PASSIVE
LEVEL (a determination made at block 34 in FIG. 3), then
QaFilter's post-processing routine 37 is called directly 38,
allowing for greatest performance. If the NT I/O completion
routine is called at DISPATCH LEVEL (a determination
made at block 34 in FIG. 3), then QaFilter's post-processing
routine is queued 35 to a pool of worker threads which
execute at PASSIVE LEVEL and the I/O completion is
delayed by returning 36 STATUS MORE
PROCESSING REQUIRED to the I/O Manager. When the
worker thread has completed post-processing, it completes
the I/O by calling IoCompleteRequest.
The best mode of implementing the features of the inven

tion shown and described in connection with FIG. 3 is fur
ther detailed in the following Appendix, which sets forth the
details in programming language which will be understood
by those skilled in the art.

APPENDIX

NTSTATUS FASTCALL set completion (
PDEVICE OBJECT
PIRP

US RE41,072 E

device object,
irp,

PQA COMPLETION ROUTINE routine,
PQFCB qfcb)

{
NTSTATUS status =3D STATUS SUCCESS; 10
PDEVICE OBJECT
PIO STACK LOCATION
PIO STACK. LOCATION

PIRP CONTEXT irp context=3D NULL;
PFILE OBJECT file obj;
PAGED CODE();
TraceFnter(“set completion');

target device =3D ((PFILTER DEV EXTENSION)
=device object->DeviceExtension)->fs device;

irp sp=3D IoGetCurrentIrpStackLocation (
irp);

file obj=3Dirp sp->FileObject;
irp next sp=3D IoGetNextIrpStackLocation (

irp);
irp next sp->MajorFunction =3D

irp sp->MajorFunction;
irp next sp->MinorFunction =3D

irp sp->MinorFunction;
irp next sp->Flags =3Dirp sp->Flags;
irp next sp->Parameters =3Dirp sp->Parameters;
irp next sp->FileObject=3D irp sp->FileObject;
irp next sp->DeviceObject =3D target device;

irp context=3D create irp context (
device object,
irp,
qfcb);

if (irp context =3D=3D NULL)
{

return STATUS INSUFFICIENT RESOURCES:

irp context->completion routine =3D routine;
IoSetCompletionRoutine (

irp,
post process,
irp context,
TRUE,
TRUE,
TRUE);

status =3D IoCalldriver (
target device,
irp);

if (status =3D STATUS PENDING)
{

(VOID) (*routine) (
irp context):

free irp context (
irp context):

return status:

NTSTATUS post process (
PDEVICE OBJECT devobi,
PIRP irp,
PIRP CONTEXT irp context)

NTSTATUS status =3D STATUS SUCCESS;
PIO STACK LOCATION irp sp=3D

IoGetCurrentIrpStackLocation(irp);
PSID owner =3D NULL;
PQSEC DESC sd=3D NULL;

// If IoCall Driver returned PENDING, mark our
if stack location with pending.

irp context->io status =3Dirp->IoStatus.Status;
irp context->io info =3Dirp->IoStatus Information;
if (irp->PendingReturned)

return STATUS STATUS:

target device =3D NULL;

irp next sp=3D NULL;

15

25

30

35

40

45

50

55

60

65

8

-continued

APPENDIX

IoMarkirpPending(irp);
if (KeGetCurrentIrqi () =3D=3D PASSIVE LEVEL)
{

status =3D (*irp context->completion routine)(
irp context):

free irp context (
irp context):

return status;

else
{

ExInitializeWorkItem (
&irp context->work item,
work post,
irp context):

QaqueueWorkItem (
&irp context->work item,
CriticalWorkQueue);

return STATUS MORE PROCESSING REQUIRED,

VOID work post (

}

PIRP CONTEXT irp context)

PAGED CODE();
(*irp context->completion routine) (

irp context):
IoCompleteRequest (

irp context->irp;
IO NO INCREMENT);

free irp context (
irp context):

return;

NTSTATUS FASTCALL synchronous completion (
PDEVICE OBJECT
PIRP

device object,
irp,

PQA COMPLETION ROUTINE routine,
PQFCB qfcb)

NTSTATUS status =3D STATUS SUCCESS;
NTSTATUS io call status =3D

STATUS SUCCESS;
target device =3D NULL;
irp sp=3D NULL;
irp next sp=3D NULL;

irp context=3D NULL;
file obj;

PDEVICE OBJECT
PIO STACK LOCATION
PIO STACK LOCATION

PIRP CONTEXT
PFILE OBJECT
PAGED CODE();
TraceEnter(“set completion');

target device =3D ((PFILTER DEV EXTENSION)
=device object->DeviceExtension)->fs device;

irp sp=3D IoGetCurrentIrpStackLocation (
irp);

file obj=3Dirp sp->FileObject;
irp next sp=3D IoGetNextIrpStackLocation (

irp);
irp next sp->MajorFunction =3D

irp sp->Maj orFunction;
irp next sp->MinorFunction =3D

irp sp->MinorFunction;
irp neX
irp neX

sp->Flags =3Dirp sp->Flags;
sp->Parameters =3Dirp sp->Parameters;

irp next sp->FileObject =3D irp sp->FileObject;
irp next sp->DeviceObject=3D target device;

irp context=3D create irp context (
device object,
irp,
qfcb);

if (irp context =3D=3D NULL)
{

return STATUS INSUFFICIENT RESOURCES:

irp context->completion routine =3D routine;
KelnitializeEvent (

&irp context->event,
NotificationEvent,

US RE41,072 E
9

-continued

APPENDIX

FALSE):
IoSetCompletionRoutine (

irp,
synch post,
irp context,
TRUE,
TRUE,
TRUE);

io call status =3D IoCalDriver (
target device,
irp);

KeWaitForSingleObject (
&irp context->event,
Executive,
KernelMode,
FALSE,
NULL);

status =3D (*routine) (
irp context):

ASSERT (status =3D=3D STATUS SUCCESS);
free irp context

irp context):
return io call status;

(

NTSTATUS synch post (
PDEVICE OBJECT devobi,
PIRP irp,
PIRP CONTEXT irp context)

// If IoCall Driver returned PENDING, mark our
if stack location with pending.

if (irp->PendingReturned)

irp context->io status =3Dirp->Io Status.Status;
irp context->io info =3Dirp->Io Status.Information;
KeSetEvent (

IoMarkIrpPending(irp);

&irp context->event,
O,
FALSE):

return STATUS SUCCESS;

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifica
tion within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is as follows:

1. A filter driver for use with an operating system, com
prising:

means for establishing disk space quotas, said quotas
being established in relation to a plurality of quota
parameters;

means for determining disk space utilization in relation to
each of said quota parameters;

means for storing said disk space quotas and said disk
space utilization in a file structure;

means for monitoring disk I/O;
means for prospectively evaluating the effect of said disk

I/O on said disk space utilization, said effect being a
revised disk space utilization in relation to said disk
Space quotas;

means for terminating said disk I/O if said revised disk
space utilization exceeds any of said disk space quotas;
and

means for updating said file structure to reflect completion
of said disk I/O if said revised disk space utilization
does not exceed any of said disk space quotas.

10

15

25

30

35

40

45

50

55

60

65

10
2. The filter driver of claim 1, wherein said monitoring

means further comprises:
means for detecting disk I/O operations, each said disk

I/O operation being associated with a named disk file;
means for serializing operations on said named disk file.
3. The filter driver of claim 2, wherein said serializing

means further comprises:
means for locking a synchronizing object, said synchro

nizing object being associated with said named disk
file, and said locking means serving to block further
disk I/O operations on said named disk file.

4. The filter driver of claim3, wherein said synchronizing
object is a kernel event in the Windows NT operating sys
tem.

5. The filter driver of claim 1, wherein said plurality of
quota parameters comprises one or more ownership quotas
and one or more directory quotas, each said ownership quota
being a maximum quantity of said disk space in use by files
associated with a particular owner, and each said directory
quota being a maximum quantity of said disk space in use by
files associated with a particular directory.

6. The filter driver of claim 1, wherein access to said file
structure is serialized.

7. The filter driver of claim 1, wherein said monitoring
means ignores paging I/O.

8. The filter driver of claim 1, wherein said prospective
evaluation means further comprises:
means for determining said revised disk space utilization;

and
means for comparing said revised disk space utilization to

said disk space quotas.
9. A computerized method for implementing disk space

quotas comprising the steps of
maintaining a database of disk space quotas and disk

space utilization data,
intercepting an I/O request before it reaches a file system

driver,
determining whether any disk space quota would be

exceeded by completion of the I/O request,
blocking completion of the I/O request if any disk space

quota would be exceeded by completion of the I/O
request, and

allowing the I/O request to complete and updating the
disk space utilization data to reflect completion if a disk
space quota would not be exceeded.

10. The method of claim 9, filrther comprising the step of
issuing an error message if a disk space quota would be
exceeded by completion of the I/O request.

II. The method of claim 9, filrther comprising the step of
serializing I/O requests.

12. The method of claim I I, wherein the step of serializing
I/O requests includes the step of locking a synchronizing
object for the file when an I/O request for that file is detected.

13. The method of claim 12, wherein the synchronizing
object is a kernel event.

14. The method of claim 9, wherein the disk space quotas
comprise at least one ownership quota and at least one
directory quota, the ownership quota being a maximum
quantity of disk space in use by files associated with a par
ticular Owner; the directory quota being a maximum quantity
of disk space in use by files associated with a particular
directory.

15. The method of claim 9, filrther comprising the step of
serializing access to the database.

16. The method of claim 15, wherein the serializing step is
performed using a simple kernel mutex.

US RE41,072 E
11

17. The method of claim 9, wherein paging I/O requests
are ignored.

18. A computerized method for implementing disk space
quotas comprising the steps of

maintaining a database of disk space quotas,
intercepting an I/O request before it reaches a file system

driver,
determining whether any disk space quota would be

exceeded by completion of the I/O request, and
allowing the I/O request to complete only if a disk space

quota would not be exceeded.
19. The method of claim 18, filrther comprising the step of

issuing an error message if a disk space quota would be
exceeded by completion of the I/O request.

10

12
20. The method of claim 18, filrther comprising the step of

serializing I/O requests.
21. The method of claim 20, wherein the step of serializing

I/O requests includes the step of locking a synchronizing
object for the file when an I/O request for that file is detected.

22. The method of claim 21, wherein the synchronizing
object is a kernel event.

23. The method of claim 18, filrther comprising the step
of:

maintaining disk space utilization data, and
updating the disk space utilization data to reflect comple

tion of the I/O request.

k k k k k

