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DATA AUGMENTATION FOR CONVOLUTIONAL NEURAL NETWORK-BASED
DEFECT INSPECTION

Cross-Reference to Related Applications

[0001] This application claims priority to U.S. Provisional Application No. 62/430,925,
filed on December 7, 2016, now pending, the disclosure of which is incorporated herein by

reference.
Field of the Disclosure

[0002] The present disclosure relates to defect inspection, for example, systems and

methods of data augmentation for convolutional neural network-based defect inspection.
Background of the Disclosure

[0003] Fabricating semiconductor devices such as logic and memory devices typically
includes processing a substrate such as a semiconductor wafer using a large number of
semiconductor fabrication processes to form various features and multiple levels of the
semiconductor devices. For example, lithography is a semiconductor fabrication process that
involves transferring a pattern from a reticle to a resist arranged on a semiconductor wafer.
Additional examples of semiconductor fabrication processes include, but are not limited to,
chemical-mechanical polishing (CMP), etch, deposition, and ion implantation. Multiple
semiconductor devices may be fabricated in an arrangement on a single semiconductor wafer and

then separated into individual semiconductor devices.

[0004] Inspection processes are used at various steps during a semiconductor
manufacturing process to detect defects on wafers to promote higher yield in the manufacturing
process and thus higher profits. Inspection has always been an important part of fabricating
semiconductor devices such as integrated circuits (ICs). However, as the dimensions of
semiconductor devices decrease, inspection becomes even more important to the successful
manufacture of acceptable semiconductor devices because smaller defects can cause the devices

to fail. For instance, as the dimensions of semiconductor devices decrease, detection of defects of
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decreasing size has become necessary since even relatively small defects may cause unwanted

aberrations in the semiconductor devices.

[0005] As design rules shrink, however, semiconductor manufacturing processes may be
operating closer to the limitation on the performance capability of the processes. In addition,
smaller defects can have an impact on the electrical parameters of the device as the design rules
shrink, which drives more sensitive inspections. Therefore, as design rules shrink, the population
of potentially yield relevant defects detected by inspection grows dramatically, and the
population of nuisance defects detected by inspection also increases dramatically. Therefore,
more and more defects may be detected on the wafers, and correcting the processes to eliminate
all of the defects may be difficult and expensive. As such, determining which of the defects
actually have an effect on the electrical parameters of the devices and the yield may allow
process control methods to be focused on those defects while largely ignoring others.
Furthermore, at smaller design rules, process induced failures may, in some cases, tend to be
systematic. That is, process induced failures tend to fail at predetermined design patterns often
repeated many times within the design. Elimination of spatially systematic, electrically relevant
defects is important because eliminating such defects can have a significant overall impact on
yield. Whether or not defects will affect device parameters and yield often cannot be determined
from the inspection, review, and analysis processes described above since these processes may

not be able to determine the position of the defect with respect to the electrical design.

[0006] One method to detect defects is to use computer vision. In computer vision, a
model, such as a convolutional neural network (CNN) may be used to identify defects. A CNN
may be provided with a variety of images from a wafer and a set of known defects. One of the
most common tasks is to fit a model to a set of training data, with the goal of making reliable
predictions on unseen test data. Usually one needs several hundred examples of each at a

minimum. Very often this much data is not available or it takes too long to collect this data.

[0007] In addition, it is possible to overfit the CNN. In overfitting, a statistical model
describes random error or noise instead of the underlying relationship. For example, Fig. 1
illustrates a plurality of images 10 showing wafer noise in difference images of adjacent dies.

Overfitting occurs when a model is excessively complex, such as having too many parameters
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relative to the number of observations. A model that has been overfitted has poor predictive

performance, as it overreacts to minor fluctuations in the training data.

[0008] Likewise, underfitting occurs when a statistical model or machine learning
algorithm cannot capture the underlying trend of the data. Underfitting would occur, for
example, when fitting a linear model to non-linear data. Such a model would have poor

predictive performance.

[0009] The possibility of overfitting exists because the criterion used for training the
model is not the same as the criterion used to judge the efficacy of a model. In particular, a
model is typically trained by maximizing its performance on some set of training data. However,
its efficacy is determined not by its performance on the training data but by its ability to perform
well on unseen data. Overfitting occurs when a model begins to "memorize" training data rather
than "learning" to generalize from a trend. As an extreme example, if the number of parameters
is the same as or greater than the number of observations, a simple model or learning process can
perfectly predict the training data simply by memorizing the training data in its entirety, but such
a model will typically fail drastically when making predictions about new or unseen data, since

the simple model has not learned to generalize at all.

[0010] The potential for overfitting depends not only on the number of parameters and
data but also the conformability of the model structure with the data shape, and the magnitude of

model error compared to the expected level of noise or error in the data.

[0011] In order to avoid overfitting, it is necessary to use additional techniques, such as
data augmentation. Data augmentation takes existing data, such as existing wafer images, and
applies mathematical functions to the data in order to create new, but similarly indicative images.
For example, currently used data augmentation techniques include rotation, translation, zooming,

flipping, and cropping of images.

[0012] However, these techniques cannot easily be used in the field of defect inspection.
For example, rotation has only limited value as wafers can only be inspected in one or two
orientations (0 and 90 degrees). Zoom is constant during the inspection process and thus is also

of limited value. Translation, flipping, and cropping of images can be used, but these
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augmentations are often insufficient to generate enough augmentation data, especially when it

comes to making the CNN robust to die-to-die or wafer-to-wafer process variation.

[0013] Furthermore, the prior art data augmentation techniques fall especially short when
dealing with random wafer noise as illustrated in the difference images 100 of adjacent dies in
Fig. 1. Augmenting the input data set with meaningful entirely random wafer noise is difficult,
but should be taken into account when dealing with random process variation which is one of the

most challenging wafer noise sources.
Brief Summary of the Disclosure

[0014] One embodiment of the present disclosure can be described as a method for
providing an augmented input data to a convolutional neural network (CNN). The method
comprises receiving a wafer image at a processor. The method further comprises dividing the
wafer image into a plurality of reference images using the processor. Each reference image may
be associated with a die in the wafer image. The method further comprises receiving one or more

test images at the processor.

[0015] The method further comprises creating a plurality of difference images by
differencing the one or more test images with one or more of the plurality of reference images
using the processor. In one embodiment, the step of creating a plurality of difference images
comprises differencing a test image with a median die reference image, a golden die reference
image, a reference imaged based on a rendered design, or reference image from a same die row

as the test image, a same die column as the test image, or any die in the wafer image.

[0016] The method further comprises assembling the plurality of reference images and
the plurality of difference images into the augmented input data for the CNN using the processor.

The method further comprises providing the augmented input data to the CNN.

[0017] In another embodiment, the method may further comprise performing a wafer
scan using an image data acquisition subsystem. The image data acquisition subsystem converts

the wafer scan into the wafer image and one or more test images.
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[0018] In one embodiment, the method further comprises creating a plurality of defect-
of-interest (DOI) images by differencing one or more test images having a DOI with one or more
of the plurality of the reference images and merging the differenced images with one or more of
the plurality of test images. The plurality of DOI images is assembled into the augmented input
data for the CNN.

[0019] In another embodiment, the method may further comprise creating a plurality of

transposed images, using the processor, by transposing the plurality of reference images and the

plurality of difference images with respect to the received one or more test images. The plurality
of transposed images are assembled into the augmented input data for the CNN. The plurality of
transposed images may be transposed by a sub-pixel offset with respect to the received one or

more test images.

[0020] In one embodiment, the method may further comprise creating a plurality of
amplified images, using the processor, by multiplying pixel values of the plurality of reference
images and the plurality of difference images by a constant or matrix. The plurality of amplified

images are assembled into the augmented input data for the CNN.

[0021] In another embodiment, the method further comprises, using the processor,
generating an electromagnetic simulation of the wafer image, rendering the electromagnetic
simulation, combining the rendered electromagnetic simulation with the received wafer image to
create an electromagnetic image, dividing the electromagnetic image into a plurality of
electromagnetic reference images, and assembling the plurality of electromagnetic reference
images into the augmented input data for the CNN. Each electromagnetic reference image may

be associated with a die in the electromagnetic image.

[0022] In one embodiment, the method further comprises creating a plurality of
defocused images by defocusing the plurality of reference images and the plurality of difference
images using the processor. The plurality of defocused images are assembled into the augmented

input data for the CNN.

[0023] In another embodiment, the method further comprises creating a plurality of

illuminated images by varying an illumination value of the plurality of reference images and the
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plurality of difference images. The plurality of illuminated images are assembled into the

augmented input data for the CNN.

[0024] Another embodiment of the present disclosure may be described as a system for
providing an augmented input data to a CNN. The system may comprise a processor configured
to execute one or more software modules. The one or more software modules may be configured

to receive a wafer image. The wafer image may contain one or more dies.

[0025] The one or more software modules may be configured to divide the wafer image
into a plurality of reference images. Each reference image associated may be associated with a
die in the wafer image. The one or more software modules may be configured to receive one or
more test images and create a plurality of difference images by differencing the one or more test

images with one or more of the plurality of reference images.

[0026] The one or more software modules may be configured to assemble the plurality of
reference images and the plurality of difference images into the augmented input data for the

CNN and provide the augmented input data to the CNN.

[0027] In one embodiment, the software modules are further configured to create a
plurality of defect-of-interest (DOI) images by differencing one or more test images having a
DOI with one or more of the plurality of the reference images. The differenced images are then
merged with one or more of the plurality of test images. The plurality of DOI images are then

assembled into the augmented input data for the CNN.

[0028] In another embodiment, the system further comprises an image data acquisition
subsystem in electronic communication with the processor. In such an embodiment, the image
data acquisition subsystem is configured to perform a wafer scan. The one or more software
modules are further configured to convert the wafer scan into the one or more test images and the

wafer scan into the wafer image.

[0029] In one embodiment, the one or more software modules are further configured to
create a plurality of transposed images by transposing the plurality of reference images and the
plurality of difference images with respect to the received one or more test images. The plurality

of transposed images are assembled into the augmented input data for the CNN. The plurality of
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transposed images may be transposed by a sub-pixel offset with respect to the received one or

more test images.

[0030] In another embodiment, the one or more software modules are further configured
to create a plurality of amplified images by multiplying pixel values of the plurality of reference
images and the plurality of difference images by a constant or matrix. The plurality of amplified

images are assembled into the augmented input data for the CNN.

[0031] In one embodiment, the one or more software modules are further configured to
generate an electromagnetic simulation of the wafer image, render the electromagnetic
simulation, combine the rendered electromagnetic simulation with the received wafer image to
create an electromagnetic image, divide the electromagnetic image into a plurality of
electromagnetic reference images, and assemble the plurality of electromagnetic reference
images into the augmented input data for the CNN. Each electromagnetic reference image may

be associated with a die in the electromagnetic image.

[0032] In another embodiment, the one or more software modules are further configured
to create a plurality of defocused images by defocusing the plurality of reference images and the
plurality of difference images. The plurality of defocused images are assembled into the

augmented input data for the CNN.

[0033] In one embodiment, the one or more software modules are further configured to
create a plurality of illuminated images by varying an illumination value of the plurality of
reference images and the plurality of difference images. The plurality of illuminated images are

assembled into the augmented input data for the CNN.

[0034] In another embodiment, the one or more software modules are configured to
create a plurality of difference images by differencing a test image with a median die reference
image, a golden die reference image, a reference imaged based on a rendered design, or reference
image from a same die row as the test image, a same die column as the test image, or any die in

the wafer image.

[0035] The system may further comprise a database in electronic communication with

the processor and the image data acquisition subsystem. The database may be configured to store
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the wafer image, the plurality of reference images, the one or more test images, and the plurality

of difference images. In another embodiment, the database is also configured to store the CNN.
Description of the Drawings

[0036] For a fuller understanding of the nature and objects of the disclosure, reference
should be made to the following detailed description taken in conjunction with the

accompanying drawings, in which:

Figure 1 is a plurality of difference images illustrating random wafer noise;

Figure 2 is an illustration of reference image locations taken throughout a wafer;

Figure 3 is a system drawing of a system used in conjunction with one embodiment of the
present disclosure;

Figure 4 is a diagram showing a non-transitory computer-readable medium storing program
instructions executable on a computer system for performing a computer-implemented
method of the present disclosure; and

Figure 5 is a flowchart illustrating one embodiment of the present disclosure.
Detailed Description of the Disclosure

[0037] Although claimed subject matter will be described in terms of certain
embodiments, other embodiments, including embodiments that do not provide all of the benefits
and features set forth herein, are also within the scope of this disclosure. Various structural,
logical, process step, and electronic changes may be made without departing from the scope of
the disclosure. Accordingly, the scope of the disclosure is defined only by reference to the

appended claims.

[0038] As used herein, the term “wafer” generally refers to substrates formed of a
semiconductor or non-semiconductor material. Examples of such a semiconductor or non-
semiconductor material include, but are not limited to, monocrystalline silicon, gallium arsenide,
and indium phosphide. Such substrates may be commonly found and/or processed in

semiconductor fabrication facilities.
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[0039] A wafer may include one or more layers formed upon a substrate. For example,
such layers may include, but are not limited to, a resist, a dielectric material, and a conductive
material. Many different types of such layers are known in the art, and the term wafer as used

herein is intended to encompass a wafer including all types of such layers.

[0040] One or more layers formed on a wafer may be patterned or unpatterned. For
example, a wafer may include a plurality of dies, each having repeatable patterned features.
Formation and processing of such layers of material may ultimately result in completed devices.
Many different types of devices such as ICs may be formed on a wafer, and the term wafer as
used herein is intended to encompass a wafer on which any type of device known in the art is
being fabricated. As used herein, the term “chip” may comprise a collection of ICs designed for

a particular purpose.

[0041] Although embodiments are described herein with respect to wafers, it is to be
understood that the embodiments may be used for another specimen such as a reticle, which may
also be commonly referred to as a mask or a photomask. Many different types of reticles are

% 6C

known in the art, and the terms “reticle,” “mask,” and “photomask™ as used herein are intended

to encompass all types of reticles known in the art.

[0042] Detecting defects on a wafer may involve using one or more optics modes
including performing a hot scan on the wafer using the one or more optics modes and one or
more defect detection algorithms. A “hot scan” generally refers to a scan/inspection of a wafer
performed to detect defects on the wafer by applying relatively aggressive detection settings
(e.g., thresholds substantially close to the noise floor). In this manner, the hot scan may be
performed to collect inspection data about the wafer that will be used for the tuning process
(optics selection and algorithm tuning). The goal of the hot scan is to detect a representative

sample of all defect and nuisance types on the wafer in the selected mode(s).

[0043] Embodiments described herein may include multiple hot scans, for example, one
hot scan for optics selection and another for parameter tuning. The hot scan performed for
parameter selection may be performed using optical mode(s) that were selected for wafer
inspection. Selecting the optical mode(s) may include optics selection with overall scoring,

which automatically calculates a single number that specifies how “good” a mode or

9
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combination of optics modes is at finding DOI while suppressing nuisance for a given set of
defects. This eliminates the work of manually comparing the signal-to-noise ratio defect by

defect across many modes and significantly reduces the optics selection time.

[0044] Embodiments described herein may utilize a set of processor nodes is configured
to generate an image of the wafer using the image data stored in the arrays of the storage media

and at least one additional source of data for the wafer.

[0045] Embodiments of the present disclosure use convolutional neural networks for
defect inspection. Conventional machine learning approaches (such as supervised learning) can
also be used for defect inspection. In addition, the CNN may be used for defect classification
during runtime. Embodiments of the present disclosure may introduce new techniques for the
augmentation of input data sets for defect inspection, especially to mimic random die-to-die

process variations.

[0046] A CNN is a type of feed-forward artificial neural network in which the
connectivity pattern between its neurons (i.e., pixel clusters) is inspired by the organization of
the animal visual cortex. Individual cortical neurons respond to stimuli in a restricted region of
space known as the receptive field. The receptive fields of different neurons partially overlap
such that they tile the visual field. The response of an individual neuron to stimuli within its

receptive field can be approximated mathematically by a convolution operation.

[0047] CNNs may comprise of multiple layers of receptive fields. These are small neuron
collections which process portions of the input image or images. The outputs of these collections
are then tiled so that their input regions overlap, to obtain a better representation of the original
image. This may be repeated for every such layer. Tiling allows CNNss to tolerate translation of
the input image. CNN may have a 3D volumes of neurons. The layers of a CNN may have
neurons arranged in three dimensions: width, height and depth. The neurons inside a layer are
only connected to a small region of the layer before it, called a receptive field. Distinct types of
layers, both locally and completely connected, are stacked to form a CNN architecture. CNNs
exploit spatially local correlation by enforcing a local connectivity pattern between neurons of
adjacent layers. The architecture thus ensures that the learnt filters produce the strongest

response to a spatially local input pattern. Stacking many such layers leads to non-linear filters
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that become increasingly global (i.e., responsive to a larger region of pixel space). This allows
the network to first create good representations of small parts of the input, then assemble
representations of larger areas from them. In CNNs, each filter is replicated across the entire
visual field. These replicated units share the same parameterization (weight vector and bias) and
form a feature map. This means that all the neurons in a given convolutional layer detect exactly
the same feature. Replicating units in this way allows for features to be detected regardless of

their position in the visual field, thus constituting the property of translation invariance.

[0048] Together, these properties allow convolutional neural networks to achieve better
generalization on vision problems. Weight sharing also helps by dramatically reducing the
number of free parameters being learnt, thus lowering the memory requirements for running the
network. Decreasing the memory footprint allows the training of larger, more powerful
networks. CNNs may include local or global pooling layers, which combine the outputs of
neuron clusters. Pooling layers may also consist of various combinations of convolutional and
fully connected layers, with pointwise nonlinearity applied at the end of or after each layer. A
convolution operation on small regions of input is introduced to reduce the number of free
parameters and improve generalization. One advantage of convolutional networks is the use of
shared weight in convolutional layers, which means that the same filter (weights bank) is used

for each pixel in the layer. This also reduces memory footprint and improves performance.

[0049] A CNN architecture may be formed by a stack of distinct layers that transform the
input volume into an output volume (e.g., holding class scores) through a differentiable function.
A few distinct types of layers may be used. The convolutional layer has a variety of parameters
that consist of a set of learnable filters (or kernels), which have a small receptive field, but
extend through the full depth of the input volume. During the forward pass, each filter may be
convolved across the width and height of the input volume, computing the dot product between
the entries of the filter and the input and producing a 2-dimensional activation map of that filter.
As a result, the network learns filters that activate when they see some specific type of feature at
some spatial position in the input. By stacking the activation maps for all filters along the depth
dimension, a full output volume of the convolution layer is formed. Every entry in the output
volume can thus also be interpreted as an output of a neuron that looks at a small region in the

input and shares parameters with neurons in the same activation map.
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[0050] When dealing with high-dimensional inputs such as images, it may be impractical
to connect neurons to all neurons in the previous volume because such a network architecture
does not take the spatial structure of the data into account. CNNs may exploit spatially local
correlation by enforcing a local connectivity pattern between neurons of adjacent layers. For
example, each neuron is connected to only a small region of the input volume. The extent of this
connectivity is a hyperparameter called the receptive field of the neuron. The connections may
be local in space (along width and height), but always extend along the entire depth of the input
volume. Such an architecture ensures that the learnt filters produce the strongest response to a
spatially local input pattern. In one embodiment, training the CNN includes using transfer
learning to create hyperparameters for each CNN. Transfer learning may include training a CNN
on a very large dataset and then use the trained CNN weights either as an initialization or a fixed

feature extractor for the task of interest.

[0051] Three hyperparameters control the size of the output volume of the convolutional
layer: the depth, stride and zero-padding. Depth of the output volume controls the number of
neurons in the layer that connect to the same region of the input volume. All of these neurons
will learn to activate for different features in the input. For example, if the first CNN Layer takes
the raw image as input, then different neurons along the depth dimension may activate in the
presence of various oriented edges, or blobs of color. Stride controls how depth columns around
the spatial dimensions (width and height) are allocated. When the stride is 1, a new depth column
of neurons is allocated to spatial positions only 1 spatial unit apart. This leads to heavily
overlapping receptive fields between the columns, and also to large output volumes. Conversely,
if higher strides are used then the receptive fields will overlap less and the resulting output
volume will have smaller dimensions spatially. Sometimes it is convenient to pad the input with
zeros on the border of the input volume. The size of this zero-padding is a third hyperparameter.
Zero padding provides control of the output volume spatial size. In particular, sometimes it is

desirable to exactly preserve the spatial size of the input volume.

[0052] In some embodiments, a parameter sharing scheme may be used in layers to
control the number of free parameters. If one patch feature is useful to compute at some spatial

position, then it may also be useful to compute at a different position. In other words, denoting a
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single 2-dimensional slice of depth as a depth slice, neurons in each depth slice may be

constrained to use the same weights and bias.

[0053] Since all neurons in a single depth slice may share the same parametrization, then
the forward pass in each depth slice of the layer can be computed as a convolution of the
neuron's weights with the input volume. Therefore, it is common to refer to the sets of weights as
a filter (or a kernel), which is convolved with the input. The result of this convolution is an
activation map, and the set of activation maps for each different filter are stacked together along

the depth dimension to produce the output volume.

[0054] Sometimes, parameter sharing may not be effective, for example, when the input
images to a CNN have some specific centered structure, in which completely different features

are expected to be learned on different spatial locations.

[0055] Another important concept of CNNs is pooling, which is a form of non-linear
down-sampling. There are several non-linear functions to implement pooling among which max
pooling is one. Max pooling partitions the input image into a set of non-overlapping rectangles
and, for each such sub-region, outputs the maximum. Once a feature has been found, its exact
location may not be as important as its rough location relative to other features. The function of
the pooling layer may be to progressively reduce the spatial size of the representation to reduce
the amount of parameters and computation in the network, and hence to also control overfitting.

A pooling layer may be positioned in-between successive conv layers in a CNN architecture.

[0056] Another layer in a CNN may be a ReLU (Rectified Linear Units) layer. This is a
layer of neurons that applies a non-saturating activation function. A ReLU layer may increase the
nonlinear properties of the decision function and of the overall network without affecting the

receptive fields of the convolution layer.

[0057] Finally, after several convolutional and/or max pooling layers, the high-level
reasoning in the neural network is completed via fully connected layers. Neurons in a fully
connected layer have full connections to all activations in the previous layer. Their activations

can hence be computed with a matrix multiplication followed by a bias offset.
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[0058] In some embodiments, dropout techniques may be utilized to prevent overfitting.
As referred to herein, dropout techniques are a regularization technique for reducing overfitting
in neural networks by preventing complex co-adaptations on training data. The term “dropout”
refers to dropping out units (both hidden and visible) in a neural network. For example, at each
training stage, individual nodes may be either “dropped out” of the CNN with probability 1-p or
kept with probability p, so that a reduced CNN remains. In some embodiments, incoming and
outgoing edges to a dropped-out node may also be removed. Only the reduced CNN is trained.

Removed nodes may then be reinserted into the network with their original weights.

[0059] In training stages, the probability a hidden node will be retained (i.e. not dropped)
may be approximately 0.5. For input nodes, the retention probability may be higher. By avoiding
training all nodes on all training data, dropout decreases overfitting in CNNs and significantly

improves the speed of training.

[0060] Many different types of CNNs may be used in embodiments of the present
disclosure. Different CNNs may be used based on certain scanning modes or circumstances. The
configuration of a CNN may change based on the wafer, image data acquisition subsystem, or

predetermined parameters.

[0061] In one embodiment an image of a reticle generated by a reticle inspection system
is used as image data in the image data space. In this manner an image or a reticle generated by a
reticle inspection system may be used as a substitute for image data. The image of the reticle
used in this embodiment may include any suitable image of the reticle generated in any suitable
manner by any reticle inspection system known in the art. For example the image of the reticle
may be a high magnification optical or electron beam image of the reticle acquired by a high
magnification optical reticle inspection system or an electron beam based reticle inspection
system respectively. Alternatively the image of the reticle may be an aerial image of the reticle

acquired by an aerial imaging reticle inspection system.

[0062] In one embodiment, an inspection system is used to collect image data. For
example, the optical and electron beam output acquisition subsystems described herein may be
configured as inspection systems. In another embodiment, the image data acquisition subsystem

is a defect review system. For example, the optical and electron beam output acquisition
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subsystems described herein may be configured as defect review systems. In a further
embodiment, the image data acquisition subsystem is a metrology system. For example, the
optical and electron beam output acquisition subsystems described herein may be configured as
metrology systems. In particular, the embodiments of the output acquisition subsystems
described herein and shown in Fig. 3 may be modified in one or more parameters to provide
different imaging capability depending on the application for which they will be used. In one
such example, the image data acquisition subsystem shown in Fig. 3 may be configured to have a
higher resolution if it is to be used for defect review or metrology rather than for inspection. In
other words, the embodiments of the image data acquisition subsystem shown in Fig. 3 describe
some general and various configurations for an image data acquisition subsystem that can be
tailored in a number of manners that will be obvious to one skilled in the art to produce output
acquisition subsystems having different imaging capabilities that are more or less suitable for

different applications.

[0063] The systems and methods of the present disclosure may utilize output acquisition
subsystems, defect review output acquisition subsystems, and metrology image data acquisition
subsystems that are configured for inspection, defect review, and metrology of specimens such
as wafers and reticles. For example, the embodiments described herein may be configured for
using both scanning electron microscopy (SEM) and optical images for the purposes of mask
inspection, wafer inspection, and wafer metrology. In particular, the embodiments described
herein may be installed on a computer node or computer cluster that is a component of or
coupled to an image data acquisition subsystem such as a broadband plasma inspector, an
electron beam inspector or defect review tool, a mask inspector, a virtual inspector, etc. In this
manner, the embodiments described herein may generate output that can be used for a variety of
applications that include, but are not limited to, wafer inspection, mask inspection, electron beam
inspection and review, metrology, etc. The characteristics of the output acquisition subsystems
shown in Fig. 3 can be modified as described above based on the specimen for which it will

generate actual output.

[0064] Such a subsystem includes an image data acquisition subsystem that includes at

least an energy source and a detector. The energy source is configured to generate energy that is
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directed to a wafer. The detector is configured to detect energy from the wafer and to generate

output responsive to the detected energy.

[0065] In one embodiment, the energy directed to the wafer includes light, and the
energy detected from the wafer includes light. For example, in the embodiment of the system
shown in Fig. 3, image data acquisition subsystem 10 includes an illumination subsystem
configured to direct light to wafer 14. The illumination subsystem includes at least one light
source. For example, as shown in Fig. 3, the illumination subsystem includes light source 16. In
one embodiment, the illumination subsystem is configured to direct the light to the wafer at one
or more angles of incidence, which may include one or more oblique angles and/or one or more
normal angles. For example, as shown in Fig. 3, light from light source 16 is directed through
optical element 18 and then lens 20 to beam splitter 21, which directs the light to wafer 14 at a
normal angle of incidence. The angle of incidence may include any suitable angle of incidence,

which may vary depending on, for instance, characteristics of the wafer.

[0066] The illumination subsystem may be configured to direct the light to the wafer at
different angles of incidence at different times. For example, the image data acquisition
subsystem may be configured to alter one or more characteristics of one or more elements of the
illumination subsystem such that the light can be directed to the wafer at an angle of incidence
that is different than that shown in Fig. 3. In one such example, the image data acquisition
subsystem may be configured to move light source 16, optical element 18, and lens 20 such that

the light is directed to the wafer at a different angle of incidence.

[0067] In some instances, the image data acquisition subsystem may be configured to
direct light to the wafer at more than one angle of incidence at the same time. For example, the
illumination subsystem may include more than one illumination channel, one of the illumination
channels may include light source 16, optical element 18, and lens 20 as shown in Fig. 3 and
another of the illumination channels (not shown) may include similar elements, which may be
configured differently or the same, or may include at least a light source and possibly one or
more other components such as those described further herein. If such light is directed to the
wafer at the same time as the other light, one or more characteristics (e.g., wavelength,

polarization, etc.) of the light directed to the wafer at different angles of incidence may be
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different such that light resulting from illumination of the wafer at the different angles of

incidence can be discriminated from each other at the detector(s).

[0068] In another instance, the illumination subsystem may include only one light source
(e.g., source 16 shown in Fig. 3) and light from the light source may be separated into different
optical paths (e.g., based on wavelength, polarization, etc.) by one or more optical elements (not
shown) of the illumination subsystem. Light in each of the different optical paths may then be
directed to the wafer. Multiple illumination channels may be configured to direct light to the
wafer at the same time or at different times (e.g., when different illumination channels are used
to sequentially illuminate the wafer). In another instance, the same illumination channel may be
configured to direct light to the wafer with different characteristics at different times. For
example, in some instances, optical element 18 may be configured as a spectral filter and the
properties of the spectral filter can be changed in a variety of different ways (e.g., by swapping
out the spectral filter) such that different wavelengths of light can be directed to the wafer at
different times. The illumination subsystem may have any other suitable configuration known in
the art for directing the light having different or the same characteristics to the wafer at different

or the same angles of incidence sequentially or simultaneously.

[0069] In one embodiment, light source 16 may include a broadband plasma (BBP) light
source. In this manner, the light generated by the light source and directed to the wafer may
include broadband light. However, the light source may include any other suitable light source
such as a laser. The laser may include any suitable laser known in the art and may be configured
to generate light at any suitable wavelength or wavelengths known in the art. In addition, the
laser may be configured to generate light that is monochromatic or nearly-monochromatic. In
this manner, the laser may be a narrowband laser. The light source may also include a

polychromatic light source that generates light at multiple discrete wavelengths or wavebands.

[0070] Light from optical element 18 may be focused to beam splitter 21 by lens 20.
Although lens 20 is shown in Fig. 3 as a single refractive optical element, it is to be understood
that, in practice, lens 20 may include a number of refractive and/or reflective optical elements
that in combination focus the light from the optical element to the wafer. The illumination
subsystem shown in Fig. 3 and described herein may include any other suitable optical elements

(not shown). Examples of such optical elements include, but are not limited to, polarizing
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component(s), spectral filter(s), spatial filter(s), reflective optical element(s), apodizer(s), beam
splitter(s), aperture(s), and the like, which may include any such suitable optical elements known
in the art. In addition, the system may be configured to alter one or more of the elements of the

illumination subsystem based on the type of illumination to be used for output acquisition.

[0071] The image data acquisition subsystem may also include a scanning subsystem
configured to cause the light to be scanned over the wafer. For example, the image data
acquisition subsystem may include stage 22 on which wafer 14 is disposed during output
acquisition. The scanning subsystem may include any suitable mechanical and/or robotic
assembly (that includes stage 22) that can be configured to move the wafer such that the light can
be scanned over the wafer. In addition, or alternatively, the image data acquisition subsystem
may be configured such that one or more optical elements of the image data acquisition
subsystem perform some scanning of the light over the wafer. The light may be scanned over the

wafer in any suitable fashion.

[0072] The image data acquisition subsystem further includes one or more detection
channels. At least one of the one or more detection channels includes a detector configured to
detect light from the wafer due to illumination of the wafer by the image data acquisition
subsystem and to generate output responsive to the detected light. For example, the image data
acquisition subsystem shown in Fig. 3 includes two detection channels, one formed by collector
24, element 26, and detector 28 and another formed by collector 30, element 32, and detector 34.
As shown in Fig. 3, the two detection channels are configured to collect and detect light at
different angles of collection. In some instances, one detection channel is configured to detect
specularly reflected light, and the other detection channel is configured to detect light that is not
specularly reflected (e.g., scattered, diffracted, etc.) from the wafer. However, two or more of the
detection channels may be configured to detect the same type of light from the wafer (e.g.,
specularly reflected light). Although Fig. 3 shows an embodiment of the image data acquisition
subsystem that includes two detection channels, the image data acquisition subsystem may
include a different number of detection channels (e.g., only one detection channel or two or more
detection channels). Although each of the collectors are shown in Fig. 3 as single refractive
optical elements, it is to be understood that each of the collectors may include one or more

refractive optical element(s) and/or one or more reflective optical element(s).
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[0073] The one or more detection channels may include any suitable detectors known in
the art. For example, the detectors may include photo-multiplier tubes (PMTs), charge coupled
devices (CCDs), and time delay integration (TDI) cameras. The detectors may also include any
other suitable detectors known in the art. The detectors may also include non-imaging detectors
or imaging detectors. In this manner, if the detectors are non-imaging detectors, each of the
detectors may be configured to detect certain characteristics of the scattered light such as
intensity but may not be configured to detect such characteristics as a function of position within
the imaging plane. As such, the output that is generated by each of the detectors included in each
of the detection channels of the image data acquisition subsystem may be signals or data, but not
image signals or image data. In such instances, a computer subsystem such as computer
subsystem 36 of the system may be configured to generate images of the wafer from the non-
imaging output of the detectors. However, in other instances, the detectors may be configured as
imaging detectors that are configured to generate imaging signals or image data. Therefore, the

system may be configured to generate the images described herein in a number of ways.

[0074] It is noted that Fig. 3 is provided herein to generally illustrate a configuration of
an image data acquisition subsystem that may be included in the system embodiments described
herein. Obviously, the image data acquisition subsystem configuration described herein may be
altered to optimize the performance of the system as is normally performed when designing a
commercial system. In addition, the systems described herein may be implemented using an
existing output acquisition system (e.g., by adding functionality described herein to an existing
output acquisition system) such as tools that are commercially available from KLA-Tencor. For
some such systems, the methods described herein may be provided as optional functionality of
the output acquisition system (e.g., in addition to other functionality of the output acquisition
system). Alternatively, the system described herein may be designed “from scratch” to provide a

completely new system.

[0075] Computer subsystem 36 of the system may be coupled to the detectors of the
image data acquisition subsystem in any suitable manner (e.g., via one or more transmission
media, which may include “wired” and/or “wireless” transmission media) such that the computer
subsystem can receive the output generated by the detectors during scanning of the wafer.

Computer subsystem 36 may be configured to perform a number of functions using the output of
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the detectors as described herein and any other functions described further herein. This computer

subsystem may be further configured as described herein.

[0076] This computer subsystem (as well as other computer subsystems described
herein) may also be referred to herein as computer system(s). Each of the computer subsystem(s)
or system(s) described herein may take various forms, including a personal computer system,
image computer, mainframe computer system, workstation, network appliance, Internet
appliance, or other device. In general, the term “computer system” may be broadly defined to
encompass any device having one or more processors, which executes instructions from a
memory medium. The computer subsystem(s) or system(s) may also include any suitable
processor known in the art such as a parallel processor. In addition, the computer subsystem(s) or
system(s) may include a computer platform with high speed processing and software, either as a

standalone or a networked tool.

[0077] If the system includes more than one computer subsystem, then the different
computer subsystems may be coupled to each other such that images, data, information,
instructions, etc. can be sent between the computer subsystems as described further herein. For
example, computer subsystem 36 may be coupled to computer subsystem(s) 102 by any suitable
transmission media, which may include any suitable wired and/or wireless transmission media
known in the art. Two or more of such computer subsystems may also be effectively coupled by

a shared computer-readable storage medium (not shown).

[0078] An additional embodiment relates to a non-transitory computer-readable medium
storing program instructions executable on a computer system for performing a computer-
implemented method for defect detection. One such embodiment is shown in Fig. 4. In
particular, as shown in Fig. 4, non-transitory computer-readable medium 1800 includes program
instructions 1802 executable on computer system 1804, The computer-implemented method may

include any step(s) of any method(s) described herein.

[0079] Program instructions 1802 implementing methods such as those described herein
may be stored on computer-readable medium 1800. The computer-readable medium may be a
storage medium such as a magnetic or optical disk, a magnetic tape, or any other suitable non-

transitory computer-readable medium known in the art.
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[0080] The program instructions may be implemented in any of various ways, including
procedure-based techniques, component-based techniques, and/or object-oriented techniques,
among others. For example, the program instructions may be implemented using ActiveX
controls, C++ objects, JavaBeans, Microsoft Foundation Classes (“MFC”), SSE (Streaming

SIMD Extension) or other technologies or methodologies, as desired.

[0081] Computer system 1804 may be configured according to any of the embodiments

described herein.

[0082] In one embodiment of the present disclosure may be described as a method 100
for providing an augmented input data to a convolutional neural network (CNN), which is seen
in Fig. 5. The augmented input data may comprise a plurality of training images or a plurality of

training sets. The augmented input data may come in a variety of formats suitable for the CNN.

[0083] The method 100 comprises receiving 107 a wafer image at a processor. The wafer
image may be a composite of images taken of the wafer during a scan or hot scan. The wafer
image may also be a singular image that has been combined from a plurality of images taken of
the wafer during a scanner hot scan. The wafer image is received 107 electronically, for example
via a local area network or intranet. The wafer image may also be received 107 from a local or

remote database.

[0084] The method 100 further comprises using the processor to divide 109 the wafer
image into a plurality of reference images. Each reference image is associated with a die in the
wafer image. Fig. 2 illustrates locations of reference images associated with each die in a wafer
image. The wafer image may be divided 109 in predetermined segments, or the processor may
select the size of each reference image. Each reference image may comprise a single die. The
plurality of reference images may be stored in local memory, local database, or remote database.
As such, the plurality of reference images may be retrieved by the processor for future use.
Additional information may be associated with each of the plurality of reference images, such as

wafer information, image location, image capture parameters, etc.

[0085] The method 100 further comprises receiving 109 one or more test images at the
processor. The test images may be recently received 109 from a wafer or they may be test

images that have been previously saved to an electronic data storage device. The test images may
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be images in which the user wishes to detect defects. Each test image may be of a single wafer.
Additional information may be associated with each of the test images, such as wafer

information, image location image capture parameters, etc.

[0086] The method 100 further comprises creating 113 a plurality of difference images
using the processor. The difference images are created by differencing the one or more test
images with one or more of the plurality of reference images. In one embodiment, the difference
between two images is calculated by finding the difference between each pixel in each image,
and generating an image based on the result. The two images may need to be aligned so that the
corresponding points coincide, and their photometric values can be made compatible, either by
calibration or postprocessing (such as using color mapping). In one embodiment, the step of
creating 113 a plurality of difference images may comprise differencing a test image with a
median die reference image, a golden die reference image, a reference image based on a rendered
design, or reference image from a same tyro as a test image, a same type column is a test image,

or any die in the wafer image.

[0087] In one embodiment, the one or more test images may be differenced with one or
more of the plurality of reference images with corresponding die information. In another
embodiment, the one or more test images may be differenced with one or more of the plurality of
reference images with different die information. In some embodiments, multiple test images may

be differenced with a single reference image or vice versa.

[0088] The method 100 further comprises assembling 133 the augmented input data for
the CNN using the processor. The assembling 133 step may include packaging the plurality of
reference images and the plurality of difference images into an electronic format suitable for
input by the CNN. The assembling 133 step may include retrieving or storing reference images
and difference images from local or remote electronic storage. The assembled 133 augmented
input data may contain relevant information associated with each image, such as the die location,

image capture parameters, etc.

[0089] The method 100 further comprises providing 135 the augmented input data to the
CNN using the processor. In one embodiment, the CNN may be located and executed on the

same processor. In another embodiment, the CNN may be located and executed on a remote
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processor. In one embodiment, the augmented input data may be provided 135 to an

intermediary electronic storage medium such as RAM, ROM, or electronic database.

[0090] In one embodiment of the method 100, the method may further comprise
performing 101 a wafer scan using image data acquisition subsystem. An exemplary
embodiment of the image data acquisition subsystem is described above. The method 100 may
further comprise converting 103 the wafer scan into a wafer image. The conversion 103 may
occur at the image data acquisition subsystem or at a separate processor. The conversion 103
may include stitching together multiple images to create a wafer image. The conversion 103 may
also include adjusting image parameters for a more suitable wafer image. The conversion 103
may also include converting the wafer scan into a computer readable electronic wafer image,
such that the wafer image may be digitally manipulated by the embodiments of the present
disclosure. The method 100 may further comprise converting 105 the wafer scan into the one or
more test images. In addition to the potential conversion steps discussed above with regard to the
wafer image conversion 103, the test image conversion 105 may further include segmenting the
wafer image into a plurality of test images. The segmentation may be based on die size

automatically or based on a predetermined segmentation by the user or stored in memory.

[0091] In one embodiment of the method 100, the method may further comprise creating
115 a plurality of defect-of-interest (DOI) images. The DOI images are created 115 using the
processor. The images 115 may be created by differencing one or more test images having a DOI
with one or more of the plurality of the reference images and emerging the difference images
with one or more of the plurality of test images. As such, new images are created 115 having a
DOI transposed from a different test image. The plurality of DOI images are assembled 133 into
the augmented input data for the CNN.

[0092] In another embodiment of the method 100, the method may further comprise
creating 119 a plurality of transposed images using the processor. The transposed images are
created 119 by transposing the plurality of reference images and the plurality of difference
images with respect to the received one or more test images. For example, the transposition may
be a sub pixel offset with respect to the received one or more test images. In another example,
the transposition may be a multi-pixel offset with respect to the received one or more test

images. The transposition for each reference image and difference image may be the same for
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the entire plurality or may be varied. The plurality of transposed images are assembled 133 into

the augmented input data for the CNN.

[0093] In one embodiment of the method 100, the method may further comprise creating
121 a plurality of amplified images using the processor. The amplified images are created 121 by
multiplying pixel values of the plurality of reference images and the plurality of difference
images by a constant or a matrix. For example, the matrix may contain positive and negative
values. In this way, certain features of the reference image or difference image may be amplified
or reduced. The plurality of amplified images are assembled 133 into the augmented input data

for the CNN.

[0094] In another embodiment of the method 100, the method may further comprise
generating 125 an electromagnetic simulation of the wafer image using the processor. In some
embodiments, the electromagnetic simulation may be generated 125 in a separate system or a
different processor. Electromagnetic simulation may be generated 125 using known models or
through postproduction analysis. The electromagnetic simulation may be rendered 127 using the
processor. In some embodiments, the rendering may be stored in electronic memory or an
internal or external electronic database. The electromagnetic simulation may be rendered 127 in
such a way to mimic the visual effect of electromagnetic interference captured by the image data

acquisition subsystem.

[0095] The rendered electromagnetic simulation may be combined 131 with the received
wafer image to create an electromagnetic image. The combination 131 may be an addition of
pixel values between the wafer image and the electromagnetic image. The electromagnetic image
may be divided 129 into a plurality of electromagnetic reference images. Each electromagnetic
reference image may be associated with a die in the electromagnetic image. In some
embodiments, the division 129 may occur before the combination 131. In this way, computing
power may be reduced because less than the full electromagnetic image may need to be
combined 131 with the wafer image. The plurality of electromagnetic reference images are

assembled 133 into the augmented input data for the CNN.

[0096] In another embodiment of the method 100, the method may further comprise

creating 117 a plurality of defocused images using the processor. The defocused images are
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created 117 by the focusing the plurality of reference images and the plurality of difference
images. Each reference image and difference image may be defocused using the same or
different values. The plurality of defocused images are assembled 133 into the augmented input

data for the CNN.

[0097] In another embodiment of the method 100, the method may further comprise
creating 123 a plurality of illuminated images using the processor. The illuminated images 123
may be created by varying the illumination value of the plurality of reference images and the
plurality of difference images. The illumination value may be separate from the pixel amplitude
value. For example, a change in the illumination value may not result in an equal change in the
amplitude of each pixel of a reference image or difference image. The amplitude change may be
greater at an illumination point and lesser away from that point. The plurality of illuminated

images are assembled 133 into the augmented input data for the CNN.

[0098] Another embodiment of the present disclosure may be described as a system for
providing an augmented input data to a CNN. The system may comprise a processor configured
to execute one or more software modules. The one or more software modules may be configured

to receive a wafer image. The wafer image may contain one or more dies.

[0099] The one or more software modules may be configured to divide the wafer image
into a plurality of reference images. Each reference image associated may be associated with a
die in the wafer image. The one or more software modules may be configured to receive one or
more test images and create a plurality of difference images by differencing the one or more test

images with one or more of the plurality of reference images.

[0100] The one or more software modules may be configured to assemble the plurality of
reference images and the plurality of difference images into the augmented input data for the

CNN and provide the augmented input data to the CNN.

[0101] In one embodiment, the software modules are further configured to create a
plurality of defect-of-interest (DOI) images by differencing one or more test images having a
DOI with one or more of the plurality of the reference images. The differenced images are then
merged with one or more of the plurality of test images. The plurality of DOI images are then

assembled into the augmented input data for the CNN.
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[0102] In another embodiment, the system further comprises an image data acquisition
subsystem in electronic communication with the processor. In such an embodiment, the image
data acquisition subsystem is configured to perform a wafer scan. The one or more software
modules are further configured to convert the wafer scan into the one or more test images and the

wafer scan into the wafer image.

[0103] In one embodiment, the one or more software modules are further configured to
create a plurality of transposed images by transposing the plurality of reference images and the
plurality of difference images with respect to the received one or more test images. The plurality
of transposed images are assembled into the augmented input data for the CNN. The plurality of
transposed images may be transposed by a sub-pixel offset with respect to the received one or

more test images.

[0104] In another embodiment, the one or more software modules are further configured
to create a plurality of amplified images by multiplying pixel values of the plurality of reference
images and the plurality of difference images by a constant or matrix. The plurality of amplified

images are assembled into the augmented input data for the CNN.

[0105] In one embodiment, the one or more software modules are further configured to
generate an electromagnetic simulation of the wafer image, render the electromagnetic
simulation, combine the rendered electromagnetic simulation with the received wafer image to
create an electromagnetic image, divide the electromagnetic image into a plurality of
electromagnetic reference images, and assemble the plurality of electromagnetic reference
images into the augmented input data for the CNN. Each electromagnetic reference image may

be associated with a die in the electromagnetic image.

[0106] In another embodiment, the one or more software modules are further configured
to create a plurality of defocused images by defocusing the plurality of reference images and the
plurality of difference images. The plurality of defocused images are assembled into the

augmented input data for the CNN.

[0107] In one embodiment, the one or more software modules are further configured to

create a plurality of illuminated images by varying an illumination value of the plurality of

26



10

15

WO 2018/106827 PCT/US2017/064947

reference images and the plurality of difference images. The plurality of illuminated images are

assembled into the augmented input data for the CNN.

[0108] In another embodiment, the one or more software modules are configured to
create a plurality of difference images by differencing a test image with a median die reference
image, a golden die reference image, a reference imaged based on a rendered design, or reference
image from a same die row as the test image, a same die column as the test image, or any die in

the wafer image.

[0109] The system may further comprise a database in electronic communication with
the processor and the image data acquisition subsystem. The database may be configured to store
the wafer image, the plurality of reference images, the one or more test images, and the plurality

of difference images. In another embodiment, the database is also configured to store the CNN.

[0110] Although the present disclosure has been described with respect to one or more
particular embodiments, it will be understood that other embodiments of the present disclosure
may be made without departing from the spirit and scope of the present disclosure. Hence, the
present disclosure is deemed limited only by the appended claims and the reasonable

interpretation thereof.
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What is claimed is;

1. A method for providing an augmented input data to a convolutional neural network (CNN)
comprising:
receiving, at a processor, a wafer image;
dividing, using the processor, the wafer image into a plurality of reference images, each
reference image associated with a die in the wafer image;
receiving, at the processor, one or more test images;
creating a plurality of difference images, using the processor, by differencing the one or more
test images with one or more of the plurality of reference images;
assembling, using the processor, the plurality of reference images and the plurality of
difference images into the augmented input data for the CNN; and

providing, using the processor, the augmented input data to the CNN.

2. The method of claim 1, further comprising:
performing, using an image data acquisition subsystem, a wafer scan;
converting, using an image data acquisition subsystem, the wafer scan into the wafer image;
and
converting, using the image data acquisition subsystem, the wafer scan into the one or more

test images.

3. The method of claim 1, further comprising:
creating a plurality of defect-of-interest (DOI) images, using the processor, by differencing
one or more test images having a DOI with one or more of the plurality of the reference
images and merging the differenced images with one or more of the plurality of test
images; and
assembling, using the processor, the plurality of DOI images into the augmented input data

for the CNN.

4. The method of claim 1, further comprising:
creating a plurality of transposed images, using the processor, by transposing the plurality of
reference images and the plurality of difference images with respect to the received one

or more test images; and
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assembling, using the processor, the plurality of transposed images into the augmented input
data for the CNN;
wherein the plurality of transposed images are transposed by a sub-pixel offset with respect

to the received one or more test images.

5. The method of claim 1, further comprising;:
creating a plurality of amplified images, using the processor, by multiplying pixel values of
the plurality of reference images and the plurality of difference images by a constant or
matrix; and
assembling, using the processor, the plurality of amplified images into the augmented input

data for the CNN.

6. The method of claim 1, further comprising:

generating, using the processor, an electromagnetic simulation of the wafer image;

rendering, using the processor, the electromagnetic simulation;

combining, using the processor, the rendered electromagnetic simulation with the received
wafer image to create an electromagnetic image;

dividing, using the processor, the electromagnetic image into a plurality of electromagnetic
reference images, each electromagnetic reference image associated with a die in the
electromagnetic image; and

assembling, using the processor, the plurality of electromagnetic reference images into the

augmented input data for the CNN.

7. The method of claim 1, further comprising:
creating a plurality of defocused images, using the processor, by defocusing the plurality of
reference images and the plurality of difference images; and
assembling, using the processor, the plurality of defocused images into the augmented input

data for the CNN.

8. The method of claim 1, further comprising:
creating a plurality of illuminated images, using the processor, by varying an illumination

value of the plurality of reference images and the plurality of difference images; and
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assembling, using the processor, the plurality of illuminated images into the augmented input

data for the CNN.

9. The method of claim 1, wherein the step of creating a plurality of difference images comprises
differencing, using the processor, a test image with a median die reference image, a golden die
5  reference image, a reference imaged based on a rendered design, or reference image from a same

die row as the test image, a same die column as the test image, or any die in the wafer image.

10. A system for providing an augmented input data to a convolutional neural network (CNN)
comprising:
a processor configured to execute one or more software modules, the one or more software
10 modules configured to:
receive a wafer image, the wafer image containing one or more dies;
divide the wafer image into a plurality of reference images, each reference image
associated with a die in the wafer image;
receive one or more test images;
15 create a plurality of difference images by differencing the one or more test images with
one or more of the plurality of reference images;
assemble the plurality of reference images and the plurality of difference images into the
augmented input data for the CNN; and
provide the augmented input data to the CNN.

20 11. The system of claim 10, wherein the one or more software modules are further configured to:
create a plurality of defect-of-interest (DOI) images by differencing one or more test images
having a DOI with one or more of the plurality of the reference images and merging the
differenced images with one or more of the plurality of test images; and

assemble the plurality of DOI images into the augmented input data for the CNN.

25  12. The system of claim 10, further comprising:
an image data acquisition subsystem in electronic communication with the processor;
wherein the image data acquisition subsystem is configured to perform a wafer scan;
wherein the one or more software modules are further configured to convert the wafer scan

into the one or more test images; and
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wherein the one or more software modules are further configured to convert the wafer scan

into the wafer image.

The system of claim 10, wherein the one or more software modules are further configured to:

create a plurality of transposed images by transposing the plurality of reference images and
the plurality of difference images with respect to the received one or more test images;
and

assemble the plurality of transposed images into the augmented input data for the CNN;

wherein the plurality of transposed images are transposed by a sub-pixel offset with respect

to the received one or more test images.

The system of claim 10, wherein the one or more software modules are further configured to:
create a plurality of amplified images by multiplying pixel values of the plurality of reference
images and the plurality of difference images by a constant or matrix; and

assemble the plurality of amplified images into the augmented input data for the CNN.

The system of claim 10, wherein the one or more software modules are further configured to:

generate an electromagnetic simulation of the wafer image;

render the electromagnetic simulation;

combine the rendered electromagnetic simulation with the received wafer image to create an
electromagnetic image;

divide the electromagnetic image into a plurality of electromagnetic reference images, each
electromagnetic reference image associated with a die in the electromagnetic image; and

assemble the plurality of electromagnetic reference images into the augmented input data for

the CNN.

The system of claim 10, wherein the one or more software modules are further configured to:
create a plurality of defocused images by defocusing the plurality of reference images and
the plurality of difference images; and

assemble the plurality of defocused images into the augmented input data for the CNN.

The system of claim 10, wherein the one or more software modules are further configured to:
create a plurality of illuminated images by varying an illumination value of the plurality of

reference images and the plurality of difference images; and
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assemble the plurality of illuminated images into the augmented input data for the CNN.

18. The system of claim 10, wherein the one or more software modules are configured to create a
plurality of difference images by differencing a test image with a median die reference image, a
golden die reference image, a reference imaged based on a rendered design, or reference image
from a same die row as the test image, a same die column as the test image, or any die in the

wafer image.

19. The system of claim 11, further comprising a database in electronic communication with the
processor and the image data acquisition subsystem, the database configured to store the wafer
image, the plurality of reference images, the one or more test images, and the plurality of

difference images.

20. The system of claim 19, wherein the database is also configured to store the CNN.
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