发明名称
基于酸沸石的催化剂的制备

摘要
通过在此描述的本发明方法成功获得具有沸石结构的耐酸的硅酸盐，其作为用于MTBE高解的催化剂具有可忽略不计的DME和C8选择性,同时具有高的活性。
1. 制备基于具有沸石结构的含硼的硅酸盐的催化剂的方法，其包括下列步骤:
   a) 提供含有至少一种具有沸石结构的含硼的硅酸盐的水悬浮液，
   b) 添加酸以调节 1 至 5 的 pH 值，
   c) 搅拌所述悬浮液，
   d) 分离所得固体，
   e) 任选地洗涤所述固体，
   f) 焚烧所述固体。
2. 根据权利要求 1 的方法，其特征在于使用具有 MFI 类型的沸石结构的含硼的硅酸盐。
3. 根据权利要求 1 或 2 的方法，其特征在于所述悬浮液中存在的硅酸盐具有 2 至 4 的 SiO₂/B₂O₃ 摩尔比，优选所述比率为 2.3 至 3.7。
4. 根据权利要求 1、2 或 3 的方法，其特征在于所述悬浮液中存在的硅酸盐具有小于 0.1 重量％的铝含量，特别是其不含铝。
5. 根据权利要求 1 至 4 中任一项的方法，其特征在于至少在添加酸后，所述悬浮液中存在的硅酸盐具有小于 1 重量％的硼含量，特别是硼含量小于 0.5 重量％。
6. 根据权利要求 1 至 5 中至少一项的方法，其特征在于步骤 a) 中的硅酸盐具有 300 平方米 / 克至 500 平方米 / 克，优选 330 至 470 平方米 / 克，特别优选 370 至 430 平方米 / 克的按照 BET 法测得的表面积。
7. 根据权利要求 1 至 6 中至少一项的方法，其特征在于通过添加盐酸实现步骤 b) 中的 pH 值的调节。
8. 根据权利要求 1 至 6 中至少一项的方法，其特征在于通过添加磷酸实现步骤 b) 中的 pH 值的调节。
9. 根据权利要求 1 至 8 中至少一项的方法，其特征在于在最高 80°C 下进行步骤 c) 中的悬浮液搅拌。
10. 根据权利要求 8 的方法，其特征在于在最高 25°C 下进行步骤 c) 中的悬浮液搅拌。
11. 根据权利要求 1 至 10 中至少一项的方法，其特征在于步骤 c) 中的悬浮液搅拌进行至少 24 小时的时间。
12. 根据权利要求 1 至 11 中至少一项的方法，其特征在于通过真空过滤或超压过滤进行步骤 d) 中的固体分离。
13. 根据权利要求 1 至 12 中至少一项的方法，其特征在于在步骤 e) 中用水洗涤所述固体。
14. 根据权利要求 1 至 13 中至少一项的方法，其特征在于在最高 500°C 的温度下进行步骤 f) 中的固体煅烧，优选所述温度最高 350°C。
15. 根据权利要求 1 至 14 中至少一项的方法，其特征在于在含氮气氛中，优选在纯氮气流中在空气流中，进行步骤 f) 中的固体煅烧。
16. 根据权利要求 1 至 15 中至少一项的方法，其特征在于用水洗涤步骤 f) 中获得的固体并随后重复步骤 f)。
17. 根据权利要求 1 至 16 中至少一项的方法，其特征在于用甲醇处理经煅烧的固体。
18. 包含沸石结构并可通过根据权利要求 1 至 17 中至少一项的方法获得的含硼的硅酸盐的催化剂。
19. 根据权利要求 18 的催化剂，其中所述沸石结构为 MFI 类型的。

20. 根据权利要求 18 或 19 的催化剂，其特征在于其硼比例小于 1 重量％，优选所述比例小于 0.5 重量％。
基于硼沸石的催化剂的制备

技术领域
[0001] 本发明涉及制备基于具有沸石结构的含硼的硅酸盐的催化剂的方法以及可通过该方法获得的催化剂。

背景技术
[0002] 异丁烯是在化学工业中用于生产许多有机化合物的有价值的原材料。其用于轮胎工业中生产丁基橡胶和用于获得聚异丁烯，一种用于尤其是滑动剂添加剂和燃料添加剂以及用于粘合剂和密封剂的中间产品。此外，异丁烯用作烷基化剂，特别是用于合成叔丁基苯乙烯作为用于过氧化物生产的中间产品。此外，异丁烯可用作甲基丙烯酸及其酯的前体。此处可提到的实例是甲基丙烯酸甲酯，其用于生产Plexiglas®。由异丁烯制成的另一些产品是乙酸酯 - 醛、C₅-羧酸、C₅-醇和C₅-烯烃。异丁烯因此代表具有越来越高的市场需求的新的创造价值。异丁烯的化学纯度对许多用途至关重要；在此，需要最多至99.9%的纯度。

[0003] 原材料异丁烯在轻汽油馏分，来自FCC装置或来自炼油厂的蒸汽裂解装置的C₅馏分中获得。因此与有相同碳原子数的其它烯烃和饱和烃混合存在。在C₅馏分的后处理中，在第一阶段中通过萃取精馏而分离出占C₅馏分的大约50%的丁二烯，或通过选择性氢化而转化成直链丁烯。剩余混合物，所谓残液1，包含最多至50%的异丁烯。由于异丁烯和1-丁烯的几乎相同的物理性质，不可能通过蒸馏法来区分丁烯和异丁烯。

[0004] 物理分离法的一种替代方案是异丁烯的衍生化，因为其具有比其它C₅组分高的反应性。前提条件是该衍生物容易从残液1中分离并可再分离以生成所需产物异丁烯和衍生物。此处的重要方法是与水反应形成丁醇和与甲醇一同形成甲基叔丁基醚（MTBE）。按照Huls法，在液相中在酸催化下在低于100°C的温度下进行MTBE合成。在此使用离子交换剂，如苯乙烯和二乙烯基苯的磺化共聚物作为多相催化剂。在该合成后，由于沸点的大的差异，MTBE可以容易地通过蒸馏与未反应C₅馏分中分离出来并随后再选择性分离回产物异丁烯和甲醇。副产物甲醇可以再循环至MTBE合成。因此可以用MTBE离解的工艺步骤扩展用于C₅后处理和用于MTBE合成的现有装置。

[0005] MTBE的离解是吸热的平衡反应。热力学平衡因此随温度提高而朝离解产物的方向移动。压力的提高使得化学平衡朝着原料MTBE的方向移动。MTBE的离解可以在液相中均匀进行或在气相中在多相催化下进行。由于均相催化剂的低稳定性和在液相中的较低平衡转化率，MTBE在固体催化剂上的气相离解是优先的。在大气压下的气相反应中，在160°C以上就已经实现大约95%的平衡转化率。

[0006] 在工业操作中，7巴的绝对压力（由此高于反应介质中期望组分的蒸气压）是要求的，以节省下游加工中用于气体压缩的成本并同时能够借助冷却水实现冷凝。MTBE的离解在酸催化剂存在下进行。在文献中报道了无定形和结晶铝硅酸盐和在硅或铝上的金属硫酸盐、负载型磷酸和离子交换树脂的可使用性。但是，在文献中迄今尚未指明酸催化的MTBE离解的机制。
说明书

0007 由于多相催化的气相离解的高反应温度，除异丁烯和甲醇外还形成一些不合适的副产物。甲醇的脱水产生不合适的后续产物二甲醚（DME）。异丁烯二聚形成低聚物在2, 4, 4-三甲基-1-戊烯（TMP-1）和2, 4, 4-三甲基-2-戊烯（TMP-2）。根据催化剂体系而定，无法排除进一步低聚反应，如三聚物的形成。此外，预计异丁烯与水发生平衡反应形成丁醇（TBA），此外，无法排除MTBE与水直接反应形成TBA和甲醇。

0008 由于对下游应用的异丁烯的纯度的高要求，必须尽可能地抑制上述不合适的产物的形成。此处的焦点主要是将异丁烯的后续反应以形成低聚物和甲醇脱水以形成DME最小化的目标，因为副产物的形成一方面决定性地确定提纯成本，另一方面降低产物异丁烯和甲醇的收率。用于MTBE离解的催化剂在不合适的分子里的形成中起到关键作用。

0009 在文献中已经描述了多种具有酸性性质的催化剂用于醚的气相离解。多个专利要求保护磺酸作为醚离解的催化剂并保证在最高至55%的转化率下最高至89.3%或86.7%的对主要组分异丁烯和甲醇的选择性。但是，发现强酸性催化剂，如硫酸和磷酸的使用造成异丁烯选择性劣化。

0010 无定形和结晶铝硅酸盐以及改性铝硅酸盐是许多公开文本的主题。当使用铝硅酸盐时，通常使用150至300℃的反应温度和1至7巴的压力进行。多个专利要求保护具有0.1至0.8%的铝的比例并由此在98%的转化率下实现分别高达99.8%和99.2%的对异丁烯和甲醇的选择性的无定形或结晶铝硅酸盐。

0011 此外，除铝硅酸盐外，还已经描述了具有中等强度的电负性的元素，例如镁、钛、钒、铬、铁、钴、锰、镍和铝的金属氧化物用于醚离解。此外，可进行上所述金属氧化物掺杂铝硅酸盐以影响该催化剂的酸性。

0012 清楚的是，所有催化剂体系都具有对MTBE离解的高活性（≥70%）。在比较对异丁烯和甲醇的选择性时，发现材料之间的差异。在此，没有看出与组成、额外掺杂或固体的表面性质的直接相关。

0013 沸石是具有由氧原子线性连接的[SiO₄]和[AlO₄]四面体构成的三元阴离子骨架的水合结晶铝硅酸盐。该沸石骨架通常形成由通道和空隙构成的高度有序的晶体结构。可交换的或可逆除去的阳离子用于阴离子骨架电荷的电荷补偿。单位晶胞的化学组成由下列通式表示：

0014 Mₓ, n [(AlO₄)x (SiO₄)y] • wH₂O

0015 其中n是阳离子M的化合价且w是每个单位晶胞的水分子数。对于Si/Al比适用的是y/x ≥ 1。铝或硅被其它成网元素同晶替代导致产生变体丰富的并且多样的类沸石材料。考虑到替代可能性，获得下式用于沸石和类沸石材料：

0016 Mₓ • M'y • N₂ • [Tₙ • T'n • O₂(a...o) • (OH)₂a] • (OH) br • (aq)p • qY

0017 T = Al, B, Be, Ga, P, Si, Ti, V 等。

0018 M和M'是可交换或不可交换的阳离子，N表示非金属阳离子，(aq),是强键合的水。qY表示也包括水的吸着物分子，且(OH)₂a代表在网络断裂点的羟基。如果借助质子实现电荷平衡，则存在质子交换的沸石，其根据沸石性质而具有弱至强的酸性。这种性质和具有大比表面积（数百平方米/克）的限定的孔体系的沸石是用于酸性催化的择形相反应的催化剂。这些孔开口的尺寸（处于分子直径的数量级）导致该沸石特别适合作为选择性吸附剂，为此已确立了术语“分子筛”。“
[0019] IZA 在 "Atlas of Zeolite Structure Types" 中已经为天然沸石和沸石状物质提出基于主体骨架的拓扑学的命名，并且这已被 IUPAC 批准。相应地，大多数合成沸石由三个字母的结构代码的组合命名。可提到的实例是结构类型 SOD（方钠石）、LTA（沸石 A）、MFI（五元环（Pentasil）沸石）、FAU（沸石 X、沸石 Y、八面沸石（Faujasit）、BEA（沸石 β）和 MOR（丝光沸石）。

[0020] MFI 结构类型的沸石是所谓的 "介孔" 沸石。这种结构类型的一个特点是与 "窄孔" 结构类型（SOD、LTA）和 "粗孔" 结构类型（FAU、BEA、MOR）相比均一的通道结构。MFI 结构类型属于结晶微孔铝硅酸盐系列并且在其外观上是特别择形和热稳定但是也高度酸性的沸石。但是，使用强酸性沸石作为 MTBE 离解催化剂可增加上述造成异丁烯选择性变差。

[0021] 在现有技术中发现少数一些使用硼沸石作为 MTBE 离解中的催化剂的证明：

[0022] 例如，DE2953858C2 描述了使用 "boralites" 作为 MTBE 离解中的催化剂。这些 boralites 是硅和硼的双氧化物，其具有多孔结晶结构并代表用硼改性的二氧化硅并具有沸石结构。没有关于这些 boralites 的结构类型的信息。在水热条件下在 9 至 14 的 pH 值下进行制备。

[0023] EP0284677A1 公开了制备用于含氮油，如页岩油的裂解的催化剂的方法，所述催化剂基于具有沸石结构的硼硅酸盐材料。提到 ZSM-5，ZSM-11，ZSM-12，β 和 Nu-1 作为可能的沸石结构。在碱性介质中进行制备。没有指出这些催化剂对 MTBE 离解的适用性。

发明内容

[0024] 考虑到上述现有技术，本发明的目的是提供不仅择形和热稳定、而且还具有可以以受控方式调节的酸性的新型催化剂，以使它们高度适用于 MTBE 离解，即不仅确保 MTBE 的高活性离解还同时确保对主要产物异丁烯和甲醇的高选择性。

[0025] 根据本发明，通过根据权利要求 1 的制备基于沸石结构的硼硅酸盐的催化剂的方法，可通过对这种方法获得的催化剂实现了该目的。

[0026] 硅酸盐是原硅酸 Si(OH)₄ 的盐和酯及其缩合产物。对本发明而言，"含硼的硅酸盐"（简写为 "硼硅酸盐"）是含有氧化形式的硼的硅酸盐。术语 "沸石结构" 是指与沸石相符的形态。同义使用术语 "类沸石"。根据定义，沸石属于铝硅酸盐类，即含有氧化形式的铝的硅酸盐。由于本文所述的硼硅酸盐在它们的形态方面符合沸石，它们在下文中也被称为 "硼沸石"。但是，术语 "硼沸石" 的使用并不意味着这种材料一定必须含有铝。根据本发明的硼沸石优选除杂质或痕量成分外甚至不含铝。

[0027] 已通过本发明的方法改性的硼沸石已被发现是用于将 MTBE 离解成异丁烯和甲醇的活性和选择性催化剂。结果是获得在可忽略不计的低聚度（直至 0.0025% C₆选择性）和目前观察到的最低 DME 选择性（直至 0.2%）下表现出最高 90% 的转化率的催化剂。

[0028] 本发明因此提供制备基于硼硅酸盐的催化剂的方法，其包括下列步骤：

[0029] a) 提供含有至少一种具有沸石结构的含硼的硅酸盐的水悬浮液，

[0030] b) 添加酸以调节 1 至 5 的 pH 值，

[0031] c) 搅拌所述悬浮液，

[0032] d) 分离所得固体，

[0033] e) 任选地洗涤所述固体，
[0034] 使用所述固体。
[0035] 在本发明的方法中，特别优选使用MF1结构类型的硼硅石，因为它们伴随着许多优点。已知可如下通过将镓原子引入硅骨架中来影响沸石的酸性。
[0036] 酸强度：B<Fe<Ge<Al
[0037] 相应地，含硼沸石是酸性比仅含铝和硅的沸石低得多的沸石。这不符合预期，因为硼具有比铝高的电负性。
[0038] 根据本发明的方法能在宽范围内改变Si/B比并由此提供调节催化性质的许多可能性。此外，MF1结构类型的沸石具有均一的通道结构并因此特别择形和热稳定。可能由于小尺寸，这种结构类型的沸石特别抗焦化。
[0039] 在本发明的方法中，步骤a)中的所述至少一种沸石有利地具有2至4，优选2.3至3.7，特别优选3的SiO2/Al2O3摩尔比。
[0040] 如上所述，本发明的硼硅石不是严格意义上的沸石，因为其不包含任何铝。其优选不含铝或最多以杂质或痕量成分的式含有铝。低于0.1重量%的铝含量是可容许的。
[0041] 但是，重要的是，本发明的催化剂的硼含量低于1重量%。太高的硼含量可能促进副产物形成。硼含量优选甚至低于0.5重量%，非常特别优选为0.3重量%。如果在该悬浮液中提供的含硼的硅酸盐具有太高的硼比例，则这可以通过酸处理降低。与Al相比，B相当容易被酸洗掉。因此，通过酸处理成功地将未处理的硅酸盐的硼含量从1重量%降至大约0.1重量%。因此，至少在添加酸后，该悬浮液中存在的硅酸盐应具有在所述范围内的硼含量。
[0042] 就催化性质而言有利的是，步骤a)中的硼硅酸盐具有300平方米/克至500平方米/克，优选330至470平方米/克，特别优选370至430平方米/克的按照BET法测得的表面积。
[0043] 在可供固体化学使用的方法中，水热合成是本发明的方法中所用的沸石的特别适合的合成。此外，可以想到另外的合成沸石的方式。沸石合成所必需的起始材料可分成下列四类：T原子源（硼酸或硅源）、模板、矿化剂和溶剂。
[0044] 沸石合成中常用的硅源是硅胶、热解硅氧化硅、硅溶胶（胶体溶解的SiO2）和碱金属偏硅酸盐。常见的硼源是硼酸或碱金属硼酸盐。
[0045] 模板化合物具有结构导向性质并能合成过程中稳定所形成的沸石结构。模板通常是九价或多价无机或有机阳离子。除水外，使用碱（NaOH）、盐（NaCl）或酸（HF）作为无机阳离子或阴离子。可用于沸石合成的有机化合物特别是烷基铵氢氧化物或烷基铵氢氧化物。
[0046] 矿化剂催化有利于成核和晶体形成所需的过渡态的形成。这通过溶解、沉淀或结晶过程进行。此外，矿化剂提高该溶液中的组分的溶解度和因此提高浓度。作为矿化剂，可以使用氢氧根离子，借此可以调节对沸石合成理想的pH值。随着OH浓度提高，硅物的缩合降低，相反铝氧离子的缩合保持恒定。因此，高pH值下有助于铝硅沸石的形成。硅铝沸石优选在较低的pH值下形成。在基本无铝的硼硅酸盐的情况下，9至11的pH值造成小于1重量%的低硼含量。在许多情况中用于沸石合成的溶剂是水。
[0047] 为了合成沸石，将反应性T原子源、矿化剂、模板和水混合以形成悬浮液。合成凝胶的摩尔组成是影响反应产物的最重要因素：
M 和 N 是碱金属或碱土金属离子且 R 是有机模板。此外，系数 a 至 e 是指基于 1 摩尔二氧化硅的摩尔比。

对于这些系数优选得到下列值：
\[ a = 0.000001 \text{ 至 } 0.2 \]
\[ b < 0.006 \]
\[ c < 1 \]
\[ d < 1 \]
\[ 0 < e < 1 \]

将该悬浮液转移到高压釜中并施以碱性条件、生压压力和 100 至 250°C 的温度几小时至数周。在水热条件下，合宜溶液变得过饱和，这引发成核和随后的晶体生长。除成核外，在沸石合成中结晶温度和时间对结果至关重要。由于结晶是动态过程，所以已形成的晶体再溶解并转化。根据奥斯特瓦尔德阶梯规则（Ostwald's Stufenregel），首先形成最易能的物类，然后逐步形成较低能量的物类。结晶时间尤其地取决于沸石结构。在 MFI 结构类型的沸石的情况下，根据经验，结晶在 36 小时后结束。

在水热合成后，通过在空气中在 400 至 600°C 下煅烧，除去模板。在此，有机物燃烧形成二氧化碳、水和氮氧化物。

为了将硼硅酸盐改性，在步骤 b）中进行酸处理，在此硼含量发生降低。这使得沸石的活性提高或选择性产生所需活性中心。此外，观察到骨架的额外稳定化。

对于酸处理，可以使用盐酸、硫酸、磷酸、乙酸、硝酸和草酸。在此，硼含量降低程度特别取决于所用的酸、其浓度和处理温度。在本发明中，已经发现，与硫酸和硝酸相比，盐酸和磷酸在低浓度下萃出硼。在本发明的一个优选实施方案中，因此通过添加盐酸或磷酸调节步骤 b）中的 pH。

在本发明中，此外已经发现，步骤 c）中的悬浮液搅拌有利地在最高 80°C 下进行。本发明的优选改性方案因此提出，在最高 80°C 下进行步骤 c）中的悬浮液搅拌。但是，最大搅拌温度取决于所用的酸。尽管 HCl 需要 80°C 的温度，但在 HPO₄ 的情况下，在 25°C 下就已经实现良好结果。当使用磷酸时，最大搅拌温度因此应该为 25°C。应尽可能不低于 0°C 的最低搅拌温度，因为冻结的水使搅拌困难。

搅拌持续时间为至少 6 小时，优选至少 12 小时，特别优选至少 24 小时。在实践中，搅拌时间可最高至大约 36 小时。

步骤 d）中的固体分离可通过任何所需方法进行。根据粒度而定，真空过滤或超压过滤在此是合适的。

为了提纯，固体可以在进一步的步骤中用水洗涤，任选地重复进行。

可以在高的煅烧温度下通过硅烷醇缩合而愈合骨架中生成的缺陷以形成方石英。在本发明的方法中，步骤 f）中的固体煅烧优选在最高 500°C，特别优选最高 400°C，特别优选最高 350°C 的温度下进行。

该固体煅烧原则上可以在空气流中进行。本发明的一个改进方案因此在于在空气流中进行步骤 f）中的固体煅烧。

也可以通过在煅烧操作过程中通过引入惰性气体，如氮气，而确保不存在水或氧气避免在高煅烧温度下通过硅烷醇缩合而愈合骨架中生成的缺陷。
在本发明的一个改进方案中，因此，在纯氮气流中进行步骤 f) 中的固体煅烧。

由于空气和氨气都适合作为煅烧气氛，所以通常可以推测，可以有利地在任何含
氮气氛中进行煅烧。本发明的一个改进方案因此提出在含氨气氛中煅烧。“含氨气氛”应理
解为是含有分子形式的氮的气体或气体混合物。因此可以在分子氮气（N₂）存在下或在除
了氨还含有其它分子，例如氮 (NH₃) 的气体存在下进行该煅烧。

为了除去过量酸，所得固体可以在冷却至室温后用蒸馏水洗涤，任选地多次进行。
最后，重复在氮气流或空气流中的煅烧。

本发明的一个优选改进方案因此还有上述方法，其中用水洗涤步骤 f) 中获得的
固体并随后重复步骤 f)。

在煅烧结束后适合的是，所得固体用甲醇处理。在这种情况下，将该固体浸入静止
甲醇中或使流动甲醇流经该固体。甲醇在两种情况中都可以是液体、气体或混合的液体
/气体。用甲醇处理该固体使得该催化剂的初始活性降低，这已被发现在工业应用中是有
利的。基于硼硅酸盐的催化剂的甲醇处理以与德国专利 DE102012215956（其在本申请
时仍未公布）中所述的铝硅酸盐基催化剂的甲醇处理类似的方式进行。对此申请的内容
就此方面明确引用供参考。代替甲醇，也可以用任何其它优选一元的醇，例如乙醇处理该固
体。

在本发明的一个特别优选的实施方法中，步骤 a) 中的除杂质或从量成分外不含
铝的硼硅酸盐具有大约 3 的 SiO₂/B₂O₃摩尔比、低于 0.5 重量%的硼含量和大约 405 平方米
/克的按照 BET 法测得的表面积。通过添加磷酸或盐酸实现步骤 b) 中的 pH 值调节，步骤 c)
中的悬浮液搅拌在 20 至 80 °C 下进行至少 24 小时的时间，并通过真空过滤或超压过滤进行
步骤 d) 中的固体分离，在步骤 e) 中用水洗涤该固体，并在氮气流中或在空气流中在最高
350°C 的温度下进行步骤 f) 中的固体煅烧。

已通过本发明的方法改性的硼沸石在用作 MTBE 离解中的催化剂时具有在 90%转
化率下对 DME 和 C₂的低选择性，并因此在 MTBE 离解中具有高的工业可应用性潜力。

本发明因此还提供包含具有 MFI 类型的沸石结构并通过如上所述的制备方法
获得的含硼的硅酸盐的催化剂。

当通过上述本发明的方法获得的沸石中的硼比例小于 1 重量%时，实现 90%转
化率下特别低的对 DME 和 C₂的选择性。特别优选，硼含量甚至低于 0.5 重量%。

采用本发明的方法成功获得具有沸石结构的含硼的硅酸盐，其在作为用于 MTBE
离解的催化剂时表现出可忽略不计的 DME 和 C₂选择性以及同时高的活性。

下列实施例意于示例本发明。

具体实施方式

实施例

用于本发明的方法的 MFI 结构类型的含硼沸石的制备：

变化方案 1)

在玻璃烧杯中加入 90 克 TPAOH（四丙基氢氧化铵）、117 克胶体硅形式的 SiO₂（来
自 Sigma Aldrich 公司的 LUDOX AS 40）、10 克 H₃BO₃（硼酸）和 901 克蒸馏水以形成悬浮
液。将制成的溶液进一步搅拌 5 小时。在此期间，建立 9.3 至 9.6 的 pH 值。随后将该合成
溶液转移到来自 Büchi® 的具有 PTFE 涂层的双壁搅拌反应器中，并在自生压力下在 185℃下搅拌 24 小时。在水热合成后，借助真空过滤获取悬浮液中的固体。留下的滤饼用蒸馏水反复洗涤并随后煅烧。在马弗炉中在氮气流（200 毫升 / 分钟）中进行该固体的煅烧。加热速率为 1℃ / 分钟，保持 500℃的最终温度 5 小时。
[0082] 变化方案 2)
[0083] 在玻璃烧杯中加入 79 克 TPABr (四丙基溴化铵)、6 克 NaOH、72 克 SiO₂ (来自 Sigma Aldrich 公司的 LUDOX AS 30)、4 克 H₂BO₃ 和 524 克蒸馏水以形成悬浮液。建立 12.57 的 pH 值。随后将该合成溶液转移到搅拌反应器中并在自生压力下在 165℃下搅拌 24 小时。在水热合成后，借助超压过滤获取悬浮液中的固体。留下的滤饼用蒸馏水反复洗涤并随后煅烧。在马弗炉中在空气流（200 毫升 / 分钟）中进行该固体的煅烧。加热速率为 1℃ / 分钟，保持 450℃的最终温度 8 小时。为实现离子交换，将 5 克细粉用由 0.1 摩尔 NH₄Cl 和 1 摩尔 NH₂OH 构成的溶液在室温下处理 2 小时三遍。在不断搅拌的情况下，建立 10 至 11 的 pH 值。在离子交换完成后，通过超压过滤从悬浮液中再次分离固体。滤饼随后用 1 摩尔 NH₂OH 施以扩散洗涤。在最后一个步骤中，所得固体在马弗炉中在空气流（200 毫升 / 分钟）中煅烧（加热速率为 1℃ / 分钟；最终温度：450℃；持续时间：8 小时）。
[0084] 根据本发明制备基于硼沸石的催化剂：
[0085] 实施例 1：
[0086] 将 3 克通过变化方案 2 制成的固体与 300 毫升蒸馏水一起转移到双壁玻璃容器中。随后加入 0.01 摩尔 HCl 以便可以根据目标设定而调节 1 至 5 的 pH 值。在整个处理时间期间用磁力搅拌器搅拌该溶液并借助附接的恒温器（载热油 / 乙二醇）调温在 20 至 80℃。在 24 小时后，将该悬浮液冷却至环境温度，并根据粒度而定，通过真空过滤或超压过滤而过滤。由此获得的固体用蒸馏水反复洗涤并在最终步骤中在马弗炉中在氮气流或空气流（200 毫升 / 分钟）中在 350℃下（加热速率为 7℃ / 分钟）煅烧 5 小时。
[0087] 实施例 2：
[0088] 将 3 克通过变化方案 1 制成的固体与 300 毫升蒸馏水一起转移到双壁玻璃容器中。随后加入 85% 浓度的 H₂PO₄ 以便可以根据目标设定而调节 1 至 5 的 pH 值。在整个处理时间期间用磁力搅拌器在室温下搅拌该溶液。在 24 小时后，根据粒度而定，通过真空过滤或超压过滤而过滤该固体，用蒸馏水洗涤，并煅烧。在马弗炉中在氮气流或空气流（200 毫升 / 分钟）中在 350℃下（加热速率为 7℃ / 分钟）进行煅烧。为了除去过量 H₂PO₄，将样品在冷却至室温后交替用蒸馏水洗涤和过滤多次。最后，重复在氮气流或空气流中在 350℃下（加热速率为 7℃ / 分钟）的煅烧。
[0089] 根据本发明制备的催化剂用于 MTBE 离解的用途：
[0090] 反应组分在数量或压力调节下从分开的储器经蒸发器送往催化床。借助在线气相色谱法进行反应产物的分析。
[0091] 通过在 200 至 230℃之间改变反应器温度和在 0.005 至 5h⁻¹ 之间改变空速（WHSV），调节 10 至 100% 的转化率。
[0092] 根据实施例 1 的硼沸石表现出对 MTBE 离解的高活性和在 90% 转化率下对 DME (0.2%) 和 C₈ (0.004%) 的低选择性。
[0093] 根据实施例 2 的硼沸石表现出对 MTBE 离解的高活性和在 90% 转化率下对
DME（0.4%）和 C₈（0.015%）的低选择性。