Title: AGENT FOR TREATING DISEASE

Abstract: Provision of a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.2 mg to 30 mg.

International Patent Classification:
- C07K 16/28 (2006.01)
- A61P 37/06 (2006.01)
- A61K 39/35 (2006.01)
- C07K 16/46 (2006.01)

Designated States (unless otherwise indicated, for every kind of national protection available):

Designated States (unless otherwise indicated, for every kind of regional protection available):

Published:
- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))
AGENT FOR TREATING DISEASE

The present invention is concerned with treatment of autoimmune diseases. The invention involves a highly effective agent such as a humanised monoclonal antibody that may be administered to patients in lower dosages than previously known. It is particularly effective for patients having diseases or characteristics requiring lower doses for effective treatment. The invention envisages a pharmaceutical composition comprising the antibody in efficacious concentration, as well as uses and methods of treatment employing the compositions and medicaments comprising the antibody.

Autoimmunity is the failure of an organism to recognise its own constituent parts (down to sub-molecular levels) as "self, which results in an immune response against its own cells and tissues. Any disease that results from such an aberrant immune response is termed an autoimmune disease. Autoimmune diseases include multiple sclerosis (MS), rheumatoid arthritis (RA), psoriasis, psoriatic arthritis, colitis ulcerosa, Crohn's disease, myasthenia gravis (MG), autoimmune polyglandular syndrome type II (APS-II), Hashimoto's thyroiditis (HT), type-1 diabetes (T1D), systemic lupus erythematosus (SLE) and autoimmune lymphoproliferative syndrome (ALS).

Autoimmune disease occurs when T cells recognise and react to 'self' molecules, that is, molecules produced by the cells of the host. Activation of 'autoreactive' T cells by presentation of autoantigens processed by antigen presenting cells (APC) leads to their clonal expansion and migration to the specific tissues, where they induce inflammation and tissue destruction.

Normally, T cells are tolerant with regard to autologous tissue and only react on presentation of heterologous structures. Central tolerance and peripheral tolerance comprise the two mechanisms by which the immune system hinders the autoreactive T cells from inducing their deleterious functions. Central tolerance is mediated through negative selection. This process entails the elimination, through clonal deletion of autoreactive T cells, during ontogenic development in the thymus.
Peripheral tolerance is the backup available if central tolerance fails and autoreactive cells escape the thymus. This mechanism of tolerance occurs continuously throughout life, keeping autoreactive cells in check through immune ignorance (anergy), peripheral deletion and active suppression.


Several subsets of regulatory T cells have been characterized. The family of Tregs consists of two key subsets: naturally arising e.g. CD4+CD25+ Tregs and peripherally induced, Tr1 and Th3 Tregs. Furthermore NKTregs and CD8+ Tregs have been described in humans and rodents (Fehervari et al., J. Clin. Investigation 114: 1209-1217 (2004)).

Thymus-derived Treg cells (naturally occurring CD4+CD25+Treg) are the main regulatory cells involved, utilizing an array of TCRs targeted towards autoantigen recognition in order to maintain immune homeostasis in the periphery, and regulate autoimmunity and pathogenic immune responses.

The essential features of naturally occurring CD4+CD25+ Tregs are:

i) they are CD4+ T cells and constitute 5-10% of peripheral CD4+ T cells
ii) they maturate in the thymus
they are generally characterized by the combined expression of the IL-2 receptor (CD25), the low molecular isoform of the CD45 molecule, CD152 (CTLA-4) and the transcription factor foxP3.

The role of Tregs is exemplified best by experiments involving reconstitution of immunodeficient nude mice with CD4+ cells that were depleted of CD25+ cells. CD4+CD25− reconstituted nude mice develop various organ-specific autoimmune diseases, such as gastritis, oophoritis, orchitis, and thyroiditis (Suri-Payeret al.; J. Immunol. 160: 1212-1218 (1998)).

Inclusion of the CD4+CD25+ subset in the nude mice prevents the onset of these diseases (Sakaguchi et al., J Immunol. 155: 1151-1164 (1995)). The protective value of CD4+CD25+ cells against organ-specific autoimmunity has also been shown in several other models of autoimmunity (e.g. autoimmune gastritis, prostatitis, oophoritis, glomerulonephritis, epididymitis and thyroiditis) caused by neonatal thymectomy performed 3 days after birth (d3Tx) or inflammatory bowel disease caused by reconstitution of SCID mice with CD45RBhigh, CD4+CD25− T cells. Administration of anti-CD25 antibody in vivo in mice also induces organ-localised autoimmune disease.

The discovery of the importance of the transcriptional regulator FoxP3 in mouse CD4+CD25+ T regulatory cell function and the previous observations that patients with IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance), a severe inflammatory disease similar to that seen in mice deficient in CD4+CD25+ regulatory cells (scurfy syndrome), have mutations in FoxP3, provided a direct correlation between an autoimmune animal model, mouse regulatory T cells, and a human autoimmune disease (Sakaguchi et al., J Immunol. 155: 1151-1164 (1995)).

The pharmaceutical mechanism of regulatory T cells is not fully clear. CD4+CD25+ Tregs inhibit polyclonal and antigen-specific T cell activation. The suppression is mediated by a cell contact-dependent mechanism that requires activation of CD4+CD25+ Tregs via the TCR but Tregs do not show a proliferative response upon TCR activation or stimulation with mitogenic antibodies (anergic) (Shevach, Nature Rev. Immunol 2 : 389 (2002). Once
stimulated, they are competent to suppress in an antigen-independent manner the response of CD4+ T cells and CD8+ T cells as well as inhibit B-cell activation and clonal expansion.

There are additional data indicating that suppressor activity of CD4+CD25+ Tregs partially also relies on anti-inflammatory cytokines like TGF-β (Kingsley et al., J Immunol. 168: 1080 (2002); Nakamura et al., J Exp. Med. 194: 629-644 (2001)). The functional significance of TGF-β secretion is furthermore supported by the findings that TGF-β-deficient mice develop autoimmune disease and that administration of neutralizing antibodies to TGF-β abrogates in vivo prevention of autoimmunity or tolerance-inducing activity of CD4+ T cells in some models.

Within the CD4+ T cell subset at least 2 more different types of cells with suppressive function may exist, which are induced after exposure to specific, exogenous antigen (called 'adaptive or inducible regulatory T cells'): Type 1 T regulatory (TrI) cells and Th3 cells. These cell types appear to be distinguishable from CD4+CD25+ Tregs based on their cytokine production profiles. However, the relationship between these different types is unclear and the modes of action are overlapping.

TrI cells were induced by repetitive stimulation of TCR in the presence of IL-10 and were shown to mainly down-regulate immune responses via the production of high levels of IL-10 and moderate amounts of TGF-β (Chen et al., J. Immunol. 171: 733-744 (2003)).

Th3 cells (identified in a model of EAE after oral delivery of antigen) produce high amounts of TGF-β and variable amounts of IL-4 and IL-10, and IL-4 was shown to be a key factor for the differentiation of Th3 cells, in contrast to TrI cells (Chen et al., Science 265:1237-1240 (1994)).

Suppression of T cell function by using immunosuppressive drugs is a principal therapeutic strategy that has been used successfully to treat autoimmune diseases. However these drugs induce a general immunosuppression due to their poor selectivity, resulting in inhibition of not only the harmful functions of the immune system, but also useful ones. As a consequence, several risks like infection, cancer and drug toxicity may occur.
Agents interfering with T cell function are therapeutic mainstays for various autoimmune diseases.

The approach of using agents aiming at the activation of regulatory T cells for the therapy of autoimmune diseases have been up to now proven to be extremely difficult. Activation of Tregs via the TCR using the agonistic anti-CD3 antibody OKT-3 (Abramowicz et al, N Engl. J Med. 1992 Sep 3;327(10):736) or via the co-stimulatory molecule CD28 using the superagonistic anti-CD28 antibody TGN 1412 lead to complete depletion of regulatory T cell population as well as other conventional T cells and the systemic induction and release of excessive amounts of pro-inflammatory cytokines including IFN-γ, TNF-α, IL-1 and IL-2, resulting in a clinically apparent cytokine release syndrome (CRS) in humans (Suntharalingam et al, N Engl. J Med. 2006 Sep 7;355(10):1018-28).

After first two to three injections of 5 mg of the monoclonal antibody OKT3 most patients develop a cytokine release syndrome with high levels of tumour necrosis factor-alpha, interleukin-2, and gamma-interferon appearing within 1-2hrs in the circulation of kidney transplant recipients. (Abramowicz et al., Transplantation. 1989 Apr;47(4):606-8). This results in a narrow therapeutic window which limits the usefulness of this antibody in the treatment of autoimmune diseases.

Treatment with a total dose of 5-10 mg of TGN 1412 (0.1 mg anti-CD28 per kilogram of body weight) lead to a systemic inflammatory response with multiorgan failure within 90 minutes after receiving a single intravenous dose of the TGN 1412 (Suntharalingam et al, N Engl. J Med. 2006 Sep 7;355(10):1018-28).

It is generally agreed that CD4+ T cells play a major part in initiating and maintaining autoimmunity. Accordingly, it has been proposed to use mAbs against CD4+ T cells surface molecules, and in particular anti-CD4 mAbs, as immunosuppressive agents. Although numerous clinical studies confirmed the potential interest of this approach, they also raised several issues to be addressed in order to make anti-CD4 mAbs more suitable for use in routine clinical practice.
Several different mechanisms of action for CD4 mAbs have been proposed including: (1) antagonism of CD4-MHC II interactions resulting in inhibition of T cell activation, (2) CD4 receptor modulation as determined by a decrease in cell surface expression of CD4, (3) partial signaling through the CD4 receptor in the absence of T cell receptor cross-linking which can suppress subsequent T cell activation and trigger CD4 T cell apoptotic death, (4) Fc-mediated complement-dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC) leading to CD4 T cell depletion, and (5) stimulation of regulatory T cells.


Clinical response in autoimmune diseases correlates with CD4 blockade of conventional CD4+ T cells directly at the site of inflammation rather than action with CD4+ T cells in peripheral blood. Therefore dosages with high antibody concentrations up to 1000 mg in single or multiple cycles, preferably in the range of 10-450 mg in single or multiple cycles have to be used to achieve clinical benefit (Schulze-Koops et al., J Rheumatol. 25(11): 2065-76 (1998); Mason et al., J Rheumatol. 29(2): 220-9 (2002); Choy et al., Rheumatology 39(10): 1139-46 (2000); Choy et al., Rheumatology 41:1 142-1148 (2002); Kon et al., Eur Respir J. 18(1): 45-52 (2001); Skov et al., Arch Dermatol. 139(11): 1433-9 (2003); Kuritzkes et al., J Infect Dis 2004, 189:286-91 (2004); Hepburn et al., Rheumatology 42(1):54-61 (2003)).

The B-F5 antibody (murine IgGl anti-human CD4) was tested in different autoimmune diseases.
A small number of patients with severe psoriasis have been treated with the murine B-F5 antibody and some positive effects were described (Robinet et al. Eur J Dermatol 1996; 6: 141-6, and Robinet et al., J Am Acad Dermatol 1997; 36: 582-8).

In rheumatoid arthritis patients, the results observed in a placebo controlled trial with a daily dose of B-F5 did not indicate a significant improvement (Wendling et al. J Rheumatol; 25(8):1457-61, 1998).

In multiple sclerosis (MS) patients, some positive effects were observed after a 10 days treatment in patients with relapsing-remitting forms, some of who were relapse-free at the 6th month post-therapy (Racadot et al., J Autoimmun, 6(6):771-86, 1993). Similar effects were observed by Rumbach et al. (Mult. Scler;1(4):207-12, 1996).

In severe Crohn's disease, no significant improvement was observed in patients receiving B-F5 for 7 consecutive days or (Canva-Delcambre et al., Aliment Pharmacol Ther 10(5):721-7, 1996).

In prevention of allograft rejection, it was reported that B-F5 bioavailability was not sufficient to allow its use for prophylaxis of allograft rejection (Dantal et al. Transplantation, 27;62(10): 1502-6, 1996).

Another drawback of therapy with monoclonal antibodies in humans is that these antibodies are generally obtained from mouse cells, and provoke antimouse responses in the human recipients. This not only results in a lesser efficiency of the treatment and even more of any future treatment with mouse monoclonal antibodies, but also in an increased risk of anaphylaxis.

This drawback can, in principle, be avoided by the use of humanized antibodies, obtained by grafting the complementarity-determining regions (CDRs) of a mouse monoclonal antibody, which determine the antigen-binding specificity, onto the framework regions (FRs) of a human immunoglobulin molecule. The aim of humanization is to obtain a recombinant
antibody having the same antigen-binding properties as the mouse monoclonal antibody from which the CDR sequences were derived, and far less immunogenic in humans.

In some cases, substituting CDRs from the mouse antibody for the human CDRs in human frameworks is sufficient to transfer the antigen-binding properties (including not only the specificity, but also the affinity for antigen). However, in many antibodies, some FR residues are important for antigen binding, because they directly contact the antigen in the antibody-antigen complex, or because they influence the conformation of CDRs and thus their antigen binding performance.

Thus, in most cases it is also necessary to substitute one or several framework residues from the mouse antibody for the human corresponding FR residues. Since the number of substituted residues must be as small as possible in order to prevent anti-mouse reactions, the issue is to determine which amino acid residue(s) are critical for retaining the antigen-binding properties. Various methods have been proposed for predicting the more appropriate sites for substitution. Although they provide general principles that may be of some help in the first steps of humanization, the final result varies from an antibody to another. Thus, for a given antibody, it is very difficult to foretell which substitutions will provide the desired result.

Previously the humanization of mouse B-F5 has been attempted, and success has been achieved in producing humanized B-F5 (hereinafter referred to as hB-F5) having similar CD4 binding properties to the parent mouse B-F5.

Thus, in WO 2004/083247, the humanised antibody BT061 (humanised B-F5, or simply hB-F5) has been found to be useful in treating rheumatoid arthritis. This patent application discloses compositions for parenteral administration, of from 0.1-10 mg, preferably from 1-5 mg. Dosage regimes envisaged are an intravenous 1 mg per day dose and a 5 mg every second day dose for rheumatoid arthritis patients over a period of 10 days.

The study was also described by Wijdenes et al., in an abstract and poster presented at the EULAR conference, June 2005. They described the treatment of 11 patients suffering from rheumatoid arthritis with 5 intravenous infusions of 5 mg BT061 every other day with
concomitant treatment with 150 mg Diclofenac (Wijdenes et al., Abstract and poster, EULAR conference, June 2005).

The antibody described in this study is not disclosed to be suitable for use in lower doses, and it is still desirable to find treatments at lower doses so as to treat a greater number of patients.

Having regard to the above prior art, it is an aim of the present invention to treat patients having autoimmune disease who do not yet respond satisfactorily to existing treatments. In particular, it is an aim of the present invention to find autoimmune treatments that may be applied in lower doses to patients, in order to improve treatment response for patients who are not able to tolerate current doses.

Accordingly, the present invention provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.2 mg to 30 mg.

The invention further provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.10 to 20 mg/m^2.

Still further the invention provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 1 to 500 µg/kg.

In addition, the present invention provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the agent is present in a concentration of from 10 µg/ml to 150 mg/ml.
In a preferred aspect of the invention the agent is a humanized anti-CD4 antibody or fragment or derivative thereof.

In particular, the invention provides use of the agent defined above for the manufacture of a medicament for treating autoimmune disease wherein the agent is to be administered to a subject in a dose as defined above. The invention also provides an agent as defined above for use in the treatment of autoimmune disease wherein the agent is to be administered to a subject in a dose as defined above.

It will be appreciated from the above dosages that the inventors have surprisingly found that low dosages of the antibody BT061 provided effective and specific activation of naturally occurring regulatory T cells (CD4+CD25+ Tregs) providing an in vivo clinical effect at far lower doses than those previously used, such as those disclosed in WO 2004/083247. Further the inventors have surprisingly found that the humanized antibody BT061 did not substantially modulate levels nor induce release of pro-inflammatory cytokines, as compared to other T cell interacting antibodies, for example anti-CD3 antibodies. Further the antibody does not cause a substantial long term depletion of CD4+ lymphocytes.

The concentration of the agent is not especially limited, provided that it is present in a concentration that is low compared to known concentrations. However, preferably, the concentration of the agent is from 0.1 µg/ml to 30 mg/ml or, 0.1 to 1000 µg/ml, and more preferably from 1-500 µg/ml and 2-250 µg/ml. Most preferably, the concentration of the agent is (approximately) any one of 15 µg/ml, 25 µg/ml, 125 µg/ml, 250 µg/ml, 500 µg/ml, 1 mg/ml, 12.5 mg/ml or 25 mg/ml.

The dosage volume applied to a subject using the composition is not especially limited, provided that it delivers a low overall dosage compared to dosages already known, and is therefore suitable for all patients because of a lower level of side effects and especially in the treatment of individuals who do not tolerate doses as disclosed in WO 2004/083247. In particular, the concentration of the agent within the dosage volumes can be varied in order to provide the required dosages which are described in this application.
The dosage volume will vary depending on the method of administration. Parenteral administration is preferred. Examples of parenteral administration are intramuscular administration, intravenous administration or subcutaneous administration. Where the composition is to be administered by intravenous infusion the dosage volume may be from 0.1 or 0.5 ml up to 500 ml, preferably between 15 and 25 ml, and typically about 20 ml. Where the composition is to be administered by subcutaneous or intramuscular injection, the dosage volume may be between 0.1 to 3 ml, preferably between 0.5 and 1.5 ml, and typically about 1 ml.

However, in some embodiments the composition may be provided in concentrated form and diluted to the strength required for the individuals concerned. Preferably, in these situations the composition is provided in relatively small volumes of about 1, 2, 3, 4 or 5 ml. In alternative embodiments, the composition is provided at the required strength and dosage volume described above (i.e. ready for administration). In one specific embodiment the pharmaceutical compositions for subcutaneous administration are provided in a ready for administration form which does not require dilution so that they can be easily administered by non-medical personnel.

As has already been mentioned, previously it was not known that agents capable of treating autoimmune disease could be administered in the low dosages that are envisaged by the present invention. Whilst known doses of agents capable of treating autoimmune disease are effective in some individuals or disease types, the realisation that it may be effective already in much lower doses has opened up the way for more effective treatment of some autoimmune diseases and classes of patients.

The invention will be illustrated by way of example only, with reference to the following Figures, in which:

Figure 1 shows the dose dependence of BT061 binding to human peripheral lymphocytes. Binding of BT061 in a dilution series is detected with a fluorochrome labelled anti-human IgG antibody. The mean fluorescence intensity is determined by flow cytometric analysis.
Figure 2 shows the purification scheme of CD4+CD25+ regulatory T cells and CD4+CD25-
effector cells by combined positive and negative selection steps;

Figure 3 shows the nucleotide sequence encoding the mouse B-F5 V_H region (SEQ ID No: 5);

Figure 4 shows the nucleotide sequence encoding the mouse B-F5 V_k region (SEQ ID No: 6);

Figure 5 shows the nucleotide sequence (SEQ ID No: 3) of a fragment of the plasmid encoding the V_H region of humanized BF-5. The sequence encoding the V region is underlined and the corresponding polypeptide sequence (SEQ ID No: 17) is indicated below the nucleotide sequence;

Figure 6 shows the nucleotide sequence (SEQ ID No: 4) of a fragment of the plasmid encoding the V_K regions of humanized BF-5. The sequence encoding the V region is underlined and the corresponding polypeptide sequence (SEQ ID No: 2) is indicated below the nucleotide sequence;

Figure 7 shows data from freshly isolated CD25+Tregs (donor-A) and CD8+T cells (donor-B) cultured in the presence of irradiated PBMC (donor-A) in the presence/absence of different anti-CD4 mAb. Proliferation of alloreactive CD8+T cells was determined after 4 days of culture by adding 37 kBq/well ³H-Tdr. Mean values of cpm (triplicates) are shown.

Figure 8 parts A to H provide graphs showing data from the clinical trials with psoriasis patients of dose group I as described in Example 3, in which patients are treated with a 0.5 mg intravenous injection of BT061 or a placebo. Parts A to H of Figure 8 provide graphs of the PASI scores of patients 1 to 8 of dose group I, respectively.

Figure 9 parts A to H provide graphs showing data from the clinical trials with psoriasis patients of dose group II as described in Example 3, in which patients are treated with a 2.5 mg intravenous injection of BT061 or a placebo. Parts A to H of Figure 9 provide graphs of the PASI scores of patients 1 to 8 of dose group II, respectively.
Figures 1OA and 1OB respectively show the TFNα and IL-6 release observed in a clinical trial with BT061 (single intravenous infusion or subcutaneous injection) in healthy volunteers in comparison to the levels reported with the anti-CD3 monoclonal antibodies. Dose levels and time to recovery are included in the figures. Results for TRX4 indicated in Figures as "2)" reported in Keymeulen et al., 2005 N. Engl. J. Med. Type 1 Diabetes patients. Results for Teplizumab indicated in Figures as "3)" reported in Herold et al., 2002 N. Engl. J. Med. Type I Diabetes patients. Normal values indicated in Figures as "4)" reported in Straub et al., 2007, Athr. & Rheumat. "#)" represents a single dose, "##)" represents a cumulative dose injected until peak concentration was reached.

Figure 11 shows IL-2 and IFN-γ plasma levels after administration of a single intravenous or subcutaneous dose of BT061 in healthy volunteers. ULN = upper limit of normal (calculated based on cytokine levels measured in 39 healthy subjects; ULN = mean value + 2 x standard deviation).

Figure 12 shows a kinetic of CD4 cell counts (cells per ml of plasma) in volunteers treated with a single intravenous dose of BT061. Mean values of 3 patients per dose group are shown. Dotted lines indicate the upper limit of normal (ULN) and the lower limit of normal (LLN).

Figure 13 shows a kinetic of CD4 cell counts (cells per ml of plasma) in volunteers treated with a single subcutaneous dose of BT061. Mean values of 3 patients per dose group are shown. Dotted lines indicate the upper limit of normal (ULN) and the lower limit of normal (LLN) both calculated based on the CD4 cell counts measured in 15 healthy subjects as the mean predose value plus (or minus) 2 x standard deviation.

Figure 14 parts A and B provide photographs from the clinical trial with psoriasis patients as described in Example 3. The photographs are of the same patient who was a member of dose group II. The photograph shown in part A was taken prior to treatment. The photograph shown in part B was taken 28 days after treatment.
Figure 15 provides results from the clinical trial with rheumatoid arthritis patients as described in Example 5. The figure shows a bar chart of the percentage of patients from the dose groups receiving 1.25 mg, 6.25 mg, 12.5 mg and 25 mg subcutaneous BT061 achieving at least an ACR20 response. Six patients in each group received the antibody dose while two received a placebo.

Figure 16A and 16B provide results from the clinical trial with rheumatoid arthritis patients as described in Example 5. Figure 16A shows a bar chart of the number of tender joints for patients from the dose group receiving 25 mg subcutaneous BT061. Figure 16B shows a bar chart of the number of swollen joints in patients from the same dose group. Six patients in each group received the antibody dose while two received a placebo.

Figure 17A and 17B provide results from the clinical trial with rheumatoid arthritis patients as described in Example 5. The Figures show the changes of individual parameters (in %) for one responder (Figure 17A) and one non-responder (Figure 17B) from the 25 mg subcutaneous dose group. In the Figures "Pat's GA" and "Phy's GA" refer to the patient's global assessment and physician's global assessment, respectively. The term "PA of pain" refers to the patient's assessment of pain.

Figure 18A and 18B provide further results from the clinical trial with rheumatoid arthritis patients as described in Example 5. The Figures show the number of tender joints in patients from the 1.25 mg subcutaneous dose group (Figure 18A) and from the 6.25 mg subcutaneous dose group (Figure 18B).

Figure 19A and 19B provide further results from the clinical trial with rheumatoid arthritis patients as described in Example 5. The Figures show the number of tender joints in patients from the 50 mg subcutaneous dose group (Figure 19A) and from the 6.25 mg intravenous dose group (Figure 19B).

Figure 20 shows the alignment of the polypeptide sequences of murine B-F5 V_{K} (SEQ ID No: 8), FK-001 (SEQ ID Nos: 9, 10, 11 and 12), L4L (SEQ ID No: 18), and L4M (SEQ ID No: 2) in the design of the humanised form of B-F5 (i.e. BT061).
Figure 2.1 shows the alignment of the polypeptide sequences of murine B-F5 V_{H} (SEQ ID NO: 7), M26 (SEQ ID Nos: 13, 14, 15 and 16), H37L (SEQ ID No: 1), and H37V (SEQ ID No: 17) in the design of the humanised form of B-F5;

The invention will now be described in more detail.

The agents that are suitable for use in the present invention are those which are capable of activating CD4+CD25+ regulatory T cells. The agent may be a polypeptide, a protein or an antibody. Where the agent is an antibody it may be a monoclonal antibody. Preferably the antibody is a monoclonal anti-CD4 antibody. The antibody may also preferably be an IgGl antibody and may be an unmodified IgGl antibody.

In a preferred aspect of the invention the agent does not cause a substantial increase in the level of pro-inflammatory cytokines in the subject’s blood plasma after administration as compared to the levels seen after administration of anti-CD3 antibodies. In particular, the levels of IFN-γ, TNF-α, IL-6 and/or IL-2 after administration of the agent are not substantially raised compared to plasma levels measured in healthy subjects (see Table A1). Specifically, if the ULN for a specific cytokine given in Table A1 is taken as X then within 96 hours after administration of the agent of the invention there may be less than a 20 fold increase in X. Preferably there may be less than a 10 fold increase in X. More preferably these levels are during the period of 10 minutes after the start of administration to 96 hours after completion of administration.

It is possible that in autoimmune patients, cytokine levels prior to administration of the agent are already higher than those observed in healthy subjects (ULN given in Table A1) e.g. due to a modified activation status of immune cells compared to the activation status of the cells in healthy subjects. In those cases, the concentration for a specific cytokine directly prior to administration of the agent is taken as X and within 96 hours after administration of the agent of the invention there may be less than a 20 fold increase in X. Preferably there may be less than a 10 fold increase in X. More preferably these levels are during the period of 10 minutes after the start of administration to 96 hours after the completion of administration.
Table A1: Cytokine levels measured in plasma of healthy volunteers. The ULN (upper limit of normal) is calculated based on mean values measured in 39 individual subjects + 2 x standard deviation.

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>ULN (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2</td>
<td>19.4</td>
</tr>
<tr>
<td>IL-6</td>
<td>4.4</td>
</tr>
<tr>
<td>TNF-alpha</td>
<td>2.8</td>
</tr>
<tr>
<td>IFN-gamma</td>
<td>3.8</td>
</tr>
</tbody>
</table>

In a further preferred aspect of the invention the agent does not cause a substantial long-lasting decrease in the cell count of CD4+ lymphocytes in the subject's blood plasma. Specifically, within the period of 72 to 96 hours after administration the cell count of CD4+ lymphocytes in the subject's blood plasma may be above 250 cells/µL (or at least 250 cells/µl).

Preferably the cytokine and CD4+ lymphocyte effects described above are seen in at least 80% of patients treated.

To prevent negative impact on the immune system, e.g. a decrease in the lymphocyte cell count or induction of cytokine release, it is known in the art to utilise antibodies (especially T cell interacting antibodies) of subclass IgG2, IgG3 or IgG4 because antibodies of the IgG1 subclass display higher Fc receptor interactions. It is also known in the art to modify antibodies (especially T cell interacting antibodies) by Fc mutation, deglycosylation, glycomodification or glycoengineering to reduce Fc receptor interactions.

In the experiments described herein the present inventors have found that the avoidance of antibodies of the IgG1 subclass and modifications are not necessary for the agent of the present invention. In particular, data presented in this patent application indicate that the agent of the present invention does not cause substantial and long lasting CD4+ cell depletion or induce substantial cytokine release in comparison to anti-CD3 antibodies.
Accordingly, in a preferred aspect of the invention the agent is an unmodified IgG1 antibody, i.e. an antibody which does not include an Fc mutation, and has not been subject to deglycosylation, glycomodification or glycoengineering to reduce Fc receptor interactions, or a fragment or a derivative thereof.

The antibodies which are most suitable for use in the present invention are humanized anti-CD4 antibodies, or fragments or derivatives thereof, which are capable of activating CD4+CD25+ regulatory T cells. Examples of antibodies which are capable of activating CD4+CD25+ regulatory T cells are discussed in Becker et al., (European Journal of Immunology (2007), Vol. 37: pages 1217-1223).

Generally the antibody used in the invention comprises one or more variable domains which are capable binding to CD4. The antibody may comprise a human constant region (Fc). This constant region can be selected among constant domains from any class of immunoglobulins, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgG1, IgG2, IgG3 and IgG4. Preferred constant regions are selected among constant domains of IgG, in particular IgG1.

The present invention also includes any fragment of the antibody comprising the V regions thereof. This comprises in particular Fab, Fab', F(ab)'2, Fv and scFv fragments.

In a particularly preferred aspect of the present invention the antibody is a humanized anti-CD4 antibody or fragment or derivative thereof derived from the mouse monoclonal anti-CD4 antibody B-F5. An example of such an antibody is the BT061 antibody.

**BT061, fragments and derivatives thereof.**

The humanized antibody BT061 (hB-F5) is derived from mouse B-F5 mAb, and has V domains defined by the following polypeptide sequences:

- H chain V domain: EEQLVESGGGLVQPSRELTLSCAASGFSDFCRRMYWLRQA PGKGLEWIGVISVKSENYGANYAESVRGFTISRDDSNTYQYMNSLKTEDTAVV YCSAS YRYDVGAWFAYWGQGTLVTVSS (SEQ ID NO: 1)
- L chain V domain:

DIVMTQSPDSLAVSLGERATINCASKSVSTSGYSYIYWYQQ
KPGQPPKLILYLASILESGVPDRFSGSGGTDTLTISSLQAEDVAYYCYHSRELPGW
FG QGTKVEIK (SEQ ID NO: 2).

Derivatives of this antibody are also suitable for use in the present invention. Derivatives include those with V domains defined by polypeptide sequences having at least 80%, preferably at least 90%, most preferably at least 95% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 2.

Particularly preferred antibodies are those which comprise the complementarity-determining regions (CDRs) of the mouse B-F5 mAb, and retain the ability of hB-F5 to activate CD4+ CD25+ regulatory T cells. The location of the CDRs within the V_H and V_K domains is shown in Figures 20 and 21. Such antibodies can optionally have variations in the sequence of the CDRs that do not substantially affect the specificity and/or affinity of binding.

Generally, the hB-F5 antibody used in the invention further comprises a human constant region (Fc). As indicated above, this constant region can be selected among constant domains from any class of immunoglobulins, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgG1, IgG2, IgG3 and IgG4. Preferred constant regions are selected among constant domains of IgG, in particular IgG1.

The present invention also includes any fragment of the hB-F5 antibody or derivative thereof comprising the V regions thereof. This comprises in particular Fab, Fab', (ab)_2, Fv and scFv fragments.

A polynucleotide encoding the V domain of the H chain or of the L chain of a BT061 antibody may be fused with a polynucleotide coding for the constant region of a human H or L chain, for the purpose of expressing the complete H and L chains obtained in this way; a sequence coding a signal peptide allowing the secretion of the protein can also be added.
The invention also makes use of expression cassettes wherein a polynucleotide as described above is linked to appropriate control sequences allowing the regulation of its transcription and translation in a chosen host cell, and recombinant vectors comprising a polynucleotide or an expression cassette of the invention.

These recombinant DNA constructs can be obtained and introduced in host cells by the well-known techniques of recombinant DNA and genetic engineering.

The invention also makes use of a host cell, transformed by a polynucleotide of the invention. Useful host-cells within the framework of the present invention can be prokaryotic or eukaryotic cells. Among suitable eukaryotic cells, one will mention, by way of example, plant cells, cells of yeasts such as *Saccharomyces*, cells of insects such as *Drosophila*, or *Spodoptera*, and mammal cells such as HeLa, CHO, 3T3, C127, BHK, COS, etc.

The construction of expression vectors used in the invention, and the transformation of host-cells can be made by the standard techniques of molecular biology.

The BT061 (hB-F5) antibody used in the invention can be obtained by culturing a host cell containing an expression vector comprising a nucleic acid sequence encoding said antibody, under conditions suitable for the expression thereof, and recovering said antibody from the host cell culture.

**Construction of humanized B-F5**

**Design of humanized B-F5 V<sub>H</sub> and V<sub>K</sub> regions**

DNA sequences encoding mouse B-F5 V<sub>H</sub> and V<sub>K</sub> regions are respectively shown in Figure 3 and Figure 4 and under sequence identifiers SEQ ID NO: 5 and SEQ ID NO: 6. The human V<sub>H</sub> and V<sub>K</sub> on which the mouse CDRs are grafted were selected by searching databases for human V<sub>H</sub> most like the original mouse B-F5 V<sub>H</sub> and V<sub>K</sub>. V<sub>H</sub> region of a human antibody (M26; Accession Number A36006) had the highest homology with B-F5 V<sub>H</sub>. VK region of another human antibody (FK-OOl; NAKATANI et al, *Biotechnology*, 7 (1989), 805-810) had the highest homology with B-F5 V<sub>K</sub>.
Two types of VK differing between them in that the 4th residue was Leucine or Methionine were constructed and designated as L4L and L4M. Two types of VH differing between them in that the 37th amino acid residue was Leucine or Valine, were constructed and designated as H37L and H37V. The alignment of the polypeptide sequences of B-F5, FK-OOl, L4L, and L4M is shown in Figure 20. The alignment of the polypeptide sequences of B-F5, M26, H37L, and H37V is shown in Figure 21. The FR residues previously reported to be important for the packing of CDRs (Chothia et al., Nature 342(1989), 877; Foote et al., J. Mol. Biol., 224(1992), 487) are boxed.

By combining these VH and VK, 4 versions of V regions were designed.

Expression of humanized B-F5

The subsequent steps for production of humanized B-F5 were the same as those disclosed in US Patent 5,886,152 for humanized B-BIO.

Briefly, expression plasmids for the H chain (VH humanized region fused to the constant region of a human y-1 chain (TAKAHASHI et al., Cell, 29 (1982), 671-679)) and the L chain (VK humanized region fused to the constant region of FK-001 K chain) of humanized B-F5 were constructed separately. In these plasmids, the expression of humanized B-F5 is driven by the promoter/enhancer of the gene of human monoclonal IgM, FK-001. Figure 5 and 6 respectively show the fragments of the plasmids encoding the VH and VK regions of humanized BF-5. The sequences encoding the V region are underlined and the corresponding polypeptide sequences are indicated underneath the nucleotide sequence. Both plasmids and pSV2neo were simultaneously introduced into mouse myeloma Sp2/0 (ATCC CRL-1581) using Lipofectin™. Transfectomas producing human IgG were selected by ELISA, using an anti-human IgG (y chain) antibody and an anti-human Ig K chain antibody.

Characterisation of the different versions of humanized B-F5

Estimation of CD4 binding activity

Culture supernatants of transfectomas producing the four versions of hB-F5 were collected, and concentrated. The different antibodies were purified from culture supernatants by affinity chromatography using protein A Sepharose and assessed for their CD4 binding activity by
measuring, by means of competitive ELISA, their inhibitory activities against the binding of biotinylated mB-F5 to soluble CD4 coated on microtiter plates. Incubation, time is 2 hours for 37°C and overnight for 4°C.

The relative binding activities of hB-F5s (binding activity of mB-F5 was taken as 100%) are shown in Table A below:

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Temp (°C)</th>
<th>Relative binding activity (% of mB-F5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H37L/L4L</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>H37L/L4M</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>H37V/L4L</td>
<td>4</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>H37V/L4M</td>
<td>4</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>10</td>
</tr>
</tbody>
</table>

From the results shown in Table A, it appears that the 37th residue of Leucine, is critical to maintain CD4 binding activity of hB-F5 because the CD4 binding activity is several-fold reduced by conversion of 37Leu to 37VaI. On the contrary, the 4th residue of VK is found to be not so important for the CD4 binding activity. As the structural difference between 37Leu and 37VaI of VH is not clearly demonstrated by molecular modeling, the superiority of H37L to H37V in CD4 binding activity was unexpected.

H37L/L4L and H37L/L4M were chosen for evaluation.

Investigation of the in vitro biological activities of humanized B-F5

The in vitro biological activities of mouse B-F5 and humanized B-F5s (H37L/L4M IgGl and H37L/L4L IgG) were evaluated. Humanized B-F5s of IgG2 type (H37L/L4M IgG2 and H37L/L4L IgG2) were also tested.

The in vitro biological activities of mB-F5 and the four types of hB-F5s were evaluated using peripheral blood mononuclear cells (PBMCs) from healthy donors. PBMCs were activated by
ConA (2.5 pg/ml, 3 days) or PPD (10 pg/ml, 4 days) in the presence of murine or hB-F5s, and were monitored for their proliferative responses by 3H-thymidine incorporation.

Murine and hB-F5s could moderately inhibit ConA-induced proliferation, but the activities varied from antibody to antibody and/or from donor to donor. Also, murine and hB-F5s were able to inhibit Ag-specific PBMC proliferation induced by PPD.

IgGl type of hB-F5 inhibited PPD-induced proliferation more effectively (as high as 70% inhibition) than mB-F5. IgGl type seemed to be more effective than IgG2 type of which inhibitory activity was almost the same as mB-F5. For IgGl type, H37L/L4M was more effective than H37L/L4L. IgG2 type of H37L/L4M and H37L/L4L had almost the same inhibitory activities. In short, the inhibitory activities of B-F5s against PPD-induced PBMC proliferation were as follows: H37L/L4M IgGl > H37L/L4L IgGl > H37L/L4M IgG2 = H37L/L4L IgG2 = mB-F5.

Considering the efficacy of the in vitro biological activity and the smaller number of mouse amino acids, H37L/L4M IgGl was chosen for further evaluation, and it is this antibody which is named BT061 and is employed to demonstrate the present invention in the Examples provided in this application.

Compositions and uses

As has been mentioned, the pharmaceutical composition and medicaments used in the present invention are preferably capable of treating an autoimmune disease in patients benefiting from lower doses. Such patients include all patients because of a lower level of side effects but especially individuals who do not tolerate doses as disclosed in WO 2004/08324.

In one aspect the present invention also provides use of a humanized anti-CD4 antibody or fragment or derivative thereof in the manufacture of a medicament effective against an autoimmune disease, wherein the humanised antibody capable of activating CD4+CD25+ regulatory T cells, and wherein the medicament comprises the antibody in a concentration of from 10 µg/ml to 150 mg/ml, preferably from 0.5 mg/ml to 75 mg/ml.
The invention further provides use of a humanized anti-CD4 antibody or fragment or derivative thereof in the manufacture of a medicament effective against an autoimmune disease, wherein the humanised antibody is capable of activating CD4+CD25+ regulatory T cells, and wherein the medicament is administered to a subject in a single dose or a plurality of doses in an amount of the antibody of from 0.2 to 30 mg per dose.

The present invention also provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.2 mg to 30 mg, 0.2 to 20 mg per dose, 0.3 mg to 7.5 mg, 0.3 to 5 mg per dose or preferably 0.3 to 1 mg per dose. Most preferably the range of milligrams per dose extends between 0.3 mg to 0.9 mg, or 0.3 to 0.99 mg.

In one aspect of the invention the subject is to receive a plurality of doses. In these situations it is suitable that dosage over a period of 10 days is between 0.2 to less than 25 mg, more preferably between 0.2 and 20 mg and most preferably between 0.2 to less than 10 mg. Further, the dosage over a period of 5 days should be between 0.2 to less than 15 mg, preferably between 0.2 and 12 mg, and more preferably between 0.2 to less than 5 mg.

In this aspect of the invention it is preferred that, when the dose is to be administered intravenously, the dosages over a period of 10 days are between 0.2 to less than 10 mg, most preferably between 0.2 and 7.5 mg. Alternatively, where the doses are to be administered subcutaneously or intramuscularly, it is preferred that the dosages over a period of 10 days are between 1 mg to 30 mg, more preferably between 5 mg and 30 mg.

The dose can also be calculated on the basis of the body surface area (BSA) of the subject. Body surface area (BSA) can be calculated according to any known method. Examples of BSA calculation methods are as follows:

Mosteller formula: \( \text{BSA (m}^2\) = \(((\text{Height(cm)} \times \text{Weight(kg)})/\text{3600} \times 1000\)\]

DuBois and DuBois formula: BSA \( (m^2) = 0.20247 \times \text{Height(m)}^{0.725} \times \text{Weight(kg)}^{0.425} \)

(DuBois D; DuBois EF: A formula to estimate the approximate surface area if height and weight be known. *Arch Int Med* 1916 17:863-71.)

Haycock formula: BSA \( (m^2) = 0.024265 \times \text{Height(cm)}^{0.3964} \times \text{Weight(kg)}^{0.5378} \)


Gehan and George formula: BSA \( (m^2) = 0.0235 \times \text{Height(cm)}^{0.42246} \times \text{Weight(kg)}^{0.51456} \)


Boyd formula: BSA \( (m^2) = 0.0003207 \times \text{Height(cm)}^{0.3} \times \text{Weight(grams)} \times 0.7285 \times 0.188 \times \text{LOG(grams)} \)

According to the invention the dose of the agent to the subject is from 0.10 to 20 mg/m \( ^2 \) body surface area.

More preferably 0.20 to 10 mg/m \( ^2 \) and most preferably 0.30 to 0.50 mg/m \( ^2 \).

Further the dose can be calculated based on the body weight of the subject. According to the invention the dose of the agent to the subject is from 1 to 500 \( \mu \text{g/kg} \), preferably 2 to 400 \( \mu \text{g/kg} \), more preferably 2 to 250 \( \mu \text{g/kg} \) and most preferably 2.5 to 20 \( \mu \text{g/kg} \).

In these aspect of the invention where the dose is based on the body surface area or the body weight of the subject it is preferred that, when the dose is to be administered intravenously, the dosages over a period of 10 days are between 0.20 to 10 mg/m \( ^2 \), more preferably between 0.20 to 4 mg/m \( ^2 \), or between 2 to 250 \( \mu \text{g/kg} \), more preferably between 2 to 100 \( \mu \text{g/kg} \).

Alternatively, where the doses are to be administered subcutaneously or intramuscularly, it is preferred that the dosages over a period of 10 days are between 0.30 to 20 mg/m \( ^2 \), more
preferably between 0.5 to 20 mg/m², or between 2.5 to 500 µg/kg more preferably between 20 to 500 µg/kg.

The frequency of administration is not especially limited, provided that it does not interfere with the effectiveness of the treatment. In the invention, it is preferred that the plurality of doses are administered on at least the following bases: daily, every other day, weekly, every 4 weeks, every 6 weeks, every 12 weeks, every 24 weeks, every calendar month, every 6 calendar months or yearly. Thus, the doses may be separated by at least one day, or alternatively by at least one week, or by at least one month or by at least 3 months or by at least 6 months or by at least one year (meaning that the doses are taken every day or every week, or every month or every 6 months or every year). In a further alternative the plurality of doses are taken from every 1 to 31 days, or every 1-12 months.

The length of treatment is not especially limited, and typically in treatment of autoimmune diseases, the treatment proceeds indefinitely, or until symptoms are reduced to a manageable level for the patient. Generally the dose is administered to the subject for at least 1 month.

The invention also provides a kit for a use as defined above, wherein the kit comprises a plurality of medicament dosages for simultaneous, sequential or separate administration to a subject.

It also provides a method of treatment of an autoimmune disease, which method comprises administering a pharmaceutical composition as defined above to a subject.

Also provided is a method of treatment of an autoimmune disease, which method comprises administering a medicament to a subject, wherein the medicament comprises an agent capable of activating CD4+CD25+ regulatory T cells, and wherein the medicament is administered to the subject in an amount as described above.

It is preferred that the agent is a humanized anti-CD4 antibody or fragment or derivative thereof derived from the mouse monoclonal anti-CD4 antibody B-F5.
Generally the pharmaceutical composition and medicaments used according to the present invention are for treating an autoimmune disease. Preferably the autoimmune disease is selected from psoriasis, rheumatoid arthritis, multiple sclerosis, type-1 diabetes, inflammatory bowel diseases, Crohn’s disease, autoimmune thyreoditis, autoimmune myasthenia gravis, systemic lupus erythematosus, ulcerative colitis, atopic dermatitis, myocarditis and transplantation-related diseases such as graft-versus-host or host-versus-graft reactions, or general organ tolerance issues.

In a preferred aspect of the invention the autoimmune disease is psoriasis.

Psoriasis is a disorder which causes psoriatic lesions or plaques on the sufferer’s skin.

The Psoriasis Area and Severity Index (PASI) score is commonly used to evaluate and record the level of psoriasis exhibited by sufferers. PASI scoring involves the assessment of erythema (E), infiltration (I), and desquamation (D), and body surface area involvement (A) over 4 body regions (head (h), trunk (t), upper (u) and lower (l) extremities). Table B below shows how the scoring system works.

<table>
<thead>
<tr>
<th>Degree of severity (per body region)</th>
<th>Value given</th>
</tr>
</thead>
<tbody>
<tr>
<td>No symptoms</td>
<td>0</td>
</tr>
<tr>
<td>Slight</td>
<td>1</td>
</tr>
<tr>
<td>Moderate</td>
<td>2</td>
</tr>
<tr>
<td>Marked</td>
<td>3</td>
</tr>
<tr>
<td>Very marked</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface involved (per body region)</th>
<th>Value given</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 10%</td>
<td>1</td>
</tr>
<tr>
<td>10-29%</td>
<td>2</td>
</tr>
<tr>
<td>30-49%</td>
<td>3</td>
</tr>
<tr>
<td>50-69%</td>
<td>4</td>
</tr>
<tr>
<td>70-89%</td>
<td>5</td>
</tr>
<tr>
<td>90-100%</td>
<td>6</td>
</tr>
</tbody>
</table>

Because the head, upper extremities, trunk, and lower extremities correspond to approximately 10, 20, 30, and 40% of body surface area, respectively, the PASI score is calculated by the formula:
PASI score ranges from 0-72. A score of 0 means no psoriasis, while a score of 72 represents the most severe psoriasis.

In a preferred embodiment of this aspect the pharmaceutical composition of the present invention is capable of treating psoriasis by providing at least a 40 %, and preferably at least a 50 %, improvement in the PASI score of the patient. Preferably the subject has a PASI score of at least 10 prior to treatment. These effects may be seen at least 56 days after administration, more preferably at least 75 days after administration. In particular, these effects can be seen in at least 80% of patients treated.

In a further embodiment of this aspect of the invention the pharmaceutical composition is to be administered intravenously, subcutaneously or intramuscularly in the dosages specified herein. In particular, where the dose is to be administered intravenously it is preferred that the dose is between 0.2 mg to 7.5 mg, more preferably between 0.3 to 5 mg. Where the patient is to receive a plurality of doses the dosage over a period of 10 days is preferably between 0.2 to less than 10 mg. Alternatively, where the dose is to be administered subcutaneously or intramuscularly it is preferred that the dose is between 0.2 mg to 30 mg, more preferably between 5 mg to 30 mg. Where the patient is to receive a plurality of doses the dosage over a period of 10 days is preferably between 0.2 to less than 25 mg.

In a further aspect of the present invention the pharmaceutical compositions are for treating rheumatoid arthritis.

Rheumatoid arthritis is an autoimmune disease which causes chronic inflammation of joints and surrounding tissues, and can also affect other tissues and body organs.

Improvement in rheumatoid arthritis exhibited by a treated patient is commonly assessed using the American College of Rheumatology (ACR) core set of parameters (Felson et al., Arthritis & Rheumatism, 1995, 38(6), 727-735). This system defines a value of ACR 20 as a 20% improvement in tender and swollen joint counts and 20% improvement in 3 of the 5
remaining ACR core set measures: patient and physician global assessments, pain, disability, and an acute phase reactant, such as C-reactive protein (CRP).

In particular, the pharmaceutical compositions for treating rheumatoid arthritis are preferably to be administered intravenously, subcutaneously or intramuscularly in the dosages specified herein.

Present treatment of arthritis includes first line drugs for controlling pain and inflammation classified as non-steroidal anti-inflammatory drugs (NSAIDs), e.g., aspirin, ibuprofen, naproxen, etc. Secondary treatment of arthritis includes corticosteroids (e.g. prednisone and dexamethasone), slow acting antirheumatic drugs (SAARDs) or disease-modifying anti-rheumatic drugs (DMARDs), e.g., methotrexate, penicillamine, cyclophosphamide, gold salts, azothioprine, leflunomide, etc.

Corticosteroids, the synthetic versions of the body's cortisone hormone, are used to inhibit RA progression (e.g. prednisone and dexamethasone).

Another group of drugs called biological-response modifiers (BRMs) has also been developed for treatment of RA including antagonists to TNF-alpha (adalimumab, infliximab, etanercept) which work through binding to its receptor or directly binding to the TNF-alpha protein.

In one embodiment of this aspect of the invention the compositions are to be administered in combination with drugs currently used to treat rheumatoid arthritis. In particular, the compositions are to be administered with one of the drugs mentioned above, preferably methotrexate.

Known drugs, such as methotrexate, and the pharmaceutical composition of the present invention can be administered simultaneously, sequentially or separately.

The invention will now be described further in relation to the following specific embodiments.
EXAMPLES

EXAMPLE 1 - Binding of BT061 to primary human peripheral lymphocytes (results shown in Figure 1)

Method
Human PBMCs were isolated by density gradient centrifugation and stained with FITC-labelled anti-CD3 antibody (345763; Becton/Dickinson) and serial dilutions of BT061. BT061 binding was detected with a phycoerythrin labelled human IgG antibody (109-116-098; Jackson, Immunoresearch). By flow cytometric analysis the mean fluorescence intensity of CD3+ BT061 binding lymphocytes was determined.

The results are set out in Figure 1.

Results
BT061 binds to human lymphocytes at low concentrations. Below 10 ng/ml the half maximal saturation of binding is observed. Saturation is found at 100 ng/ml. The concentrations are as expected for patients which receive doses of 30 and 300 µg.

EXAMPLE 2 - Inhibition of proliferation of CD8+ T-cells by BT061-stimulated T reg cells (results shown in Figure 7)

Method
Isolation of human T cell populations
CD25^hi Tregs were separated from buffy coats and/or leukapheresis of healthy volunteers by magnetic bead cell separation according to the following protocol.

CD4+CD25+ regulatory T cells were isolated from buffy coats of healthy volunteers by 2 steps. In the first step CD4+ T cells using 2-4µl CD4-MACS-Multisort-Beads (Miltenyi Biotec) per 10^7 PBMCs were positively selected. After 15 minutes of incubation, magnetic selection was performed. In the next step positively isolated cells were depleted of CD25-expressing non-CD4 cells with CD8-, CD19- and CD14-Dynabeads (Dynal, Oslo, Norway).
The resulting CD4+CD25+ T cells were 95-98% pure. Untouched CD4+CD25- T cells were isolated by negative selection from PBMC by depleting CD8, CD19, CD56, CD14, CD235a, CD25 and CD45RO expressing cells with Dynabeads. The purification scheme is shown in Figure 2.

**Co-culture assay**

To evaluate the influence of anti-CD4 mAb on the function of human CD25+ Tregs, freshly isolated human CD25+ Tregs were co-cultured with syngeneic T cell (CD3)-depleted PBMC (CD3 Dynabeads, Dynal) and allogeneic CD8+ T cells in presence of different anti-CD4 mAb. Briefly, 1x10^5 freshly isolated CD25+ Tregs were incubated with 3x10^5 irradiated (50 Gy) syngeneic PBMC in the presence of varying amounts of anti-CD4 mAb. Either immediately or 24 h later, 1x10^5 allogeneic CD8+ T cells were added to the cultures and proliferation was determined 72 h later. Different anti-CD4 mAbs at concentrations from 0.01 µg/ml to 50 µg/ml were tested in this assay. CD8+ T cells were isolated using CD8-Microbeads.

The results are set out in Figure 7.

**Results**

BT061 reproducibly induces suppressive activity in Tregs in a dose-dependent manner, resulting in inhibition of the proliferation of alloreactive CD8+ T cells. BT061 stimulates CD4+CD25+ Tregs which directly inhibit CD8+ T cells.

In particular, the results confirm that there is inhibition of the proliferation of CD8+ T cells at concentrations as low as 10ng/ml corresponding to low dose application in patients of 30 µg.

**EXAMPLE 3 - Clinical trial of BT061 in patients with moderate to severe chronic psoriasis (results shown in Figures 8A to 8H, Figures 9A to 9H and Figures 14A and 14B)**

The ability of hB-F5 BT061 to treat an autoimmune disease is being tested on 56 patients suffering from moderate to severe chronic psoriasis. The trial comprises a single dose escalation study to assess the safety and efficacy of hB-F5.
The conditions of the trial are as follows:

The 56 patients are divided into seven dose groups, each group comprising eight individuals. Five dose groups (dose groups I to V) are to receive the antibody or placebo by intravenous administration and two dose groups (dose groups VI and VII) are to receive the antibody or placebo via subcutaneous administration. Two patients in each dose group receive a placebo, while the remaining six patients in each dose group receive a dose of BT061. In dose group I the six patients receive 0.5 mg of intravenous BT061. In dose groups II to V the six patients receive 2.5 mg, 5 mg, 10 mg, or 20 mg of BT061, respectively. In dose groups VI and VII where the administration is subcutaneous, the six patients receive 12.5 mg or 25 mg of BT061, respectively.

For intravenous administration the antibody/placebo is to be infused in the forearm vein according to medically accepted procedures. In the present case the total volume is administered as a single continuous intravenous infusion over a period of 2 hours via a perfusor (Fresenius Pilot C, Fresenius AG, Germany). Each dose of the antibody is diluted with a 0.9% sodium chloride injection (B. Braun Melsungen AG, Germany) up to a total volume of 20 ml.

For subcutaneous administration the antibody is to be administered as a single subcutaneous injection. The same procedure applies for the placebo.

The level of psoriasis exhibited by each patient is recorded using the Psoriasis Area and Severity Index (PASI) score. As described above higher PASI scores corresponds to a higher level of psoriasis. Patients enrolled onto the trial have a moderate to severe chronic psoriasis, i.e. a PASI score of 10 or above.

The patient's PASI score is assessed before the trial to provide a "baseline" value at day 0, and repeatedly during the trial at days 5, 7, 14, 21, 28, 42, 56 and 75.
**Dose Group I**

Six patients from dose group I received a single intravenous application of 0.5 mg of BT061, while two patients from dose group I received the placebo. The dose per weight and the dose per body surface area (BSA) for each patient are shown in Table C. Body surface area was calculated according to the Mosteller formula described herein.

The PASI scores for the patients in dose group I are shown in Table C together with the percentage improvement in the PASI score from the baseline.

**Dose Group II**

Six patients from dose group II received a single intravenous injection of 2.5 mg of BT061 while two patients from dose group II received the placebo. The dose per weight and the dose per body surface area (BSA) for each patient is shown in Table D1.

The PASI scores for the patients in dose group II are shown in Table D1 together with the percentage improvement in the PASI score from the baseline.

**Dose Group III**

Six patients from dose group III received a single intravenous injection of 5.0 mg of BT061 while two patients from dose group III received the placebo. The dose per weight and the dose per body surface area (BSA) for each patient are shown in Table D2.

The PASI scores for the patients in dose group III are shown in Table D2 together with the percentage improvement in the PASI score from the baseline.

**Dose Group IV**

Six patients from dose group IV are receiving a single intravenous injection of 10.0 mg of BT061 while two patients from dose group IV received the placebo. The dose per weight and the dose per body surface area (BSA) for the patients is shown in Table D3.

The PASI scores for the patients in dose group IV are shown in Table D3 together with the percentage improvement in the PASI score from the baseline.
TABLE C - PASI scores for the patients in dose group I (0.5 mg intravenous dose) over course of trial

<table>
<thead>
<tr>
<th>Patient Rel. Dose [μg/kg] / [mg/m²]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.2 / 0.23</td>
<td>5.9 / 0.25</td>
<td>4.6 / 0.22</td>
<td>5.3 / 0.24</td>
<td>4.8 / 0.22</td>
<td>8.5 / 0.31</td>
<td>4.7 / 0.21</td>
<td>7.0 / 0.28</td>
</tr>
</tbody>
</table>

PASI Score (relative change / improvement to baseline)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Day 5</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
<th>Day 28</th>
<th>Day 42</th>
<th>Day 56</th>
<th>Day 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>12.0 (2%)</td>
<td>12.1 (10%)</td>
<td>9.1 (25%)</td>
<td>12.2 (13%)</td>
<td>10.9 (10%)</td>
<td>11.8 (6%)</td>
<td>9.4 (22%)</td>
<td>10.2 (33%)</td>
</tr>
<tr>
<td>13.5</td>
<td>12.1</td>
<td>10.7 (21%)</td>
<td>7.7 (36%)</td>
<td>11.6 (17%)</td>
<td>11.2 (7%)</td>
<td>10.7 (15%)</td>
<td>9.3 (23%)</td>
<td>9.0 (41%)</td>
</tr>
<tr>
<td>12.1</td>
<td>12.0</td>
<td>10.7</td>
<td>7.7</td>
<td>11.6</td>
<td>11.2</td>
<td>10.7</td>
<td>9.3</td>
<td>9.0</td>
</tr>
<tr>
<td>14.0</td>
<td>9.1</td>
<td>7.7</td>
<td>5.7</td>
<td>9.6</td>
<td>8.7</td>
<td>10.4</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td>12.1</td>
<td>12.2</td>
<td>11.6</td>
<td>5.1</td>
<td>7.2</td>
<td>8.0</td>
<td>8.0</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>12.6</td>
<td>10.9</td>
<td>11.2</td>
<td>8.4</td>
<td>8.2</td>
<td>8.2</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>12.1</td>
<td>11.8</td>
<td>11.2</td>
<td>7.9</td>
<td>6.1</td>
<td>6.1</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>15.2</td>
<td>9.4</td>
<td>9.3</td>
<td>9.3</td>
<td>8.0</td>
<td>8.0</td>
<td>6.0</td>
<td>6.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Day 21: 11.6 (5%) (26%)
<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Dose [µg/kg]</td>
<td>27.8 / 1.20</td>
<td>31.6 / 1.30</td>
<td>31.8 / 1.28</td>
<td>23.6 / 1.08</td>
<td>28.4 / 1.19</td>
<td>39.4 / 1.49</td>
<td>26.5 / 1.17</td>
<td>28.4 / 1.19</td>
</tr>
</tbody>
</table>

**PASI Score (relative change / improvement to baseline)**

<table>
<thead>
<tr>
<th>Baseline</th>
<th>17.1</th>
<th>13.8</th>
<th>10.9</th>
<th>18.6</th>
<th>15.0</th>
<th>12.6</th>
<th>13.9</th>
<th>13.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 5</td>
<td>14.5 (15%)</td>
<td>15.5 (12%)</td>
<td>6.8 (38%)</td>
<td>17.6 (5)</td>
<td>12.1 (19%)</td>
<td>12.6 (0%)</td>
<td>19.5 (40%)</td>
<td>15.6 (16%)</td>
</tr>
<tr>
<td>Day 7</td>
<td>12.3 (28%)</td>
<td>13.6 (1%)</td>
<td>5.2 (52%)</td>
<td>19.7 (6%)</td>
<td>14.0 (7%)</td>
<td>13.0 (3%)</td>
<td>17.0 (22%)</td>
<td>14.8 (10%)</td>
</tr>
<tr>
<td>Day 14</td>
<td>10.8 (37%)</td>
<td>15.5 (12%)</td>
<td>3.9 (64%)</td>
<td>11.1 (40%)</td>
<td>11.8 (21%)</td>
<td>16.6 (32%)</td>
<td>11.4 (18%)</td>
<td>8.0 (41%)</td>
</tr>
<tr>
<td>Day 21</td>
<td>9.7 (43%)</td>
<td>12.2 (12%)</td>
<td>3.9 (64%)</td>
<td>13.7 (26%)</td>
<td>12.4 (17%)</td>
<td>11.4 (10%)</td>
<td>7.9 (43%)</td>
<td>7.1 (47%)</td>
</tr>
<tr>
<td>Day 28</td>
<td>8.6 (50%)</td>
<td>9.4 (32%)</td>
<td>1.5 (86%)</td>
<td>7.6 (59%)</td>
<td>12.2 (19%)</td>
<td>12.8 (2%)</td>
<td>8.2 (41%)</td>
<td>6.5 (52%)</td>
</tr>
<tr>
<td>Day 42</td>
<td>8.8 (49%)</td>
<td>8.5 (38%)</td>
<td>1.3 (88%)</td>
<td>10.2 (45%)</td>
<td>12.2 (19%)</td>
<td>11.0 (13%)</td>
<td>7.8 (44%)</td>
<td>9.0 (33%)</td>
</tr>
<tr>
<td>Day 56</td>
<td>6.3 (63%)</td>
<td>8.3 (40%)</td>
<td>1.3 (88%)</td>
<td>-</td>
<td>14.2 (5%)</td>
<td>9.7 (23%)</td>
<td>8.2 (41%)</td>
<td>7.8 (42%)</td>
</tr>
<tr>
<td>Day 75</td>
<td>6.0 (65%)</td>
<td>5.6 (59%)</td>
<td>1.9 (83%)</td>
<td>9.2 (51%)</td>
<td>14.7 (2%)</td>
<td>10.4 (17%)</td>
<td>10.2 (27%)</td>
<td>8.1 (40%)</td>
</tr>
</tbody>
</table>
TABLE D2 - PASI scores for the patients in dose group III (5.0 mg intravenous dose) over course of trial

<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Dose [µg/kg] / [mg/m²]</td>
<td>70.4 / 2.73</td>
<td>57.5 / 2.40</td>
<td>43.9 /</td>
<td>59.5 /</td>
<td>52.4 /</td>
<td>56.8 /</td>
<td>71.4 /</td>
<td>66.2 /</td>
</tr>
</tbody>
</table>

PASI Score (relative change / improvement to baseline)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>15.8</th>
<th>14.1</th>
<th>17.4</th>
<th>12.4</th>
<th>17.3</th>
<th>12.4</th>
<th>13.5</th>
<th>10.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 5</td>
<td>13.0 (18%)</td>
<td>27.2 (+93%)</td>
<td>17.7 (+2%)</td>
<td>12.0 (3%)</td>
<td>16.8 (3%)</td>
<td>10.6 (15%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Day 7</td>
<td>14.3 (9%)</td>
<td>18.9 (+34%)</td>
<td>15.6 (10%)</td>
<td>11.1 (10%)</td>
<td>17.6 (+2%)</td>
<td>11.4 (8%)</td>
<td>11.0 (19%)</td>
<td>8.2 (21%)</td>
</tr>
<tr>
<td>Day 14</td>
<td>13.5 (15%)</td>
<td>30.3 (+115%)</td>
<td>14.0 (20%)</td>
<td>9.3 (25%)</td>
<td>14.4 (17%)</td>
<td>13.0 (+5%)</td>
<td>9.4 (30%)</td>
<td>7.6 (27%)</td>
</tr>
<tr>
<td>Day 21</td>
<td>10.1 (36%)</td>
<td>23.1 (+64%)</td>
<td>14.4 (17%)</td>
<td>9.2 (26%)</td>
<td>14.7 (15%)</td>
<td>11.6 (6%)</td>
<td>9.4 (30%)</td>
<td>-</td>
</tr>
<tr>
<td>Day 28</td>
<td>9.6 (39%)</td>
<td>23.1 (+64%)</td>
<td>13.4 (23%)</td>
<td>10.2 (18%)</td>
<td>13.8 (20%)</td>
<td>11.2 (10%)</td>
<td>8.3 (39%)</td>
<td>8.6 (17%)</td>
</tr>
<tr>
<td>Day 42</td>
<td>9.2 (42%)</td>
<td>20.1 (+43%)</td>
<td>14.4 (17%)</td>
<td>10.2 (18%)</td>
<td>13.2 (24%)</td>
<td>12.6 (+2%)</td>
<td>8.3 (39%)</td>
<td>-</td>
</tr>
<tr>
<td>Day 56</td>
<td>10.0 (37%)</td>
<td>20.1 (+43%)</td>
<td>15.8 (9%)</td>
<td>-</td>
<td>13.2 (24%)</td>
<td>10.6 (15%)</td>
<td>9.6 (20%)</td>
<td>-</td>
</tr>
<tr>
<td>Day 75</td>
<td>12.8 (19%)</td>
<td>22.5 (+60%)</td>
<td>16.0 (8%)</td>
<td>9.0 (27%)</td>
<td>13.2 (24%)</td>
<td>13.2 (+6%)</td>
<td>13.4 (1%)</td>
<td>9.6 (8%)</td>
</tr>
</tbody>
</table>
TABLE D3 - PASI scores for the patients in dose group IV (10.0 mg intravenous dose) over course of trial

<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Dose [µg/kg] / [mg/m²]</td>
<td>173.0 /</td>
<td>142.9 /</td>
<td>102.8 /</td>
<td>115.6 /</td>
<td>119.6 /</td>
<td>108.8 /</td>
<td>75.9 /</td>
<td>106.6 /</td>
</tr>
</tbody>
</table>

PASI Score (relative change / improvement to baseline)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>14.6</th>
<th>11.0</th>
<th>21.6</th>
<th>22.0</th>
<th>19.0</th>
<th>11.6</th>
<th>14.0</th>
<th>12.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 5</td>
<td>12.8 (12%)</td>
<td>11.0 (0%)</td>
<td>21.6 (0%)</td>
<td>16.8 (24%)</td>
<td>18.8 (1%)</td>
<td>11.2 (3%)</td>
<td>14.2 (+1%)</td>
<td>11.4 (8%)</td>
</tr>
<tr>
<td>Day 7</td>
<td>12.8 (12%)</td>
<td>11.0 (0%)</td>
<td>21.6 (0%)</td>
<td>16.8 (24%)</td>
<td>18.2 (4%)</td>
<td>11.2 (3%)</td>
<td>14.2 (+1%)</td>
<td>8.4 (32%)</td>
</tr>
<tr>
<td>Day 14</td>
<td>11.4 (22%)</td>
<td>11.0 (0%)</td>
<td>21.6 (0%)</td>
<td>18.1 (18%)</td>
<td>16.7 (12%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 21</td>
<td>11.4 (22%)</td>
<td>11.0 (0%)</td>
<td>22.5 (+4%)</td>
<td>19.0 (14%)</td>
<td>17.3 (9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 28</td>
<td>11.4 (22%)</td>
<td>8.9 (19%)</td>
<td>22.0 (7%)</td>
<td>17.7 (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 42</td>
<td>11.0 (25%)</td>
<td>9.4 (15%)</td>
<td>22.6 (+5%)</td>
<td>18.8 (15%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 56</td>
<td>11.4 (22%)</td>
<td>9.8 (11%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further, the PASI scores against time for individual patients are shown in graph form in Figures 8A to 8H and in Figures 9A to 9H. The graphs shown in Figures 8A to 8H represent PASI scores for patients from dose group I, while the graphs shown in Figures 9A to 9H represent PASI scores for patients from dose group II.

As can be seen from the results shown in Tables C and D, 75% of all the patients from dose group I and dose group II show a clear improvement in their PASI scores, i.e. at least a 40% improvement over the baseline value, after a single dose. It should be noted that 25% of the patients in dose group I and dose group II received a placebo.

In fact, in both dose groups 50% of the patients showed at least 50% improvement in their PASI scores, with one patient in dose group II showing an 88% improvement in the PASI score at day 56, (i.e. patient 3 in Table D). Furthermore, the therapeutic effect is long-lasting even at these low doses, with the improvements still being seen in many patients at the end of the trial, 75 days after administration.

Patients in dose group III also show an improvement in their PASI score, with six out of eight patients showing a greater than 20% improvement and two of those six showing a greater than 30% improvement after treatment. However, the improvement was not as significant as that seen in patients from dose group I and dose group II which received a lower dose of the antibody. Some efficacy is also seen in the patients of dose group IV. In particular patients 1, 4, 5 and 8 in this dose group (as shown in Table D3) show a clear improvement in their PASI scores, although this is limited in comparison to patients of dose groups I to III.

The number of patients showing at least 40%, 50%, 60% and 75% improvement in PASI score is shown in Table E.
TABLE E - Summary of results from Dose Groups I to III

<table>
<thead>
<tr>
<th></th>
<th>Dose group I*</th>
<th>Dose group II*</th>
<th>Dose group III*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement ≥ 40%</td>
<td>6/8 patients</td>
<td>6/8 patients</td>
<td>1/8 patients</td>
</tr>
<tr>
<td>Improvement ≥ 50%</td>
<td>4/8 patients</td>
<td>5/8 patients</td>
<td>0/8 patients</td>
</tr>
<tr>
<td>Improvement ≥ 60%</td>
<td>1/8 patients</td>
<td>2/8 patients</td>
<td>0/8 patients</td>
</tr>
<tr>
<td>Improvement ≥ 75%</td>
<td>0/8 patients</td>
<td>1/8 patients</td>
<td>0/8 patients</td>
</tr>
</tbody>
</table>

* per dose group: 75% of patients received BT061, 25% of patients received placebo

Figures 14 A and 14 B provide photographic evidence of the improvement in the level of psoriasis before and after treatment. Figure 14 A shows an area of psoriasis on the skin of a patient in dose group II prior to administration. Figure 14 B shows the same area of psoriasis 28 days after administration. The areas of improvement are marked on Figure 14 B with black boxes.

From these results it can clearly be seen that BT061 provides effective treatment of moderate and severe chronic psoriasis even with a dose as low as 0.5mg. Further, the single dose provides a therapeutic effect which can still be seen six to eight weeks afterwards.

EXAMPLE 4 - Safety and tolerability of escalating doses of BT061 (results shown in Figures 10 to 13)

A study was conducted to monitor the safety and tolerability of BT061 using escalating doses of the antibody in healthy male and female volunteers between the ages of ≥18 to ≤75 years.

Thirty volunteers received BT061 by intravenous administration in 10 dosage groups, with 3 volunteers per group. Further, 15 volunteers received BT061 by subcutaneous administration in 5 dosage groups also with 3 volunteers per group. The administration of BT061 intravenously is illustrated Table F below:
Each dose is diluted with 0.9% sodium chloride injection up to a total volume of 20 ml. The dose is administered as a single continuous intravenous infusion over 2 hours.

The administration of BT061 subcutaneously is illustrated in Table G below:

TABLE G – Subcutaneous dose of BT061

<table>
<thead>
<tr>
<th>Total dose of BT061 mab</th>
<th>Volume of BT061-12.5 mg</th>
<th>Volume of BT061-25 mg</th>
<th>Volume of BT061-50 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mg</td>
<td>0.4 ml</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10 mg</td>
<td>0.8 ml</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20 mg</td>
<td>—</td>
<td>0.8 ml</td>
<td>—</td>
</tr>
<tr>
<td>40 mg</td>
<td>—</td>
<td>—</td>
<td>0.8 ml</td>
</tr>
<tr>
<td>60 mg</td>
<td>—</td>
<td>—</td>
<td>1 ml + 0.2 ml</td>
</tr>
</tbody>
</table>

Each dose is injected as a single bolus injection.
The volunteers were assessed over a period of 3 months after the injection.

For subcutaneous application plasma samples were taken before administration and at 3, 6, 12, 24, 36, 48, 56, 72, 88, 96, 120, 144 and 168 hours after administration and on day 75.

For intravenous application, plasma samples were taken before administration and at 30 minutes, 1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144 and 168 hours after administration.

The plasma samples were analyzed using standard ELISA methodology to establish cytokine levels. The relevant cytokines analyzed included: IFN-γ, TNF-α, IL-6 and IL-2.

The plasma samples were also analyzed using standard methods of flow cytometry to measure the number of CD4+ lymphocytes.

Results
It was found that intravenous and subcutaneous doses up to 60 mg were generally well tolerated.

Cytokine levels
Induction of cytokine release is a common immediate complication occurring with the use of T cell interacting therapeutic antibodies, such as ATG, OKT3, CAMPATH-IH and humanized anti-CD3 mAbs (TRX4, Visilizumab and Teplizumab). The symptoms mainly include moderate fever, headaches and self-limiting gastrointestinal manifestations. Side effects correlated with cytokine induction after antibody administration require the application of additional drugs such as the antihistamine diphenhydramine hydrochloride and/or the anti-inflammatory agent ibuprofen.

With the use of OKT3 (muromonab-CD3), a murine CD3 specific therapeutic monoclonal antibody, there have even been deaths reported, and severe side effects limit the clinical use of this antibody mainly to immunosuppressed patients.
Although humanized FcR-non-binding CD3-specific monoclonal antibodies that are presently used in the clinic for the treatment of autoimmune disease (Teplizumab and TRX4) exhibit reduced side effects induced by T-cell activation and/or by activation of Fc receptor expressing cells after the first dose, as compared with FcR-binding CD3-specific antibodies such as OKT3, some degree of T-cell activation and activation of Fc receptor expressing cells is still observed that leads to cytokine release generally connected to cytokine dependent side effects.

In the present study it was surprisingly found that cytokine induction observed in healthy volunteers after intravenous or subcutaneous application of BT061 was comparably low and transient as compared to anti-CD3 antibodies. Cytokine induction generally increased with increasing dosage. However, even at the highest doses of 40 to 60 mg cytokine induction is much lower than that seen with other T cell interacting monoclonal antibodies.

The median peak concentrations for the cytokines observed at any time point within 96 h after administration using the highest doses (40 mg to 60 mg of BT061) are shown in Figures 10 and 11.

The median peak concentration for each cytokine is calculated as follows: The median of the highest cytokine concentrations observed after administration of the antibody.

Figure 10 A and B show the TNFα and IL-6 release observed in healthy volunteers after intravenous or subcutaneous administration of BT061 in comparison to those released after administration of anti-CD3 monoclonal antibodies, Teplizumab and TRX4. The normal values of these cytokines were taken from Straub et al., (2007, Arthr. & Rheumat). Figure 11 shows the IL-2 and IFN-γ plasma levels after administration of intravenous or subcutaneous BT061. The median peak levels were calculated from the 40 and 60 mg dose group measured within 4 days after antibody injection. The upper limit of normal (ULN) was calculated based on cytokine levels measured in 39 healthy subjects, where ULN = mean value + 2 x standard deviation.
In comparison to Teplizumab and TRX4 (results taken from Herold et al., 2002, New Engl. J. Med, and Keymeulen et al., 2005 New Engl. J. Med, respectively) BT061 induced only marginal and transient cytokine release. TNF-α and IL-6 levels were slightly increased. Figure 10 A and B shows that the median peak values of IL-6 and TNFα cytokine levels detected in plasma after application of BT061 (40 and 60 mg) are lower than those seen after treatment with the CD3 specific therapeutic antibodies Teplizumab and TRX4.

Further, in contrast to the anti-CD3 mAbs, BT061 did not lead to substantially increased levels of IFN-γ and IL-2 (Figure 11) as was reported for the application of TRX4 (Keymeulen et al., 2005 N. Engl. J. Med. Type 1 Diabetes patients).

CD4+ lymphocytes
In addition, the trial also included a study of the numbers of CD4-positive lymphocytes in plasma samples collected.

The results of the intravenous administration are shown below in Tables H, J and K. Table L shows the results of the trial with subcutaneous administration. The results are shown graphically in Figures 12 and 13.
<table>
<thead>
<tr>
<th>TIME</th>
<th>DOSE</th>
<th>3.5 µg</th>
<th>3.5 µg</th>
<th>3.5 µg</th>
<th>20 µg</th>
<th>20 µg</th>
<th>20 µg</th>
<th>100 µg</th>
<th>100 µg</th>
<th>100 µg</th>
<th>500 µg</th>
<th>500 µg</th>
<th>500 µg</th>
<th>2.5 mg</th>
<th>2.5 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predose</td>
<td></td>
<td>998</td>
<td>878</td>
<td>1025</td>
<td>955</td>
<td>1209</td>
<td>666</td>
<td>1164</td>
<td>800</td>
<td>543</td>
<td>759</td>
<td>493</td>
<td>1240</td>
<td>891</td>
<td>782</td>
</tr>
<tr>
<td>3h</td>
<td></td>
<td>1098</td>
<td>746</td>
<td>1020</td>
<td>708</td>
<td>1121</td>
<td>642</td>
<td>452</td>
<td>791</td>
<td>319</td>
<td>777</td>
<td>566</td>
<td>1058</td>
<td>392</td>
<td>461</td>
</tr>
<tr>
<td>6h</td>
<td></td>
<td>922</td>
<td>710</td>
<td>1063</td>
<td>746</td>
<td>1091</td>
<td>590</td>
<td>353</td>
<td>627</td>
<td>314</td>
<td>805</td>
<td>381</td>
<td>1115</td>
<td>487</td>
<td>512</td>
</tr>
<tr>
<td>12h</td>
<td></td>
<td>898</td>
<td>1183</td>
<td>942</td>
<td>1016</td>
<td>1667</td>
<td>1055</td>
<td>465</td>
<td>1065</td>
<td>477</td>
<td>955</td>
<td>643</td>
<td>1505</td>
<td>669</td>
<td>881</td>
</tr>
<tr>
<td>24h</td>
<td></td>
<td>868</td>
<td>825</td>
<td>769</td>
<td>699</td>
<td>1043</td>
<td>517</td>
<td>399</td>
<td>606</td>
<td>347</td>
<td>687</td>
<td>439</td>
<td>1017</td>
<td>521</td>
<td>701</td>
</tr>
<tr>
<td>36h</td>
<td></td>
<td>948</td>
<td>1035</td>
<td>1148</td>
<td>861</td>
<td>1549</td>
<td>836</td>
<td>559</td>
<td>1016</td>
<td>485</td>
<td>869</td>
<td>688</td>
<td>1542</td>
<td>976</td>
<td>1207</td>
</tr>
<tr>
<td>48h</td>
<td></td>
<td>798</td>
<td>542</td>
<td>834</td>
<td>566</td>
<td>1119</td>
<td>711</td>
<td>384</td>
<td>644</td>
<td>413</td>
<td>730</td>
<td>509</td>
<td>1108</td>
<td>574</td>
<td>815</td>
</tr>
<tr>
<td>72h</td>
<td></td>
<td>798</td>
<td>626</td>
<td>766</td>
<td>622</td>
<td>942</td>
<td>575</td>
<td>400</td>
<td>749</td>
<td>503</td>
<td>696</td>
<td>484</td>
<td>969</td>
<td>537</td>
<td>689</td>
</tr>
<tr>
<td>96h</td>
<td></td>
<td>469</td>
<td>715</td>
<td>838</td>
<td>583</td>
<td>978</td>
<td>531</td>
<td>475</td>
<td>698</td>
<td>400</td>
<td>800</td>
<td>390</td>
<td>1026</td>
<td>499</td>
<td>785</td>
</tr>
<tr>
<td>120h</td>
<td></td>
<td>736</td>
<td>643</td>
<td>843</td>
<td>604</td>
<td>942</td>
<td>472</td>
<td>401</td>
<td>650</td>
<td>511</td>
<td>830</td>
<td>488</td>
<td>1168</td>
<td>501</td>
<td>782</td>
</tr>
<tr>
<td>144h</td>
<td></td>
<td>663</td>
<td>593</td>
<td>766</td>
<td>635</td>
<td>1200</td>
<td>510</td>
<td>372</td>
<td>573</td>
<td>432</td>
<td>705</td>
<td>394</td>
<td>953</td>
<td>518</td>
<td>745</td>
</tr>
<tr>
<td>168h</td>
<td></td>
<td>753</td>
<td>576</td>
<td>695</td>
<td>616</td>
<td>1012</td>
<td>505</td>
<td>348</td>
<td>646</td>
<td>426</td>
<td>740</td>
<td>475</td>
<td>1073</td>
<td>568</td>
<td>773</td>
</tr>
<tr>
<td>day 14</td>
<td></td>
<td>716</td>
<td>615</td>
<td>625</td>
<td>696</td>
<td>867</td>
<td>645</td>
<td>400</td>
<td>771</td>
<td>451</td>
<td>713</td>
<td>600</td>
<td>1398</td>
<td>663</td>
<td>883</td>
</tr>
<tr>
<td>day 21</td>
<td></td>
<td>941</td>
<td>378</td>
<td>707</td>
<td>637</td>
<td>971</td>
<td>633</td>
<td>391</td>
<td>805</td>
<td>404</td>
<td>651</td>
<td>533</td>
<td>1241</td>
<td>530</td>
<td>758</td>
</tr>
<tr>
<td>day 28</td>
<td></td>
<td>821</td>
<td>569</td>
<td>840</td>
<td>652</td>
<td>863</td>
<td>649</td>
<td>497</td>
<td>775</td>
<td>503</td>
<td>752</td>
<td>445</td>
<td>1109</td>
<td>590</td>
<td>914</td>
</tr>
<tr>
<td>day 42</td>
<td></td>
<td>922</td>
<td>442</td>
<td>784</td>
<td>676</td>
<td>1044</td>
<td>700</td>
<td>569</td>
<td>758</td>
<td>455</td>
<td>700</td>
<td>617</td>
<td>1120</td>
<td>770</td>
<td>901</td>
</tr>
<tr>
<td>day 56</td>
<td></td>
<td>573</td>
<td>597</td>
<td>828</td>
<td>839</td>
<td>871</td>
<td>553</td>
<td>489</td>
<td>607</td>
<td>441</td>
<td>674</td>
<td>616</td>
<td>1311</td>
<td>634</td>
<td>1017</td>
</tr>
<tr>
<td>day 75</td>
<td></td>
<td>1821</td>
<td>512</td>
<td>692</td>
<td>659</td>
<td>1058</td>
<td>553</td>
<td>466</td>
<td>735</td>
<td>459</td>
<td>645</td>
<td>522</td>
<td>1026</td>
<td>731</td>
<td>1032</td>
</tr>
<tr>
<td>day 90</td>
<td></td>
</tr>
</tbody>
</table>

**TABLE H**  CD4+ cell counts in individual healthy volunteers after 3.5 µg to 2.5 mg intravenous administration of BT061

Minimum cell count (72 h to day 75):
- 469 378 625 583 863 472 348 573 400 645 390 953 499 689

Maximum Reduction of CD4+ cells (%):
- 53.0 56.9 39.0 39.0 28.6 29.1 70.1 28.4 26.3 15.0 20.9 23.1 44.0 11.9
In particular, Figure 12 shows the CD4 cell counts (cells per ml plasma) in volunteers treated with the single intravenous dose of BT061. The data points represent the mean values of the 3 patients in each dose group. Dotted lines indicate the upper limit of normal (ULN) and the lower limit of normal (LLN). The ULN and the LLN were calculated based on cell counts measured in 11 healthy volunteers using identical methodology to that used to measure the cell counts in those volunteers receiving BT061. The ULN and the LLN represent the mean of all the 11 healthy volunteer values + (or -) the standard deviation. Norm values for CD4 cell counts were calculated to be between 443 CD4 cells per µl (lower limit of normal; LLN) and 1324 CD4 cells per µl (upper limit of normal; ULN).

### TABLE J  CD4+ cell counts in individual healthy volunteers after 2.5 mg to 20 mg intravenous administration of BT061

<table>
<thead>
<tr>
<th>TIME</th>
<th>DOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5 mg</td>
</tr>
<tr>
<td>Predose</td>
<td>1080</td>
</tr>
<tr>
<td>3h</td>
<td>471</td>
</tr>
<tr>
<td>6h</td>
<td>514</td>
</tr>
<tr>
<td>12h</td>
<td>699</td>
</tr>
<tr>
<td>24h</td>
<td>726</td>
</tr>
<tr>
<td>36h</td>
<td>985</td>
</tr>
<tr>
<td>48h</td>
<td>738</td>
</tr>
<tr>
<td>72h</td>
<td>711</td>
</tr>
<tr>
<td>96h</td>
<td>680</td>
</tr>
<tr>
<td>120h</td>
<td>649</td>
</tr>
<tr>
<td>144h</td>
<td>662</td>
</tr>
<tr>
<td>168h</td>
<td>579</td>
</tr>
<tr>
<td>day 14</td>
<td>726</td>
</tr>
<tr>
<td>day 21</td>
<td>601</td>
</tr>
<tr>
<td>day 28</td>
<td>874</td>
</tr>
<tr>
<td>day 42</td>
<td>923</td>
</tr>
<tr>
<td>day 56</td>
<td>847</td>
</tr>
<tr>
<td>day 75</td>
<td>1239</td>
</tr>
<tr>
<td>day 90</td>
<td></td>
</tr>
</tbody>
</table>

| minimum cell count (72 h to day 75) | 579 | 669 | 300 | 475 | 357 | 525 | 876 | 420 |
| Maximum Reduction of CD4+ cells (%) | 46.4 | 40.1 | 51.8 | 59.1 | 57.5 | 37.1 | 31.6 | 40.0 |
Figure 13 shows the CD4 cell counts (cells per ml plasma) in volunteers treated with the single subcutaneous dose of BT061. As with Figure 12, the data points represent the mean values of the 3 patients in each dose group. Dotted lines indicate the upper limit of normal (ULN) and the lower limit of normal (LLN).

TABLE K  CD4+ cell counts in individual healthy volunteers after 20 mg to 60 mg intravenous administration of BT061

<table>
<thead>
<tr>
<th>TIME</th>
<th>DOSE 20 mg</th>
<th>DOSE 20 mg</th>
<th>DOSE 40 mg</th>
<th>DOSE 40 mg</th>
<th>DOSE 40 mg</th>
<th>DOSE 60 mg</th>
<th>DOSE 60 mg</th>
<th>DOSE 60 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predose</td>
<td>843</td>
<td>1233</td>
<td>1152</td>
<td>789</td>
<td>976</td>
<td>900</td>
<td>989</td>
<td>2539</td>
</tr>
<tr>
<td>3h</td>
<td>69</td>
<td>186</td>
<td>72</td>
<td>137</td>
<td>48</td>
<td>63</td>
<td>55</td>
<td>71</td>
</tr>
<tr>
<td>6h</td>
<td>83</td>
<td>245</td>
<td>87</td>
<td>147</td>
<td>69</td>
<td>81</td>
<td>78</td>
<td>109</td>
</tr>
<tr>
<td>12h</td>
<td>214</td>
<td>469</td>
<td>262</td>
<td>221</td>
<td>212</td>
<td>360</td>
<td>276</td>
<td>182</td>
</tr>
<tr>
<td>24h</td>
<td>266</td>
<td>490</td>
<td>208</td>
<td>222</td>
<td>292</td>
<td>315</td>
<td>285</td>
<td>313</td>
</tr>
<tr>
<td>36h</td>
<td>562</td>
<td>1019</td>
<td>489</td>
<td>475</td>
<td>707</td>
<td>561</td>
<td>569</td>
<td></td>
</tr>
<tr>
<td>48h</td>
<td>359</td>
<td>792</td>
<td>460</td>
<td>455</td>
<td>703</td>
<td>413</td>
<td>500</td>
<td>565</td>
</tr>
<tr>
<td>72h</td>
<td>392</td>
<td>909</td>
<td>591</td>
<td>545</td>
<td>625</td>
<td>709</td>
<td>688</td>
<td>806</td>
</tr>
<tr>
<td>96h</td>
<td>468</td>
<td>755</td>
<td>567</td>
<td>545</td>
<td>733</td>
<td>717</td>
<td>737</td>
<td>774</td>
</tr>
<tr>
<td>120h</td>
<td>391</td>
<td>795</td>
<td>578</td>
<td>517</td>
<td>636</td>
<td>718</td>
<td>685</td>
<td>646</td>
</tr>
<tr>
<td>144h</td>
<td>347</td>
<td>897</td>
<td>548</td>
<td>523</td>
<td>760</td>
<td>714</td>
<td>732</td>
<td>606</td>
</tr>
<tr>
<td>168h</td>
<td>331</td>
<td>853</td>
<td>630</td>
<td>577</td>
<td>720</td>
<td>656</td>
<td>822</td>
<td>662</td>
</tr>
<tr>
<td>day 14</td>
<td>334</td>
<td>899</td>
<td>683</td>
<td>495</td>
<td>675</td>
<td>851</td>
<td>546</td>
<td>423</td>
</tr>
<tr>
<td>day 21</td>
<td>396</td>
<td>1077</td>
<td>744</td>
<td>487</td>
<td>711</td>
<td>627</td>
<td>639</td>
<td>867</td>
</tr>
<tr>
<td>day 28</td>
<td>579</td>
<td>1030</td>
<td>637</td>
<td>458</td>
<td>582</td>
<td>466</td>
<td>466</td>
<td>1376</td>
</tr>
<tr>
<td>day 42</td>
<td>346</td>
<td>847</td>
<td>439</td>
<td>472</td>
<td>619</td>
<td>1179</td>
<td>814</td>
<td>1607</td>
</tr>
<tr>
<td>day 56</td>
<td>337</td>
<td>947</td>
<td>556</td>
<td>557</td>
<td>570</td>
<td>686</td>
<td>686</td>
<td>1298</td>
</tr>
<tr>
<td>day 75</td>
<td>597</td>
<td>824</td>
<td>986</td>
<td>440</td>
<td>813</td>
<td>648</td>
<td>748</td>
<td>1199</td>
</tr>
<tr>
<td>day 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum cell count (72h to day 75)</td>
<td>331</td>
<td>755</td>
<td>439</td>
<td>440</td>
<td>570</td>
<td>466</td>
<td>546</td>
<td>423</td>
</tr>
<tr>
<td>Maximum Reduction of CD4+ cells (%)</td>
<td>60.7</td>
<td>38.8</td>
<td>61.9</td>
<td>44.2</td>
<td>41.6</td>
<td>48.2</td>
<td>44.8</td>
<td>83.3</td>
</tr>
</tbody>
</table>
**TABLE L**  CD4+ cell counts in individual healthy volunteers after subcutaneous application of BT061

<table>
<thead>
<tr>
<th>TIME</th>
<th>5 mg</th>
<th>5 mg</th>
<th>5 mg</th>
<th>10 mg</th>
<th>10 mg</th>
<th>10 mg</th>
<th>20 mg</th>
<th>20 mg</th>
<th>20 mg</th>
<th>40 mg</th>
<th>40 mg</th>
<th>40 mg</th>
<th>40 mg</th>
<th>60 mg</th>
<th>60 mg</th>
<th>60 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predose</td>
<td>1053</td>
<td>553</td>
<td>663</td>
<td>962</td>
<td>697</td>
<td>891</td>
<td>863</td>
<td>692</td>
<td>621</td>
<td>689</td>
<td>946</td>
<td>840</td>
<td>1114</td>
<td>719</td>
<td>1345</td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>858</td>
<td>402</td>
<td>707</td>
<td>640</td>
<td>623</td>
<td>615</td>
<td>537</td>
<td>535</td>
<td>500</td>
<td>177</td>
<td>326</td>
<td>379</td>
<td>580</td>
<td>470</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>36h</td>
<td>1131</td>
<td>916</td>
<td>946</td>
<td>1232</td>
<td>955</td>
<td>1019</td>
<td>762</td>
<td>666</td>
<td>944</td>
<td>268</td>
<td>463</td>
<td>870</td>
<td>503</td>
<td>527</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>48h</td>
<td>625</td>
<td>526</td>
<td>550</td>
<td>610</td>
<td>757</td>
<td>537</td>
<td>628</td>
<td>599</td>
<td>587</td>
<td>354</td>
<td>586</td>
<td>686</td>
<td>739</td>
<td>735</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>72h</td>
<td>814</td>
<td>661</td>
<td>580</td>
<td>589</td>
<td>709</td>
<td>610</td>
<td>700</td>
<td>587</td>
<td>596</td>
<td>299</td>
<td>719</td>
<td>734</td>
<td>860</td>
<td>813</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>96h</td>
<td>799</td>
<td>582</td>
<td>694</td>
<td>666</td>
<td>732</td>
<td>579</td>
<td>643</td>
<td>665</td>
<td>589</td>
<td>283</td>
<td>605</td>
<td>653</td>
<td>852</td>
<td>743</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>120h</td>
<td>823</td>
<td>566</td>
<td>712</td>
<td>653</td>
<td>673</td>
<td>659</td>
<td>642</td>
<td>528</td>
<td>633</td>
<td>323</td>
<td>835</td>
<td>629</td>
<td>873</td>
<td>639</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>144h</td>
<td>890</td>
<td>543</td>
<td>809</td>
<td>744</td>
<td>767</td>
<td>784</td>
<td>603</td>
<td>620</td>
<td>627</td>
<td>239</td>
<td>626</td>
<td>568</td>
<td>801</td>
<td>924</td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>168h</td>
<td>894</td>
<td>450</td>
<td>437</td>
<td>686</td>
<td>655</td>
<td>516</td>
<td>620</td>
<td>550</td>
<td>581</td>
<td>262</td>
<td>515</td>
<td>569</td>
<td>1010</td>
<td>843</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>day 10</td>
<td>951</td>
<td>606</td>
<td>690</td>
<td>1213</td>
<td>724</td>
<td>928</td>
<td>683</td>
<td>616</td>
<td>778</td>
<td>354</td>
<td>715</td>
<td>809</td>
<td>757</td>
<td>1123</td>
<td>836</td>
<td></td>
</tr>
<tr>
<td>day 14</td>
<td>719</td>
<td>647</td>
<td>948</td>
<td>969</td>
<td>724</td>
<td>859</td>
<td>843</td>
<td>642</td>
<td>1033</td>
<td>307</td>
<td>705</td>
<td>541</td>
<td>1198</td>
<td>1359</td>
<td>527</td>
<td></td>
</tr>
<tr>
<td>day 21</td>
<td>859</td>
<td>552</td>
<td>750</td>
<td>655</td>
<td>708</td>
<td>685</td>
<td>904</td>
<td>605</td>
<td>752</td>
<td>293</td>
<td>1097</td>
<td>630</td>
<td>1074</td>
<td>901</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>day 28</td>
<td>894</td>
<td>546</td>
<td>758</td>
<td>778</td>
<td>653</td>
<td>766</td>
<td>757</td>
<td>680</td>
<td>768</td>
<td>298</td>
<td>861</td>
<td>667</td>
<td>880</td>
<td>578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>day 42</td>
<td>854</td>
<td>461</td>
<td>1009</td>
<td>1235</td>
<td>805</td>
<td>785</td>
<td>775</td>
<td>469</td>
<td>634</td>
<td>308</td>
<td>678</td>
<td>709</td>
<td>568</td>
<td>1149</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td>day 56</td>
<td>806</td>
<td>560</td>
<td>958</td>
<td>977</td>
<td>665</td>
<td>753</td>
<td>801</td>
<td>589</td>
<td>531</td>
<td>342</td>
<td>541</td>
<td>948</td>
<td>1126</td>
<td>945</td>
<td>505</td>
<td></td>
</tr>
<tr>
<td>day 75</td>
<td>852</td>
<td>592</td>
<td>772</td>
<td>1268</td>
<td>679</td>
<td>906</td>
<td>714</td>
<td>688</td>
<td>551</td>
<td>340</td>
<td>551</td>
<td>659</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| minimum cell count (72 h to day 75) | 719 | 450 | 437 | 589 | 653 | 516 | 603 | 469 | 531 | 239 | 515 | 541 | 568 | 639 | 505 |

| Maximum Reduction of CD4+ cells (%) | 31.7 | 18.6 | 34.1 | 38.8 | 6.3 | 42.1 | 30.1 | 32.2 | 14.5 | 65.3 | 45.6 | 35.6 | 49.0 | 11.1 | 62.5 |
Many CD4 specific monoclonal antibodies known in the art (such as those reviewed in Strand et al, 2007) achieve immuno-suppression via CD4-positive lymphocyte depletion. The drawback of these antibodies is that treated individuals become immuno-compromised, and are susceptible to other infections.

In contrast this study showed that BT061 induced no massive long lasting depletion of CD4-positive cells. However, a transient decline of CD4-positive lymphocytes was observed with a recovery to norm values in the peripheral blood within 72 h after administration of the antibody.

At the 72 h time point after application of BT061, CD4 cell counts in four volunteers of the intravenous dose groups showed CD4 levels that were below these norm values as follows: 1 volunteer of the 100 µg intravenous dose: 400 CD4 cells per µl; 1 volunteer of the 5 mg group: 419 CD4 cells per µl; 1 volunteer of the 10 mg group: 440 CD4 cells per µl; and 1 volunteer of the 20 mg group: 392 CD4 cells per µl.

However, these values were only slightly below norm values. CD4 cell counts in the remaining 26 volunteers of the intravenous dose groups were within the norm values 72 hours after administration of BT061.

In the subcutaneous dose groups, after 72 h, only one out of 15 volunteer showed CD4 cell counts below norm values.

In conclusion, in contrast to depleting CD4 specific mAbs, BT061 only induced a transient decline of CD4-positive cells followed by a general recovery. From the transient decline and rapid general recovery to norm values it is concluded that a transient redistribution of the CD4-positive cells has taken place, rather than depletion of these cells.
EXAMPLE 5 - Clinical trial of BT061 in patients with rheumatoid arthritis

The ability of hB-F5 BT061 to treat rheumatoid arthritis is being tested on patients suffering from this disease. The trial comprises a multiple dose study involving 96 patients, divided into 12 groups. In each group two patients receive a placebo while 6 patients receive BT061. Patients are dosed once a week over a period of 6 weeks.

Patients are divided into those receiving the antibody subcutaneously and those receiving the antibody intravenously. The subcutaneous dose groups are: 1.25 mg, 6.25 mg, 12.5 mg, 50 mg, 75 mg and 100 mg. The intravenous dose groups are: 0.5 mg, 2 mg, 6.25 mg, 12.5 mg and 25 mg.

In the 1.25 mg subcutaneous dose group the patients are numbered 101, 102, 103, 104, 105, 106, 107 and 108. In the 6.25 mg subcutaneous dose group the patients are numbered 201-208. In the 12.5 mg subcutaneous dose group the patients are numbered 301-308. In the 25 mg subcutaneous dose group the patients are numbered 401-408. In the 50 mg subcutaneous dose group the patients are numbered 501-508. In the 6.25 mg intravenous dose group the patients are numbered 601-608.

The intravenous and subcutaneous administration procedure was the same as that described in Example 3 for the psoriasis trial.

The level of rheumatoid arthritis is recorded weekly by assessing the ACR parameters and in particular studying the number of tender and swollen joints and following the levels of C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR). These parameters are assessed before the trial to provide a "baseline" value at day 0, and repeatedly during the trial period and thereafter at 8, 22 and 43 days after the administration period is finished (i.e. follow up (FU) day 8, FU day 22 and FU day 43).

The Tables below provide the data obtained from the trial. Specifically Tables M to S provide the number of tender and swollen joints over the course of the trial.
Table M – Tender and swollen joint counts from the 1.25 mg subcutaneous dose group.

<table>
<thead>
<tr>
<th>Patients - 1.25 mg SC dose group</th>
<th>Joints (no.)</th>
<th>Screen Visit</th>
<th>Day 1 Week 1</th>
<th>Day 8 Week 2</th>
<th>Day 15 Week 3</th>
<th>Day 22 Week 4</th>
<th>Day 29 Week 5</th>
<th>Day 36 Week 6</th>
<th>Follow-up Day 43 Week 7</th>
<th>Follow-up Day 57 Week 9</th>
<th>Follow-up Day 78 Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>tender</td>
<td>34</td>
<td>34</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>10</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>tender</td>
<td>25</td>
<td>26</td>
<td>22</td>
<td>16</td>
<td>16</td>
<td>24</td>
<td>24</td>
<td>30</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>12</td>
<td>13</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>103</td>
<td>tender</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>30</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>104</td>
<td>tender</td>
<td>17</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>20</td>
<td>17</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>tender</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>23</td>
<td>35</td>
<td>32</td>
<td>35</td>
<td>32</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>106</td>
<td>tender</td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>107</td>
<td>tender</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>108</td>
<td>tender</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Table N - Tender and swollen joint counts from the 6.25 mg subcutaneous dose group.

<table>
<thead>
<tr>
<th>Patients - 6.25 mg SC dose group</th>
<th>Joints (no.)</th>
<th>Screen Visit</th>
<th>Day 1 Week 1</th>
<th>Day 8 Week 2</th>
<th>Day 15 Week 3</th>
<th>Day 22 Week 4</th>
<th>Day 29 Week 5</th>
<th>Day 36 Week 6</th>
<th>Follow-up Day 43 Week 7</th>
<th>Follow-up Day 57 Week 9</th>
<th>Follow-up Day 78 Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>tender</td>
<td>16</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>202</td>
<td>tender</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>203</td>
<td>tender</td>
<td>15</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>204</td>
<td>tender</td>
<td>19</td>
<td>22</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>205</td>
<td>tender</td>
<td>21</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>30</td>
<td>10</td>
<td>37</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>16</td>
<td>6</td>
<td>25</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>206</td>
<td>tender</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>207</td>
<td>tender</td>
<td>17</td>
<td>28</td>
<td>28</td>
<td>11</td>
<td>9</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>208</td>
<td>tender</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>
Table P - Tender and swollen joint counts from the 12.5 mg subcutaneous dose group.

| Patients - 12.5 mg SC dose group | Joints (no.) | Screen Visit | Day 1 | Week 1 | Day 8 | Week 2 | Day 15 | Week 3 | Day 22 | Week 4 | Day 29 | Week 5 | Day 36 | Week 6 | Follow-up | Day 43 | Week 7 | Follow-up | Day 57 | Week 9 | Follow-up | Day 78 | Week 12 |
|----------------------------------|--------------|--------------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|--------|---------|--------|---------|---------|--------|---------|---------|--------|--------|
| 301                              | tender       | 18           | 18    | 16     | 16    | 16     | 16    | 16     | 20    | 14     | 14     |       |       |       |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 8            | 8     | 8      | 8     | 8      | 8     | 8      | 6     | 6      | 6      |       |       |       |         |         |         |         |         |         |         |         |         |
| 302                              | tender       | 36           | 36    | 34     | 35    | 31     | -     | -      | -     | -      | -      | 30     |       |       |       |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 20           | 20    | 19     | 19    | 17     | -     | -      | -     | -      | -      | 18     |       |       |       |         |         |         |         |         |         |         |         |         |
| 303                              | tender       | 20           | 19    | 19     | 16    | 15     | 14    | 16     | 18    | -      | 19     |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 10           | 11    | 12     | 13    | 13     | 14    | 13     | 14    | -      | 14     |       |       |       |         |         |         |         |         |         |         |         |         |         |
| 304                              | tender       | 10           | 10    | 10     | 10    | 10     | 10    | 10     | 10    | 8      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 6            | 6     | 6      | 6     | 6      | 6     | 6      | 6     | 4      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |
| 305                              | tender       | 16           | 16    | 14     | 14    | 13     | 13    | 13     | 12    | 10     | 10     |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 8            | 8     | 8      | 8     | 6      | 6     | 6      | 6     | 4      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |
| 306                              | tender       | 27           | 27    | 18     | 18    | 12     | 23    | 28     | -     | -      | 29     |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 14           | 14    | 20     | 11    | 16     | 13    | 17     | -     | -      | 24     |       |       |       |         |         |         |         |         |         |         |         |         |         |
| 307                              | tender       | 25           | 23    | 23     | 17    | 17     | 17    | 17     | 15    | 13     | 11     |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 8            | 8     | 8      | 8     | 8      | 8     | 8      | 6     | 6      | 4      |       |       |       |         |         |         |         |         |         |         |         |         |         |
| 308                              | tender       | 20           | 20    | 18     | 8     | 8      | 8     | 8      | 8     | 8      | 4      |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                  | swollen      | 12           | 12    | 8      | 6     | 6      | 5     | 6      | 6     | 4      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |

Table Q - Tender and swollen joint counts from the 25 mg subcutaneous dose group.

| Patients - 25 mg SC dose group | Joints (no.) | Screen Visit | Day 1 | Week 1 | Day 8 | Week 2 | Day 15 | Week 3 | Day 22 | Week 4 | Day 29 | Week 5 | Day 36 | Week 6 | Follow-up | Day 43 | Week 7 | Follow-up | Day 57 | Week 9 | Follow-up | Day 78 | Week 12 |
|--------------------------------|--------------|--------------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|--------|---------|--------|---------|---------|--------|---------|---------|--------|--------|
| 401                            | tender       | 16           | 17    | 19     | 22    | 13     | 13    | 12     | 11    | 9      | 6      |       |       |       |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 10           | 11    | 8      | 9     | 12     | 11    | 8      | 5     | 8      | 5      |       |       |       |         |         |         |         |         |         |         |         |         |
| 402                            | tender       | 23           | 21    | 10     | 10    | 10     | 9     | 8      | 7     | 6      | 7      |       |       |       |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 8            | 11    | 5      | 6     | 6      | 5     | 4      | 3     | 3      | 3      |       |       |       |         |         |         |         |         |         |         |         |         |         |
| 403                            | tender       | 10           | 10    | 10     | 8     | 8      | 10    | 7      | 6     | 8      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 8            | 8     | 8      | 6     | 5      | 5     | 5      | 5     | 5      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |         |
| 404                            | tender       | 17           | 16    | 15     | 15    | 13     | 14    | 14     | 16     |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 9            | 11    | 10     | 6     | 7      | 7     | 7      | 7      |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 405                            | tender       | 10           | 10    | 8      | 8     | 8      | 8     | 8      | 10    | -      | 10     |       |       |       |         |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 6            | 6     | 6      | 4     | 4      | 4     | 4      | 4     | 6      | -      |        |       |       |         |         |         |         |         |         |         |         |         |         |         |
| 406                            | tender       | 11           | 11    | 11     | 11    | 11     | 12    | 8      | 8     | 6      | 8      |       |       |       |         |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 6            | 6     | 6      | 5      | 5      | 5     | 5      | 3     | 3      | 2      |        |       |       |         |         |         |         |         |         |         |         |         |         |         |
| 407                            | tender       | 13           | 20    | 16     | 18    | 4      | 2      | 0      | 4     | 14     |        |       |       |       |         |         |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 7            | 10    | 6      | 8      | 0      | 0      | 0      | 0      | 8      |        |       |       |       |         |         |         |         |         |         |         |         |         |         |         |         |
| 408                            | tender       | 11           | 11    | 8      | 8      | 7      | 5     | 4      | 4     | -      | 8      |       |       |       |         |         |         |         |         |         |         |         |         |         |         |         |
|                                | swollen      | 9            | 9     | 5      | 5      | 4      | 6      | 6      | 3      | -      | 6      |        |       |       |         |         |         |         |         |         |         |         |         |         |         |         |
Table R – Tender and swollen joint counts from the 50 mg subcutaneous dose group.

<table>
<thead>
<tr>
<th>Patients – 50 mg SC dose group</th>
<th>Joints (no.)</th>
<th>Screen Visit</th>
<th>Day 1</th>
<th>Week 1</th>
<th>Day 8</th>
<th>Week 2</th>
<th>Day 15</th>
<th>Week 3</th>
<th>Day 22</th>
<th>Week 4</th>
<th>Day 29</th>
<th>Week 5</th>
<th>Day 36</th>
<th>Week 6</th>
<th>Follow-up Day 43</th>
<th>Week 7</th>
<th>Follow-up Day 57</th>
<th>Week 9</th>
<th>Follow-up Day 78</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>tender</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>tender</td>
<td>14</td>
<td>15</td>
<td>11</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>tender</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>tender</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>tender</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>tender</td>
<td>36</td>
<td>48</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>tender</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>tender</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td></td>
</tr>
</tbody>
</table>

Table S - Tender and swollen joint counts from the 6.25 mg intravenous dose group.

<table>
<thead>
<tr>
<th>Patients – 6.25 mg IV dose group</th>
<th>Joints (no.)</th>
<th>Screen Visit</th>
<th>Day 1</th>
<th>Week 1</th>
<th>Day 8</th>
<th>Week 2</th>
<th>Day 15</th>
<th>Week 3</th>
<th>Day 22</th>
<th>Week 4</th>
<th>Day 29</th>
<th>Week 5</th>
<th>Day 36</th>
<th>Week 6</th>
<th>Follow-up Day 43</th>
<th>Week 7</th>
<th>Follow-up Day 57</th>
<th>Week 9</th>
<th>Follow-up Day 78</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>tender</td>
<td>23</td>
<td>20</td>
<td>24</td>
<td>39</td>
<td>33</td>
<td>26</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>tender</td>
<td>41</td>
<td>43</td>
<td>33</td>
<td>15</td>
<td>12</td>
<td>30</td>
<td>17</td>
<td>19</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>tender</td>
<td>26</td>
<td>22</td>
<td>28</td>
<td>22</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>tender</td>
<td>28</td>
<td>26</td>
<td>31</td>
<td>27</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>tender</td>
<td>34</td>
<td>38</td>
<td>38</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>22</td>
<td>18</td>
<td>22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>tender</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>tender</td>
<td>27</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>tender</td>
<td></td>
</tr>
<tr>
<td></td>
<td>swollen</td>
<td></td>
</tr>
</tbody>
</table>
Figure 15 shows the percentage of patients from the dose groups receiving 1.25 mg, 6.25 mg, 12.5 mg and 25 mg subcutaneous BT061 achieving at least a 20% improvement of relevant ACR parameters over the course of the trial, and the percentage of patients achieving at least an ACR20 response at week 7.

In particular, it can be seen that 50% of patients in the 25 mg subcutaneous dose group (i.e. 4 out of the 8 patients where 2 of the patients are receiving a placebo) achieved at least a 20% improvement of relevant ACR parameters at week 6. This figure increased to 5 out of the 8 patients at week 7, i.e. 5 out of the 8 patients achieved at least ACR20. One patient in this dose group achieved a more than 50% improvement of relevant ACR parameters at weeks 5 and 6 (full set of data not shown).

Positive results were also obtained by patients in other dose groups. One patients in the 6.25 mg subcutaneous dose group achieved at least a 50% improvement of relevant ACR parameters at week 4 while another achieved at least a 70% improvement of relevant ACR parameters at week 3 (full set of data not shown).

Figure 16 A and 16 B show results for the number of tender and swollen joints exhibited by patients from the 25 mg subcutaneous BT061 dose group over a six week period. Several patients exhibit a reduction in the number of tender and swollen joints over a period of the treatment. The results for one responder patient and one non-responder patient from this dose group are shown in Figures 17A and 17B, respectively. The responder shows a significant improvement in the number of tender and swollen joints and in pain levels.

A reduction in the numbers of tender and swollen joints is also seen in patients from the other dose groups. Figures 18A, 18B, 19A and 19B show the number of tender joints in the 1.25 mg subcutaneous, 6.25 mg subcutaneous, 50 mg subcutaneous and 6.25 mg intravenous dose groups respectively, over the course of the trial and in the weeks thereafter.

These results demonstrate the efficacy of the agent of the present invention in the treatment of rheumatoid arthritis within the dose ranges described herein.
Sequence Listing

<110> Biotest AG

<120> Agent for Treating Disease

<130> WO/JND/CJS

<160> 18

<170> PatentIn version 3.3

<210> 1

<211> PRT

<213> Artificial Sequence

<220>

<223> V domain of H chain of humanized antibody hB-F5H37L

<400> 1

Glu Glu Gin Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asp Cys

Arg Met Tyr Trp Leu Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Lys

Gly Val Lys Ser Val Lys Ser Glu Asn Tyr Gly Ala Asn Tyr Ala Glu

Ser Val Arg Gly Arg Phe Thr Lys Ser Arg Asp Asp Ser Lys Asn Thr

Val Tyr Leu Gin Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr

Tyr Cys Ser Ala Tyr Tyr Tyr Arg Tyr Asp Val Gly Ala Trp Phe Ala

Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser

<210> 2

<211> PRT

<213> Artificial sequence

<220>

<223> V domain of K chain of humanized antibody hB-F5L4M

<400> 2

Asp lie Val Met Thr Gin Ser Pro Asp Ser Leu Ala val Ser Leu Gly

1 5 10 15

Page 1
Glu Arg Ala Thr lie Asn Cys Arg Ala Ser Lys Ser Val Ser Thr ser
20
Gly Tyr Ser Tyr lie Tyr Trp Tyr Gin Gin Lys Pro Gly Gin Pro Pro
25
Lys Leu Leu lie Tyr Leu Ala Ser lie Leu Glu Ser Gly Val Pro Asp
30
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser
35
Ser Leu Gin Ala Glu Asp Val Ala Val Tyr Tyr Cys Gin His Ser Arg
40
Glu Leu Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys
45

<210> 3
<211> 550
<212> DNA
<213> Artificial Sequence

<220> Part of plasmid encoding V domain of H chain of humanized
antibody hB-F5

<400> 3
gaggagctcc agacaatgtc tgctccttcct ctcctctctcc ttgccctgct gggcctccccca 60
tgggggtcagt gcggtaaggaga tgccgtatttc acacgacat tcacagacgt gaggtgttttt 120
cacctttgctg ttctcttatttg cttcagaggt gccagagttgta ggaacagctt gttgactctg 180
gggaggcttt ggtgaacccc cggggtttctg aggctctcct tctggcagcc tcggggtttcca 240
gttcagctca agcagctctgt tctgagtttttag ctttacgattgc ctcagcagcgg ggatgttttc 300
tttgtgtgtct cttcgccacag tctgggtgaatg cagacgcatct gcgcacagcattt cttgactgtt 360
gcagattcc agattcttgatt ctctctatttattt acacaggttgc cttacggcattt cggactgtttt 420
tgagggcgtt cgttgcttctg cggcagctgcc tggttgtaaatt gctgactgct tttatattttcatctttgattttag 480
ggggcttggtt tgcttactggag gcacaggttacct caacagtgtt ggttacttcat tcctctctc ctttattttttag 540
gcagacctttg 550

<210> 4
<211> 498
<212> DNA
<213> Artificial Sequence

<220> Part of plasmid encoding V domain of K chain of humanized
antibody hB-F5

<400> 4
gagagctcc atatatctgtct cttctccagag acgcagcaactagagag gcaatgct 60
tcttgccatactgctcgactagtgctagttggctgcagcagcattt cttgactgttactgcattctctctcc tatcacttctttagg 120
Sequence Listing

acaggtgcct acggggacat cgtgatgacc cagtctccag actccctggc tgtgtctctg 180
ggcgagaggg ccaccatcaa ctgcagggcc agcaaaatgt tcagtacatc tggctacagt 240
tatatatatt ggtaccagca gaaaccagga cagcctccta agctgctcat ttaccttgca 300
tccatcctag aatctgggtt ccctgaccga ttcaagttgcc gcgggtcttg gcagagtttc 360
actccacca tcagcagct gcagggctaa gaatggtgcaag ttattacttg tcagccagat 420
aggggaacct cgtggacgctt gggggcaagg gcacaggtggaaaatcaag tgatag 480
ttaaatctta agcttttct 498

<210> 5
<211> 372
<212> DNA
<213> Mus musculus

<400> 5

caggaatatgcttctgggagacc gcggggaggg cgggggagggc tgtggagggc ctggaatctc 60
tctctgtctca cctcgggtttt cagtttcatgt gactgcggga tgtactggtc tcgccagcct 120
ccaggggaagg gcgttgagatgt gatgtgtgtgt atttcagtc acatctgaaattgagac 180
aatattgcatg cagctctttag gcggagatcc actatttctc gagatgtactc aaaaagactt 240
gttcatcttc gcagttaggatg gaaacactgt ccacttattttattgtgtgacc 300
tctctattata ggtacagcgc gggggctcttg ttgtcttact gcgggcaagg gactctggtc 360
actgctcttgtc ca 372

<210> 6
<211> 383
<212> DNA
<213> Mus musculus

<400> 6

gacattttgcc tgtgcttctattgagggg cgggggaggg cgggggagggc tgtggagggc ctggaatctc 60
atctcatgca gggccagcaaa aagtctgctgt acatctgtggct acagtttatgcatctgtgac 120
cacccctgtc ccagcttcgc acccaaaactc tctctcttcct gccatcccct gctggtatcct 180
ggggtctcttg gcaggtctctg ttgatgttgtgct gctggtgctgc actctacccg caacatcag 240
tctctgtggagggagagatgc ggggggaatctgtcttcag acaggtggcactctggtgctgctg 300
acgcttcttcc gcagggctatgacgta ttaggcataaagcgcgtacatctggtgctgctgactct 360
atctcttccc gcacgtagtg 383

<210> 7
<211> 124
<212> PRT
<213> Mus musculus

<400> 7

Gln Glu Tyr Leu Val Glu Thr Gly Gly Gly Leu Val Arg Pro Gly Asn
1 5 10 15

Page 3
Sequence Listing

Ser Leu Lys Leu Ser Cys Val Thr Ser Gly Phe Ser Phe Ser Asp Cys
20 25 30

Arg Met Tyr Trp Leu Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp lie
35 40 45

Asp Cys
2
20
25
30

Gly Val lie Ser Val Lys Ser Glu Asn Tyr Gly Ala Asn Tyr Ala Glu
50 55 60

Ser Val Arg Gly Arg Phe Thr lie Ser Arg Asp Asp Ser Lys Ser Ser
65 70 75 80

Arg Met Tyr Leu Gin Ser Arg Leu Arg Glu Glu Asp Thr Ala Thr Tyr
85 90 95

Thr Tyr Arg Tyr Asp Val Gly Ala Trp Phe Ala
100 105 110

Thr Val iser Ala
115 120

Asp lie Val Leu Thr Gin Ser Pro Ser Ser Leu Val Val Ser Leu Gly
1 5 10 15

Gin Arg Ala Thr lie Ser Cys Arg Ala 20 25 30

Tyr lie Tyr Trp Tyr Gin Gin lie Pro Gly Gin Pro Pro
35 40 45

Thr Ser Leu Leu lie Tyr Leu Ala Ser lie Leu Glu Ser Gly Val Pro Gly
50 55 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn lie His
65 70 75 80

Leu Glu Leu Val Glu Ala Ala Thr Tyr Cys Gin His Ser Arg

85 90 95

Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Cys Gin His Ser Arg

90 95 100

Thr Phe Gly Gly Gly Thr Lys Leu Glu lie Lys
105 110 115

<210> 8
<211> 111
<212> PRT
<213> Mus musculus

<400> 8

Asp lie Val Leu Thr Gin Ser Pro Ser Ser Leu Val Val Ser Leu Gly
1 5 10 15

Gin Arg Ala Thr lie Ser Cys Arg Ala 20 25 30

Tyr lie Tyr Trp Tyr Gin Gin lie Pro Gly Gin Pro Pro
35 40 45

Thr Ser Leu Leu lie Tyr Leu Ala Ser lie Leu Glu Ser Gly Val Pro Gly
50 55 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn lie His
65 70 75 80

Leu Glu Leu Val Glu Ala Ala Thr Tyr Cys Gin His Ser Arg

85 90 95 100

Thr Phe Gly Gly Gly Thr Lys Leu Glu lie Lys
105 110 115

<210> 9
<211> 23
<212> PRT
<213> Homo sapi ens
Sequence Listing

<400>  9
Asp lie  Val Met Thr Gin Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
       1  5  10  15

Glu Arg Ala Thr lie Asn Cys
       20

<210>  10
<211>  15
<212>  PRT
<213>  Homo sapiens

<400>  10
Trp Tyr Gin Gin Lys Pro Gly Gin Pro Pro Lys Leu Leu lie Tyr
       1  5  10  15

<210>  11
<211>  32
<212>  PRT
<213>  Homo sapiens

<400>  11
Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
       1  5  10  15

Leu Thr lie Ser Ser Leu Gin Ala Glu Asp Val Ala Val Tyr Tyr Cys
       20  30

<210>  12
<211>  10
<212>  PRT
<213>  Homo sapiens

<400>  12
Phe Gly Gin Gly Thr Lys Val Glu lie Lys
       1  5  10

<210>  13
<211>  30
<212>  PRT
<213>  Homo sapiens

<400>  13
Glu Val Gin Leu Val Glu ser Gly Gly Gly Leu Val Lys Pro Gly Gly
       1  5  10  15

Ser Leu Arg Leu Ser cys Ala Ala Ser Gly Phe Thr Phe Ser
       20  25  30

<210>  14
<211>  14
<212>  PRT
<213>  Homo sapiens
Sequence Listing

<400> 14
Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Gly

<210> 15
<211> 32
<212> PRT
<213> Homo sapiens

<400> 15
Arg Phe Thr lie Ser Arg Asp Asp Ser Lys Asn Thr Leu Tyr Leu Gin

<210> 16
<211> 11
<212> PRT
<213> Homo sapiens

<400> 16
Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser

<210> 17
<211> 124
<212> PRT
<213> Artificial Sequence

<220> V domain of the H chain of humanized antibody hB-F5H37v

<400> 17
Glu Gin Leu Val Glu Ser Gly Gly Gly Leu val Lys Pro Gly Gly

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asp Cys

Arg Met Tyr Trp val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp lie

Gly Val lie Ser val Lys Ser Glu Asn Tyr Gly Ala Asn Tyr Ala Glu

Ser val Arg Gly Arg Phe Thr lie Ser Arg Asp Asp Ser Lys Asn Thr

Val Tyr Leu Gin Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr

Tyr Cys Ser Ala Ser Tyr Tyr Arg Tyr Asp val Gly Ala Trp Phe Ala
Sequence Listing

Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser

115 120

<210> 18
<211> 111
<212> PRT
<213> Artificial Sequence

<220>
<223> V domain of K chain of humanized antibody hB-F5L4L

<400> 18

Asp lie Val Leu Thr Gin ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10
15
Gl u Arg Ala Thr lie Asn Cys Arg Ala Ser Lys Ser val Ser Thr Ser
20 25 30
Gly Tyr Ser Tyr lie Tyr Trp Tyr Gin Gin Lys Pro Gly Gin Pro Pro
35 40 45
Lys Leu Leu lie Tyr Leu Ala Ser lie Leu Gl u Ser Gly Val Pro Asp
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie ser
65 70 75 80
Ser Leu Gin Ala Glu Asp val Ala Val Tyr Tyr cys Gin His Ser Arg
85 90 95
Glu Leu Pro Trp Thr Phe Gly Gin Gly Thr Lys val Gl u lie Lys
100 105 110
CLAIMS

1. A pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.2 mg to 30 mg.

2. A pharmaceutical composition according to claim 1 wherein the agent is to be administered to a subject in an amount from 0.2 to 20 mg.

3. A pharmaceutical composition according to claim 2 wherein the agent is to be administered to a subject in an amount from 0.3 to 5 mg.

4. A pharmaceutical composition according to claim 3 wherein the agent is to be administered to a subject in an amount from 0.3 to 1 mg.

5. A pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.10 to 20 mg/m² body surface area of the subject.

6. A pharmaceutical composition according to claim 5 wherein the composition is to be administered to a subject in a dose of the agent from 0.12 to 15 mg/m².

7. A pharmaceutical composition according to claim 6 wherein the composition is to be administered to a subject in a dose of the agent from 0.20 to 10 mg/m².

8. A pharmaceutical composition according to claim 7 wherein the composition is to be administered to a subject in a dose of the agent from 0.30 to 0.50 mg/m².

9. A pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+
regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 1 to 500 µg/kg.

10. A pharmaceutical composition according to claim 9 wherein the composition is to be administered to a subject in a dose of the agent from 2 to 400 µg/kg.

11. A pharmaceutical composition according to claim 10 wherein the composition is to be administered to a subject in a dose of the agent from 2 to 250 µg/kg.

12. A pharmaceutical composition according to claim 11 wherein the composition is to be administered to a subject in a dose of the agent from 2.5 to 20 µg/kg.

13. A pharmaceutical composition according to any preceding claim wherein the autoimmune disease is selected from psoriasis, rheumatoid arthritis, multiple sclerosis, type-1 diabetes, inflammatory bowel diseases, Crohn's disease, autoimmune thyreoiditis, autoimmune myasthenia gravis, systemic lupus erythematosus and transplantation-related diseases such as graft-versus-host or general organ tolerance issues.

14. A pharmaceutical composition according to claim 13 wherein the disease is psoriasis.

15. A pharmaceutical composition according to claim 14 wherein the composition is capable of treating psoriasis by providing at least a 40% improvement in the Psoriasis Area and Severity Index (PASI) score of the patient.

16. A pharmaceutical composition according to claim 16 wherein the composition is capable of treating psoriasis by providing at least a 50% improvement in the Psoriasis Area and Severity Index (PASI) score of the patient.

17. A pharmaceutical composition according to claim 13 wherein the disease is rheumatoid arthritis.
18. A pharmaceutical composition according to any preceding claim wherein the composition is for parenteral administration.

19. A pharmaceutical composition according to claim 18, wherein the composition is for intramuscular administration, intravenous administration or subcutaneous administration.

20. A pharmaceutical composition according to claim 19 wherein the composition is for intravenous administration and is provided in a dosage volume of 0.5 to 500 ml or in a form for dilution to the dosage volume of 0.5 to 500 ml.

21. A pharmaceutical composition according to claim 20 wherein the dosage volume is 15 to 25 ml.

22. A pharmaceutical composition according to claim 19 wherein the composition is for subcutaneous administration and is provided in a dosage volume of 0.1 to 3 ml.

23. A pharmaceutical composition according to claim 22 wherein the dosage volume is 0.5 to 1.5 ml.

24. A pharmaceutical composition according to claim 19 wherein the composition is for intramuscular administration and is provided in a dosage volume of 0.1 to 3 ml.

25. A pharmaceutical composition according to claim 24 wherein the composition is provided in a dosage volume of 0.5 to 1.5 ml.

26. A pharmaceutical composition according to any preceding claim which is for use as a single dose or as part of a plurality of doses.

27. A pharmaceutical composition according to claim 26 wherein the composition is part of a plurality of doses and each dose is to be administered daily, every two days, weekly, every two weeks, every four weeks, every eight weeks, every twelve weeks, every twenty-four weeks, every forty-eight weeks, every six months or every year.
28. A pharmaceutical composition according to claim 27 wherein the autoimmune disease is psoriasis and the dose is to be administered once every two weeks.

29. A pharmaceutical composition according to claim 27 wherein the autoimmune disease is psoriasis and the dose is to be administered once every four weeks.

30. A pharmaceutical composition according to claim 27 wherein the autoimmune disease is rheumatoid arthritis and the dose is to be administered once every two weeks.

31. A pharmaceutical composition according to claim 27 wherein the autoimmune disease is rheumatoid arthritis and the dose is to be administered once every four weeks.

32. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the agent is present in a concentration of from 10 µg/ml to 150 mg/ml.

33. A pharmaceutical composition according to claim 32 wherein the agent is present in a concentration of 0.5 mg/ml to 75 mg/ml.

34. A pharmaceutical composition according to claim 32 or 33 wherein the volume of the composition is from 0.5 to 500 ml.

35. A pharmaceutical composition according to claim 34 wherein the volume of the composition is from 15 to 25 ml.

36. A pharmaceutical composition according to claim 32 wherein the agent is present in a concentration of from 10 to 28 mg/ml.

37. A pharmaceutical composition according to claim 36 wherein the volume of the composition is 0.1 to 3 ml.
38. A pharmaceutical composition according to claim 37 wherein the volume of the composition is 0.5 to 1.5 ml.

39. A pharmaceutical composition according to any preceding claim wherein within the period of 10 minutes after the beginning of administration to 96 hours after the completion of administration the level of a cytokine in the subject's blood plasma is less than a 20 fold increase of the level immediately prior to administration, and wherein the cytokine is selected from IFN-γ, TNF-α, IL-6 and IL-2.

40. A pharmaceutical composition according to any one of claims 1 to 38 wherein within the period of 10 minutes after the beginning of administration to 96 hours after the completion of administration the level of a cytokine in the subject's blood plasma is less than a 20 fold increase of the upper limit of normal (ULN) value, wherein the cytokine is selected from IFN-γ, TNF-α, IL-6 and IL-2, and wherein the ULN value is 3.8, 2.8, 4.4, and 19.4 pg/ml respectively.

41. A pharmaceutical composition according to any preceding claim wherein within the period of 72 to 96 hours after administration the cell count of CD4+ lymphocytes in the subject's blood plasma is at least 250 cells/µl.

42. A pharmaceutical composition according to any preceding claim wherein the agent is a humanized monoclonal antibody or fragment or derivative thereof.

43. A pharmaceutical composition according to claim 42 wherein the agent is an anti-CD4 antibody or fragment or derivative thereof.

44. A pharmaceutical composition according to any preceding claim wherein the agent is a humanized anti-CD4 antibody, or fragment or derivative thereof having V domains defined by the following polypeptide sequences:

  - H chain V domain:
or V domains comprising polypeptide sequences having at least 80% sequence identity with SEQ ID NO: 1 and SEQ ID NO: 2.

45. A pharmaceutical composition according to any preceding claim wherein the agent is a humanized anti-CD4 antibody derived from the mouse monoclonal anti-CD4 antibody B-F5.

46. A method of treatment of an autoimmune disease, which method comprises administering a pharmaceutical composition to a subject, wherein the composition comprises an agent capable of activating CD4+CD25+ regulatory T cells, and wherein the agent is administered to the subject in a dose as defined in any one of claims 1 to 12.

47. A method of treatment according to claim 46 wherein the autoimmune disease is as defined in claims 13, claim 14 or claim 17.

48. A method of treatment according to claim 46 or claim 47 wherein the agent is a humanized anti-CD4 antibody or fragment or derivative thereof derived from the mouse monoclonal anti-CD4 antibody B-F5.

49. A method of treatment according to any one of claims 46 to 48 wherein the agent is a humanized anti-CD4 antibody or fragment or derivative thereof having V domains defined by the following peptide sequences:

- H chain V domain:
EEQLVESGGGLVKPGGSLRLSCAASGFSFSDCRMYWLQRAPGKGLGSVGVISVKSEN
YGANYAESVRGRFTISRDDSKNTVYLQMNSLKTEDTAVYYCSASYYRYDVGAWFA
YWGGQGTGTVSS (SEQ ID NO: 1)
- L chain V domain:
DIVMTQSPDSLAVSLGERATINCRASKVSTSGYSYIYWYQQKPGQPPKLLIYLASILE
SGVPDRFSGSGTSTRFDLTISSLQAEDVAYYCYHSRELWTPLTQGKVEIK (SEQ ID NO: 2).
or V domains comprising polypeptide sequences having at least 80% sequence identity with
SEQ ID NO: 1 and SEQ ID NO: 2.

50. A pharmaceutical composition according to claim 27 wherein the autoimmune disease
    is psoriasis and the dose is to be administered once every week.

51. A pharmaceutical composition according to claim 27 wherein the autoimmune disease
    is rheumatoid arthritis and the dose is to be administered once every week.

52. A pharmaceutical composition according to any preceding claim wherein within the
    period of 3 to 6 hours after administration the cell count of CD4+ lymphocytes in the
    subject's blood plasma is below 250 cells/µl.

53. A pharmaceutical composition according to any one of claims 1 to 52 wherein within the
    period of 72 to 96 hours after administration the cell count of CD4+ lymphocytes in the
    subject's blood plasma is equal to or higher than 50% of the cell count of the subject
    immediately prior to administration.

54. A pharmaceutical composition according to claim 15 or claim 16 wherein the
    improvement is seen at 56 days after administration of a single dose of the composition.

55. A pharmaceutical composition according to claim 15 or 16 wherein the improvement
    is seen at 75 days after administration of a single dose of the composition.
56. A pharmaceutical composition according to any one of claims 15, 16, 54 or 55 wherein the dose of the agent is 0.5 mg.

57. A pharmaceutical composition according to any one of claims 15, 16, 54 or 55 wherein the dose of the agent is 2.5 mg.
FIG. 1
Leukapheresis product of healthy volunteers

Gradient centrifugation

PBMC

2-4μl CD4-MACS-Multisort Beads per 10^7 PBMC
15 min incubation, magnetic selection, release/stop solution

**Alternative:** 2-4μl CD25-Microbeads per 10^7 PBMC

\[\rightarrow\]

Alternative:

\[\downarrow\]

CD25^+ PBMC
(recovery 3-5% of PBMC)

\[\downarrow\]

Depletion of CD8/CD14/CD19^+ cells with Dynabeads

\[\downarrow\]

CD4^+CD25^+ T cells
(recovery 1-4% of PBMC)

\[\downarrow\]

CD4^+ T cells
(recovery 20-35% of PBMC)

\[\downarrow\]

2μl/10^7 cells CD25-Microbeads
15 min incubation, magnetic selection

**Alternative:** CD25-FITC + anti-FITC Multisort kit

\[\downarrow\]

CD4^+CD25^+ T cells
(recovery 1-4% of PBMC)

**FIG. 2**
mB-F5 V11

CAG GAA TAC CTT GTG GAG ACC GGG GGA GCC TTG GTG AGG CCT GGA AAT TCT CTG AAA
CTC TCC TGT GTC ACC TCG GGT TTC AGT TAC AGT GAC TGC CGG ATG TAC TGG CTT CGC
CAG CCT CCA GGG AAG GGG CTG GAG TGG ATT GGT GTG ATT TCA GTC AAA TCT GAG AAT
TAT GGA GCA AAT TAT GCA GAG TCT GTG AGG GGC AGA TTC ACT ATT TCA AGA GAT GAT
TCA AAA AGC AGT GTC TAR CTG CRG ATG AGC AGA TTG AGA GAG GAA GAC ACT GCC ACT
TAT TAR TGT AGT GCC TCC TAR TAR AGG TAR GAC GTG GGG GCC TGG TTT GCT TAR TGG
GCC CAA GGG ACT CTG GTC ACT GTC TCT GCA

FIGURE 3
mB-F5 V<sub>k</sub>

GAC ATT GTG CTG ACA CAG TCT CCT TCT TCC TTA GTT GTA TCT CTG GGG CAG AGG GCC
ACC ATC TCA TGC AGG GCC AGC AAA AGT GTC AGT ACA TCT GGC TAC AGT TAT ATA TAT
TGG TAC CAA CAG ATC CCA GGA CAG CCA CCC AAA CTC CTC ATC TAT CTT GCA TCC ATC
CTA GAA TCT GGG GTC CCT GGC AGG TTC AGT GGC AGT GGG TCT GGG ACA GAC TTC ACC
CTC AAC ATC CAT CCT GTG GAG GAG GAG GAT GCT GCA ACC TAT TAC TGT CAG CAC AGT
AGG GAA CTT CCG TGG ACG TTC GGT GGA GGC ACC AAG CTG GAG ATC AAA CGG GCT GAT
GCT GCA CCA ACT GTA TCC ATC TTC CCA CCA TCC AGT GAG CA

FIGURE 4
FIGURE 5
FIGURE 6
FIG. 7
Patient 1: 0.5mg or placebo

FIGURE 8A
Patient 2: 0.5mg or placebo

FIGURE 8B
Patient 4: 0.5mg or placebo

FIGURE 8D
**Patient 5: 0.5mg or placebo**

![Graph](image_url)

**FIGURE 8E**
Patient 6: 0.5mg or placebo

FIGURE 8F
F I G U R E 8G
Patient 8: 0.5mg or placebo

Days after injection

PASI

FIGURE 8H
Patient 1: 2.5mg or placebo

F I G U R E 9A
Patient 2: 2.5mg or placebo

FIGURE 9B
Patient 3: 2.5mg or placebo

FIGURE 9C
Patient 4: 2.5mg or placebo

days after injection

F I G U R E  9 D
Patient 5: 2.5mg or placebo

Figure 9E
Patient 6: 2.5mg or placebo

FIGURE 9F
Patient 8: 2.5mg or placebo

FIGURE 9H
Median peak concentrations [pg/ml]

**FIG. 10A**

- **Dose [mg]**: 40-60*, 8-24*, 0.6**, 1.4-14**, 40-60*
- **Recovery [h]**: 12-24, >48, n.a., n.a., n.a.
- **Administered**: i.v./s.c.

**FIG. 10B**

- **Dose [mg]**: 45*, 112**, >2-54, 23*
- **Recovery [h]**: 12-36, >48, n.a., n.a., 24-48
- **Administered**: i.v., i.v., i.v., i.v., s.c.

**Notes**:
- *BT061*
- **TRX4**: Tolerx/GSK, deglycosylated humanized ChAglyCD3
- **Teplizumab**: Macrogenics/ Eli Lilly, hOKT3γ-Ala-Ala

**Graphs**:
- **TNFα**: 527^2^, 83^3^, norm. value, ~2-5^4^, 7^1^)
- **IL-6**: 1213^2^, norm. value, 112^3^, ~2-5^4^, 23^1^)
FIG. 11
FIGURE 14B
FIG. 17B
FIG. 18A

FIG. 18B
6 patients receiving 50mg BT061 SC and 2 patients receiving placebo once a week for 6 weeks

FIG. 19A

6 patients receiving 6.25mg BT061 IV and 2 patients receiving placebo once a week for 6 weeks

FIG. 19B
FIG. 21
A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K16/28 A61K39/395 A61P37/06 C07K16/46

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07K A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data, Sequence Search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 460 088 A1 (BIOTEST AG [DE])</td>
<td>1-57</td>
</tr>
<tr>
<td></td>
<td>22 September 2004 (2004-09-22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>RACADOT E ET AL: &quot;IMMUNOLOGICAL FOLLOW-UP OF 17 PATIENTS WITH RHEUMATOID</td>
<td>1-13, 17-49,</td>
</tr>
<tr>
<td></td>
<td>ARTHRITIS TREATED IN VIVO WITH AN ANTI-T CD4+ MONOClonAL ANTIbODy (B-F5)&quot;</td>
<td>51-57</td>
</tr>
<tr>
<td></td>
<td>CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, PACINI, PISA, IT,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vol. 10, no. 4, 1 January 1992 (1992-01-01), pages 365-374, XP008022443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISSN: 0392-856X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search: 8 July 2009

Date of mailing of the international search report: 14/07/2009

Name and mailing address of the ISA:
European Patent Office, P B 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer:
Luyten, Kattie
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 1460088</td>
<td>22-09-2004</td>
<td>AU 2004222089 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2519620 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2070948 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004083247 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007525156 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20050111748 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05009953 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 541523 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006051346 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009104190 Al</td>
</tr>
</tbody>
</table>