发明名称：汽车轮毂轴承单元的模拟试验加载装置

摘要

一种汽车轮毂轴承单元的模拟试验加载装置，其具有传动轴(1)和试验主轴(2)机构，测试轴承(12)的承载体机构，径向和轴向加载油缸机构；其径向加载油缸(4)和机架连接的一端安装一球铰关节轴承(5)；在其轴向加载油缸(10)和机架连接的一端安装有球铰关节轴承(11)；其在径向加载油缸(4)的下方直接安装有比例减压阀(21)和电磁换向阀(20)；其在轴向加载油缸(10)的下方直接安装有比例减压阀(15)和电磁换向阀(14)；在其轴向加载臂(6)的下方，安装有辅助支撑(28)；在轴向加载油缸的液压回路中，分别安装有单向阀(17)和蓄能器(18)。提高了试验载荷的准确性，提高了试验结果的可靠性。
1. 一种汽车轮毂轴承单元的模拟试验加载装置，其具有传动主轴（1）和试验主轴（2）机构，测试轴承（12）的承载体机构，径向和轴向加载油缸机构；传动主轴的前端连接试验主轴（2），试验主轴（2）上安装试验轴承（12），试验轴承和承载体固定连接在一起，在承载体的两侧方各通过关节轴承（3）和加载臂（6），关节轴承（8），传感器（7）、（9）与径向加载油缸（4）和轴向加载油缸（10）相连，其特征在于：所述的试验加载装置，在其径向加载油缸（4）和机架连接的一端安装一球铰关节轴承（5）；在其轴向加载油缸（10）和机架连接的一端安装有球铰关节轴承（11）。

2. 如权利要求1所述的汽车轮毂轴承单元的模拟试验加载装置，其特征在于：所述的试验加载装置，其在径向加载油缸（4）的下方直接安装有比例减压阀（21）和电磁换向阀（20）。

3. 如权利要求1所述的汽车轮毂轴承单元的模拟试验加载装置，其特征在于：所述的试验加载装置，其在轴向加载油缸（10）的下方直接安装有比例减压阀（15）和电磁换向阀（14）。

4. 如权利要求1所述的汽车轮毂轴承单元的模拟试验加载装置，其特征在于：所述的试验加载装置的加载油缸机构，在其轴向加载臂（6）的下方，安装有辅助支撑（28）；在轴向加载油缸的液压回路中，分别安装有单向阀（17）和蓄能器（18）。

5. 如权利要求1所述的汽车轮毂轴承单元的模拟试验加载装置，其特征在于：所述的试验加载装置，其加载液压系统中，在叶片泵（25）的进口和出口处分别安装有滤油器（26）和精滤器（24），在系统总管路中安装有压力表开关
（23）压力表（16），溢流阀（22），单向节流阀（19）和冷却器（27）。

6、如权利要求 1 或 5 所述的汽车轮毂轴承单元的模拟试验加载装置，其特征在于：所述的试验加载装置，其加载液压系统中，其油缸均采用双杆活塞油缸。
汽车轮毂轴承单元的模拟试验加载装置

技术领域:
本发明涉及汽车轮毂轴承试验技术领域，一种汽车轮毂轴承单元的模拟试验加载装置。

背景技术:
公知的汽车轮毂轴承单元的模拟试验机，是通过变频电机驱动主轴旋转，加载是由径向加载油缸和轴向加载油缸提供的，这两个油缸的前端通过拉压力传感器和杆端关节轴承与试验机体连接，而油缸的后端是固定在机架上，或采用中间摆动式油缸和机架相连接；用比例减压阀来调整液压力，径向加载油缸对轮毂轴承施加径向拉力，轴向加载油缸通过车轮半径长度，以与径向加载油缸垂直的方向对轮毂轴承施加一种轴向的拉力或压力。且油缸在加载时不断的交换拉力或压力，交替作用，通过这种方式达到模拟汽车在空载或重载的条件下，直线行驶或左、右侧转弯行驶状态时，轮毂轴承的受力状态。由于对这两个油缸的自由度有不合格的限制，造成径向拉力大小变化时，会直接影响到已设定的轴向力的大小；而轴向力大小、方向变化时，直接影响到已设定的径向拉力的大小。而且这种影响值的大小、方向也是随时变化的，不确定的，从而造成了加载力的相互干涉，造成了试验载荷值的严重失真，影响了试验结果。

发明内容:
为克服现有技术存在的缺陷，本发明的目的是提供一种汽车轮毂轴承单元的模拟试验加载装置，其不仅能克服试验时径向、轴向加载力的相互干涉，而且能提高轴向力的加载换向频率，可以分别实现试验轴承的内圈旋转或是外圈旋转，提高了试验载荷的准确性，提高了试验结果的可靠性。

为实现上述发明目的，本发明采用如下技术方案：
所述的汽车轮毂轴承单元的模拟试验加载装置，其具有传动主轴和试验主轴机构；测试轴承的承载体机构；径向和轴向加载油缸机构；传动主轴的前端连接试验
主轴：试验主轴上安装试验轴承，试验轴承和承载体固定连接在一起，在承载体的两侧方各通过力传感器与径向加载油缸和轴向加载臂相连，轴向加载臂通过力传感器与加载油缸的液压系统连接，并安装在底座上；在其径向加载油缸和机架连接的一端安装一球铰关节轴承；在其轴向加载油缸和机架连接的一端安装有球铰关节轴承。

所述的汽车型轴承单元的模拟试验加载装置的从动主轴和试验主轴机构，在从动主轴的前端固定连接试验主轴，试验主轴上安装试验轴承，试验轴承的两侧方各与两侧方的承载体固定连接。

所述的汽车型轴承单元的模拟试验加载装置的径向加载油缸机构，其在承载体的一端通过关节轴承和拉压力传感器连接；拉压力传感器和径向加载油缸的一端连接，径向加载油缸的另一端通过关节轴承连接在机架上。

所述的汽车型轴承单元的模拟试验加载装置的径向加载油缸机构，其在径向加载油缸的下方直接安装有比例减压阀和电磁换向阀。

所述的汽车型轴承单元的模拟试验加载装置的轴向加载油缸机构，其在轴向承载体的另一方连接轴向加载臂，轴向加载臂通过关节轴承和拉压力传感器相连接，拉压力传感器的另一端与轴向加载油缸相连接，轴向加载油缸的另一端通过关节轴承与机架相连接。

所述的汽车型轴承单元的模拟试验加载装置的轴向加载油缸机构，在其轴向加载臂的下方，安装有辅助支撑 28；在轴向加载油缸的液压回路中，分别安装有单向阀 17 和蓄能器 18。

所述的汽车型轴承单元的模拟试验加载装置的轴向加载油缸机构，其在轴向加载油缸的下方直接安装有比例减压阀和电磁换向阀。

所述的汽车型轴承单元的模拟试验加载装置径向和轴向加载液压系统中，在叶片泵的进口和出口处分别安装有滤油器和精滤器，在统总管路中安装有压力表开关压力表，溢流阀，单向节流阀和冷却器。

所述的汽车型轴承单元的模拟试验加载装置的径向和轴向加载液压系统中，
其油缸均采用双杆活塞油缸。

本发明由于采用了如上所述技术方案，其具有如下积极效果：

该汽车轮毂轴承单元的模拟试验加裁装置，其轴向加裁油缸相对于机架的位置可以调整，以模拟不同型号的车轮半径，轴向加裁油缸的前端通过拉压力传感器，关节轴承和轴向加裁臂相连，（这个加裁臂就相当于车轮半径，不同的车轮其半径不同，则加裁臂的长度也不同。）其连接点就相当于车轮的着地点，这个轴向加裁臂和承载体是固定为一体的，油缸中的活塞杆就能够在受到自由导向，对加载缸而言，其两端的两个球面关节轴承，各限制了X、Y、Z三个方向的移动自由度，但不限制这三个方向的转动自由度，油缸可以绕着固定于机架上的关节轴承在一定范围内自由摆动，而沿油缸轴线方向的移动，是靠活塞杆本身的伸缩运动来实现的，这样加载油缸仅承受拉力或压力，其大小相等，方向相反，且都位于同一轴线上，油缸的拉力或压力的大小由比例减压阀调整，这样在平衡状态时，比例减压阀调整的压力保持不变，轴向载荷的径向载荷两个相互独立的分力，互不影响，另外，由于加载油缸和轴向加载臂均为水平布置，为了克服加载油缸和轴向加载臂综合引起的向下的力，特意在轴向加载臂下面车轮的着地点处安装了一个辅助支撑，使两个油缸处于水平状态。

另外，本发明把加载油缸和换向阀及比例减压阀集成为一体，使比例减压阀和油缸间的通路最短，而且避免了软管连接，这样使比例减压阀的控制压力更加稳定。

另外，在液压加载系统中，因为油缸活塞的面积相等，换向阀的中位机能保证了加载油缸在自由状态时两个油腔内部有压力油，这样可以很容易的调节活塞杆的位置，便于安装调整，且很容易实现零载荷及正负绝对值相等力的调整控制。

另外，由于轴向加载油缸需要频繁的换向（即轴向载荷力的方向频繁变化），需要较多流量的压力油，本新型采取了如下列措施：在轴向油缸进油油路中加入了蓄能器和单向阀，用以稳定压力，补充压力油容量。

本发明可以有效的消除试验时径向和轴向载荷的相互干涉，使调整安全方便。试验载荷值准确可靠，真实的模拟了汽车轮毂轴承在工作时的受力状态，同时还可
提高轴向力的加载换向频率，提高了试验结果的可靠性。

图面说明：

图 1 是汽车轮毂轴承单元的模拟试验加载装置的机械结构示意图；
图 2 是试验加载装置的 M 型向视图；
图 3 是试验加载装置的 A-A 向视图；
图 4 是试验加载装置的 B-B 向视图；
图 5 是试验加载装置的 K1、K2、K3 向视图；
图 6 是试验加载装置的 K4 向视图；
图 7 是试验加载装置的加载液压系统原理图。


具体实施方式：

在主轴（1）的前端固定连接试验主轴（2），试验主轴（2）上安装试验轴承（12），试验轴承（12）和承载体（13）固定在一起，在承载体（13）的一方，通过关节轴承（3）和拉压力传感器（7）连接，拉压力传感器（7）和径向加载油缸（4）一端连接，径向加载油缸（4）的另一端通过关节轴承（5）和机构机架（29）连接，在径向加载油缸（4）的下方，直接安装有由相互连接成一体的比例减压阀（21）和电磁换向阀（20），在承载体（13）的另一方，连接轴向加载臂（6），轴向加载臂（6）通过关节轴承（8）和拉压力传感器（9）连接，拉压力传感器（9）的另一端与轴向加载油缸（10）连接，轴向加载油缸（10）的另一端，通过关节轴承（11）与机构机架（29）连接，在轴向加载油缸（10）的下方，直接安装有由相互连接成一体的比例减压阀（15）和电磁换向阀（14），在轴向加载臂（6）的下方，安装辅助支撑
（28），在轴向加载油缸的液压回路中，分别安装有单向阀（17）和蓄能器（18），在整个机构的液压系统中，在叶片泵（25）的进口和出口，分别安装有滤油器（26）和精滤器（24），在系统总管中安装有压力表开关（23）和压力表（16），溢流阀（22），单向节流阀（19）和冷却器（27）。

当试验开始，叶片泵（25）工作，液压系统内各油路按试验程序要求开始工作，径向加载油缸（4）通过拉压力传感器（7）对试验主轴（2）施加径向拉力，轴向加载油缸（10）通过拉压力传感器（9）和轴向加载臂（6）对试验轴承施加轴向拉力或压力。

在手动试验调整时，比例减压阀的压力值由试验参数调整，在轴向拉压力及零载荷状态变换时，轴向加载油缸（10）随着试验轴承承载体（13）及轴向加载臂（6）关节轴承（8）的绕着关节轴承（11）微量摆动，轴向加载油缸活塞杆相应伸缩变化，（轴向加载油缸（10）的活塞杆相对于油缸仅做直线运动），而径向加载油缸（4）在径向加载状态变换时，随着试验轴承（12），承载体（13），关节承（3）绕关节轴承（5）微量摆动，径向加载油缸活塞杆相应伸缩变化，（径向加载油缸的活塞杆相对于油缸仅做直线运动），在轴向加载到位或零位稳定后，径向用比例减压阀（21）保证油缸内调定压力不变，径向拉压力传感器（7）的力的大小变化可在正负 3%范围内，相应地，在径向拉力变化时，轴向拉压力传感器（9）的力的大小基本不变。

在自动控制试验中，可以根据试验程序要求，将加力状态分成几步一个循环进行，计算机对拉压力传感器的拉压力值进行监测，与要求值比较，对比例减压阀不断发出调整信号，保证实际拉压力值在给定值的正负 2%的范围内。