0 02/059744 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 August 2002 (01.08.2002) PCT

A 0 0O O

(10) International Publication Number

WO 02/059744 Al

(51) International Patent Classification’: GOG6F 9/06, (74)
13/10, 13/12

(21) International Application Number: PCT/US02/02310
@n
(22) International Filing Date: 25 January 2002 (25.01.2002)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
09/770,810 26 January 2001 (26.01.2001) US (84)
(71) Applicant: DELTA SEARCH LABS, INC. [US/US]J; 400
Technology Square, Cambridge, MA 02139 (US).

(72) Inventor: JAFFREY, Syed, Kamal, H.; 56 Bigelow Av-
enue, #23, Watertown, MA 02472 (US).

Agent: MIRABITO, A., Jason; Mintz, Levin, Cohn, Fer-
ris, Glovsky and Popeo PC, One Financial Center, Boston,
MA 02111 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
7ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: MODULAR MICROCONTROLLERS MANAGING CPU AND DEVICES WITHOUT OPERATING SYSTEM

-

(57) Abstract: A hard-
ware/firmwave layer comprising
a Device Manager, an Information
Manager, a Memory Manager,

&30 and a Process Manager (610,
NPUT 620, 630, 640) contained in one
DEVICE PROCESS or more semiconductor chips is

DEVICES |1 | MANAGEMENT ' MANAGEMENT CPU disclosed. The hardware/firmware
ROUTINE 620 ROUTINE layer eliminates the need for

OUTPUT \ 6 / i 622 \ an operating system. Each
DEVICES 6u 624 L 202 of the Managers comprises a
L microcontroller (612, 622, 632,
860 DSP DSP 642) associated with a firmware
embedded in ROM or Flash

PERMANENT 206 memory that contains instruction
Sggv‘nég'g 60 | 1 sets (614, 624, 634, 644) that cause
\ the microcontroller to provide a

INFORMATION MEMORY MORY designated task of device manage-

670 MAES%?%ENT ™ MA:AO%%%ENT ME ment, information management,

- 640 memory management and process

642 H 632 H management. In another aspect of

\ 644 a NE 634 the invention, devices connected

630 to the computer system are "smart

DsP DsP devices", each device having

a device microcontroller and

embedded device drivers in a

ROM or Flash memory. The

hardware/firmware of the present invention does not need to search for available devices, provide diagnostic tests or obtain device
drivers to communicate with the devices. Instead the microcontroller uses the embedded device driver to perform configuration and
self diagnostic test as well as device operations. If the device is operational, device microcontroller sends an identification signal to
the hardware/firmware of the CPU (202) to indicate availability of the device.

wO 02/059744 A1)OO0 000 00O

Published:
— with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 02/059744 PCT/US02/02310

Modular microcontrollers managing CPU and devices without operating system

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to computer architecture, hardware and method and in
particular, to computer architecture, hardware and method that eliminates the need for an
operating system.

Background of the Invention

FIG. 1 illustrates a conventional computer system architecture 100 comprising a
hardware platform layer 200, a firmware layer 300, an operating system layer 400 and an
application programs layer 102. The hardware platform layer 200 is the physical layer of the
computer system that performs the actual operations of the computer system. The firmware
layer 300 performs, among others, the interface between the hardware platform layer 200 and
the operating system layer 400. The operating system layer 400 is a software layer that
performs the management of the computer resources such as processor resource management,
memory allocation management, device resources management, and data file management.
The operating system is also the base upon which application programs are built. The
application programs layer 102 comprises computer programs that provide instruction sets
that manipulate and/or process data in accordance with a desired result. Examples are word
processor, database, spread sheet and web browser programs.

FIG. 2 illustrates a conventional hardware platform layer, also commonly referred to
as a “computer”’) 200 of a computer system comprising a central processing unit (CPU) 202,
aread only memory (ROM) 204 and a main memory 206 coupled together through a system
bus 208. The illustrated configuration is representative of a bus architecture type computer
system that is commonly used and includes Personal Computer Interface (PCI), Industry
Standard Architecture (ISA), Extended ISA (ESIA) and other bus standards. The computer
200 need not be limited to a bus architecture and may use a different architecture. The
computer 200 further comprises various controllers such as a memory controller 212, a direct
memory access (DMA) controller 214, an interrupt controller 216, an input/output (I/O)
controller 218, an integrated drive electronics/floppy drive controller (IDE/FDC) controller

222 and a video controller 224, among others. Various devices are coupled to the controllers

-1-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

so that the computer 200 can interact with a user or with the outside world. For instance, a
video monitor 226 is coupled to the video controller 224 to display various information, a
keyboard 228 and a pointing device 232 is coupled to the I/O controller 218 via a serial port
to input data and commands to the computer 200, a printer 234 is also coupled to the I/O
controller 218 via a parallel port to generate hard copies of data requested by the user. The
IDE/FDC controller 222 controls various disk drives such as a diskette drive 236, a hard-disk
drive 238, a compact disc (CD) ROM drive 242 and a digital video disc (DVD) ROM drive
244 and a modem 246 provides communication to the outside world such as the Internet.
Typically, the hardware has one or more expansion slots 248 to receive various expansion
cards that enhance or add features of the hardware platform, thus a modem card 246 may be
inserted into the expansion slot 248 to provide a communications feature.

The firmware layer such as a Basic Input Output Operating System (BIOS) 300 may
be located in the ROM 204 and is generally specific to the hardware platform of the computer
that it supports. The BIOS routines include various setup procedures and Power On Self Test
(POST). The various setup procedures include the configuration of the various controller's in
which the BIOS acts as an uniform interface between the controllers and the operating
system, thus allows the operating system to access the hardware platform 200. The BIOS
supports the interchange of data that uses the various controllers, devices such as keyboard,
mouse, video monitor, disk drives, printer and so forth. Other setup procedures include
preliminary memory setup for the operating system, fault handling, clock and timers for
various circuits , for example, the dynamic random access memory (DRAM) refresh circuit
that refreshes the DRAMs that comprise the main memory. The POST performs various self-
test on the memory and controllers and if a fault is find during the self-test, an error message
in a form of an audio beep and/or a error message is displayed.

FIG. 3 is a flow chart of an exemplary power-up sequence using the BIOS that may
conform to Compaq Computer Corporation, Phoenix Technologies Ltd. and Intel
Corporation, Plug and Play BIOS Specification, Version 1.0a, May 5, 1994, which is
incorporated herein by reference. The BIOS may also conform to Intel Corporation and
Microsoft Corporation, Plug and Play ISA Specification, Version 1.0a, May 5, 1994, which is
incorporated herein by reference. Plug & Play (PnP) specification allows for a computer
operated configuration of devices attached to the computer without manual manipulation by a
user. The user can add a new device, such as a sound card, and the computer will

automatically detect the device and provide a device driver to operate the card (which may

-2.

10

15

20

25

30

WO 02/059744 PCT/US02/02310

include requesting the user to insert a disk or a CD that contains the device driver if the
computer does not already have the driver internally). A PnP conforming device usually has
the characteristics of being able to uniquely identify itself; indicate the services it provides
and the resources it requires; identify the device driver that supports it; and an operating
system to control the device. These features are important to the operating system in that
they allow the operating system to establish a working configuration for all devices
connected to the computer and to load appropriate device drivers into memory.

Device drivers are software modules comprising logic for controlling the low level or
specific components of a device, thus allowing the operating system to control the device.
For example, a device driver may be used for controlling a magnetic disk drive coupled to the
computer. In this example, the device driver will control various hardware specific registers,
latches, signals or other components of the magnetic disk drive device. A device driver is
usually specifically configured to communicate with a particular device.

Referring now to FIG. 3, according to one power-up sequence, at stage 302, the
computer is powered on or a reset signal is received in which the computer forces the
components within the computer including accessible devices to a reset logic state. At reset
logic state, the computer does not “know” its actual configuration including what devices
including those on the expansion cards are attached to the computer. After a predefined
period of time has passed in which the power supply has stabilized, at stage 304, the CPU
starts at a starter address that points to the ROM in which the BIOS is located. The POST
routine of the BIOS is initiated and it tests the dynamic random access memories (DRAMS)
that make up the main memory along with certain devices and components of the system to
determine their operability. During the testing process, a copy of the BIOS is retrieved from
the ROM and is shadowed into the main memory. The BIOS has a set of instruction routines
that prepares the computer system to receive the operating system from an initial load device
(IPL) which may be a disk drive. At stage 306, the BIOS attempts turn off all the devices to
determine which dévices (i.e. IPLs) may be used to find and launch the operating system.
IPLs are detected at this stage because IPLs cannot be turned off. At stage 308, the BIOS
turns on the devices and places non-IPLS in wait state to be initialized by the operating
system. At stage 310, the BIOS executes a bootstrap routine that causes the kernel of the
operating system (usually contained in the hard-disk drive) to load into the main memory. At
this stage, the hardware control by the firmware (i.e., the BIOS) is passed to the software

(which is the kernel). The kernel 402 provides the core function of the operating system

-3-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

which is computer resource management such as process execution, memory management,
dynamic linked library management, scheduling, file system management, I/O services and
user interface presentation, among others.

At stage 3 1.2, the kernel initiates an isolation procedure that isolates the devices
individually. The key to the isolation protocol is that each device contains a unique 72-bit
number known as a serial identifier. Once a device is isolated, it is assigned a Card Serial
number (CSN) that is unique to the assigned device and serves as a “handle” in which the
operating system identifies the device and with which the device identifies itself, for instance
when generating an interrupt. At stage 314, the kernel reads the isolated devices individually
for resource requirements of the device. The resources required by the devices include DMA,
interrupt request (IRQs), /O and memory addresses. At stage 316, the kernel creates a
comprehensive list of the resource requirements of each device. At stage 318, because the
kernel knows the available system resources, the kernel allocates the available resources to
the devices as needed while ensuring the resource allocation is non-conflicting. At stage 320,
as the kernel allocates system resources to the devices an allocation map is created and stored
in memory. In addition to the creation of the allocation map, At stage 322, using the
identification number provided by the device, the kernel identifies the associated device
driver that is usually stored in the hard-disk drive. Should the device driver be unavailable,
the kernel will prompt the user to provide the device driver. All device drivers associated
with the detected devices are loaded into the main memory which is used by the kernel to
control the devices. Further details of the power-up sequences may be found in Plug and
Play ISA Specification. The isolation, interrogation of the various devices and loading of the
device drivers into the main memory is time consuming and also reduces the available main
memory.

FIG. 4 illustrates a schematic diagram of an operating system 400 comprising a kernel
402, a device drivers layer 404, an application program interface (API) 406 and a library
layer 408. The kernel 402 provides the core function of the operating system as mentioned
with respect to FIG. 3. Application programs directly or indirectly rely on these and other
capabilities of the kernel and other portions of the operating system. The device drivers layer
404 contains the device drivers necessary to control and communicate with devices. The
operating system also provides the interface between the hardware and the application
programs layer. To facilitate development of application programs, the operating system also

includes application program interfaces (APIs) 406 to interact with application programs. An

4.

10

15

20

25

30

WO 02/059744 PCT/US02/02310

AF11s a Set Of routines that applicaiion programs use [0 access lower level services
performed by the operating system. The operating system performs a number of services for
the application programs including module management, inter-process communication (IPC)
and scheduling. Another service provided is the dynamic linked libraries (DLL) contained in
the library layer 408. The operating system performs module management by supporting the
linking, lIoading and execution of DLLs available in the library layer.

The operating system also organizes the instructions from application programs into
chunks called threads. A thread can be thought of as a packet of instructions that can be
“chewed” for execution by the CPU. The operating system breaks the operation of multiple
application programs into threads for sequential execution thus allowing the CPU to
simultaneously support several application programs known as multi-tasking. Multi-tasking
in one example increases the speed of a computers operation by allowing various devices to
operate without idling the CPU. Usually, the CPU executes instructions much more quickly
than data can be read and written into a storage device. Thus, the CPU would be idle if it had
to wait for data to be written or read from a storage device. The use of threads allow the
operating system to reassign the CPU whenever a task must be performed for a slow
component of the system. For example, the processing of instructions from a first application
program may be suspended whenever data must be read from a disk drive. The CPU may
then execute a thread from another application program while the data is being read, and
resume processing of the instructions from the first application program, once the data has
been read.

The computer using a bus architecture usually has one bus in which the CPU and the
various devices communicate through. Thus, the operating system controls a flow of
instructions to the CPU from application programs, and temporal suspension of CPU
processing of application program instructions to allow for the /O communication by various
devices such as the data transfer from the disk drive to the main memory via the DMA
controller.

The computer system using an operating system described above has an undesirable
lengthy power-up sequence that inconveniences the user and consumes valuable memory
space. A known method uses a faster CPU to speedup the power-up sequence. However, a
faster CPU is expensive and increases the cost of the computer. The computer system relying
on the operating system is subject to “crashes” perhaps due to a tainted application program it

had executed, or due to errors resulting from handling numerous interrupts and call

-5

10

15

20

25

30

WO 02/059744 PCT/US02/02310

procedures during multi-tasking. In addition, the operating system is subject to virus attacks
that may render the computer system inoperational as well as destroying valuable data files.

What is needed is a computer system and method that solves these and other shortcomings.

SUMMARY OF THE INVENTION

Embodiments of the present invention provides computer architecture, hardware and
method that eliminates a need for an operating system.

In one general aspect, a computer system comprises a central processing unit (CPU), a
main memory, a further unit that includes a first microcontroller and
a first memory containing a first set of instructions configured to cause the microcontroller to
manage CPU operations, and a plurality of trace links connecting the further unit to the CPU
and the main memory to facilitate communication between the further unit, the CPU and the
main memory. Other features include at least one device, a trace link connecting the device
to the further unit, and the further unit further includes a second microcontroller and a second
memory containing a second set of instructions configured to cause the second
microcontroller to manage the device; the further unit further includes a third microcontroller
and a third memory containing a third set of instructions configured to cause the third
microcontroller to manage memory operations; the further unit further includes a fourth
controller and a fourth memory containing a fourth set of instructions configured to cause the
fourth controller to manage data operations; the plurality of microcontrollers in the further
unit are connected together to communicate with each other; the further unit includes a cross-
bar switch to connect the plurality of microcontrollers; the device includes a fifth
microcontroller and a fifth memory containing a fifth set of instructions configured to cause
the fifth microcontroller to control the device operations, the fifth microcontroller in
communication with at Ieast the second microcontroller; the fifth set of instructions in the
fifth memory further configured to cause the fifth microcontroller to test the device and if the
device is operational the fifth set of instructions is configured to cause the fifth
microcontroller to signal at least the second microcontroller to indicate availability of the
device; the fifth set of instructions in the fifth memory further configured to cause the fifth
microcontroller to signal at least the second microcontroller to indicate availability of the
device includes sending device identification and required resource data; the second set of

instructions in the second memory further configured to cause the second microcontroller to

10

15

20

25

30

WO 02/059744 PCT/US02/02310

receive the signal indicating availability of the device and allocating available resources to
the device.

In another aspect of the invention an apparatus for managing computer operations
comprises a first microcontroller and a first memory containing a first set of instructions
configured to cause the microcontroller to manage central processing unit (CPU) operations.

Other features include a second microcontroller and a second memory containing a
second set of instructions configured to cause the second microcontroller to manage device
operations; a third microcontroller and
a third memory containing a third set of instructions configured to cause the third
microcontroller to manage memory operations; a fourth controller and a fourth memory
containing a fourth set of instructions configured to cause the fourth controller to manage
data operations; the plurality of microcontrollers are connected together to communicate with
each other; a cross-bar switch to connect the plurality of microcontrollers; wherein the
memory is a read only memory (ROM); wherein the memory is an erasable programmable
ROM (EPROM); wherein the memory is a Flash memory; wherein the microcontrollers are
digital signal processors (DSPs); wherein the apparatus is contained in a semiconductor chip;
adevice including a fifth microcontroller and a fifth memory containing a fifth set of
instructions configured to cause the fifth microcontroller to control the device operations, the
fifth microcontroller in communication with at least the second microcontroller; the fifth set
of instructions in the fifth memory further configured to cause the fifth microcontroller to test
the device and if the device is operational the fifth set of instructions is configured to cause
the fifth microcontroller to signal at least the second microcontroller to indicate availability
of the device; the fifth set of instructions in the fifth memory further configured to cause the
fifth microcontroller to signal at least the second microcontroller to indicate availability of
the device includes sending device identification and required resource data; the second set of
instructions in the second memory further configured to cause the second microcontroller to
receive the signal indicating availability of the device and allocating available resources to
the device. ‘

In another aspect of the invention a device for use in a computer system that
eliminates a need for an operating system comprises device circuitry, a first microcontroller
and a memory containing a set of instructions configured to cause tlle microcontroller to

control device circuitry, the instructions further configured to facilitate the microcontroller to

WO 02/059744 PCT/US02/02310

communicate with a second microcontroller that manages a central processing unit (CPU)

operation.

BRIEF DESCRIPTION OF THE DRAWING

5
For better understanding of the invention, reference is made to the drawings that are
incorporated herein by reference and in which:
FIG. 1 illustrates a conventional computer system architecture;
FIG. 2 illustrates a conventional hardware platform layer of the computer architecture
10 of FIG. I;

FIG. 3 is a flow diagram of a conventional Basic Input Output System (BIOS) and
kernel start-up operation;

FIG. 4 illustrates a conventional operating system;

FIG. 5 illustrates a computer architecture with hardware/firmware layer that

15 eliminates the need for an operating system;

FIG. 6 is a semiconductor chip used in a computer system without an operating
system in accordance with one embodiment of the invention;

FIG. 7 illustrates a cross-bar switch that connects various Managers in the chip used
in a computer system without an operating system in accordance with one embodiment of the

20 invention;

FIG. 8 illustrates a mesh link that connects various Managers in the semiconductor
chip used in a computer system without an operating system in accordance with another
embodiment of the invention;

FIG. 9 illustrates Device Manager interfaces in accordance with an embodiment of the

25 invention;
FIG. 10 illustrates Process Manager interfaces in accordance with an embodiment of

the invention;

WO 02/059744 PCT/US02/02310

FIG. 11 illustrates Memory Manager interfaces in accordance with an embodiment of
the invention;
FIG. 12 illustrates Information Manager interfaces in accordance with an embodiment
of the invention;
5 FIG. 13 is an exemplary layout of a computer motherboard containing the chip used
in a computer system without an operating system and trace links;
FIG. 14 illustrates smart devices coupled to the is a semiconductor chip used in a
computer system without an operating system chip;
FIG. 15 illustrates a register format in a smart device that includes a serial
10 identification and resource data;
FIG. 16 and FIG. 17 illustrate a power-up sequence in accordance with an
embodiment of the invention;
FIG. 18 and FIG. 19 illustrate a sequence for running program/software applications
in accordance with an embodiment of the invention;
15 FIG. 20 and FIG. 21 illustrate a sequence for producing output in accordance with an
embodiment of the invention;
FIG. 22 and FIG. 23 illustrate a sequence for managing files in accordance with an
embodiment of the invention; and
FIG. 24 and FIG. 25 illustrate in general combined Manager interfaces and
20 interactions to perform computer operations in accordance with an embodiment of the

invention.

DETAILED DESCRIPTION OF THE INVENTION

25 The invention relates to hardware/firmware layer in a computer system that eliminates

a need for an operating system. In one aspect of the invention, the hardware/firmware layer

-9-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

comprises a Device Manager, an Information Manager, a Memory Manager, and a Process
Manager, which may be contained in one or more semiconductor chips. Each of the
Managers comprises a microcontroller associated with firmware embedded in ROM or Flash
memory that contains instruction sets that cause the microcontroller to provide a designated
task of device management, information management, memory management and process
management. The semiconductor chip or chip sets, when incorporated into the computer
motherboard allows the computer hardware to operate without an operating system. In
another aspect of the invention, devices such as disk drives, modem, printer, video monitor,
connected to the computer system are “smart devices,” wherein each device has a device
microcontroller and embedded device drivers in a ROM or Flash memory. Theis a
semiconductor chip used in a computer system without an operating system does not need to
search for available devices, provide diagnostic tests or obtain device drivers to communicate
with the devices. Instead the device rrﬁcrocontroller uses the embedded device driver to
perform configuration and self diagnostic test autonomously as well as operations of the
device. If the device is operational, the device microcontroller sends an identification signal
that includes resource requirements to the semiconductor chip used in a computer system
without an operating system chip via trace links on the motherboard to indicate availability of
the device.

FIG. 5 is a high-level layer diagram of computer architecture 500 containing a
hardware/firmware layer 504 that eliminates a need of an operating system in accordance
with an embodiment of the invention. The architecture also comprises a hardware platform
layer 502 and an application programs layer 506. The hardware platform layer 502 is similar
to a conventional hardware platform layer shown in FIG. 2. However, as will be apparent
with respect to FIG. 13, modifications are made to tl\le hardware platform layer to allow for
the various hardware components and devices such as disk drives, modems, printer, video
monitor to interact with the hardware/firmware layer 604. The application programs layer
506 is similar to the conventional application programs layer shown in FIG. 1 and may
include application programs such as word processor, database, spread sheet, browser and so
forth.

The hardware/firmware layer 504 provides the services previously performed by an
operating system kernel, discussed above. In one embodiment illustrated in FIG. 6, the
hardware/firmware layer 504 takes the embodiment of an integrated semiconductor chip or

chip set 600 inserted into the hardware platform. The chip used in the computer system

-10-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

without an operating system interacts with the CPU and various components in the hardware
platform layer including input devices 650, output devices 660 and permanent storage
devices 670. According to the embodiment, the chip 600 comprises four microcontrollers,
preferably digital signal processors (DSPs) 612, 622, 632, 642. Each DSP is associated
embedded firmware that contains one of four routines; a device management routine 614, a
process management routine 624, a memory management routine 634 and an information
management routine 644. These routines are within the knowledge of those skilled in the art
of operating system designs. The firmware may be embedded in ROM, erasable
programmable ROM (EPROM), Flash memory and the like. A microcontroller and an
associated firmware forms one of a Device Manager 610, an Information Manager 640, a
Memory Manager 630 and a Process Manager 620, as shown in FIG. 6. The Device Manager
610 is linked directly to and has access to the Input/Output (I/O) devices 650, 660 and
permanent storage devices 670. The Information Manager 640 and the Device Manager 610
are linked directly to and have access to the permanent storage devices 670. The Memory
Manager 630 is directly linked to and has access to the main memory 206. The Process
Manager 620 is directly linked to and has access to the CPU 202. The Managers 610, 620,
630, 640 are connected together so that a Manager can communicate with another Manager
or Managers. Various methods of connections may be used such as a cross-bar switch 750
shown in FIG. 7 or a mesh connection shown in FIG. 8. The architecture using the chip in
the a computer system without an operating system is inherently robust because each
Manager operates independently and is interfaced only with those components and devices
applicable to its operation. In addition, interaction with the components and devices is
performed at hardware level without an intervening software level such as an operating
system that is subject to crashes. Further descriptions of the Managers are now given.

With reference to FIG. 6 and FIG. 9, the Device Manager 610 identifies all devices
650, 660, 670 connected to the computer system and establishes their means of connection,
control unit functionality, and device capacity and capability as will be apparent with respect
to FIG. 14. The device management routine 614 provides the instructions that allow the
Device Manager 610 to act as an I/O scheduler by allocating devices 650, 660, 670 to tasks,
initiating operations by the device and reclaiming the device on task completion. The user’s
interaction with the computer’s resources is via requests submitted to Device Manager 610
from input devices 650 such as a mouse or a keyboard supported by a graphic user interface

(GUI) provided via Device Manager 610 to the user’s screen.

- 11~

10

15

20

25

30

WO 02/059744 PCT/US02/02310

With reference to FIG. 6 and FIG. 10, the Process Manager 620 acts on process
requests submitted via Device Manager 610. Using the instructions provided by the process
management routine 624, the Process Manager 620 directly allocates CPU 202 resource to
each request based on its needs including the allocation of registers within the CPU 202 and
main memory 206. The Process Manager 620 will also request the Device Manager 610 to
process relevant data transfer to main memory 206 from the permanent storage device 670.
Process Manager 620 also provides a continuous tracking of the CPU 202 capacity and the
status of processes and will reclaim the CPU 202 for new activities as each process
terminates or exceeds allocated resources.

With reference to FIG. 6 and FIG. 11, The memory management routine 634 provides
the instructions for the Memory Manager 630 to allocate memory 206 resources to the
Process Manager 620 based on the immediate memory needs of the jobs being controlled by
Process Manager 620. The Memory Manager 630 also responds to direct requests via Device
Manager 610 for memory 206 resource. The Memory Manager 630 constantly tracks the user
and associated amount of each element of memory being utilized and on termination of jobs,
reclaims and makes memory resources re-available. Memory Manager 630 logically
partitions the memory resource into two areas. One is reserved for resident applications in
use (e.g. Microsoft™ Word™) and the other for process requirements (e.g. a datafile being
worked on by Excel™ or a program being developed in C++). Applications in use are loaded
sequentially into the application memory space. Files and data only occupy the process
memory space when they are being operated on and the Memory Manager 630 prioritizes,
schedules and maintains an external queue for memory resource.

With reference to FIG. 6 and FIG. 12, the information management routine 644
provides the instructions for the Information Manager 640 to provide the means for the user
to make decisions about planned and current use of the computer system’s facilities by
providing a complete information resource record and management capability for the entire
system. Using input from the other Managers and directly from connected permanent storage
devices 670, it maintains a file management record file in the main memory 206. This
contains the location, use and size of all files, the status of all files (i.e. open/close, file type,
security levels) and the overall capacities and usage levels of memory 206, input devices 650,
output devices 660 and permanent storage devices 670.

Other aspect of the computer architecture includes a graphic user interface (GUI) and

an applications program interfaces (APIs). The GUI and API may be implemented as

-12-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

software and stored in the permanent storage device until called by the chip 600 that is used
in a computer system without an operating system. For instance, the graphic user interface
(GUI) may be contained in the permanent storage device until retrieved by the pertinent
Manager during power-up sequence. Designing a GUI is well known in the art and will not
be further discussed here. Regarding presently-available application software programs, such
as Microsoft™ Office Suite™, Lotus Notes™, Corel Draw™, SymantecTM Winfax™ and
ACT™, each of these programs require an associated Operating System interface that is
written into the application. Thus, the software programmed to a particular Operating System
type. To accommodate such presently-available programs within the computer architecture
that has eliminated the operating system, a corresponding API to the software is stored in the
permanent storage device and is called into main memory when the software is operational to
act as an interface between the application software and the chip 600. Alternatively, the APIs
may be stored in a web-site and the pertinent API is called by the chip 600 via the modem
246 into the main memory 206 when an associated application program is being loaded into
memory 206,

FIG. 13 is a layout of an exemplary computer motherboard 1300 containing the chip
600 that is used in a computer system without an operating system. The motherboard also
includes chip sets C1, C2, C3, C4 that contain the various controllers such as the memory
controller, direct memory access (DMA) controller, interrupt controller, input/output (I/O)
controller, integrated drive electronics (IDE) controller, supporting circuitry and an array of
dynamic random access memories (DRAMs) 1302 that constitute the main memory. Also
included on the mother board 1300 is a CPU slot 1303 that is configured to receive the CPU
202 and various peripheral device connectors such as keyboard port 1304, Universal Serial
Bus (USB) port 1306, game port 1307, serial port 1308, parallel ports 1312, floppy Drive
controller (FDC) connector 1314, primary and secondary IDE connectors 1316 and expansion
slots such as Personal Computer Interface (PCI) bus slots 1318, Industry Standard
Architecture (ISA) bus slot 1316, and advanced graphics port (AGP) bus slot 1322. The
motherboard further includes the BIOS ROM 1326 that contains the BIOS including Power
On Self Test (POST) routine. In one embodiment, the BIOS provides the services of a
conventional POST, configuration of system level devices and controllers such as I/O
interfaces, keyboard controller, video controller, timer, direct memory access (DMA)
controller, peripherals interface controller and so forth, and a bootstrap to the chip 600. In

accordance with an embodiment of the invention, the peripheral device connectors and the

-13 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

expansion slots are connected to the respective Manager in the chip 600 via trace links 1328,
Through the trace links 1328, direct communication occurs between the devices and the chip
600.

Devices are directly connected at a physical level to the Device Manager 610 of the
chip 600 and device recognition and management is separated from any information, memory
or processing functions. The means by which each device is made available to the chip 600
is through the microcontroller with embedded device driver contained within a device itself.

A smart device 1400, illustrated in FIG. 14, contains a device microcontroller 1402
and embedded device driver 1404 within the device 1400 that allows it to configure and
perform self diagnostic test as well as operations of the device, hence is smart in the sense
that it operates independently without external control source. Smart devices include devices
such as disk drives, modem, printer, video monitor and so forth. Smart devices are interfaced
with the pertinent Manager in the chip used in the computer system without an operating
system to make available the services of the devices. According to one aspect of the
invention, at power-up initialization, individual device microcontrollers 1402 within the
devices 1400 are activated, each device microcontroller 1402 having a startup address
pointing to the embedded ROM contained in the device 1400. The ROM can contain a
device driver 1404 that is particular to the device that the device microcontroller 1402 uses to
configure and perform self diagnostic test. In one aspect of the invention, each device
microcontroller 1402 in the one or more devices 1400 perform the configuration and
diagnostics autonomously and simultaneously or substantially simultaneously. If, after the
previous procedure, the device 1400 is deemed to be operational, the device microcontroller
1412 sends an identification signal 1500, which is stored in registers, such as the one
illustrated in FIG. 15, to the chip 600 used in a computer system without an operating system
via the trace link 1328 to indicate availability of the device 1400. The identification signal
1500 may be a string of data bits transmitted serially or in parallel that comprises of device
identification bits 1502 and required resource data bits 1504. The signal may conform to the
serial identifier and resource data format of the Plug and Play ISA specification. It should be
noted that the signal configuration may be in any format standard established with or by
device manufacturers. The Device Manager 610, upon receiving the identification signal,
recognizes the presence of the device. Because the Device Manager 610 has access to
available system resources, the Device Manager 610 identifies the resources required by the

device and allocates the appropriate resources to the device. Resource allocation is usually

-14 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

performed in a manner that does not conflict with other devices that require system resources.
The resource allocated device is assigned an address that acts as a pointer to the device. It
should be noted that because the number of I/O and storage devices and the ability to
communicate with them is predetermined as a function of the total peripheral device
connectors, expansion slots and associated trace links to the chip 600, in one embodiment,
device recognition and logical connectivity can be based on a finite state machine.

As can be seen by reference to Fig. 13, the chip 600 used in a computer system
without an operating system is shown as being directly connected to the CPU (CPU slot
1303) and the main memory (memory slots 1302). Thus the CPU 202 and memory 206 (see
FIG. 6) can focus entirely on process requirements and multi-tasking management that are
performed by the Process Manager 620 and the Memory Manager 630 within the chip 600.
As aresult, when insufficient memory or CPU capacity is available, then no more processes
are added to the system and the request is rejected at the input device level rather than
causing a potential crash at the system level. As a result of separating processing and
memory management from other routines, the processing speed is a straightforward
relationship between the stated CPU 202 capacity, the memory 206 capacity and the transfer
rate between and amongst the chip 600, the CPU 202 and the memory 206. This serves to
provide robustness in the computer architecture as well as faster interaction between the CPU
202 and memory 206 as the CPU 202 need not be diverted to process other miscellaneous
routines.

As there is no resident Operating System in the main memory 204, all of the memory
capacity is directly available for the user’s tasks at hand. The Memory Manager 630
performs the management of the available memory capacity and queues programs and data
awaiting processing externally and ensures that sufficient memory is always available to
support a process request. As a result, it is not necessary to continually swap data files,
program elements or address map data between storage and memory to continue satisfying a
processing requirement. This serves to operate the CPU 202 at optimal capacity because the
CPU 202 is not diverted to miscellaneous task of off-loading unnecessary files or program
elements to make space in the memory for the currently executing program or programs.

The Information Manager 640 maintains an inventory of permanent storage addresses
and transfers files into and out of memory on an “as required” and “on completion” basis.

Combined with the Memory Manager 630, feature described above results in high-speed data

- 15 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

access at both the processing and file management level and minimizes/optimizes the hard
disk memory utilization.

It should be noted that, because an entire level of software, that is the operating
system, is removed from the computer system, this section reduces the risk of the system
being open to virus attack. As a result of the direct physical connection between devices 650,
660, 670, the chip 600, CPU 202 and memory 206, files arriving for processing from
permanent storage devices are not exposed to other software interfaces when entering the
computer system and therefore avoid potential contamination. Crashes caused by
contaminated external files entering an I/O device 650, 660 from outside will occur at device
level rather than affecting the entire system. Because of the modularity of the Managers in
the chip used in a computer system without an operating system, security measures can be
taken at the Information Manager 640, for instance, so that contaminated external files or
viruses are filtered and does not expose the files or viruses to the entire system.

Another example of security precaution, when an external communication device (e.g.
modem or LAN card) is connected to the Device Manager 610, Data Security Inspection
(DSI) software embedded in the Device Manager 610 inspects the file. If the file is suspect,
the Device Manager 610 quarantines it in a retention area and flags the file problem to the
user. There is no exposure of the relevant permanent storage device to the file thus avoiding
system corruption.

FIG 16-25 illustrate the example operations performed by the Managers within the
chip 600 used in a computer system without an operating system. FIG. 16 and FIG. 17
illustrate a power-up sequence in accordance to one embodiment of the invention. On power-
up, at stage 172, the BIOS 1326 (see FIG. 13) is activated to invoke POST routine. In one
embodiment a commercially available BIOS such as those from Phoenix Technologies, Ltd.
is used, however, the bootstrap sequence is modified to bootstrap to the chip 600. POST
conducts a standard memory check and shadows the BIOS into the main memory 206. In
stage 174, the BIOS configures the various controllers and bootstrap to the Device Manager
610 in the chip 600. In the meantime, at stage 176, various smart devices such as those
described with respect to FIG. 14 and represented by I/O devices 650, 660 and permanent
storage devices 670 initiate self-test and configuration and if operational, the smart devices
enable an identification signal to indicate their availability. The Device Manager 610
recognizes the existence of each device 650, 660, 670. For devices 650, 660, 670 such as a

keyboard, mouse or video monitor, the signal is generated through the motherboard BIOS

-16 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

ROM 1326 or their built-in BIOS communicates directly to the chip 600. For other devices
650, 660, 670 recognition is achieved through electrical connectivity signalled by a signal
generator on the device,

At stage 178, the availability, capability and compatibility of each device 650, 660,
670 is enabled. Logical connectivity is based upon the finite state machine concept. Each
device 650, 660, 670 is assigned an address in memory that acts as a pointer to the device.

At stage 180, Information Manager 640 loads a file containing the recognized system
state on previous shut-down. This contains pointers towards the record fields for all available
programs and data files on each permanent storage device 670. At stage 182, the Information
Manager 640 passes control to the Process Manager 620 along with an instruction to load the
graphical user interface (GUI) from a predetermined fixed drive location. Process Manager
620 displays the GUI via the Device Manager 610 to the screen of the video monitor. The
Information Manager 640 icon is displayed on the screen along with icons representing data
or program files which the user had screen displayed prior to shut down. The chip 600 used
in a computer system without an operating system is now ready to recognize and act on user
requests or other inputs. An interrogation of the Information Manager 640 would reveal the
GUI, record field file and device record file resident in memory, which would indicate the
devices connected and their current status.

FIG. 18 and FIG. 19 illustrate an exemplary procedure for running program/software
applications. At stage 192, the user inputs this request typically via input device 650 such as
mouse and/or keyboard and their interface with Device Manager 610. At stage, 194, the
request is sent to Process Manager 620, which in combination with Memory Manager 630,
identifies the appropriate files from the register in the memory, which identifies if sufficient
memory 206 and CPU 202 resource is available, allocates it and requests the files from
Device Manager 610, at stage 196. At stage 198, Device Manager 610 directs the relevant
files from the device to memory. At stage 202, program file identification occurs between
the Process Manager 620 and the Memory Manager 630. At stage 204, the Memory Manager
630 keeps track of the memory management, allocation of memory used by the programs.
The program runs until it is complete or exceeds the resource allocated. Storage
requirements during the program run are coordinated between the Device Manager 610 and
the Memory Manager 630, at stage 206. In-process file request, queuing and delivery is
coordinated between the Process Manager 620 and the Memory Manager 630, stage 208. At

stage 212, if further user input is required, Process Manager 620 requests this of the user via

-17-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

the Device Manager 610 interface. The Information Manager 640 provides the user with a
picture of the remaining system resources if required, at stage 214,

FIG. 18 and FIG. 19 also illustrate an exemplary procedure of concurrent processing.
Inter-process communication and instruction, (e.g. Micrsoft Excel, a spread sheet program
that requests the Process Manager 620 to run Microsoft Powerpoint, a presentation program)
is handled in a similar manner. At stage 208, an inter-process request queue is created on a
permanent storage device 670 and these are then scheduled as input requests in the above
manner. As the management of program takes place outside of the CPU 202 and memory
206, the ability to continue to load and run more and more program is a straightforward
function of comparing their combined memory 202 and CPU 202 requirement with the
programs requirement. The Process Manager 620 and Memory Managers 630 conduct this
task. The Memory Manager 630 also provides the Device Manager 610 with the information
required to queue data on permanent storage prior to allocation of memory at the time of
processing, stage 206. In an operating systemless approach the criteria for subsequently
reclaiming the processor resource is pre-defined prior to its allocation to a particular
processing requirement. This requirement is either completed and the next process is loaded
or it exceeds its pre-allocated resource and is interrupted. Information Manager 640 provides
the user with a continuous status indication and allows advance recognition of potential
system overload. In addition, an inadvertent attempt to overload the system will simply be
met with a message indicating that the process cannot be performed. As the CPU 202 and
memory 206 are not engaged at this point, there is no danger of a system crash.

FIG. 20 and FIG. 21 illustrate an exemplary procedure for producing output (e.g.
Printing Information). At stage 222, the application (eg Microsoft Word) generates a print
file that is sent by Device Manager 610 directly to the “Queue station” application. This is
standard software operating on a first in first out (FIFO) principle. This application is either
resident on the hard disk managed directly by an printer controller via the Device Manager
610 connection or ideally, embedded in the printer controller itself. At stage 224, the first job
in the queue application is placed in a memory location reserved for print jobs on receipt of a
signal from an output device 660 such as a printer that a job is underway. When the printer
releases the first job with a signal to Device Manager 610, at stage 226, the next job is loaded
into the printer memory, at stage 228. In the event of a fault, the “live job” is simply released
from the printer memory. Any difficulties are confined to the printer and there is no danger

of a system crash. This same procedure is also of course applicable to a networked printer or

-18 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

other networked device with minimum modification. The queue application routes the data
to the IP address of the device through either the LAN connection or network card which
would have been identified at start-up. Again, any problems are confined to the particular
device and do not impact the CPU 202 or other programmes or files in memory 206.

FIG. 22 and FIG. 23 illustrate an exemplary procedure for managing files. At stage
232, via the GUI, the user interrogates Information Manager 640, which retains information
about files resident both on memory 206 and on permanent storage 670. Files contain two
elements, a descriptor field containing all relevant information about the file (e.g. whether it
is a data or programme file, or whether it is a read only or fully accessible file) and the actual
data field. Only the descriptor fields and not the actual data are stored in memory for the use
of Information Manager 640. These can be changed directly via Device Manager 610 for
secondary storage based files. As a consequence file security levels or type changes or
descriptions are directly altered without consuming CPU 202 resource and without accessing
the entire file and consuming memory 206 resource. At stage 234, a user requested file
transfer is effected following a user request (using e.g. a mouse) to Device Manager 610.
This simply passes the file from one storage device 670 to another, at stage 236, and advises
Information Manager 6400f the change in device associated with the file. No interaction with
the CPU 202 or memory 206 is required. For a user saving a file in use by an application (eg
an Excel file in use resident in memory), the file is sent using Memory Manager 630 via
Device Manager 610 to the relevant device similar to a normal output request. This process,
including any queuing requirement is dealt with in a manner similar to the printing process
above.

FIG. 24 and FIG. 25 illustrate in general combined Manager interfaces and interaction
of the pertinent Managers to perform various computer system operations. At function 1, a
user process request such as to retrieve program, data or file invokes the Device Manager
610. At function 2, output requests, such as print jobs or sending fax via a modem, causes the
Device Manager 610 to interact with the pertinent output device 660. A user request such as
a file transfer from the permanent storage device 670 invokes the Device Manager 610 to
access permanent storage device 670 and retrieve the file. At function 4 in conjunction with
function 5, a user request for information such as file information, first invokes the Device
Manager 610 that, in turn, determines the nature of the request and passes the request to the
Information Manager 640. The Information Manager 640 accesses the permanent storage

device that contains the file and retrieves the requested file information. The file information

-19-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

is passed to the Device Manager 610 that passes the information to the user via an output
device 660 such as a video monitor. Functions 6-12 pertain to program execution. A user
request to execute a program causes the Device Manager 610 to request the Process Manager
620 for a process execution, at function 6. At function 7, the Device Manager 610 interacts
with the Memory Manager 630 to load the program into memory 206. At functions 8 and 9,
the Device Manager 610 indicates to the Information Manager 640 that a program is to be
executed that causes the Information Manager 640 to gather process use and process capacity
information, and to gather memory 206 use and memory 202 capacity. At functions 10, the
Memory Manager 630 interacts with the Process Manager 620 to provide memory
requirements and memory space allocation, among others. At function 11; the Process
Manager 620 initiates the CPU 202 to begin execution of the program while continually
controlling and monitoring the CPU 202 execution cycles. In the meantime, the Memory
Manager 630 continually controls and monitors memory 206 usage and capacity, and
memory 206 allocation.

Thus, providing an firmware/hardware layer that eliminates the need for an operating
system and making minor modification to the computer inotherboard provides for a
revolutionary new interface at the hardware level between the user, the computer hardware
resource and the devices. It satisfies all user requirements traditionally handled by an
Operating System in a faster, cheaper, more robust and more straightforward fashion,
eliminating the need for an Operating System. The elimination of the Operating System also
relieves Device Manufacturers and Application providers from platform dependence, making
future development more straightforward. For instance, Device Manufacturers may produce
smart devices that contain a device microcontroller and embedded device drivers that
eliminate reliance of the operating system. Application providers may produce their own
APIs that optimally runs their software without concerns of the interface rules set by the
operating system. While various embodiments of the application have been described, it will
be apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible within the scope of the invention. Accordingly, the invention is
not to be restricted but should be read in light of the attached claims and their equivalents.

What is claimed is:

-20-

10

15

20

25

30

WO 02/059744 PCT/US02/02310

CLAIMS

1. A computer system that eliminates a need for an operating system comprising:
a central processing unit (CPU);
a main memory;
a further unit that includes
a first microcontroller and
a first memory containing a first set of instructions configured to cause the
microcontroller to manage CPU operations; and
a plurality of trace links connecting the further unit to the CPU and the main memory

to facilitate communication between the further unit, the CPU and the main memory,

2. The computer system as in claim 1, wherein the system further comprises:
at least one device, a trace link connecting the device to the further unit; and
the further unit further includes
a second microcontroller; and
a second memory containing a second set of instructions configured to cause

the second microcontroller to manage the device.

3. The computer system as in claim 2, further comp‘rising:
the further unit further includes
a third microcontroller; and
a third memory containing a third set of instructions configured to cause the

third microcontroller to manage memory operations.

4. The computer system as in claim 3, further comprising:
the further unit further includes
a fourth controller; and
a fourth memory containing a fourth set of instructions configured to cause the

fourth controller to manage data operations.

5. The computer system as in claim 4, wherein the plurality of microcontrollers in the

further units are connected together to communicate with each other.

-21 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

6. The computer system as in claim 5, further comprising:
the further unit includes

a cross-bar switch to connect the plurality of microcontrollers.

7. The computer system as in claim 2, further comprising:
the device includes
a fifth microcontroller; and
a fifth memory containing a fifth set of instructions configured to cause the
fifth microcontroller to control the device operations, the fifth microcontroller in

communication with at least the second microcontroller.

8. The computer system as in claim 7, further comprising:

the fifth set of instructions in the fifth memory further configured to cause the fifth
microcontroller to test the device and if the device is operational the fifth set of instructions is
configured to cause the fifth microcontroller to signal at least the second microcontroller to

indicate availability of the device.

9. The computer system as in claim 8, further comprising:
the fifth set of instructions in the fifth memory further configured to cause the fifth
microcontroller to signal at least the second microcontroller to indicate availability of the

device includes sending device identification and required resource data.

10. The computer system as in claim 9, further comprising;:
the second set of instructions in the second memory further configured to cause the
second microcontroller to receive the signal indicating availability of the device and

allocating available resources to the device.

11. An apparatus for managing computer operations comprising:
a first microcontroller; and
a first memory containing a first set of instructions configured to cause the

microcontroller to manage central processing unit (CPU) operations.

-2

10

15

20

25

30

WO 02/059744 PCT/US02/02310

12, The apparatus as in claim 11, wherein the apparatus further comprises:
a second microcontroller; and
a second memory containing a second set of instructions configured to cause the

second microcontroller to manage device operations.

13. The apparatus as in claim 12, further comprising:
a third microcontroller; and
a third memory containing a third set of instructions configured to cause the third

microcontroller to manage memory operations.
14. The apparatus as in claim 13, further comprising:
a fourth controller; and
a fourth memory containing a fourth set of instructions configured to cause the fourth

controller to manage data operations.

15. The apparatus as in claim 14, wherein the plurality of microcontrollers are connected

together to communicate with each other.

16. The apparatus as in claim 15, further comprising:

a cross-bar switch to connect the plurality of microcontrollers.

17. The apparatus as in claim 14, wherein the memory is a read only memory (ROM).

18. The apparatus as in claim 14, wherein the memory is an erasable programmable ROM
(EPROM).

19. The apparatus as in claim 14, wherein the memory is a Flash memory.

20. The apparatus as in claim 14, wherein the microcontrollers are digital signal
processors (DSPs).

21. The apparatus as in claim 15, wherein the apparatus is contained in a semiconductor
chip.

-23 -

10

15

20

25

30

WO 02/059744 PCT/US02/02310

22. The apparatus as in claim 12, further comprising:
a device including
a fifth microcontroller; and
a fifth memory containing a fifth set of instructions configured to cause the
fifth microcontroller to control the device operations, the fifth microcontroller in

communication with at least the second microcontroller.

23. The apparatus as in claim 22, further comprising:

the fifth set of instructions in the fifth memory further configured to cause the fifth
microcontroller to test the device and if the device is operational the fifth set of instructions is
configured to cause the fifth microcontroller to signal at least the second microcontroller to

indicate availability of the device.

24. The apparatus as in claim23, further comprising: .
the fifth set of instructions in the fifth memory further configured to cause the fifth
microcontroller to signal at least the second microcontroller to indicate availability of the

device includes sending device identification and required resource data.

25. The apparatus as in claim 24, further comprising:
the second set of instructions in the second memory further configured to cause the
second microcontroller to receive the signal indicating availability of the device and

allocating available resources to the device.

26. A device for use in a computer system that eliminates a need for an operating system
comprising:

device circuitry

a first microcontroller; and

a memory containing a set of instructions configured to cause the microcontroller to
control device circuitry, the instructions further configured to facilitate the microcontroller to
communicate with a second microcontroller that manages a central processing unit (CPU)

operation.

-4 -

WO 02/059744

1/16

APPLICATION
PROGRAMS
| N\—102

OPERATING
400
N SYSTEM

FIRMWARE _—300

HARDWARE 200

Fig. 1
(PRIOR ART)

PCT/US02/02310

PCT/US02/02310

WO 02/059744

2/16

(LHV HOIHd)

Z b4
2eT
NIAOW 1\ cre ez veT /
e oge . ZZ
g
_ "”".Fur — —_— J
S101S
NOISNVAX3 u [~ N
HITIOHINOD HITIOHINOD HITIOHLINOD HITIOHLNOD
N 0a4/3al AHOWAW ol 1dNHYIINI
802
\ﬁ\. 4
g _ _ _ — .
HITIOHLNOD YITIOHINOD WoY
O3aIA Ya Wvd S0 | Ndo
4 —— o A
vez e 90z 008 b RN
0zz-"| \

00¢

WO 02/059744 PCT/US02/02310

3/16

POWER ON / RESET /

INITIATE POST / CONFIGURE CONTROLLERS AND KNOWN DEVICES

304 Y
DETECT IPLs 306 BIOS
308 OPERATION

|
[
[
|
I
|
i
[
| \ Y
!
|
I
I
I
[

PLACE NON-IPLs IN WAIT STATE FOR INITIALIZATION BY O/S

\
310/ BOOTSTRAP O/S (KERNEL)

|
I
!
.
|
I
I

I

|

|

Y 314 |

READ RESOURCE REQUIREMENT OF EACH DEVICE |
!

I

:

I

]

|

|

|

|

|

! |

I

| CREATE LIST OF RESOURCE REQUIREMENTS OF DEVICES | KERNEL
| OPERATION
]
I
]
I
l
|
i
I
I
I

316
318 | ALLOCATE RESOURCES

Y
320™\] CREATE ALLOCATION MAP

/

|
]
|
]
|
|
]
|
!
LOAD DEVICE DRIVERS :

Fig. 3
(PRIOR ART)

WO 02/059744 PCT/US02/02310

4/16

400

DEVICE DRIVERS LAYER 404

KERNEL

408

LIBRARY

LAYER APl

406

Fig. 4
(PRIOR ART)

WO 02/059744

5/16

PCT/US02/02310

4 Ts00
APPLICATION
PROGRAMS [506
504
HARDWARE/FIRMWARE
HARDWARE
502
DEVICE =
DEVICE DRIVER
A
y
DEVICE
MICROCONTROLLER
! |
L \ [

Fig. 5 00

WO 02/059744

6/16

/ 600

PCT/US02/02310

CPU

202

206

\

MEMORY

650
oBnes | — DEVICE PROCESS
MANAGEMENT /| | MANAGEMENT
ROUTINE ROUTINE
A 620 A
DEVICES 64 624
\\ Y \ Y X
660 DSP N DSP
PERMANENT
STORAGE N 1 1
DEVICES 610 Y 4
INFORMATION | [™ MEMORY
670 MANAGEMENT MANAGEMENT
ROUTINE | [ROUTINE
7\ / 640 7y H
642 632
\ v 644 F \ v 634
DSP 630 DSP

Fig. 6

WO 02/059744

DEVICE
MANAGER

.

7/16

PCT/US02/02310

PROCESS
MANAGER

.

CROSS-BAR SWITCH

N

/ \ 750
INFORMATION MEMORY
MANAGER MANAGER
Fig. 7

DEVICE - PROCESS
MANAGER MANAGER

4 J

A A
INFORMATION MEMORY
MANAGER |~ MANAGER

Fig. 8

WO 02/059744

8/16

PCT/US02/02310

Fig. 10

600
650 f
INPUT
DEVICES ~—1.| DEWICE | .| PROCESS
MANAGER [* MANAGER
ouTPUT || / | 640 S 630
DEVICES 610 \ 620 /
k Y
660 INFORMATION | MEMORY
MANAGER [° MANAGER
PERMANENT
STORAGE
670 .
Fig. 9
600
s
DEVICE | | PROCESS || | opy
MANAGER MANAGER
T A
640 ' 630
60 620 y [/
INFORMATION || MEMORY
MANAGER MANAGER

WO 02/059744

9/16

o

PCT/US02/02310

DEVICE PROCESS
MANAGER MANAGER
60 \ Y /
INFORMATION MEMORY | .| _ RAM
MANAGER | | MANAGER [|
Fig. 11
DEVICE PROCESS
MANAGER MANAGER
]
/ 640 630
670
610 Y \ 620
PERMANENT|_ | | INFORMATION | MEMORY
STORAGE | || MANAGER MANAGER

Fig. 12

WO 02/059744 PCT/US02/02310

10/16
1300
PS2_KBMS FAN1 CFl
BOANPS28L o b [xpower
B —
[1 o |02
BOG_USB 1 U1 5"‘"3
. I: ' i
=
g z T [\l1328
L 5
Be< =B % —laleo| 1316
| 5)jE 5 552
8l [
=
— 22
’ gle| N1
13 @l 12 9 %
M MSEE
1307-435 2 L
g= |© = 3 o
Bogl_ — — 9
i . IDEY IDEZ FDDI
08| \ [AGPBUS SLOT |
AMR 1)
@ AMRCONN. | 1822 5.0 ve
612133 \ I g@r g
CIB e
- PCI BUS SLOT] . :
[aa)
B 4 cpix PCI BUS SLOT BAT N
@@ 5] /
= 1326
U2 PCI BUS SLOT -
cB
s || i)
PCI BUS SLOT @1
328" |°* it
POIBUSSIOT } °® El
ISA BUS SLOT | e

Fig. 13

WO 02/059744 PCT/US02/02310

11/16
| 1404
i /
DEVICE
DRIVER
r ouo2 | =
vy _/ CHIP USED IN A
DEVICE COMPUTER SYSTEM
MICRO WITHOUT AN OPERATING
CONTROLLER SYSTEM
\]
\\\ 1

1400 /
Fig. 14 o0

v/1500

102~ | DEVICE IDENTIFICATION a

REQUIRED RESOURCE DATA

Fig. 15

WO 02/059744 PCT/US02/02310

12/16

174
72 600
650 (620
{ s % 0 (| 202
I = 7) \

6
INPUT | C -
DEVICES |76 DEVICE ™ PROCESS J cpu
:g/ MANAGER | MANAGER ||
o A
OUTPUT 178
DEVICES /1“176 182 2@
K660
INFORMATION |, | MEMORY RAM
»~| MANAGER | MANAGER ‘%
STORAGE 180
180 \\ (/ 178
640 630
670
Fig. 16

172_~ DIRECT POWER SUPPLY TO CHIP BIOS
174~ DEVICE MANAGER ACTIVATION AND INITIATION OF RAM/ROM TESTS.
176— SMART HARDWARE RECOGNITION PROCESS.
~" HARDWARE LOCATION POINTERS AND SYSTEM STATE FILE LOAD INSTRUCTION.
8 DEVICE POINTER ALLOCATION AND SYSTEM STATE FILE LOAD.
180 AVAILABLE FILE/DEVICE INFORMATION.
PASS OF CONTROL TO PROCESS MANAGER WITH GUI LOAD INSTRUCTION.
182\‘E GUIPROGRAM LOAD
GUIPROGRAM DELIVERY

Fig. 17

WO 02/059744

13/16

650 600 620
610 v/
\ 192) 19)4 (

PCT/US02/02310

202
INPUT / . C 4 >)
DEVICES |2u DEVICE op| PROCESS |_ cPU
/// MANAGER |« MANAGER [*
OUTPUT /4 X X t)
DEVICE- 214\J 206,198 196~{208~{202~ 206
SCREEN | , AR
N\
660 INFORMATION | MEMORY | | | gam
214 MANAGER MANAGER ‘\
STORAGE 21
\\ (/ 204
640 630
670 .
Fig. 18
192_~ PROGRAM REQUEST.
194~ PROCESS REQUEST

196 MEMORY REQUIREMENT EXCHANGE,
198_— PROGRAM DISPATCHING, INITIATING, MONITORNG.
0o~ PROGRAM FILE IDENTIFICATION,
20— MEMORY MANAGEMENT, ALLOCATION AND TRACKING.
706~ STORAGE INFORMATION.
IN-PROCESS FILE REQUEST, QUEUING AND DELIVERY
208—" _ FURTHER INPUT REQUEST.
FURTHER INPUT.
14—~ FILELOCATION AND INFORMATION EXCHANGE.

Fig. 19

WO 02/059744 PCT/US02/02310

14/16

600
004 228 (2&’2

RGEr 1] oevice PROCESS cPU
DEVICE <\ MANAGER MANAGER
228 (640) 630 206
INFORMATION MEMORY | RAM
MANAGER MANAGER [
Fig. 20
222 _~ FLE SUPPLED FOR OUTPUT,
994~ OUTPUT INITIATION REQUEST.
226~ READY / WAIT SIGNAL,
298 _~ JOB LOAD {IF READY SIGNAL RECEIVED), QUEUE LOAD (IF WAIT SIGNAL).

Fig. 21

WO 02/059744 PCT/US02/02310

15/16

INPUT 600
DEVICE \</232 202
660\ 234 A
| DEVICE \610 PROCESS CPU
MANAGER MANAGER
SCREEN
6 7 232 | 630
670 23 5 206
B / ! \-234 620
STORAGE
A INFORMATION | _ga0| MEMORY RAM
MANAGER |/ MANAGER
670\
STORAGE 236
B
Fig. 22

2341

232 _~ FLE INFORMATION OR TRANSFER REQUEST.

FILE INFORMATION.
FILE TRANSFER INSTRUCTION.

236_ FILE TRANSFER STORAGE ATO B

Fig. 23

WO 02/059744 PCT/US02/02310

16/16
INPUT 600
DEVICES \</1 202
660\ o ™ 6 \
S DEVICE | N1 PROCESS Ll cpy
OUTPUT MANAGER MANAGER N .
DEVICE /4 7 L
/ 1 640 R ‘ 630 206
670 3 10~
\ / 610 "—\5\ ' 620 Y /
8
STORAGE | INFORMATION |, | MEMORY | | _ RAM
T MANAGER S MANAGER [T IS
4 9 2
Fig. 24

1. PROCESS REQUESTS (PROGRAM, DATA OR FILE INFORMATION).
2. OUTPUT REQUESTS (e.g. QUEUING) OR QUTPUT SUPPLY.

3. FILE TRANSFER REQUEST OR ACTUAL FILE TRANSFER.

4. FILE RECORD INTERROGATION.

5. FILE INFORMATION REQUESTS/EXCHANGE.

6. PROCESS INPUT/OUTPUT REQUESTS AND EXCHANGE.

7. FILE REQUESTS AND EXCHANGE.

8. PROCESS USE AND PROCESS CAPACITY INFORMATION.

9. MEMORY USE AND MEMORY CAPACITY INFORMATION.

10. PROCESS MEMORY REQUIREMENTS AND CAPACITY EXCHANGE AND MOMORY REGISTER ALLOCATION.
T1. PROGRAM DISPATCHING, INITIATING AND MONITORING.

12. MEMORY ALLOCATION, MANAGEMENT AND TRACKING.

Fig. 25

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/02310

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 9/06, 13/10, 13/12
USCL ¢ 709/321, 327; 710/10, 17, 19; 713/1, 2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 709/321, 327; 710/10, 17, 19; 713/1, 2

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

BRS

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 6,154,838 A (LE et al) 28 November 2000 (28.11.2000), col. 1-3. 1-26
X US 5,878,276 A (AEBLI et al) 02 March 1999 (02.03.1999), Fig. 5, col. 11, lines 47-58. 1, 11-15, 17-22, 26
Y 210, 16, 2325
Y,P US 6,189,049 B1 (KLEIN) 13 February 2001 (13.02.2001), col. 1-3. 23-25
AP US 6,189,050 B1 (SAKARDA) 13 February 2001 (13.02.2001), col. 1-3. 1-26

[:] Further documents are listed in the continuation of Box C.-

]

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date
“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as

specified)

“O™ document referring to an oral disclosure, use, exhibition or other means

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“Xn document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y" document of particular refevance; the claimed invention cannot be
considered to involve an inventive step when the docurnent is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

“P" document published prior to the international filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of miil%gg jﬂﬁn{ﬁ%@al search report
23 May 2002 (23.05.2002)
Name and mailing address of the ISA/US Authorlzed_(;{ﬁcer
Commissioner of Patents and Trademarks “

Kenneth S KIM woa g ”/i ﬁ%@:ﬂa

Telephone No. (7€3) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

