The invention provides an oligonucleotide comprising an inosine, and/or a nucleotide containing a base able to form a wobble base pair or a functional equivalent thereof, wherein the oligonucleotide, or a functional equivalent thereof, comprises a sequence which is complementary to at least part of a dystrophin pre-m RNA exon or at least part of a non-exon region of a dystrophin pre-m RNA said part being a contiguous stretch comprising at least 8 nucleotides. The invention further provides the use of said oligonucleotide for preventing or treating DMD or BMD.
Fig 1
Fig 2

<table>
<thead>
<tr>
<th>AON ID</th>
<th>Sequence (5' – 3')</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS220</td>
<td>UUUGGCCGCUGCCCAUGCCAUCUG</td>
<td>76</td>
</tr>
<tr>
<td>PS305</td>
<td>UUUGCCICUGCCCAUGCCAUCUG</td>
<td>557</td>
</tr>
<tr>
<td>PS309</td>
<td>UCAAUGUCUGACAACAGUUUGCCCI</td>
<td>based on 115</td>
</tr>
<tr>
<td>PS310</td>
<td>CAAUGUCUGACAACAGUUUGCCIC</td>
<td>based on 116</td>
</tr>
<tr>
<td>PS311</td>
<td>AAUGUUCUGACAACAGUUUGCCICU</td>
<td>based on 117</td>
</tr>
<tr>
<td>PS312</td>
<td>AUGUUCUGACAACAGUUUGCCICU</td>
<td>based on 118</td>
</tr>
<tr>
<td>PS313</td>
<td>UGUUCUGACAACAGUUUGCCICUGC</td>
<td>based on 119</td>
</tr>
<tr>
<td>PS314</td>
<td>GUUCUGACAACAGUUUGCCICUGCC</td>
<td>based on 120</td>
</tr>
<tr>
<td>PS315</td>
<td>UUCUGACAAACAGUUUGCCICUGGCC</td>
<td>based on 121</td>
</tr>
<tr>
<td>PS316</td>
<td>UCUGACAACAGUUUGCCICUGCCCA</td>
<td>based on 122</td>
</tr>
</tbody>
</table>
OLIGONUCLEOTIDE COMPRISING AN INOSINE FOR TREATING DMD

FIELD OF THE INVENTION

[0001] The invention relates to the fields of molecular biology and medicine.

BACKGROUND OF THE INVENTION

[0002] A muscle disorder is a disease that usually has a significant impact on the life of an individual. A muscle disorder can have either a genetic cause or a non-genetic cause. An important group of muscle diseases with a genetic cause are Becker Muscular Dystrophy (BMD) and Duchenne Muscular Dystrophy (DMD). These disorders are caused by defects in a gene for a muscle protein.

[0003] Becker Muscular Dystrophy and Duchenne Muscular Dystrophy are genetic muscular dystrophies with a relatively high incidence. In both Duchenne and Becker muscular dystrophy the muscle protein dystrophin is affected. In Duchenne dystrophy is absent, whereas in Becker some dystrophin is present but its production is most often not sufficient and/or the dystrophin present is abnormally formed. Both diseases are associated with recessive X-linked inheritance. DMD results from a frameshift mutation in the DMD gene. The frameshift in the DMD gene’s transcript (mRNA) results in the production of a truncated non-functional dystrophin protein, resulting in progressive muscle wasting and weakness. BMD occurs as a mutation does not cause a frame-shift in the DMD transcript (mRNA). As in BMD some partly to largely functional dystrophin is present in contrast to DMD where dystrophin is absent, BMD has generally less severe symptoms than DMD. The onset of DMD is earlier than BMD. DMD usually manifests itself in early childhood, in BMD in the teens or in early adulthood. The progression of BMD is slower and less predictable than DMD. Patients with BMD can survive into mid to late adulthood. Patients with DMD rarely survive beyond their thirties.

[0004] Dystrophin plays an important structural role in the muscle fiber, connecting the extracellular matrix and the cytoskeleton. The N-terminal region binds actin, whereas the C-terminal end is part of the dystrophin glycoprotein complex (DGC), which spans the sarcolemma. In the absence of dystrophin, mechanical stress leads to sarcolemmal ruptures, causing an uncontrolled influx of calcium into the muscle fiber interior, thereby triggering calcium-activated proteases and fiber necrosis.

[0005] For most genetic muscular dystrophies no clinically applicable and effective therapies are currently available. Exon skipping techniques are nowadays explored in order to combat genetic muscular dystrophies. Promising results have recently been reported by us and others on a genetic therapy aimed at restoring the reading frame of the dystrophin pre-mRNA in cells from the mdx mouse, the GRMD dog (reference 59) and DMD patients1-11. By the targeted skipping of a specific exon, a DMD phenotype (lacking dystrophin) is converted into a milder BMD phenotype (partly to largely functional dystrophin). The skipping of an exon is preferably induced by the binding of antisense oligoribonucleotides (AONs) targeting either one or both of the splice sites, or exon-internal sequences. Since an exon will only be included in the mRNA when both the splice sites are recognised by the spliceosome complex, splice sites have been considered obvious targets for AONs. More preferably, one or more AONs are used which are specific for at least part of one or more exonic sequences involved in correct splicing of the exon. Using exon-internal AONs specific for an exon 46 sequence, we were previously able to modulate the splicing pattern in cultured myotubes from two different DMD patients with an exon 45 deletion11. Following AON treatment, exon 46 was skipped, which resulted in a restored reading frame and the induction of dystrophin synthesis in at least 75% of the cells. We have recently shown that exon skipping can also efficiently be induced in human control and patient muscle cells for 39 different DMD exons using exon-internal AONs11-15.

[0006] Hence, exon skipping techniques applied on the dystrophin gene result in the generation of at least partially functional—albeit shorter—dystrophin protein in DMD patients. Since DMD is caused by a dysfunctional dystrophin protein, it would be expected that the symptoms of DMD are sufficiently alleviated once a DMD patient has been provided with functional dystrophin protein. However, the present invention provides the insight that, even though exon skipping techniques are capable of inducing dystrophin synthesis, the oligonucleotide used for exon skipping technique can be improved any further by incorporating an inosine and/or a nucleotide containing a base able to form a wobble base pair in said oligonucleotide.

DESCRIPTION OF THE INVENTION

Oligonucleotide

[0007] In a first aspect, there is provided an oligonucleotide comprising an inosine and/or a nucleotide containing a base able to form a wobble base pair or a functional equivalent thereof, wherein the oligonucleotide, or a functional equivalent thereof, comprises a sequence which is complementary to at least part of a dystrophin pre-mRNA exon or at least part of a non-exon region of a dystrophin pre-mRNA said part being a contiguous stretch comprising at least 8 nucleotides.

[0008] The use of an inosine and/or a nucleotide containing a base able to form a wobble base pair in an oligonucleotide of the invention is very attractive as explained below. Inosine for example is a known modified base which can pair with three bases: uracil, adenine, and cytosine. Inosine is a nucleoside that is formed when hypoxanthine is attached to a ribose ring (also known as a ribofuranose) via a β-N9-glycosidic bond. Inosine is commonly found in tRNAs and is essential for proper translation of the genetic code in wobble base pairs. A wobble base pair is a G-U and I-U/A-I/C pair fundamental in RNA secondary structure. Its thermodynamic stability is comparable to that of the Watson-Crick base pair. Wobble base pairs are critical for the proper translation of the genetic code. The genetic code makes up for disparities in the number of amino acids (20) for triplet codons (64), by using modified base pairs in the first base of the anti-codon. Similarly, when designing primers for polymerase chain reaction, inosine is useful in that it will indiscriminately pair with adenine, thymine, or cytosine. A first advantage of using such a base allows one to design a primer that spans a single nucleotide polymorphism (SNP), without worry that the polymorphism will disrupt the primer’s annealing efficiency. Therefore in the invention, the use of such a base allows to design an oligonucleotide that may be used for an individual having a SNP within the dystrophin pre-mRNA stretch which is targeted by an oligonucleotide of the invention. A second advantage of using an inosine and/or a base able to form a
A fifth advantage of using an inosine and/or a base able to form a wobble base pair in an oligonucleotide of the invention is to allow to design an oligonucleotide with improved RNA binding kinetics and/or thermodynamic properties. The RNA binding kinetics and/or thermodynamic properties are at least in part determined by the melting temperature of an oligonucleotide (Tm; calculated with the oligonucleotide properties calculator (http://www.unc.edu/~cail/biotool/oligo/index.html) for single stranded RNA using the basic Tm and the nearest neighbour model), and/or the free energy of the AON-target exon complex (using RNA structure version 4.5). If a Tm is too high, the oligonucleotide is expected to be less specific. An acceptable Tm and free energy depend on the sequence of the oligonucleotide. Therefore, it is difficult to give preferred ranges for each of these parameters. An acceptable Tm may be ranged between 35 and 65°C and an acceptable free energy may be ranged between 15 and 45 kcal/mol.

The skilled person may therefore first choose an oligonucleotide as a potential therapeutic compound. In a second step, he may use the invention to further optimise said oligonucleotide by decreasing its immunogenicity and/or avoiding aggregation and/or quadruplex formation and/or by optimizing its Tm and/or free energy of the AON-target complex. He may try to introduce at least one inosine and/or a base able to form a wobble base pair in said oligonucleotide at a suitable position and assess how the immunogenicity and/or aggregation and/or quadruplex formation and/or Tm and/or free energy of the AON-target complex have been altered by the presence of said inosine and/or a base able to form a wobble base pair. If the alteration does not provide the desired alteration or decrease of immunogenicity and/or aggregation and/or quadruplex formation and/or its Tm and/or free energy of the AON-target complex he may choose to introduce a further inosine and/or a base able to form a wobble base pair in said oligonucleotide and/or to introduce a given inosine and/or a base able to form a wobble base pair at a distinct suitable position within said oligonucleotide.

An oligonucleotide comprising an inosine and/or a base able to form a wobble base pair may be defined as an oligonucleotide wherein at least one nucleotide has been substituted with an inosine and/or a base able to form a wobble base pair. The skilled person knows how to test whether a nucleotide contains a base able to form a wobble base pair. Since for example inosine can form a base pair with uracil, adenine, and/or cytosine, it means that at least one nucleotide able to form a base pair with uracil, adenine and/or cytosine has been substituted with inosine. However, in order to safeguard specificity, the inosine containing oligonucleotide preferably comprises the substitution of at least one, two, three, four nucleotide(s) able to form a base pair with uracil or adenine or cytosine as long as an acceptable level of a functional activity of said oligonucleotide is retained as defined later herein.

An oligonucleotide comprising an inosine and/or a base able to form a wobble base pair is preferably an oligonucleotide, which is still able to exhibit an acceptable level of a functional activity of a corresponding oligonucleotide not comprising an inosine and/or a base able to form a wobble base pair. A functional activity of said oligonucleotide is preferably to provide an individual with a functional dystrophin protein and/or mRNA and/or at least in part decreasing the production of an aberrant dystrophin protein and/or mRNA. Each of these features are later defined herein. An
acceptable level of such a functional activity is preferably at least 50%, 60%, 70%, 80%, 90%, 95% or 100% of the functional activity of the corresponding oligonucleotide which does not comprise an inosine and/or a base able to form a wobble base pair. Such functional activity may be as measured in a muscular tissue or in a muscular cell of an individual or in vitro in a cell by comparison to the functional activity of a corresponding oligonucleotide not comprising an inosine and/or a base able to form a wobble base pair. The assessment of the functionality may be carried out at the mRNA level, preferably using RT-PCR. The assessment of the functionality may be carried out at the protein level, preferably using western blot analysis or immunofluorescence analysis of cross-sections.

Within the context of the invention, an inosine and/or a base able to form a wobble base pair as present in an oligonucleotide is present in a part of said oligonucleotide which is complementary to at least part of a dystrophin pre-mRNA exon or at least part of a non-exon region of a dystrophin pre-mRNA said part being a contiguous stretch comprising at least 8 nucleotides. Therefore, in a preferred embodiment, an oligonucleotide comprising an inosine and/or a nucleotide containing a base able to form a wobble base pair or a functional equivalent thereof, wherein the oligonucleotide, or a functional equivalent thereof, comprises a sequence which is complementary to at least part of a dystrophin pre-mRNA exon or at least part of a non-exon region of a dystrophin pre-mRNA said part being a contiguous stretch comprising at least 8 nucleotides and wherein said inosine and/or a nucleotide containing a base able is present within the oligonucleotide sequence which is complementary to at least part of a dystrophin pre-mRNA as defined in previous sentence.

However, as later defined herein such inosine and/or a base able to form a wobble base pair may also be present in a linking moiety present in an oligonucleotide of the invention. Preferred linking moieties are later defined herein.

In a preferred embodiment, such oligonucleotide is preferably a medicament. More preferably, said medicament is for preventing or treating Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in an individual or a patient. As defined herein a DMD pre-mRNA preferably means the pre-mRNA of a DMD gene of a DMD or BMD patient. A patient is preferably intended to mean a patient having DMD or BMD or a patient susceptible to develop DMD or BMD due to his or her genetic background. In the case of a DMD patient, an oligonucleotide used will preferably correct at least one of the DMD mutations as present in the DMD gene of said patient and therefore will preferably create a dystrophin that will look like a BMD dystrophin: said dystrophin will preferably be a functional dystrophin as later defined herein.

In the case of a BMD patient, an oligonucleotide as used will preferably correct at least one of the BMD mutations as present in the BMD gene of said patient and therefore will preferably create a, or more of a, dystrophin, which will be more functional than the dystrophin which was originally present in said BMD patient. Even more preferably, said medicament provides an individual with a functional or more (of) a functional dystrophin protein and/or mRNA and/or at least in part decreases the production of an aberrant dystrophin protein and/or mRNA.

Preferably, a method of the invention by inducing and/or promoting skipping of at least one exon of the DMD pre-mRNA as identified herein in one or more cells, preferably muscle cells of a patient, provides said patient with an increased production of a more of a functional dystrophin protein and/or mRNA and/or decreases the production of an aberrant or less functional dystrophin protein and/or mRNA in said patient.

Providing a patient with a more functional dystrophin protein and/or mRNA and/or decreasing the production of an aberrant dystrophin protein and/or mRNA in said patient is typically applied in a DMD patient. Increasing the production of a more functional or functional dystrophin and/or mRNA is typically applied in a BMD patient.

A preferred method is a method, wherein a patient or one or more cells of said patient is provided with an increased production of a more functional or functional dystrophin protein and/or mRNA and/or wherein the production of an aberrant dystrophin protein and/or mRNA in said patient is decreased, wherein the level of said aberrant or more functional dystrophin protein and/or mRNA is assessed by comparison to the level of said dystrophin and/or mRNA in said patient at the onset of the method.

As defined herein, a functional dystrophin is preferably a wild type dystrophin corresponding to a protein having the amino acid sequence as identified in SEQ ID NO: 1. A functional dystrophin is preferably a dystrophin, which has an actin binding domain in its N terminal part (first 240 amino acids at the N terminus), a cystein-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) each of these domains being present in a wild type dystrophin as known to the skilled person. The amino acids indicated herein correspond to amino acids of the wild type dystrophin being represented by SEQ ID NO: 1. In another embodiment, a functional dystrophin is a dystrophin, which exhibits to some extent an activity of a wild type dystrophin. “At least to some extent” preferably means at least 50%, 60%, 70%, 80%, 90%, 95% or 100% of a corresponding activity of a wild type functional dystrophin. In this context, an activity of a wild type dystrophin is preferably binding to actin and to the dystrophin-associated glycoprotein complex (DGC)56. Binding of dystrophin to actin and to the DGC complex may be visualized by either co-immunoprecipitation using total protein extracts or immunofluorescence analysis of cross-sections, from a biopsy of a muscle suspected to be dystrophic, as known to the skilled person.

Individuals suffering from Duchenne muscular dystrophy typically have a mutation in the gene encoding dystrophin that prevents synthesis of the complete protein, i.e a premature stop prevents the synthesis of the C-terminus of the protein. In Becker muscular dystrophy the dystrophin gene also comprises a mutation compared to the wild type but the mutation does typically not include a premature stop and the C-terminus of the protein is typically synthesized. As a result a functional dystrophin protein is synthesized that has at least the same activity in kind as a wild type protein, although not necessarily the same amount of activity. In a preferred embodiment, a functional dystrophin protein means an in frame dystrophin gene. The genome of a BMD individual typically encodes a dystrophin protein comprising the N terminal part (first 240 amino acids at the N terminus), a cysteine-rich domain (amino acid 3361 till 3685) and a C terminal domain (last 325 amino acids at the C terminus) but its central rod shaped domain may be shorter than the one of a wild type dystrophin56. Exon—skipping for the treatment of DMD is preferably but not exclusively directed to overcome a prema-
ture stop in the pre-mRNA by skipping an exon in the rod-domain shaped domain to correct the reading frame and allow synthesis of remainder of the dystrophin protein including the C-terminus, albeit that the protein is somewhat smaller as a result of a smaller rod domain. In a preferred embodiment, an individual having DMD and being treated using an oligonucleotide as defined herein will be provided a dystrophin, which exhibits at least to some extent an activity of a wild type dystrophin. More preferably, it said individual is a Duchenne patient or is suspected to be a Duchenne patient, a functional dystrophin is a dystrophin of an individual having BMD: preferably said dystrophin is able to interact with both actin and the DGC, but its central rod shaped domain may be shorter than the one of a wild type dystrophin (Aartsma-Rus et al (2006, ref 56). The central rod domain of wild type dystrophin comprises 24 spectrin-like repeats 56. For example, a central rod shaped domain of a dystrophin as provided herein may comprise 5 to 23, 10 to 22 or 12 to 18 spectrin-like repeats as long as it can bind to actin and to DGC. Decreasing the production of an aberrant dystrophin in said patient or in a cell of said patient may be assessed at the mRNA level and preferably means that 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5% or less of the initial amount of aberrant dystrophin mRNA, is still detectable by RT PCR. An aberrant dystrophin mRNA or protein is also referred to herein as a non-functional or less to non-functional or semi-functional dystrophin mRNA or protein. A non-functional pre-mRNA dystrophin is preferably leads to an out of frame dystrophin protein, which means that no dystrophin protein will be produced and/or detected. A non functional dystrophin protein is preferably a dystrophin protein which is not able to bind actin and/or members of the DGC protein complex. A non-functional dystrophin protein or dystrophin mRNA does typically not have, or does not encode a dystrophin protein with an intact C-terminus of the protein.

Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the mRNA level (by RT-PCR analysis) and preferably means that a detectable amount of a functional or in frame dystrophin mRNA is detectable by RT PCR. In another embodiment, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin mRNA is a functional or in frame dystrophin mRNA.

Increasing the production of a functional dystrophin in said patient or in a cell of said patient may be assessed at the protein level (by immunofluorescence and western blot analyses) and preferably means that a detectable amount of a functional dystrophin protein is detectable by immunofluorescence or western blot analysis. In another embodiment, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the detectable dystrophin protein is a functional dystrophin protein.

An increase or a decrease is preferably assessed in a muscular tissue or in a muscular cell of an individual or a patient by comparison to the amount present in said individual or patient before treatment with said molecule or composition of the invention. Alternatively, the comparison can be made with a muscular tissue or cell of said individual or patient, which has not yet been treated with said oligonucleotide or composition in case the treatment is local.

In a preferred method, one or more symptom(s) from a DMD or a BMD patient is/are alleviated and/or one or more characteristic(s) of a muscle cell or tissue from a DMD or a BMD patient is/are alleviated using a molecule or a composition of the invention. Such symptoms may be assessed on the patient self. Such characteristics may be assessed at the cellular, tissue level of a given patient. An alleviation of one or more characteristics may be assessed by any of the following assays: prolongation of time to loss of walking, improvement of muscle strength, improvement of the ability to lift weight, improvement of the time taken to rise from the floor, improvement in the nine-meter walking time, improvement in the time taken for four-stairs climbing, improvement of the leg function grade, improvement of the pulmonary function, improvement of cardiac function, improvement of the quality of life. Each of these symptoms is known to the skilled person. As an example, the publication of Manzur et al (2008, ref 58) gives an extensive explanation of each one of these symptoms. For each of these symptoms, as soon as a detectable improvement or prolongation of parameter measured in an assay has been found, it will preferably mean that one or more symptoms of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy has been alleviated in an individual using a molecule or composition of the invention. Detectable improvement or prolongation is preferably a statistically significant improvement or prolongation as described in Hodggets et al (2006, ref 57). Alternatively, the alleviation of one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy may be assessed by measuring an improvement of a muscle fiber function, integrity and/or survival as later defined herein.

An oligonucleotide as used herein preferably comprises an antisense oligonucleotide or antisense oligoribonucleotide. In a preferred embodiment an exon skipping technique is applied. Exon skipping interferes with the natural splicing processes occurring within a eukaryotic cell. In higher eukaryotes the genetic information for proteins in the DNA of the cell is encoded in exons which are separated from each other by intronic sequences. These introns are in some cases very long. The transcription machinery of eukaryotes generates a pre-mRNA which contains both exons and introns, while the splicing machinery, often already during the production of the pre-mRNA, generates the actual coding region for the protein by splicing together the exons present in the pre-mRNA.

Exon-skipping results in mature mRNA that lacks at least one skipped exon. Thus, when said exon codes for amino acids, exon skipping leads to the expression of an altered product. Technology for exon-skipping is currently directed towards the use of antisense oligonucleotides (AONs). Much of this work is done in the mdx mouse model for Duchenne muscular dystrophy. The mdx mouse carries a nonsense mutation in exon 23. Despite the mdx mutation, which should preclude the synthesis of a functional dystrophin protein, rare, naturally occurring dystrophin positive fibers have been
observed in mdx muscle tissue. These dystrophin-positive fibers are thought to have arisen from an apparently naturally occurring exon-skipping mechanism, either due to somatic mutations or through alternative splicing. AONs directed to, respectively, the 3' and/or 5' splice sites of introns 22 and 23 in dystrophin pre-mRNA, have been shown to interfere with factors normally involved in removal of intron 23 so that also exon 23 was removed from the mRNA.\(^5\), 6, 38, 40.

[0034] By the targeted skipping of a specific exon, a DMD phenotype is converted into a milder BMD phenotype. The skipping of an exon is preferably induced by the binding of AONs targeting either one or both of the splice sites, or exon-internal sequences. An oligonucleotide directed toward an exon internal sequence typically exhibits no overlap with non-exon sequences. It preferably does not overlap with the splice sites at least not insofar, as these are present in the intron. An oligonucleotide directed toward an exon internal sequence preferably does not contain a sequence complementary to an adjacent intron. Further provided is thus an oligonucleotide according to the invention, wherein said oligonucleotide, or a functional equivalent thereof, is for inhibiting inclusion of an exon of a dystrophin pre-mRNA into mRNA produced from splicing of said pre-mRNA. An exon skipping technique is preferably applied such that the absence of an exon from mRNA produced from dystrophin pre-mRNA generates a coding region for a more functional—albeit shorter—dystrophin protein. In this context, inhibiting inclusion of an exon preferably means that the detection of the original, aberrant dystrophin mRNA and/or protein is decreased as earlier defined herein.

[0035] Since an exon of a dystrophin pre-mRNA will only be included into the resulting mRNA when both the splice sites are recognised by the spliceosome complex, splice sites have been obvious targets for AONs. One embodiment therefore provides an oligonucleotide, or a functional equivalent thereof, comprising a sequence which is complementary to a non-exon region of a dystrophin pre-mRNA. In one embodiment an AON is used which is solely complementary to a non-exon region of a dystrophin pre-mRNA. This is however not necessary: it is also possible to use an AON which comprises an intron-specific sequence as well as exon-specific sequence. Such AON comprises a sequence which is complementary to a non-exon region of a dystrophin pre-mRNA, as well as a sequence which is complementary to an exon region of a dystrophin pre-mRNA. Of course, an AON is not necessarily complementary to the entire sequence of a dystrophin exon or intron. AONs, which are complementary to a part of such exon or intron are preferred. An AON is preferably complementary to at least part of a dystrophin exon and/or intron, said part having at least 8, 10, 13, 15, 20 nucleotides.

[0036] Splicing of a dystrophin pre-mRNA occurs via two sequential transaternification reactions. First, the 2'OH of a specific branch-point nucleotide within the intron that is defined during spliceosome assembly performs a nucleophilic attack on the first nucleotide of the intron at the 5' splice site forming the lariat intermediate. Second, the 3'OH of the released 5' exon then performs a nucleophilic attack at the last nucleotide of the intron at the 3' splice site thus joining the exons and releasing the intron lariat. The branch point and splice sites of an intron are thus involved in splicing event. Hence, an oligonucleotide comprising a sequence, which is complementary to such branch point and/or splice site is preferably used for exon skipping. Further provided is therefore an oligonucleotide, or a functional equivalent thereof, which comprises a sequence which is complementary to a splice site and/or branch point of a dystrophin pre-mRNA.

[0037] Since splice sites contain consensus sequences, the use of an oligonucleotide or a functional equivalent thereof (herein also called an AON) comprising a sequence which is complementary of a splice site involves the risk of promiscuous hybridization. Hybridization of AONs to other splice sites than the sites of the exon to be skipped could easily interfere with the accuracy of the splicing process. To overcome these and other potential problems related to the use of AONs which are complementary to an intron sequence, one preferred embodiment provides an oligonucleotide, or a functional equivalent thereof, comprising a sequence which is complementary to a dystrophin pre-mRNA exon. Preferably, said AON is capable of specifically inhibiting an exon inclusion signal of at least one exon in said dystrophin pre-mRNA. Interfering with an exon inclusion signal (EIS) has the advantage that such elements are located within the exon. By providing an AON for the interior of the exon to be skipped, it is possible to interfere with the exon inclusion signal thereby effectively masking the exon from the splicing apparatus. The failure of the splicing apparatus to recognize the exon to be skipped thus leads to exclusion of the exon from the final mRNA. This embodiment does not interfere directly with the enzymatic process of the splicing machinery (the joining of the exons). It is thought that this allows the method to be more specific and/or reliable. It is thought that an EIS is a particular structure of an exon that allows splice acceptor and donor to assume a particular spatial conformation. In this concept, it is the particular spatial conformation that enables the splicing machinery to recognize the exon. However, the invention is certainly not limited to this model. In a preferred embodiment, use is made of an oligonucleotide, which is capable of binding to an exon and is capable of inhibiting an EIS. An AON may specifically contact said exon at any point and still be able to specifically inhibit said EIS.

[0038] Within the context of the invention, a functional equivalent of an oligonucleotide preferably means an oligonucleotide as defined herein wherein one or more nucleotides have been substituted and wherein an activity of said functional equivalent is retained to at least some extent. Preferably, an activity of said functional equivalent is providing a functional dystrophin protein. Said activity of said functional equivalent is therefore preferably assessed by quantifying the amount of a functional dystrophin protein or by quantifying the amount of a functional dystrophin mRNA. A functional dystrophin protein (or a functional dystrophin mRNA) is herein preferably defined as being a dystrophin protein (or a dystrophin protein encoded by said mRNA) able to bind actin and members of the DGC protein. The assessment of said activity of an oligonucleotide is preferably done by RT-PCR (m-RNA) or by immunofluorescence or Western blot analyses (protein). Said activity is preferably retained at least some extent when it represents at least 50%, or at least 60%, or at least 70% or at least 80% or at least 90% or at least 95% or more of corresponding activity of said oligonucleotide the functional equivalent derives from. Such activity may be measured in a muscular tissue or in a muscular cell of an individual or in vitro in a cell by comparison to an activity of a corresponding oligonucleotide of said oligonucleotide the functional equivalent derives from. Throughout this application, when the word oligonucleotide is used it may be replaced by a functional equivalent thereof as defined herein.
Hence, an oligonucleotide, or a functional equivalent thereof, comprising or consisting of a sequence which is complementary to a dystrophin pre-mRNA exon provides good DMD therapeutic results. In one preferred embodiment an oligonucleotide, or a functional equivalent thereof, is used which comprises or consists of a sequence which is complementary to at least part of either dystrophin pre-mRNA exons 2 to 75 said part having or comprising at least 13 nucleotides. However, said part may also have at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides. A part of dystrophin pre-mRNA to which an oligonucleotide is complementary may also be called a contiguous stretch of dystrophin pre-mRNA.

Most preferably an AON is used which comprises or consists of a sequence which is complementary to at least part of dystrophin pre-mRNA exon 51, 45, 53, 44, 46, 52, 50, 43, 6, 7, 8, 55, 2, 11, 17, 19, 21, 57, 59, 62, 63, 65, 66, 69, and/or 75 said part having or comprising at least 13 nucleotides. However, said part may also have at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides. More preferred oligonucleotides are represented by a sequence that comprises or consists of each of the following sequences SEQ ID NO: 2 to SEQ ID NO:539 wherein at least one inosine and/or a base able to form a wobble base pair is present in said sequence. Preferably, an inosine has been introduced in one of these sequences to replace a guanosine, adenine, or a uracil. Accordingly, an even more preferred oligonucleotide as used herein is represented by a sequence that comprises or consists of SEQ ID NO:2 to SEQ ID NO:486 or SEQ ID NO:539, even more preferably SEQ ID NO:2 to NO:237 or SEQ ID NO:539, most preferably SEQ ID NO:76 wherein at least one inosine and/or a base able to form a wobble base pair is present in said sequence. Preferably, an inosine has been introduced in one of these sequences to replace a guanosine, adenine, or a uracil.

Accordingly, in another preferred embodiment, an oligonucleotide as used herein is represented by a sequence that comprises or consists of SEQ ID NO:540 to SEQ ID NO:576. More preferably, an oligonucleotide as used herein is represented by a sequence that comprises or consists of SEQ ID NO:557.

Said exons are listed in decreasing order of patient population applicability. Hence, the use of an AON comprising a sequence, which is complementary to at least part of dystrophin pre-mRNA exon 51 is suitable for use in a larger part of the DMD patient population as compared to an AON comprising a sequence which is complementary to dystrophin pre-mRNA exon 44 et cetera.

In a preferred embodiment, an oligonucleotide of the invention, which comprises a sequence that is complementary to part of dystrophin pre-mRNA is such that the complementary part is at least 50% of the length of the oligonucleotide of the invention, more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, even more preferably at least 90% or even more preferably at least 95%, or even more preferably 98% or even more preferably at least 99%, or even more preferably 100%. In a most preferred embodiment, the oligonucleotide of the invention consists of a sequence that is complementary to part of dystrophin pre-mRNA as defined herein. As an example, an oligonucleotide may comprise a sequence that is complementary to part of dystrophin pre-mRNA as defined herein and additional flanking sequences. In a more preferred embodiment, the length of said complementary part of said oligonucleotide is of at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 nucleotides. Preferably, additional flanking sequences are used to modify the binding of a protein to the oligonucleotide, to or modify a thermodynamic property of the oligonucleotide, more preferably to modify target RNA binding affinity. In a more preferred embodiment an oligonucleotide is capable of hybridising to the complementary part. In this context, “sufficiently” preferably means that using a
gel mobility shift assay as described in example 1 of EP 1 619 249, binding of an oligonucleotide is detectable. Optionally, said oligonucleotide may further be tested by transfection into muscle cells of patients. Skipping of the targeted exon may be assessed by RT-PCR (as described in EP 1 619 249). The complementary regions are preferably designed such that, when combined, they are specific for the exon in the pre-mRNA. Such specificity may be created with various lengths of complementary regions as this depends on the actual sequences in other (pre-)mRNA in the system. The risk that also one or more other pre-mRNA will be able to hybridise to the oligonucleotide decreases with increasing size of the oligonucleotide. It is clear that oligonucleotides comprising mismatches in the region of complementarity but that retain the capacity to hybridise to the targeted region(s) in the pre-mRNA, can be used in the present invention. However, preferably at least the complementary parts do not comprise such mismatches as these typically have a higher efficiency and a higher specificity, than oligonucleotides having such mismatches in one or more complementary regions. It is thought, that higher hybridisation strengths, (i.e. increasing number of interactions with the opposing strand) are favourable in increasing the efficiency of the process of interfering with the splicing machinery of the system. Preferably, the complementarity is between 90 and 100%. In general this allows for approximately 1 or 2 mismatch(es) in an oligonucleotide of around 20 nucleotides.

The secondary structure is best analysed in the context of the pre-mRNA wherein the exon resides. Such structures may be analysed in the actual RNA. However, it is currently possible to predict the secondary structure of an RNA molecule (at lowest energy costs) quite well using structure-modelling programs. A non-limiting example of a suitable program is RNA molfold version 3.1 server. A person skilled in the art will be able to predict, with suitable reproducibility, a likely structure of the exon, given the nucleotide sequence. Best predictions are obtained when providing such modelling programs with both the exon and flanking intron sequences. It is typically not necessary to model the structure of the entire pre-mRNA.

The open and closed structure to which the oligonucleotide is directed, are preferably adjacent to one another. It is thought, that in this way the annealing of the oligonucleotide to the open structure induces opening of the closed structure whereupon annealing progresses into this closed structure. Through this action the previously closed structure assumes a different conformation. The different conformation results in the disruption of the exon inclusion signal. However, when potential (cryptic) splice acceptor and/or donor sequences are present within the targeted exon, occasionally a new exon inclusion signal is generated defining a different (neo) exon, i.e. with a different 5' end, a different 3' end, or both. This type of activity is within the scope of the present invention as the targeted exon is excluded from the mRNA. The presence of a new exon, containing part of the targeted exon, in the mRNA does not alter the fact that the targeted exon, as such, is excluded. The inclusion of a neo-exon can be seen as a side effect, which occurs only occasionally. There are two possibilities when exon skipping is used to restore (part of) an open reading frame of dystrophin that is disrupted as a result of a mutation. One is that the neo-exon is functional in the restoration of the reading frame, whereas in the other case the reading frame is not restored. When selecting oligonucleotides for restoring dystrophin reading frames by means of exon-skipping it is of course clear that under these conditions only those oligonucleotides are selected that indeed result in exon-skipping that restores the dystrophin open reading frame, with or without a neo-exon.

Further provided is an oligonucleotide, or a functional equivalent thereof, comprising a sequence that is complementary to a binding site for a serine-arginine (SR) protein in RNA of an exon of a dystrophin pre-mRNA. In WO 2006/112705 we have disclosed the presence of a correlation between the effectiveness of an exon-internal antisense oligonucleotide (AOI) in inducing exon skipping and the presence of a (for example by ESE finder) predicted SR binding site in the target pre-mRNA site of said AON.

Therefore, in one embodiment an oligonucleotide is generated comprising determining a (putative) binding site for an SR (Ser-Arg) protein in RNA of a dystrophin exon and producing an oligonucleotide that is complementary to said RNA and that at least partly overlaps said (putative) binding site. The term “at least partly overlaps” is defined herein as to comprise an overlap of only a single nucleotide of an SR binding site as well as multiple nucleotides of said binding site as well as a complete overlap of said binding site. This embodiment preferably further comprises determining from a secondary structure of said RNA, a region that is hybridised to another part of said RNA (closed structure) and a region that is not hybridised in said structure (open structure), and subsequently generating an oligonucleotide that at least partly overlaps said (putative) binding site and that overlaps at least part of said closed structure and overlaps at least part of said open structure. In this way we increase the chance of obtaining an oligonucleotide that is capable of interfering with the exon inclusion from the pre-mRNA into mRNA. It is possible that a first selected SR-binding region does not have the requested open-closed structure in which case another (second) SR protein binding site is selected which is then subsequently tested for the presence of an open-closed structure. This process is continued until a sequence is identified which contains an SR protein binding site as well as an (partly overlapping) open-closed structure. This sequence is then used to design an oligonucleotide which is complementary to said sequence.

Such a method, for generating an oligonucleotide, is also performed by reversing the described order, i.e. first generating an oligonucleotide comprising determining, from a secondary structure of RNA from a dystrophin exon, a region that assumes a structure that is hybridised to another part of said RNA (closed structure) and a region that is not hybridised in said structure (open structure), and subsequently generating an oligonucleotide, of which at least a part of said oligonucleotide is complementary to said closed structure and of which at least another part of said oligonucleotide is complementary to said open structure. This is then followed by determining whether an SR protein binding site at least overlaps with said open/closed structure. In this way the method of WO 2004/083432 is improved. In yet another embodiment the selections are performed simultaneously.

Without wishing to be bound by any theory it is currently thought that use of an oligonucleotide directed to an SR protein binding site results in (at least partly) impairing the binding of an SR protein to the binding site of an SR protein which results in disrupted or impaired splicing.

Preferably, an open/closed structure and an SR protein binding site partly overlap and even more preferred an open/closed structure completely overlaps an SR protein...
binding site or an SR protein binding site completely overlaps an open/closed structure. This allows for an improved disruption of exon inclusion.

Besides consensus splice sites sequences, many (if not all) exons contain splicing regulatory sequences such as exonic splicing enhancer (ESE) sequences to facilitate the recognition of genuine splice sites by the spliceosome\[42,43\]. A subgroup of splicing factors, called the SR proteins, can bind to these ESEs and recruit other splicing factors, such as U1 and U2AF to (weakly defined) splice sites. The binding sites of the four most abundant SR proteins (SF2/ASF, SC35, SRp40 and SRp55) have been analyzed in detail and these results are implemented in ESE finder, a web source that predicts potential binding sites for these SR proteins\[42,43\]. There is a correlation between the effectiveness of an AON and the presence/absence of an SF2/ASF, SC35 and SRp40 binding site. In a preferred embodiment, the invention thus provides a combination as described above, wherein said SR protein is SF2/ASF or SC35 or SRp40.

In one embodiment an oligonucleotide, or a functional equivalent thereof is capable of specifically binding a regulatory RNA sequence which is required for the correct splicing of a dystrophin exon in a transcript. Several cis-acting RNA sequences are required for the correct splicing of exons in a transcript. In particular, supplementary elements such as intronic or exonic splicing enhancers (ISEs and ESEs) or silencers (ISSs and ESES) are identified to regulate specific and efficient splicing of constitutive and alternative exons. Using sequence-specific antisense oligonucleotides (AONs) that bind to the elements, their regulatory function is disturbed so that the exon is skipped, as shown for DMD. Hence, in one preferred embodiment an oligonucleotide or functional equivalent thereof is used which is complementary to an intronic splicing enhancer (ISE), an exonic splicing enhancer (ESE), an intronic splicing silencer (ISS) and/or an exonic splicing silencer (ESS). As already described herein before, a dystrophin exon is in one preferred embodiment skipped by an agent capable of specifically inhibiting an exon inclusion signal of said exon, so that said exon is not recognized by the splicing machinery as a part that needs to be included in the mRNA. As a result, a mRNA without said exon is formed.

An AON used herein is preferably complementary to a consecutive part or a contiguous stretch of between 8 and 50 nucleotides of dystrophin exon RNA or dystrophin intron RNA. In one embodiment an AON used herein is complementary to a consecutive part or a contiguous stretch of between 14 and 50 nucleotides of a dystrophin exon RNA or dystrophin intron RNA. Preferably, said AON is complementary to a consecutive part or contiguous stretch of between 14 and 25 nucleotides of said exon RNA. More preferably, an AON is used which comprises a sequence which is complementary to a consecutive part or a contiguous stretch of between 20 and 25 nucleotides of a dystrophin exon RNA or a dystrophin intron RNA.

Different types of nucleic acid may be used to generate an oligonucleotide. Preferably, said oligonucleotide comprises RNA, as RNA/RNA hybrids are very stable. Since one of the aims of the exon skipping technique is to directly splicing in subjects it is preferred that the oligonucleotide RNA comprises a modification providing the RNA with an additional property, for instance resistance to endonucleases, exonucleases, and RNaseH, additional hybridisation strength, increased stability (for instance in a bodily fluid), increased or decreased flexibility, reduced toxicity, increased intracellular transport, tissue-specificity, etc. Preferably, said modification comprises a 2’-O-methyl-phosphorothioate oligoribonucleotide modification. Preferably, said modification comprises a 2’-O-methyl-phosphorothioate oligodeoxyribonucleotide modification. One embodiment thus provides an oligonucleotide is used which comprises RNA which contains a modification, preferably a 2’-O-methyl modified ribose (RNA) or deoxyribose (DNA) modification.

In one embodiment the invention provides a hybrid oligonucleotide comprising an oligonucleotide comprising a 2’-O-methyl-phosphorothioate oligo(deoxy)ribonucleotide modification and locked nucleic acid. This particular oligonucleotide comprises better sequence specificity compared to an equivalent consisting of locked nucleic acid, and comprises increased effectiveness when compared with an oligonucleotide consisting of 2’-O-methyl-phosphorothioate oligo(deoxy)ribonucleotide modification.

With the advent of nucleic acid mimicking technology it has become possible to generate molecules that have a similar, preferably the same hybridisation characteristics in kind not necessarily in amount as nucleic acid itself. Such functional equivalents are of course also suitable for use in the invention. Preferred examples of functional equivalents of an oligonucleotide are peptide nucleic acid and/or locked nucleic acid. Most preferably, a morpholino phosphorodiamidate is used. Suitable but non-limiting examples of equivalents of oligonucleotides of the invention can be found in\[42,43\]. Hybridization between one or more of the equivalents among each other and/or together with nucleic acid are of course also suitable. In a preferred embodiment locked nucleic acid is used as a functional equivalent of an oligonucleotide, as locked nucleic acid displays a higher target affinity and reduced toxicity and therefore shows a higher efficiency of exon skipping.

In one embodiment an oligonucleotide, or a functional equivalent thereof, which is capable of inhibiting inclusion of a dystrophin exon into dystrophin mRNA is combined with at least one other oligonucleotide, or functional equivalent thereof, that is capable of inhibiting inclusion of another dystrophin exon into dystrophin mRNA. This way, inclusion of two or more exons of a dystrophin pre-mRNA produced from this pre-mRNA is prevented. This embodiment is further referred to as double- or multi-exon skipping. In most cases double-exon skipping results in the exclusion of only the two targeted exons from the dystrophin pre-mRNA. However, in other cases it was found that the targeted exons and the entire region in between said exons in said pre-mRNA were not present in the produced mRNA even when other exons (intervening exons) were present in such region. This multi-exon skipping was notably so for the combination of oligonucleotides derived from the DMD gene, wherein one oligonucleotide for exon 45 and one oligonucleotide for exon 51 was added to a cell transcribing the DMD gene. Such a set-up resulted in mRNA being produced that did not contain exons 45 to 51. Apparently, the structure of the pre-mRNA in the presence of the mentioned oligonucleotides was such that the splicing machinery was stimulated to connect exons 44 and 52 to each other. Other preferred examples of multi-exon skipping are:

the use of an oligonucleotide targeting exon 17, and a second one exon 48 which may result in the skipping of said exon 17 and exon 48.
[0063] the use of an oligonucleotide targeting exon 17, and a second one exon 51 which may result in the skipping of said both exons or of the entire region between exon 17 and exon 51.

[0064] the use of an oligonucleotide targeting exon 42, and a second one exon 55 which may result in the skipping of said both exons or of the entire region between exon 42 and exon 55.

[0065] the use of an oligonucleotide targeting exon 43, and a second one exon 51 which may result in the skipping of said both exons or of the entire region between exon 43 and exon 51.

[0066] the use of an oligonucleotide targeting exon 43, and a second one exon 55 which may result in the skipping of said both exons or of the entire region between exon 43 and exon 55.

[0067] the use of an oligonucleotide targeting exon 45, and a second one exon 55 which may result in the skipping of said both exons or of the entire region between exon 45 and exon 55.

[0068] the use of an oligonucleotide targeting exon 45, and a second one exon 59 which may result in the skipping of said both exons or of the entire region between exon 45 and exon 59.

[0069] the use of an oligonucleotide targeting exon 48, and a second one exon 59 which may result in the skipping of said both exons or of the entire region between exon 48 and exon 59.

[0070] the use of an oligonucleotide targeting exon 50, and a second one exon 51 which may result in the skipping of said both exons.

[0071] the use of an oligonucleotide targeting exon 51, and a second one exon 52 which may result in the skipping of said both exons.

[0072] Further provided is therefore an oligonucleotide which comprises at least 8, preferably between 16 to 80, consecutive nucleotides that are complementary to a first exon of a dystrophin pre-mRNA and wherein a nucleotide sequence is used which comprises at least 8, preferably between 16 to 80, consecutive nucleotides that are complementary to a second exon of said dystrophin pre-mRNA. Said first and said second exon may be the same.

[0073] In one preferred embodiment said first and said second exon are separated in said dystrophin pre-mRNA by at least one exon to which said oligonucleotide is not complementary. Alternatively, said first and said second exon are adjacent.

[0074] It is possible to specifically promote the skipping of also the intervening exons by providing a linkage between the two complementary oligonucleotides. Hence, in one embodiment stretches of nucleotides complementary to at least two dystrophin exons are separated by a linking moiety. The at least two stretches of nucleotides are thus linked in this embodiment so as to form a single molecule. Further provided is therefore an oligonucleotide, or functional equivalent thereof which is complementary to at least two exons in a dystrophin pre-mRNA, said oligonucleotide or functional equivalent comprising at least two parts wherein a first part comprises an oligonucleotide having at least 8, preferably between 16 to 80, consecutive nucleotides that are complementary to a first of said at least two exons and wherein a second part comprises an oligonucleotide having at least 8, preferably between 16 to 80, consecutive nucleotides that are complementary to a second exon in said dystrophin pre-mRNA. The linkage may be through any means, but is preferably accomplished through a nucleotide linkage. In the latter case, the number of nucleotides that do not contain an overlap between one or the other complementary exon can be zero, but is preferably between 4 to 40 nucleotides. The linking moiety can be any type of moiety capable of linking oligonucleotides. Preferably, said linking moiety comprises at least 4 uracil nucleotides. Currently, many different compounds are available that mimic hybridisation characteristics of oligonucleotides. Such a compound, called herein a functional equivalent of an oligonucleotide, is also suitable for the present invention if such equivalent comprises similar hybridisation characteristics in kind not necessarily in amount. Suitable functional equivalents are mentioned earlier in this description. As mentioned, oligonucleotides of the invention do not have to consist of only oligonucleotides that contribute to hybridisation to the targeted exon. There may be additional material and/or nucleotides added.

[0075] The DMD gene is a large gene, with many different exons. Considering that the gene is located on the X-chromosome, it is mostly boys that are affected, although girls can also be affected by the disease, as they may receive a bad copy of the gene from both parents, or are suffering from a particularly biased inactivation of the functional allele due to a particularly biased X chromosome inactivation in their muscle cells. The protein is encoded by a plurality of exons (79) over a range of at least 2.4 Mb. Deficits may occur in any part of the DMD gene. Skipping of a particular exon or particular exons can, very often, result in a restricted mRNA that encodes a shorter than normal but at least partially functional dystrophin protein. A practical problem in the development of a medicament based on exon-skipping technology is the plurality of mutations that may result in a deficiency in functional dystrophin protein in the cell. Despite the fact that already multiple different mutations can be corrected for by the skipping of a single exon, this plurality of mutations, requires the generation of a series of different pharmaceuticals as for different mutations different exons need to be skipped. An advantage of an oligonucleotide or of a composition comprising at least two distinct oligonucleotide as later defined herein capable of inducing skipping of two or more exons, is that more than one exon can be skipped with a single pharmaceutical. This property is not only useful but also useful in that only a limited number of pharmaceuticals need to be generated for treating many different DMD or particular, severe BMD mutations. Another option now open to the person skilled in the art is to select particularly functional reconstructed dystrophin proteins and produce compounds capable of generating these preferred dystrophin proteins. Such preferred end results are further referred to as mild phenotype dystrophins.

[0076] Dose ranges of oligonucleotide according to the invention are preferably designed on the basis of rising dose studies in clinical trials (in vivo use) for which rigorous protocol requirements exist. A molecule or an oligonucleotide as defined herein may be used at a dose which is ranged between 0.1 and 20 mg/kg, preferably 0.5 and 10 mg/kg.

[0077] In a preferred embodiment, a concentration of an oligonucleotide as defined herein, which is ranged between 0.1 nM and 1 pM is used. Preferably, this range is for in vitro use in a cellular model such as muscular cells or muscle tissue. More preferably, the concentration used is ranged between 0.3 to 400 nM, even more preferably between 1 to 200 nM. If several oligonucleotides are used, this concentra-
tion or dose may refer to the total concentration or dose of oligonucleotides or the concentration or dose of each oligonucleotide added.

[0078] The ranges of concentration or dose of oligonucleotide(s) as given above are preferred concentrations or doses for in vitro or ex vivo uses. The skilled person will understand that depending on the oligonucleotide(s) used, the target cell to be treated, the gene target and its expression levels, the medium used and the transfection and incubation conditions, the concentration or dose of oligonucleotide(s) used may further vary and may need to be optimised any further.

[0079] An oligonucleotide as defined herein for use according to the invention may be suitable for administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing DMD or BMD, and may be administered in vivo, ex vivo or in vitro. Said oligonucleotide may be directly or indirectly administered to a cell, tissue and/or an organ in vivo of an individual affected by or at risk of developing DMD or BMD, and may be administered directly or indirectly in vivo, ex vivo or in vitro. As Duchenne and Becker muscular dystrophy have a pronounced phenotype in muscle cells, it is preferred that said cells are muscle cells, it is further preferred that said tissue is a muscular tissue and/or it is further preferred that said organ comprises or consists of a muscular tissue. A preferred organ is the heart. Preferably, said cells comprise a gene encoding a mutant dystrophin protein. Preferably, said cells are cells of an individual suffering from DMD or BMD.

[0080] An oligonucleotide of the invention may be indirectly administered using suitable means known in the art. An oligonucleotide may for example be provided to an individual or a cell, tissue or organ of said individual in the form of an expression vector wherein the expression vector encodes a transcript comprising said oligonucleotide. The expression vector is preferably introduced into a cell, tissue, organ or individual via a gene delivery vehicle. In a preferred embodiment, there is provided a viral-based expression vector comprising an expression cassette or a transcription cassette that drives expression or transcription of a molecule as identified herein. A preferred delivery vehicle is a viral vector such as an aden-associated virus vector (AAV), or a retroviral vector such as a lentivirus vector. Also, plasmids, artificial chromosomes, plasmids suitable for targeted homologous recombination and integration in the human genome of cells may be suitably applied for delivery of an oligonucleotide as defined herein. Preferred for the current invention are those vectors wherein transcription is driven from PolIII promoters, and/or wherein transcripts are in the form fusions with U1 or U7 transcripts, which yield good results for delivering small transcripts. It is within the skill of the artisan to design suitable transcripts. Preferred are PolIII driven transcripts. Preferably, in the form of a fusion transcript with an U1 or U7 transcript. Such fusions may be generated as described. The oligonucleotide may be delivered as is. However, the oligonucleotide may also be encoded by the viral vector. Typically, this is in the form of an RNA transcript that comprises the sequence of the oligonucleotide in a part of the transcript.

[0081] Improvements in means for providing an individual or a cell, tissue, organ of said individual with an oligonucleotide and/or an equivalent thereof, are anticipated considering the progress that has already thus far been achieved. Such future improvements may of course be incorporated to achieve the mentioned effect on restructuring of mRNA using a method of the invention. An oligonucleotide and/or an equivalent thereof can be delivered as is to an individual, a cell, tissue or organ of said individual. When administering an oligonucleotide and/or an equivalent thereof, it is preferred that an oligonucleotide and/or an equivalent thereof is dissolved in a solution that is compatible with the delivery method. For intravenous, subcutaneous, intramuscular, intrathecal and/or intraventricular administration it is preferred that the solution is a physiological salt solution. Particularly preferred in the invention is the use of an excipient that will aid in delivery of each of the constituents as defined herein to a cell and/or into a cell, preferably a muscle cell. Preferred are excipients capable of forming complexes, nanoparticles, micelles, vesicles and/or liposomes that deliver each constituent as defined herein, complexed or trapped in a vesicle or liposome through a cell membrane. Many of these excipients are known in the art. Suitable excipients comprise polyethyleneimine (PEI), or similar cationic polymers, including polypropyleneimine or polyethyleneimine copolymers (PECS) and derivatives, synthetic amphipols (SAINT-18), Lipofectin™, DOTAP and/or viral capsid proteins that are capable of self assembly into particles that can deliver each constituent as defined herein to a cell, preferably a muscle cell. Such excipients have been shown to efficiently deliver an oligonucleotide such as antisense nucleic acids to a wide variety of cultured cells, including muscle cells. Their high transfection potential is combined with an excepted low to moderate toxicity in terms of overall cell survival. The ease of structural modification can be used to allow further modifications and the analysis of their further (in vivo) nucleic acid transfer characteristics and toxicity.

[0082] Lipofectin represents an example of a liposomal transfection agent. It consists of two lipid components, a cationic lipid N-[1-(2,3-dioleoyloxy)propyl]-N,N,N,N-trimethylammonium chloride (DOTMA) (cp. DOTAP which is the methylsulfate salt) and a neutral lipid dioleoylphosphatidylethanolamine (DOPE). The neutral component mediates the intracellular release. Another group of delivery systems are polymeric nanoparticles.

[0083] Polycations such like diethylaminoethylaminoethyl (DEAE)-dextran, which are well known as DNA transfection reagent can be combined with butylexyanoacrylate (PBCA) and hexylexyanoacrylate (PHCA) to formate cationic nanoparticles that can deliver each constituent as defined herein, preferably an oligonucleotide across cell membranes into cells.

[0084] In addition to these common nanoparticle materials, the cationic peptide protamine offers an alternative approach to formulate an oligonucleotide with colloids. This colloidal nanoparticle system can form so called proticles, which can be prepared by a simple self-assembly process to package and mediate intracellular release of an oligonucleotide. The skilled person may select and adapt any of the above or other commercially available alternative excipients and delivery systems to package and deliver an oligonucleotide for use in the current invention to deliver it for the treatment of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in humans.

[0085] In addition, an oligonucleotide could be covalently or non-covalently linked to a targeting ligand specifically designed to facilitate the uptake in to the cell, cytoplasm and/or its nucleus. Such ligand could comprise (i) a compound (including but not limited to peptide(-like) structures)
recognising cell, tissue or organ specific elements facilitating cellular uptake and/or (ii) a chemical compound able to facilitate the uptake in to cells and/or the intracellular release of an oligonucleotide from vesicles, e.g. endosomes or lysosomes. Therefore, in a preferred embodiment, an oligonucleotide is formulated in a composition or a medicament or a composition, which is provided with at least one excipient and/or a targeting ligand for delivery and/or a delivery device thereof to a cell and/or enhancing its intracellular delivery. Accordingly, the invention also encompasses a pharmaceutically acceptable composition comprising an oligonucleotide and further comprising at least one excipient and/or a targeting ligand for delivery and/or a delivery device of said oligonucleotide to a cell and/or enhancing its intracellular delivery. It is to be understood that if a composition comprises an additional constituent such as an adjunct compound as later defined herein, each constituent of the composition may not be formulated in one single combination or composition or preparation. Depending on their identity, the skilled person will know which type of formulation is the most appropriate for each constituent as defined herein. In a preferred embodiment, the invention provides a composition or a preparation which is in the form of a kit of parts comprising an oligonucleotide and a further adjunct compound as later defined herein.

A preferred oligonucleotide is for preventing or treating Duchenne Muscular Dystrophy (DMD) or Becker Muscular Dystrophy (BMD) in an individual. An individual, which may be treated using an oligonucleotide of the invention may already have been diagnosed as having a DMD or a BMD. Alternatively, an individual which may be treated using an oligonucleotide of the invention may not have yet been diagnosed as having a DMD or a BMD but may be an individual having an increased risk of developing a DMD or a BMD in the future given his or her genetic background. A preferred individual is a human being.

Composition

In a further aspect, there is provided a composition comprising an oligonucleotide as defined herein. Preferably, said composition comprises at least two distinct oligonucleotides as defined herein. More preferably, these two distinct oligonucleotides are designed to skip distinct two or more exons as earlier defined herein for multi-exon skipping.

In a preferred embodiment, said composition being preferably a pharmaceutical composition said pharmaceutical composition comprising a pharmaceutically acceptable carrier, adjuvant, diluent and/or excipient. Such a pharmaceutical composition may comprise any pharmaceutically acceptable carrier, diluent, and preservative, adjuvant, solubilizer, diluent and/or excipient is also provided. Such pharmaceutically acceptable carrier, diluent, and/or excipient may for instance be found in Remington: The Science and Practice of Pharmacy, 20th Edition. Baltimore, Md.: Lippincott Williams & Wilkins, 2000. Each feature of said composition has earlier been defined herein.

If several oligonucleotides are used, concentration or dose already defined herein may refer to the total concentration or dose of all oligonucleotides used or the concentration or dose of each oligonucleotide used. Therefore in one embodiment, there is provided a composition wherein each or the total amount of oligonucleotide used is dosed in an amount ranged between 0.5 mg/kg and 10 mg/kg.

A preferred composition additionally comprises:

a) an adjunct compound for reducing inflammation, preferably for reducing muscle tissue inflammation, and/or
b) an adjunct compound for improving muscle fiber function, integrity and/or survival and/or
c) a compound exhibiting readthrough activity.

It has surprisingly been found that the skipping frequency of a dystrophin exon from a pre-mRNA comprising said exon, when using an oligonucleotide directed toward the exon or to one or both splice sites of said exon, is enhanced if cells expressing said pre-mRNA are also provided with an adjunct compound for reducing inflammation, preferably for reducing muscle tissue inflammation, and/or an adjunct compound for improving muscle fiber function, integrity and/or survival. The enhanced skipping frequency also increases the level of functional dystrophin protein produced in a muscle cell of a DMD or BMD individual.

According to the present invention, even when a dystrophin protein deficiency has been restored in a DMD patient by administering an oligonucleotide of the invention, the presence of tissue inflammation and damaged muscle cells still continues to contribute to the symptoms of DMD. Hence, even though the cause of DMD—i.e. a dysfunctional dystrophin protein—is alleviated, treatment of DMD is still further improved by additionally using an adjunct therapy according to the present invention. Furthermore, the present invention provides the insight that a reduction of inflammation does not result in significant reduction of AON uptake by muscle cells. This is surprising because, in general, inflammation enhances the trafficking of cells, blood and other compounds. As a result, AON uptake/delivery is also enhanced during inflammation. Hence, before the present invention it would have been expected that an adjunct therapy countering inflammation involves the risk of negatively influencing AON therapy. This, however, appears not to be the case.

An adjunct compound for reducing inflammation comprises any therapy which is capable of at least in part reducing inflammation, preferably inflammation caused by damaged muscle cells. Said adjunct compound is most preferably capable of reducing muscle tissue inflammation. Inflammation is preferably assessed by detecting an increase in the number of infiltrating immune cells such as neutrophils and/or mast cells and/or dendritic cells and/or lymphocytes in muscle tissue suspected to be dystrophic. This assessment is preferably carried out in cross-sections of a biopsy of muscle tissue suspected to be dystrophic after having specifically stained immune cells as identified above. The quantification is preferably carried out under the microscope. Reducing inflammation is therefore preferably assessed by detecting a decrease in the number of immune cells in a cross-section of muscle tissue suspected to be dystrophic. Detecting a decrease preferably means that the number of at least one sort of immune cells as identified above is decreased of at least 1%, 2%, 3%, 5%, 7%, 10%, 12%, 15%, 17%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more compared to the number of a corresponding immune cell in a same individual before treatment. Most preferably, no infiltrating immune cells are detected in cross-sections of said biopsy.

An adjunct compound for improving muscle fiber function, integrity and/or survival comprises any therapy, which is capable of measurably enhancing muscle fiber function, integrity and/or survival as compared to an otherwise
similar situation wherein said adjunct compound is not present. The improvement of muscle fiber function, integrity and/or survival may be assessed using at least one of the following assays: a detectable decrease of creatine kinase in blood, a detectable decrease of necrosis of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic, and/or a detectable increase of the homogeneity of the diameter of muscle fibers in a biopsy cross-section of a muscle suspected to be dystrophic. Each of these assays is known to the skilled person.

[0099] Creatine kinase may be detected in blood as described in 57. A detectable decrease in creatine kinase may mean a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more compared to the concentration of creatine kinase in a same individual before treatment.

[0100] A detectable decrease of necrosis of muscle fibers is preferably assessed in a muscle biopsy, more preferably as described in 57 using biopsy cross-sections. A detectable decrease of necrosis may be a decrease of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the area wherein necrosis has been identified using biopsy cross-sections. The decrease is measured by comparison to the necrosis as assessed in a same individual before treatment.

[0101] A detectable increase of the homogeneity of the diameter of a muscle fiber is preferably assessed in a muscle biopsy cross-section, more preferably as described in 57.

[0102] In one embodiment, an adjunct compound for increasing turnover of damaged muscle cells is used. An adjunct compound for increasing turnover of damaged muscle cells comprises any therapy, which is capable of at least in part inducing and/or increasing turnover of damaged muscle cells. Damaged muscle cells are muscle cells, which have significantly less clinically measurable functionality than a healthy, intact muscle cell. In the absence of dystrophin, mechanical stress leads to sarcornemal ruptures, causing an uncontrolled influx of calcium into the muscle fiber interior, thereby triggering calcium-activated proteases and fiber necrosis, resulting in damaged muscle cells. Increasing turnover of damaged muscle cells means that damaged muscle cells are more quickly broken down and/or removed as compared to a situation wherein turnover of damaged muscle cells is not increased. Turnover of damaged muscle cells is preferably assessed in a muscle biopsy, more preferably as described in 57 using a cross-section of a biopsy. A detectable increase of turnover may be an increase of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the area wherein turnover has been identified using a biopsy cross-section. The increase is measured by comparison to the turnover as assessed in a same individual before treatment.

[0103] Without wishing to be bound to theory, it is believed that increasing turnover of muscle cells is preferred because this reduces inflammatory responses.

[0104] According to the present invention, a composition of the invention further comprising an adjunct therapy for reducing inflammation, preferably for reducing muscle tissue inflammation in an individual, is particularly suitable for use as a medicament. Such composition is even better capable of alleviating one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy as compared to a combination not comprising said adjunct compound. This embodiment also enhances the skipping frequency of a dystrophin exon from a pre-mRNA comprising said exon, when using an oligonucleotide directed toward the exon or to one or both splice sites of said exon. The enhanced skipping frequency also increases the level of functional dystrophin protein produced in a muscle cell of a DMD or BMD individual.

[0105] Further provided is therefore a composition further comprising an adjunct compound for reducing inflammation, preferably for reducing muscle tissue inflammation in said individual, for use as a medicament, preferably for treating or preventing counteracting DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein or altered or truncated dystrophin mRNA or protein is formed which is not sufficiently functional.

[0106] Preferred adjunct compound for reducing inflammation include a steroid, a TNFα inhibitor, a source of mGf1 and/or an antioxidant. However, any other compound able to reduce inflammation as defined herein is also encompassed within the present invention. Each of these compounds is later on exclusively presented. Each of the compounds extensively presented may be used separately or in combination with each other and/or in combination with one or more of the adjunct compounds used for improving muscle fiber function, integrity and/or survival.

[0107] Furthermore, a composition comprising an adjunct therapy for improving muscle fiber function, integrity and/or survival in an individual is particularly suitable for use as a medicament, preferably for treating or preventing DMD. Such composition is even better capable of alleviating one or more symptom(s) of Duchenne Muscular Dystrophy as compared to a composition not comprising said adjunct compound.

[0108] Preferred adjunct compounds for improving muscle fiber function, integrity and/or survival include an ion channel inhibitor, a protease inhibitor, L-arginine and/or an angiotensin II type I receptor blocker. However, any other compound able to improve muscle fiber function, integrity and/or survival as defined herein is also encompassed within the present invention. Each of these compounds is later on exclusively presented. Each of the compounds extensively presented may be used separately or in combination with each other and/or in combination with one or more of the adjunct compounds used for reducing inflammation.

[0109] In a particularly preferred embodiment, a composition further comprises a steroid. Such composition results in significant alleviation of DMD symptoms. This embodiment also enhances the skipping frequency of a dystrophin exon from a pre-mRNA comprising said exon, when using an oligonucleotide directed toward the exon or to one or both splice sites of said exon. The enhanced skipping frequency also increases the level of functional dystrophin protein produced in a muscle cell of a DMD or BMD individual.

[0110] In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional.

[0111] A steroid is a terpenoid lipid characterized by a carbon skeleton with four fused rings, generally arranged in a 6-6-6-5 fashion. Steroids vary by the functional groups attached to these rings and the oxidation state of the rings. Steroids include hormones and drugs, which are usually used to relieve swelling and inflammation, such as for instance prednisone, dexamethasone and vitamin D.

[0112] According to the present invention, supplemental effects of adjunct steroid therapy in DMD patients include reduction of tissue inflammation, suppression of cytotoxic cells, and improved calcium homeostasis. Most positive
results are obtained in younger boys. Preferably, the steroid is a corticosteroid, more preferably, a glucocorticosteroid. Preferably, prednisone steroids such as prednisone, prednizolone or delfazacort are used in a combination according to the invention\(^1\). Dose ranges of steroid or of a glucocorticosteroid to be used in the therapeutic applications as described herein are designed on the basis of rising dose studies in clinical trials for which rigorous protocol requirements exist. The usual doses are 0.5-1.0 mg/kg/day, preferably 0.75 mg/kg/day for prednisone, prednizolone and 0.4-1.4 mg/kg/day, preferably 0.9 mg/kg/day for delfazacort.

In one embodiment, a steroid is administered to said individual prior to administering a composition as earlier defined herein. In this embodiment, it is preferred that said steroid is administered at least one day, more preferably at least one week, more preferably at least two weeks, more preferred at least three weeks prior to administering said composition.

In another preferred embodiment, a combination further comprises a tumour necrosis factor-alpha (TNF\(\alpha\)) inhibitor. Tumour necrosis factor-alpha (TNF\(\alpha\)) is a pro-inflammatory cytokine that stimulates the inflammatory response. Pharmacological blockade of TNF\(\alpha\) activity with the neutralizing antibody infliximab (Remicade) is highly effective clinically at reducing symptoms of inflammatory diseases. In mdx mice, both infliximab and etanercept delay and reduce the necrosis of dystrophic muscle\(^2\),\(^5\),\(^7\) with additional physiological benefits on muscle strength, chloride channel function and reduced CK levels being demonstrated in chronically treated exercised adult mdx mice\(^2\). Such highly specific anti-inflammatory drugs designed for use in other clinical conditions, are attractive alternatives to the use of steroids for DMD. In one embodiment, the use of a TNF\(\alpha\) inhibitor is limited to periods of intensive muscle growth in boys when muscle damage and deterioration are especially pronounced.

In another preferred embodiment, a composition further comprising a TNF\(\alpha\) inhibitor for use as a medicament is also provided. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional. A preferred TNF\(\alpha\) inhibitor is a dimeric fusion protein consisting of the extracellular ligand-binding domain of the human p75 receptor of TNF\(\alpha\) linked to the Fc portion of human IgG1. A more preferred TNF\(\alpha\) inhibitor is etanercept (Amgen, America)\(^5\). The usual doses of etanercept are about 0.2 mg/kg, preferably about 0.5 mg/kg twice a week. The administration is preferably subcutaneous.

In another preferred embodiment, a composition of the invention further comprises a source of mIGF-1. As defined herein, a source of IGF-1 preferably encompasses mIGF-1 itself, a compound able of enhancing mIGF-1 expression and/or activity. Enhancing is herein synonymous with increasing. Expression of mIGF-1 is synergistic with amount of mIGF-1. mIGF-1 promotes regeneration of muscles through increase in satellite cell activity, and reduces inflammation and fibrosis\(^2\). Local injury of muscle results in increased mIGF-1 expression. In transgenic mice with extra IGF-1 genes, muscle hypertrophy and enlarged muscle fibers are observed\(^2\). Similarly, transgenic mdx mice show reduced muscle fiber degeneration\(^7\). Uregulation of the mIGF-1 gene and/or administration of extra amounts of mIGF-1 protein or a functional equivalent thereof (especially the mIGF-1 Es isoform as described in 27, human homolog IGF-1 isoform 4: SEQ ID NO: 577) thus promotes the effect of other, preferably genetic, therapies for DMD, including antisense-induced exon skipping. The additional mIGF-1 levels in the above mentioned transgenic mice do not induce cardiac problems nor promote cancer, and have no pathological side effects. As stated before, the amount of mIGF-1 is for instance increased by enhancing expression of the mIGF-1 gene and/or by administration of mIGF-1 protein and/or a functional equivalent thereof (especially the mIGF-1 Es isoform as described in 27, human homolog IGF-1 isoform 4: SEQ ID NO: 577). A composition of the invention further preferably comprises mIGF-1, a compound capable of enhancing mIGF-1 expression and/or an mIGF-1 activity, for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, such composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional.

Within the context of the invention, an increased amount of mIGF-1 may be reached by increasing the gene expression level of an IGF-1 gene, by increasing the amount of a corresponding IGF-1 protein and/or by increasing an activity of an IGF-1 protein. A preferred mIGF-1 protein has been earlier defined herein. An increase of an activity of said protein is herein understood to mean any detectable change in a biological activity exerted by said protein or in the steady state level of said protein as compared to said activity or steady-state in a individual who has not been treated. Increased amount or activity of mIGF-1 is preferably assessed by detection of increased expression of muscle hypertrophy biomarker GATA-2 (as described in 27).

Gene expression level is preferably assessed using classical molecular biology techniques such as (real time) PCR, arrays or Northern analysis. A steady state level of a protein is determined directly by quantifying the amount of a protein. Quantifying a protein amount may be carried out by any known technique such as Western blotting or immunoassay using an antibody raised against a protein. The skilled person will understand that alternatively or in combination with the quantification of a gene expression level and/or a corresponding protein, the quantification of a substrate of a corresponding protein or of any compound known to be associated with a function or activity of a corresponding protein or the quantification of said function or activity of a corresponding protein using a specific assay may be used to assess the alteration of an activity or steady state level of a protein.

In the invention, an activity or steady-state level of a said protein may be altered at the level of the protein itself, e.g., by providing a protein to a cell from an exogenous source.

Preferably, an increase or an up-regulation of the expression level of a said gene means an increase of at least 5% of the expression level of said gene using arrays. More preferably, an increase of the expression level of said gene means an increase of at least 10%, even more preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 70%, at least 90%, at least 150% or more. In another preferred embodiment, an increase of the expression level of said protein means an increase of at least 5% of the expression level of said protein using Western blotting and/or using ELISA or a suitable assay. More preferably, an increase of the expression level of a protein means an increase of at least 10%, even more preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 70%, at least 90%, at least 150% or more.
In another preferred embodiment, an increase of a polypeptide activity means an increase of at least 5% of a polypeptide activity using a suitable assay. More preferably, an increase of a polypeptide activity means an increase of at least 10%, even more preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 70%, at least 90%, or at least 150% or more. The increase is preferably assessed by comparison to corresponding activity in the individual before treatment.

A preferred way of providing a source of mFGF is to introduce a transgene encoding mFGF, preferably an mFGF-1 Ea isoform (as described in 27, human homolog IGF-1 isoform 4; SEQ ID NO: 577), more preferably in an AAV vector as later defined herein. Such source of mFGF is specifically expressed in muscle tissue as described in mice in 27.

In another preferred embodiment, a composition further comprises an antioxidant. Oxidative stress is an important factor in the progression of DMD and promotes chronic inflammation and fibrosis. The most prevalent products of oxidative stress, the peroxidized lipids, are increased by an average of 35% in Duchenne boys. Increased levels of the enzymes superoxide dismutase and catalase reduce the excessive amount of free radicals causing these effects. In fact, a dietary supplement Protandim® (LifeVantage) was clinically tested and found to increase levels of superoxide dismutase (up to 30%) and catalase (up to 54%), which indeed significantly inhibited the peroxidation of lipids in 29 healthy persons. Such effective management of oxidative stress thus preserves muscle quality and so promotes the positive effect of DMD therapy. Idebeneone is another potent antioxidant with a chemical structure derived from natural coenzyme Q10. It protects mitochondria where adenosine triphosphate, ATP, is generated by oxidative phosphorylation. The absence of dystrophin in DMD negatively affects this process in the heart, and probably also in skeletal muscle. Idebeneone was recently applied in clinical trials in the US and Europe demonstrating efficacy on neurological aspects of Friedreich’s Ataxia. A phase-IIa double-blind, placebo-controlled randomized clinical trial with Idebeneone has recently been started in Belgium, including 21 Duchenne boys at 8 to 16 years of age. The primary objective of this study is to determine the effect of Idebeneone on heart muscle function. In addition, several different tests will be performed to detect the possible functional benefit on muscle strength in the patients. When effective, idebeneone is a preferred adjunct compound for use in a combination according to the present invention in order to enhance the therapeutic effect of DMD therapy, especially in the heart. A composition further comprising an antioxidant for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional. Depending on the identity of the antioxidant, the skilled person will know which quantities are preferably used. An antioxidant may include bacoside, silimarin, curcumin and/or a polyphenol. Preferably, a polyphenol is or comprises epigallocatechin-3-gallate (EGCG). Preferably, an antioxidant is a mixture of antioxidants as the dietary supplement Protandim® (LifeVantage). A daily capsule of 675 mg of Protandim® comprises 150 mg of B. monniera (45% bacosides), 225 mg of S. marianum (70-80% silimarin), 150 mg of W. somnifera powder, 75 mg green tea (98% polyphenols wherein 45% EGCG) and 75 mg tumeric (95% curcumin).

In another preferred embodiment, a composition further comprises an ion channel inhibitor. The presence of damaged muscle membranes in DMD disturbs the passage of calcium ions into the myofibers, and the consequently disrupted calcium homeostasis activates many enzymes, e.g. proteases, that cause additional damage and muscle necrosis. Ion channels that directly contribute to the pathological accumulation of calcium in dystrophic muscle are potential targets for adjunct compounds to treat DMD. There is evidence that some drugs, such as pentoxifylline, block exercise-sensitive calcium channels and antibiotics that block stretch activated channels reduce myofibre necrosis in mdx mice and CK levels in DMD boys. A composition further comprising an ion channel inhibitor for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional.

Preferably, an ion channel inhibitor of the class of xanthines is used. More preferably, said xanthines are derivatives of methylxanthines, and most preferably, said methylxanthine derivatives are chosen from the group consisting of pentoxifylline, furafylline, l-isoxylline, propentofylline, pentifylline, theophylline, theobromine, albutyryl, enprofylline and derivatives thereof. Most preferably is the use of pentoxifylline. Ion channel inhibitors of the class of xanthines enhance the skipping frequency of a dystrophin exon from a pre-mRNA comprising said exon, when using an oligonucleotide directed toward the exon or to one or both splice sites of said exon. The enhanced skipping frequency also increases the level of functional dystrophin protein produced in a muscle cell of a DMD or BMD individual.

Depending on the identity of the ion channel inhibitor, the skilled person will know which quantities are preferably used. Suitable dosages of pentoxifylline are between 1 mg/kg/day to 100 mg/kg/day, preferred dosages are between 10 mg/kg/day to 50 mg/kg/day. Typical dosages used in humans are 20 mg/kg/day.

In one embodiment, an ion channel inhibitor is administered to said individual prior to administering a composition comprising an oligonucleotide. In this embodiment, it is preferred that said ion channel inhibitor is administered at least one day, more preferred at least one week, more preferred at least two weeks, more preferred at least three weeks prior to administering a composition comprising an oligonucleotide.

In another preferred embodiment, a composition further comprises a protease inhibitor. Calpains are calcium-activated proteases that are increased in dystrophic muscle and account for myofiber degeneration. Calpain inhibitors such as calpastatin, leupeptin, calpeptin, calpain inhibitor III, or PD150606 are therefore applied to reduce the degeneration process. A new compound, BN 82270 (Ipsen) that has dual action as both a calpain inhibitor and an antioxidant increased muscle strength, decreased serum CK and reduced fibrosis of the mdx diaphragm, indicating a therapeutic effect with this new compound. Another compound of Leupeptin/Carminite (Myochr) has recently been proposed for clinical trials in DMD patients.

MG132 is another proteasomal inhibitor that has shown to reduce muscle membrane damage, and to amelio-
rate the histopathological signs of muscular dystrophy. MG-132 (CBZ-leucyl-leucyl-leucinal) is a cell-permeable, proteasomal inhibitor (Ki=4 nM), which inhibits NF kappa B activation by preventing Ikappa B degradation (IC50=3 μM). In addition, it is a peptide aldehyde that inhibits ubiquitin-mediated proteolysis by binding to and inactivating 20S and 26S proteasomes. MG-132 has shown to inhibit the proteasomal degradation of dystrophin-associated proteins in the dystrophic mdx mouse model. This compound is thus also suitable for use as an adjunct pharmacological compound for DMD. A composition further comprising a protease inhibitor for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said combination is used in order to alleviate one or more symptom(s) of a severe form of DMD wherein a very short dystrophin protein is formed which is not sufficiently functional. Depending on the identity of the protease inhibitor, the skilled person will know which quantities are preferably used.

In another preferred embodiment, a composition further comprises L-arginine. Dystrophin-deficiency is associated with the loss of the DGC-complex at the fiber membranes, including neuronal nitric oxide synthase (nNOS). Expression of a nNOS transgene in mdx mice greatly reduced muscle membrane damage. Similarly, administration of L-arginine (the substrate for nitric oxide synthase) increased NO production and upregulated utrophin expression in mdx mice. Six weeks of L-arginine treatment improved muscle pathology and decreased serum CK in mdx mice. The use of L-arginine as a further constituent in a composition of the invention has not been disclosed.

A composition further comprising L-arginine for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional.

In another preferred embodiment, a composition further comprises angiotensin II type 1 receptor blocker Losartan, which normalizes muscle architecture, repair and function, as shown in the dystrophin-deficient mdx mouse model. A composition further comprising angiotensin II type 1 receptor blocker Losartan for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional. Depending on the identity of the angiotensin II type 1 receptor blocker, the skilled person will know which quantities are preferably used.

In another preferred embodiment, a composition further comprises an angiotensin-converting enzyme (ACE) inhibitor, preferably perindopril. ACE inhibitors are capable of lowering blood pressure. Early initiation of treatment with perindopril is associated with a lower mortality in DMD patients. A composition further comprising an ACE inhibitor, preferably perindopril for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional. The usual doses of an ACE inhibitor, preferably perindopril are about 2 to 4 mg/day. In a more preferred embodiment, an ACE inhibitor is combined with at least one of the previously identified adjunct compounds.

In another preferred embodiment, a composition further comprises a compound exhibiting a readthrough activity. A compound exhibiting a readthrough activity may be any compound, which is able to suppress a stop codon. For 20% of DMD patients, the mutation in the dystrophin gene is comprising a point mutation, of which 13% is a nonsense mutation. A compound exhibiting a readthrough activity or which is able to suppress a stop codon is a compound which is able to provide an increased amount of a functional dystrophin mRNA or protein and/or a decreased amount of an aberrant or truncated dystrophin mRNA or protein. Increased preferably means increased of at least 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% or more. Decreased preferably means decreased of at least 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% or more. An increase or a decrease of said protein is preferably assessed in a muscular tissue or in a muscular cell of an individual by comparison to the amount present in said individual before treatment with said compound exhibiting a readthrough activity. Alternatively, the comparison can be made with a muscular tissue or cell of said individual which has not yet been treated with said compound in case the treatment is local. The assessment of an amount at the protein level is preferably carried out using western blot analysis.

Preferred compounds exhibiting a readthrough activity comprise or consist of aminoglycosides, including, but not limited to, gentamicin (G418), paromomycin, gentamycin and/or 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoic acid, and derivatives thereof (references 64, 65).

A more preferred compound exhibiting a readthrough activity comprises or consists of PTC124™, and/or a functional equivalent thereof. PTC124™ is a registered trademark of PTC Therapeutics, Inc. South Plainfield, N.J. 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoic acid) also known as PTC124™ (references 16, 17) belongs to a new class of small molecules that mimics at lower concentrations the readthrough activity of gentamicin (reference 55). A functional equivalent of 34542-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoic acid) or of gentamicin is a compound which is able to exhibit a readthrough activity as earlier defined herein. Most preferably, a compound exhibiting a readthrough activity comprises or consists of gentamicin and/or 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoic acid) also known as PTC124™. A composition further comprising a compound exhibiting a readthrough activity, preferably comprising or consisting of gentamicin and/or 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoic acid) for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional. The usual doses of a compound exhibiting a readthrough activity, preferably 34542-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoic acid) or of gentamicin are ranged between 3 mg/kg/day to 200 mg/kg/day, preferred dosages are between 10 mg/kg to 50 mg/kg per day or twice a day.
In a more preferred embodiment, a compound exhibiting a readthrough activity is combined with at least one of the previously identified adjunct compounds.

In another preferred embodiment, a composition further comprises a compound, which is capable of enhancing exon skipping and/or inhibiting splicingosome assembly and/or splicing. Small chemical compounds, such as for instance specific indole derivatives, have been shown to selectively inhibit splicingosome assembly and splicing, for instance by interfering with the binding of serine- and arginine-rich (SR) proteins to their cognate splicing enhancers (ISEs or ISEs) and/or by interfering with the binding of splicing repressors to silencer sequences (ESSSs or ISSSs). These compounds are therefore suitable for applying as adjunct compounds that enhance exon skipping. A composition further comprising a compound for enhancing exon skipping and/or inhibiting splicingosome assembly and/or splicing for use as a medicament is also provided. Said medicament is preferably for alleviating one or more symptom(s) of DMD. In one embodiment, said composition is used in order to alleviate one or more symptom(s) of a severe form of BMD wherein a very short dystrophin protein is formed which is not sufficiently functional. Depending on the identity of the compound, which is capable of enhancing exon skipping and/or inhibiting splicingosome assembly and/or splicing, the skilled person will know which quantities are preferably used. In a more preferred embodiment, a compound for enhancing exon skipping and/or inhibiting splicingosome assembly and/or splicing is combined with an ACE inhibitor and/or with any adjunct compounds as identified earlier herein.

The invention thus provides a composition further comprising an adjunct compound, wherein said adjunct compound comprises a steroid, an ACE inhibitor (preferably perindopril), angiotensin II type 1 receptor blocker Losartan, a tumour necrosis factor-alpha (TNFac) inhibitor, a source of mGF-1, preferably mGF-1, a compound for enhancing mGF-1 activity, a compound for enhancing mGF-1 expression, a compound for enhancing mGF-1 activity, an antioxidant, an ion channel inhibitor, a protease inhibitor, L-arginine, a compound exhibiting a readthrough activity and/or inhibiting splicingosome assembly and/or splicing.

In one embodiment an individual is further provided with a functional dystrophin protein using a vector, preferably a viral vector, comprising a micro-mini-dystrophin gene. Most preferably, a recombiant adeno-associated viral (rAAV) vector is used. AAV is a single-stranded DNA parvovirus that is non-pathogenic and shews a helper-dependent life cycle. In contrast to other viruses (adenovirus, retrovirus, and herpes simplex virus), rAAV vectors have demonstrated to be very efficient in transducing mature skeletal muscle. Application of rAAV in classical DMD "gene addition" studies has been hindered by its restricted packaging limits (<5 kb). Therefore, rAAV is preferably applied for the efficient delivery of a much smaller micro- or mini-dystrophin gene. Administration of such micro- or mini-dystrophin gene results in the presence of an at least partially functional dystrophin protein. Reference is made to18-20.

Each constituent of a composition can be administered to an individual in any order. In one embodiment, each constituent is administered simultaneously (meaning that each constituent is administered within 10 hours, preferably within one hour). This is however not necessary. In one embodiment at least one adjunct compound is administered to an individual in need thereof before administration of an oligonucleotide. Alternatively, an oligonucleotide is administered to an individual in need thereof before administration of at least one adjunct compound.

Use

In a further aspect, there is provided the use of an oligonucleotide or of a composition as defined herein for the manufacture of a medicament for preventing or treating Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in an individual. Each feature of said use has earlier been defined herein.

A treatment in a use or in a method according to the invention is at least one week, at least one month, at least several months, at least one year, at least 2, 3, 4, 5, 6 years or more. Each molecule or oligonucleotide or equivalent thereof as defined herein for use according to the invention may be suitable for direct administration to a cell, tissue and/or an organ in vivo of individuals affected by or at risk of developing DMD or BMD, and may be administered directly in vivo, ex vivo or in vitro. The frequency of administration of an oligonucleotide, composition, compound or adjunct compound of the invention may depend on several parameters such as the age of the patient, the mutation of the patient, the number of molecules (i.e. dose), the formulation of said molecule. The frequency may be ranged between at least once in two weeks, or three weeks or four weeks or five weeks or a longer time period.

Method

In a further aspect, there is provided a method for alleviating one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in an individual or alleviate one or more characteristic(s) of a myogenic or muscle cell of said individual, the method comprising administering to said individual an oligonucleotide or a composition as defined herein.

There is further provided a method for enhancing, inducing or promoting skipping of an exon from a dystrophin pre-mRNA in a cell expressing said pre-mRNA in an individual suffering from Duchenne Muscular Dystrophy or Becker Muscular Dystrophy, the method comprising administering to said individual an oligonucleotide or a composition as defined herein. Further provided is a method for increasing the production of a functional dystrophin protein and/or decreasing the production of an aberrant dystrophin protein in a cell, said cell comprising a pre-mRNA of a dystrophin gene encoding an aberrant dystrophin protein, the method comprising providing said cell with an oligonucleotide or composition of the invention and allowing translation of mRNA produced from splicing of said pre-mRNA. In one embodiment, said method is performed in vitro, for instance using a cell culture. Preferably, said method is in vivo.

Unless otherwise indicated each embodiment as described herein may be combined with another embodiment as described herein.

In this document and in its claims, the verb "to comprise" and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition the verb "to consist" may be replaced by "to consist essentially of" meaning that a compound or adjunct compound as...
defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention.

[0149] In reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”.

[0150] The word “approximately” or “about” when used in association with a numerical value (approximately 10, about 10) preferably means that the value may be the given value of 10 more or less 1% of the value.

[0151] All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety. Each embodiment as identified herein may be combined together unless otherwise indicated.

[0152] The invention is further explained in the following examples. These examples do not limit the scope of the invention, but merely serve to clarify the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0153] FIG. 1. In human control myotubes, PS220 and PS305 both targeting an identical sequence within exon 45, were directly compared for relative skipping efficiencies. PS220 reproducibly induced highest levels of exon 45 skipping (up to 73%), whereas with PS305 maximum exon 45 skipping levels of up to 46% were obtained. No exon 45 skipping was observed in non-treated cells. (M: DNA size marker; NT: non-treated cells)

[0154] FIG. 2. Graph showing relative exon 45 skipping levels of inosine-containing AONs as assessed by RT-PCR analysis. In human control myotubes, a series of new AONs, all targeting exon 45 and containing one inosine for guanosine substitution were tested for relative exon 45 skipping efficiencies when compared with PS220 and PS305 (see FIG. 1). All new inosine-containing AONs were effective, albeit at variable levels (between 4% and 25%). PS220 induced highest levels of exon 45 skipping (up to 72%), whereas with PS305 maximum exon 45 skipping levels of up to 63% were obtained. No exon 45 skipping was observed in non-treated cells. (M: DNA size marker; NT: non-treated cells).

EXAMPLES

Example 1

Materials and Methods

[0155] AON design was based on (partly) overlapping open secondary structures of the target exon RNA as predicted by the m-fold program, on (partly) overlapping putative SR-protein binding sites as predicted by the ESE-finder software. AONs were synthesized by Prosensa Therapeutics B.V. (Leiden, Netherlands), and contain 2’-O-methyl RNA and full-length phosphorothioate (PS) backbones.

Tissue Culturing, Transfection and RT-PCR Analysis

[0156] Myotube cultures derived from a healthy individual (“human control”) (examples 1, 3, and 4; exon 43, 50, 52 skipping) or a DMD patient carrying an exon 45 deletion (example 2; exon 46 skipping) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet. 2003; 12(8): 907-14). For the screening of AONs, myotube cultures were transfected with 200 nM for each AON (PS220 and PS305). Transfection reagent UNIFectylin (Prosensa Therapeutics BV, Netherlands) was used, with 2 μg UNIFectylin per μg AON. Exon skipping efficiencies were determined by nested RT-PCR analysis using primers in the exons flanking the targeted exon 45. PCR fragments were isolated from agarose gels for sequence verification. For quantification, the PCR products were analyzed using the DNA 1000 LabChip Kit on the Agilent 2100 bioanalyzer (Agilent Technologies, USA).

Results

[0157] DMD exon 45 skipping.

[0158] Two AONs, PS220 (SEQ ID NO: 76; 5’-UUUGCCUGCCCAUGCAUCCUG-3’) and PS305 (SEQ ID NO: 557; 5’-UUUGCCUGCCCAUGCAUCCUG-3’) both targeting an identical sequence within exon 45, were directly compared for relative skipping efficiencies in healthy control myotube cultures. Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that both AONs were indeed capable of inducing exon 45 skipping. PS220, consisting a GCCGCT stretch, reproducibly induced highest levels of exon 45 skipping (up to 73%), as shown in FIG. 1. However, PS305, which is identical to PS220 but containing an inosine for a G substitution at position 4 within that stretch is also effective and leading to exon 45 skipping levels of up to 46%. No exon 45 skipping was observed in non-treated cells (NT).

Example 2

Materials and Methods

[0159] AON design was based on (partly) overlapping open secondary structures of the target exon 45 RNA as predicted by the m-fold program, on (partly) overlapping putative SR-protein binding sites as predicted by the ESE-finder software. AONs were synthesized by Prosensa Therapeutics B.V. (Leiden, Netherlands), and contain 2’-O-methyl RNA, full-length phosphorothioate (PS) backbones and one inosine for guanosine substitution.

Tissue Culturing, Transfection and RT-PCR Analysis

[0160] Myotube cultures derived from a healthy individual (“human control”) were processed as described previously (Aartsma-Rus et al., Neuromuscul. Disord. 2002; 12: S71-77 and Hum Mol Genet. 2003; 12(8): 907-14). For the screening of AONs, myotube cultures were transfected with 200 nM for each AON. Transfection reagent UNIFectylin (Prosensa Therapeutics BV, Netherlands) was used, with 2 μg UNIFectylin per μg AON. Exon skipping efficiencies were determined by nested RT-PCR analysis using primers in the exons flanking the targeted exon 45. PCR fragments were isolated from agarose gels for sequence verification. For quantification, the PCR products were analyzed using the DNA 1000 LabChip Kit on the Agilent 2100 bioanalyzer (Agilent Technologies, USA).

Results

[0161] DMD exon 45 skipping.

[0162] An additional series of AONs targeting exon 45 and containing one inosine-substitution were tested in healthy control myotube cultures for exon 45 skipping efficiencies, and directly compared to PS220 (without inosine; SEQ ID NO: 76)) and PS305 (identical sequence as PS220 but with inosine substitution; SEQ ID NO: 557). Subsequent RT-PCR and sequence analysis of isolated RNA demonstrated that all
new AONs (PS309 to PS316) were capable of inducing exon 45 skipping between 4% (PS311) and 25% (PS310) as shown in FIG. 2. When compared to PS220 and PS305, PS220 induced highest levels of exon 45 skipping (up to 72%). Of the new inosine-containing AONs PS305 was most effective, showing exon 45 skipping levels of up to 63%. No exon 45 skipping was observed in non-treated cells (NT).

REFERENCES

[0223] 60. Dorn and Kippenberger, Curr Opin Mol Ther 2008 10(1) 10-20

[0228] 65. ... Nucleicman et al., 2006, Bioorg Med Chem Lett 16(24), 6310-5
Sequence listing

MDM gene amino acid sequence

SEQ ID NO: 1
MLAEVSEVDCVGVDYEDVIQKKTPOYNVQAQSFKPGQKHIEMLFSD1QLQOQRLDLDDLELG
TGKLPLKEKSGSRAVMALNYVKALKVLGQNNVDDLHIGSTDIVGDHNLTLGILNHILLE
HGVQTVFNWIMNLAQGQGTSKQEKLQWVTHQYQVNIWFFTSWSQDLGALALNH
SHWPDQWNWVSVCQDQSATQLRHAHFNLARYLQIEKILQEDVDTTYPYOKKSILMYT
SLPQVLPQQRQVIRAQEVHMPLPFPFYTKKEHHPQLHQMQYSLQQTIVTLPLAQVGYRTSSP
KPRFKSYAVTQAAYVYSDPTSPPSQCHLEAEPDKPSGSSISMHESYVLQOKQTALKEV
LSNLSASEDLQACQIBLNDVEVSDKQHTKNGTDYMYNMLTAQKEQCVNIVLQGLKELG
GTKLESEDLTEVQCMIBMNLHRSNKSLKVASNEKQSNLHRLMLQNQKSLKELLNLT
KTEERIKMEBEPGLPDDLEDKLRQIQVQHQLQVLDQQEQQVNVSLTHMVVVVDESG
DMATALEBLKLVLGDHANKITCMTEEDKVLQDIILKQQLERQTEQCLPSMLKSEKE
DAVNHHTTQFQDKQENLMSLQKVLQKDALEKQKQDSMAGKSLQDNLSTKNSVT
QKTEANLQFQDMLVLQKLEKSTAIQSSAQVTQPSLQITTVMETVTVTTREQLLV
KHAQELPQPIPPQMQQKQTOQTVDSIRERLKDVLTEQHLHMTSESAQLQSEPEFAIFREKGNF
SDLKKEVNAIERERKAKRPRKLQDASQAQLVEQMVQKWEVQKSAQSEQLNSHIEN
FCLQLSRLNLVYIQIGNNTIAFQYQQLQGQMTTAAENLIKQPTSEPTEAIAKSLKIC
KDNERLRLGLQQPQIERDKQIALKEKQGQPMFLADDVPVVTPHPKQPVSVQAREKEL
QTIFDULSPQRYQETDASAINTWVQSETLKLSPQLSTYDEYBQRQGLHQLAQQLSGQ
QQGLYOLOYSTTVENMSKAPMRIRKRGQEEFEEBGRWKKLQSLQQQVEHQCQLLEEQNNK
LKRKIQGNTQCTLGHMAMEVDYFLKKEQPLGDESEIKLKIQQCRLLLVDSDIQTQPSLNSV
NEDQCKIKNEEAPFASFLSTELKELNQGQSMQVQYRKEALKELGGKBTQVSQLD
LQEMIHKTQASTEYLDREDHRPTKDEQAVEKRMKFEKASQPKEAKQVKLTTESV
NVQIAPQQFVQALEKESTLTNYOQKCTRNGCKTCRKLSVACWHELSSYLHAKAN
KHNWVEPELKTENIPQGAEIIEYVLSDILENLMEHDNPQHR1LAQQLTDQNVTD
ELINEELTSPPSNS6HELJHEAVRQKQELQOSIQAQETBESLULIQSFLTFJKIQLAAYI
ADVQDAQMQQRPQKQSTQCSLTHSEILNEEIKKKIRQGKAEQQVLQDIQVARQLQEVDS
MKRFPQKPAFIEQFLQGKSMILDEVKMDPALSTKSVQEQETQQLQSNLYHLYKLSLS
EVKQSEVWVTQGQRQVQQKQETNEQDOERYTVALKLHYNELGAQVERQKQEELCKL
LSRKRKEMHNWLTEAMAELTSAVRGMPSDLSEVANSQATKQEKEFQICVH
LKQITEVGHALKTLYGKETLVEKDSLLNNSNNAVTSREDNENLLLREQSHMTFD
QYFVHHTKQIQTADTLDESQKKPQQKEVDLKLKAEALNHRIPKVDSTQDQAANLMA
NRQCHCRILVHPEQISELLHRPAISHEIRKTKASILKELQEGNSDQJKLLEPSEAIIQQ
GVNLEKEDPKKEDNENEGTVKELQROCCOLQGIRYKEREKIELKKIQQLQTSNAD
LQDLRSQRKRALEHSQWQYQKRQADDLILKICLDEIKKSLPEFKREBRRKEIDREL
QXKEKELAVKRDAGSLEKDNAMAEVEPTQOLKSKRERIEKQFRERLNPQIAQHTV
REETHMVTEMEPLEISYVPSTLEITEHSSQALLEVEQLLMAPILCADFFEDLFKQE
ESLKNIKDSLOQSESGDIHINSKTTAQSAQTPVTERKVLQERALQGPQKQNEKVHMYKD
RQGAPREDVSHEFPPHPDEIDIKFIHGQTELQRAQFKIQPQNEHAKTMYSKELQGQI
-continued

SEQ ID AGUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 34

SEQ ID AGUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 71

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 35

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 72

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 36

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 73

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 37

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 74

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 38

SEQ ID AUUUGGGAAGGCGAGUUGCCAGAGAGAAG
NO 75

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 539

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 548

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 540

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 549

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 541

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 550

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 542

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 551

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 543

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 552

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 544

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 553

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 545

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 554

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 546

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 555

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 547

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 556

SEQ ID UCAGGAAGGAAGGCGAGUUGCCAGAGAGAAG
NO 557

SEQ ID GUUGCAUCUAGAUGCGAUCAG
NO 76

SEQ ID GUUGCAUCUAGAUGCGAUCAG
NO 109

SEQ ID AUUUGGGUGAAGUUGAGUUCAG
NO 77

SEQ ID AUUUGGGUGAAGUUGAGUUCAG
NO 110

SEQ ID CUGUGUCAGUUCAGAUGGCAUCACAA
NO 78

SEQ ID CUGUGUCAGUUCAGAUGGCAUCACAA
NO 111

SEQ ID CAGUGUCAGUUCAGAUGGCAUCACAA
NO 79

SEQ ID CAGUGUCAGUUCAGAUGGCAUCACAA
NO 112

SEQ ID GUGUGUCAUUCAGAUGGCAUCACAA
NO 80

SEQ ID GUGUGUCAUUCAGAUGGCAUCACAA
NO 113

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 81

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 114

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 82

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 115

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 83

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 116

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 84

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 117

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 85

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 118

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 86

SEQ ID AAUUGGUGAAGUUGAGUUCAG
NO 119
-continued

SEQ ID UUUGCCCUUGGCCCCAAUGCACCCUUG
NO 561

SEQ ID UUUGCCCCUUCGCCCCAAUGCACCCUUG
NO 562

SEQ ID UUUGCUCGUCCGCCAACUUGGCAACCCUUG
NO 563

SEQ ID UUUGCUCGUCCGCCAACUUGGCAACCCUUG
NO 564

SEQ ID UUUGCCGGCCGCAAGCUCACCCUUG
NO 565

DMD Gene Exon 53

SEQ ID CUCUGGCUUGGCUAGGACCGUCUC
NO 141

SEQ ID UCUGGCUGCUCGCUAGGACCUGUCA
NO 142

SEQ ID UGCGGCUUCUAGACCCUCUCAG
NO 143

SEQ ID UGCGGCUUCUAGACCCUCUCAG
NO 144

SEQ ID QCUGCCCUUCUAAAGCCUGCCAGCU
NO 145

SEQ ID GCUGCUGCCUAGACCCUCUCAG
NO 146

SEQ ID CCGCCCUUCUAAAGCCUGCCAGCU
NO 147

SEQ ID UGCGCCCUAGACCCUCUCAGCU
NO 148

SEQ ID UGCGCCCUAGACCCUCUCAGCU
NO 149

SEQ ID GCUGCUGCCUAGACCCUCUCAG
NO 150

SEQ ID UCUGCCCUAGACCCUCUCAGCU
NO 151

SEQ ID CCGCCCUUCUAAAGCCUGCCAGCU
NO 152

SEQ ID UGCGCCCUAGACCCUCUCAGCU
NO 153

SEQ ID UGCGCCCUAGACCCUCUCAGCU
NO 154

SEQ ID AGAAGUGGCGGCUCUCUCUCUCUCUAG
NO 155

SEQ ID AGAAGUGGCGGCUCUCUCUCUCUAG
NO 156

SEQ ID ACCUGGUCCAGCUUCUCCUCUAAAGC
NO 157

SEQ ID ACCUGGUCCAGCUUCUCCUCUAAAGC
NO 158

SEQ ID CCGCCCUAGACCCUCUCAGCU
NO 159

SEQ ID CUGCCCUAGCCUUCUCUCUCUCUAG
NO 160
-continued

SEQ ID UGCUCAGCUCUCUCUCUUUGGCUUACA
NO 161
SEQ ID AGCCAUUGGUGGUUAGUCCUUUAA
NO 186
SEQ ID QCUCAGCUCUCUCUCUUUGGCUUACAG
NO 162
SEQ ID GCAUGUGGUUAGUCCUUUAA
NO 186
SEQ ID UCACUCUCUCUCUCUCUUUGGCUUACAG
NO 163
SEQ ID CCAUGUGGUUAGUCCUUUAA
NO 187
SEQ ID UCACUCUCUCUCUCUCUUUGGCUUACAG
NO 164
SEQ ID CUAUGUGGUUAGUCCUUUAA
NO 188

DMO Gene Exon 44
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 189
SEQ ID AGCUUCUGUUGGUCACUGA
NO 214
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 190
SEQ ID CACCUUGUUGGUCACUGA
NO 215 A
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 191
SEQ ID AGCUUCUGUUGGUCACUGA
NO 216
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 192
SEQ ID AGCUUCUGUUGGUCACUGA
NO 217
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 193
SEQ ID GCUGCUUGUUGGUCACUGA
NO 218
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 194
SEQ ID AGCUUCUGUUGGUCACUGA
NO 219
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 195
SEQ ID GCUGCUUGUUGGUCACUGA
NO 220
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 196
SEQ ID AGCUUCUGUUGGUCACUGA
NO 221
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 197
SEQ ID GCUGCUUGUUGGUCACUGA
NO 222
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 198
SEQ ID AGCUUCUGUUGGUCACUGA
NO 223
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 199
SEQ ID GCUGCUUGUUGGUCACUGA
NO 224
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 200
SEQ ID AGCUUCUGUUGGUCACUGA
NO 225
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 201
SEQ ID GCUGCUUGUUGGUCACUGA
NO 226
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 202
SEQ ID CCAUGUGGUUAGUCCUUUAA
NO 227
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 203
SEQ ID AGANACCUUUUGUAUUAGUACG
NO 228
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 204
SEQ ID GCAUUUCUCACAAGAUCU
NO 229
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 205
SEQ ID GCAUUUCUCACAAGAUCU
NO 230
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 206
SEQ ID AUUGAUGGUUAGGUGGCUUC
NO 231
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 207
SEQ ID UUGAUGGUUAGGUGGCUUC
NO 232
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 208
SEQ ID GUAUGGUUAGGUGGCUUC
NO 233
SEQ ID UCACUCUCUCUCUCUCUUGGCAUGC
NO 209
SEQ ID CUGAUAUUGUAAGCUUUAAUGC
NO 234
-continued

SEQ ID AGCUUCUGUAGCCACUCUAUAA
NO 210
SEQ ID GCCGCCAUUUCUCAACAG
NO 236

SEQ ID CAGCUUCUAGCCACUAUAA
NO 211
SEQ ID GAUUUAGCAUGUUCCCA
NO 236

SEQ ID AGCUUCUGUAGCCACUCUAUAA
NO 212
SEQ ID CAGGAUUUGUGUUCUUG
NO 237

SEQ ID CAGCUUCUAGCCACUCUAUAA
NO 213
SEQ ID UCAUCUCUGUAAUGCCACUG
NO 575

SEQ ID UCAGCUUCUAGCCACUG
NO 573
SEQ ID UCAGCUUCUAGCCACU
NO 576

SEQ ID UCAGCUUCUAGCUAICCACUG
NO 574

DMD Gene Exon 46
SEQ ID GCUUUCUCUAUUGGCGUUCUCUCUUU
NO 238
SEQ ID CCAAGUUCAAGUGGAGUACUGCA
NO 265

SEQ ID GUUUCUCUUGGCGUUCUCUCUUU
NO 239
SEQ ID CAGGUUCAAGUGGAGUACUGCA
NO 266

SEQ ID GUUUCUCUUGGCGUUCUCUCUCU
NO 240
SEQ ID AGGUUCAAGUGGAGUACUGCA
NO 267

SEQ ID GUUUCUCUUGGCGUUCUCUCUCU
NO 241
SEQ ID GGUCUCAAGUGGAGUACUGCA
NO 268

SEQ ID GUUUCUCUUGGCGUUCUCUCUCU
NO 242
SEQ ID GUUCAAGUGGAGUACUGCA
NO 269

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 243
SEQ ID UUCAAGUGGAGUACUGCA
NO 270

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 244
SEQ ID UCAAGUGGAGUACUGCA
NO 271

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 245
SEQ ID CAGGUUCAAGUGGAGUACUGCA
NO 272

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 246
SEQ ID AAGGUUCAAGUGGAGUACUGCA
NO 273

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 247
SEQ ID AAGGUUCAAGUGGAGUACUGCA
NO 274

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 248
SEQ ID GAGGUUCAAGUGGAGUACUGCA
NO 275

SEQ ID AGCUUCUGUAGCCACUCUAUAA
NO 249
SEQ ID GGGUAUAUCAGCAAGUACAGU
NO 276

SEQ ID GUUUCUCUCUCUCUCUAGGUAUAA
NO 250
SEQ ID GGGUAUAUCAGCAAGUACAGU
NO 277

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 251
SEQ ID GGGAUAUCAGCAAGUACAGU
NO 278

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 252
SEQ ID GGGUAUAUCAGCAAGUACAGU
NO 279

SEQ ID UCUGUUAAGGCGUUCUCUCUCU
NO 253
SEQ ID AAGGUUCAAGUGGAGUACUGCA
NO 280

SEQ ID UUGCUUUCUCUCUCUCUCUCU
NO 254
SEQ ID UAGCUUUCUCUCUCUCUCUCU
NO 281

SEQ ID DUGCUUUCUCUCUCUCUCUCU
NO 255
SEQ ID ACUUGGUAAGUACUGUACAGU
NO 282

SEQ ID GCUGUCUUCUCUCUCUCUCUCU
NO 256
SEQ ID GCUGUCUUCUCUCUCUCUCUCU
NO 283
-continued

SEQ ID CUCUUUUCAGUUUCAAGGGGUA
NO 257

SEQ ID UCUUUCAGGUAUCAGUGGGAAC
NO 258

SEQ ID ACACAAUGUUAUCUGCUUCCCAAC
NO 259

SEQ ID GUUUCAGUUUCUAGUGUGCU
NO 260

SEQ ID AAAGCUUACGCUUCCACAACAU
NO 261

SEQ ID AUUCCAGGUAACAGGGGCAA
NO 262

SEQ ID UUCAGGUUAACAGGGGCAA
NO 263

SEQ ID UCCAGGUAACAGGGGCAAUC
NO 264

DMD Gene Exon 52

SEQ ID ACUCUCUUACGUUGCTUGCUGGUY
NO 291

SEQ ID UGGGCAAGCGAAGAAGUGUCC
NO 292

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 293

SEQ ID GGGCAGCGAAGAAGUGUCC
NO 294

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 295

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 296

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 297

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 298

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 299

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 300

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 301

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 302

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 303

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 304

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 305

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 306

SEQ ID GGGGCAAGCGAAGAAGUGUCC
NO 307
-continued

SEQ ID: GUUGUGAGUCACAGGGAGGCGUUGGAGA
NO: 367

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 393

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 368

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 394

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 369

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 395

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 370

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 396

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 371

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 397

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 372

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 398

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 373

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 399

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 374

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 400

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 375

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 401

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 376

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 402

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 377

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 403

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 378

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 404

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 379

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 405

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 380

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 406

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 381

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 407

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 382

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 408

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 383

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 409

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 384

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 410

SEQ ID: GUUGUGAGUGACAGGGAGGCGUUGGAGA
NO: 385

SEQ ID: GSAGCCGACAGGGAGGCGUUGGAGA
NO: 411

DMD Gene Exon 43

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 412

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 443

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 413

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 444

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 414

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 445

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 415

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 446

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 416

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 447

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 417

SEQ ID: GGACGCAGCCAGACAGGGAGGCGUUGGAGA
NO: 448
-continued

SEQ ID GCUGUGGUGACUGUGCAUGAGCUGUGG
NO 418

SEQ ID GCUGUGGUGACUGUGCAUGAGCUGUGG
NO 419

SEQ ID GCUGUGGUGACUGUGCAUGAGCUGUGG
NO 420

SEQ ID GCUGUGGUGACUGUGCAUGAGCUGUGG
NO 421

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 422

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 423

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 424

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 425

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 426

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 427

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 428

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 429

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 430

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 431

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 432

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 433

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 434

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 435

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 436

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 437

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 438

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 439

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 440

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 441

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 442

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 443

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 444

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 445

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 446

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 447

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 448

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 449

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 450

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 451

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 452

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 453

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 454

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 455

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 456

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 457

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 458

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 459

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 460

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 461

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 462

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 463

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 464

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 465

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 466

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 467

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 468

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 469

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 470

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 471

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 472

SEQ ID UUGGUGGUGACUGUGCAUGAGCUGUGG
NO 473
DMD Gene Exon 6
SEQ ID CAUUUUUGACCUACAUUG
NO 474
SEQ ID AUUUUGACCUACAUUGAAAA G
NO 479
SEQ ID UUGGACCUCACAUUGAAAA G
NO 475
SEQ ID UACUUUUGACCUACAUUG
NO 476 G
SEQ ID GCUCUCUCUCUACCUACAUUG
NO 477
SEQ ID UCUCUCUCUCUACCUACAUUG
NO 478

DMD Gene Exon 7
SEQ ID UCUCUCUCUCUACCUACAUUG
NO 493
SEQ ID GUCCUAAAACACACCCCAAGA
NO 494

DMD Gene Exon 8
SEQ ID GAUAGGCUUACUACCUACCUA
NO 497
SEQ ID GUAACUUAACGUUGACUCUC
NO 498
SEQ ID GUUCUCUCUCUACCUACAUUG
NO 499

DMD Gene Exon 55
SEQ ID CGUCUCCUCUCUACCUACAUUG
NO 492
SEQ ID UCUCUCUCUCUACCUACAUUG
NO 493
SEQ ID GCCAGGACCUACCUACAUUG
NO 494

DMD Gene Exon 2
SEQ ID CCAUUGACCUACCUACAUUG
NO 498 AACAU
SEQ ID UUGGCAAUUUCCCAUUGG
NO 499

DMD Gene Exon 11
SEQ ID UUGGCAAUUUCCCAUUGG
NO 502
SEQ ID UUGGCAAUUUCCCAUUGG
NO 503

DMD Gene Exon 17
SEQ ID UUGGCAAUUUCCCAUUGG
NO 506
SEQ ID UUGGCAAUUUCCCAUUGG
NO 507

DMD Gene Exon 19
SEQ ID GUGGACCUUGAUCGUUGCCAUUCUG
NO 509
SEQ ID UUGGCAAUUUCCCAUUGG
NO 510

DMD Gene Exon 21
SEQ ID GUGGACCUUGAUCGUUGCCAUUCUG
NO 513
-continued

SEQ ID GUCUGCAUCCGAGAACCAGGUCG
NO 510

SEQ ID GUGUGAAGAUGCAGUGCUAGG
NO 511

SEQ ID UCUCUGGCUAGG
NO 512

SEQ ID UUCAUGGCUAGACCCAGC
NO 513

SEQ ID UCUCUGGCUAGG
NO 514

SEQ ID UGUGGCAUGGUAAGGC
NO 515

SEQ ID GGUCUGGCUAGG
NO 516

SEQ ID GGUGCUGGCUAGG
NO 517

SEQ ID CGUGGCUAGG
NO 518

SEQ ID CGUGGCUAGG
NO 519

SEQ ID CGUGGCUAGG
NO 520

SEQ ID CGUGGCUAGG
NO 521

SEQ ID CGUGGCUAGG
NO 522

SEQ ID CGUGGCUAGG
NO 523

SEQ ID CGUGGCUAGG
NO 524

SEQ ID CGUGGCUAGG
NO 525

SEQ ID CGUGGCUAGG
NO 526

SEQ ID CGUGGCUAGG
NO 527

SEQ ID CGUGGCUAGG
NO 528

SEQ ID CGUGGCUAGG
NO 529

SEQ ID CGUGGCUAGG
NO 530

SEQ ID CGUGGCUAGG
NO 531

SEQ ID CGUGGCUAGG
NO 532

SEQ ID CGUGGCUAGG
NO 533

SEQ ID CGUGGCUAGG
NO 534

SEQ ID CGUGGCUAGG
NO 535

SEQ ID CGUGGCUAGG
NO 536

SEQ ID CGUGGCUAGG
NO 537

Human IGF-1 Isoform 4 amino acid sequence
SEQ ID NO 577:
MKIKSSLPQFLECCFCPCFPLEVMHTMSSHLYLACLLPTSSATAGPFTLCGAEV
DALQFVCQDRPYHPXKTPQGSSRRAPQTGIVDCCPRSCDLSRLEMYCAPLPKNSA
RESRARHTQDMPTQKEKHLKASRGGASZKNKMRM

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 577

<210> SEQ ID NO 1
<211> LENGTH: 3685
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

Met Leu Trp Trp Glu Glu Val Asp Cys Tyr Glu Arg Glu Asp Val
1 5 10 15
Gln Lys Lys Thr Phe Thr Lys Trp Val Asn Ala Glu Phe Ser Lys Phe
20 25 30
Gly Lys Glu His Ile Glu Asn Leu Phe Ser Asp Leu Glu Asp Gly Arg
35 40 45
Arg Leu Leu Asp Leu Leu Glu Gly Leu Thr Gly Glu Gly Leu Pro Lys
50 55 60
Glu Lys Gly Ser Thr Arg Val His Ala Leu Asn Val Asn Val Lys Ala
65 70 75 80
Leu Arg Val Leu Glu Asn Asn Val Asp Leu Val Asn Ile Gly Ser
85 90 95
Thr Asp Ile Val Asp Gly Asn His Lys Leu Thr Leu Gly Leu Ile Trp
100 105 110
Asn Ile Ile Leu His Trp Glu Val Lys Asn Val Met Lys Asn Ile Met
115 120 125
Ala Gly Glu Glu Glu Thr Asn Ser Glu Lys Ile Leu Leu Asp Ser Trp Val
130 135 140
Arg Glu Ser Thr Arg Asn Tyr Pro Glu Val Asn Val Ile Asn Phe Thr
145 150 155 160
Thr Ser Trp Ser Asp Gly Leu Ala Leu Asn Ala Leu Ile His Ser His
165 170 175
Arg Pro Asp Leu Phe Asp Trp Asn Ser Val Val Cys Glu Glu Ser Ala
180 185 190
Thr Glu Arg Leu Glu His Ala Phe Asn Ile Ala Arg Tyr Glu Leu Gly
195 200 205
Ile Glu Lys Leu Leu Asp Pro Glu Glu Val Asp Thr Thr Tyr Pro Asp
210 215 220
Lys Lys Ser Ile Leu Met Tyr Ile Thr Ser Leu Phe Glu Val Leu Pro
225 230 235 240
Gln Glu Val Ser Ile Glu Ala Ile Glu Glu Val Glu Met Leu Pro Arg
245 250 255
Pro Pro Lys Val Thr Lys Glu Glu His Phe Glu Leu His His Glu Met
260 265 270
His Tyr Ser Glu Glu Ile Thr Val Ser Leu Ala Glu Gly Tyr Glu Arg
275 280 285
Thr Ser Ser Pro Lys Pro Arg Phe Ser Tyr Ala Tyr Thr Glu Ala
290 295 300
Ala Tyr Val Thr Thr Ser Asp Pro Thr Arg Ser Pro Phe Pro Ser Glu
305 310 315 320
His Leu Glu Ala Pro Glu Asp Ser Phe Glu Ser Leu Met Glu
325 330 335
Ser Glu Val Asn Leu Asp Arg Tyr Glu Thr Ala Leu Glu Glu Val Leu
340 345 350
Ser Thr Leu Leu Ser Ala Asp Thr Leu Glu Ala Glu Gly Glu Ile
355 360 365
Ser Asn Asp Val Glu Val Val Lys Asp Glu Phe His Thr His Glu Gly
370 375 380
-continued

Tyr Met Met Asp Leu Thr Ala His Gln Gly Arg Val Gly Asn Ile Leu 385 390 395 400
Gln Leu Gly Ser Lys Leu Ile Gly Thr Gly Lys Leu Ser Glu Asp Glu 405 410 415
Glu Thr Glu Val Gln Glu Gln Met Asn Leu Leu Asn Ser Arg Trp Glu 420 425 430
Cys Leu Arg Val Ala Ser Met Glu Lys Gln Ser Asn Leu His Arg Val 435 440 445
Leu Met Asp Leu Gln Asn Gln Lys Leu Gly Leu Asn Asp Trp Leu 450 455 460
Thr Lys Thr Glu Glu Arg Thr Arg Lys Met Glu Glu Glu Pro Leu Gly 465 470 475 480
Pro Asp Leu Glu Asp Leu Arg Gln Val Gln Gln His Lys Val Leu 485 490 495
Gln Glu Asp Leu Glu Gln Glu Gln Val Arg Val Asn Ser Leu Thr His 500 505 510
Met Val Val Val Asp Ser Ser Gly Asp His Ala Thr Ala Ala 515 520 525
Leu Glu Glu Gin Leu Lys Val Leu Gly Asp Arg Trp Ala Asn Ile Cys 530 535 540
Arg Trp Thr Glu Asp Arg Trp Val Leu Gin Glu Asp Ile Leu Leu Lys 545 550 555 560
Trp Gin Arg Leu Thr Glu Gin Cys Leu Phe Ser Ala Trp Leu Ser 565 570 575
Glu Lys Glu Asp Ala Val Asn Lys Ile His Thr Thr Gly Phe Lys Asp 580 585 590
Gln Asn Glu Met Leu Ser Ser Leu Gin Lys Leu Ala Val Leu Lys Ala 595 600 605
Asp Leu Glu Lys Lys Gin Ser Met Gly Lys Leu Tyr Ser Leu Lys 610 615 620
Gln Asp Leu Ser Thr Leu Lys Asn Ser Val Thr Gin Lys Thr 625 630 635 640
Glu Ala Trp Leu Asp Asn Phe Ala Arg Cys Trp Asp Asn Leu Val Gin 645 650 655
Lys Leu Glu Lys Ser Thr Ala Glu Ile Ser Gin Ala Val Thr Thr Thr 660 665 670
Gln Pro Ser Leu Thr Gin Thr Thr Val Met Gin Thr Val Thr Val 675 680 685
Thr Thr Arg Glu Gin Ile Leu Val Lys His Ala Gin Glu Glu Leu Pro 690 695 700
Pro Pro Pro Gln Lys Arg Gin Ile Thr Val Asp Ser Glu Ile 705 710 715 720
Arg Lys Arg Leu Arg Val Asp Ile Thr Gin Gin Thr Leu His Ser Trp Ile Thr 725 730 735
Arg Ser Glu Ala Val Leu Gin Ser Pro Glu Phe Ala Ile Phe Arg Lys 740 745 750
Glu Gly Asn Phe Ser Asp Leu Lys Lys Val Asn Ala Ile Glu Arg 755 760 765
Glu Lys Ala Glu Lys Phe Arg Lys Leu Gin Asp Ala Ser Arg Ser Ala 770 775 780
Gln Ala Leu Val Glu Gin Met Val Asn Glu Gly Val Asn Ala Asp Ser
<table>
<thead>
<tr>
<th>785</th>
<th>790</th>
<th>795</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile Lys Gln Ala Ser Glu Gln Leu Asn Ser Arg Thr Ile Glu Phe Cys</td>
<td>805</td>
<td>810</td>
<td>815</td>
</tr>
<tr>
<td>Gln Leu Leu Ser Glu Arg Leu Asn Thr Leu Glu Tyr Gln Asn Asn Ile</td>
<td>820</td>
<td>825</td>
<td>830</td>
</tr>
<tr>
<td>Ile Ala Phe Tyr Asn Gln Leu Gln Leu Glu Glu Met Thr Thr Thr</td>
<td>835</td>
<td>840</td>
<td>845</td>
</tr>
<tr>
<td>Ala Glu Asn Thr Leu Lys Ile Gln Pro Thr Thr Pro Ser Glu Pro Thr</td>
<td>850</td>
<td>855</td>
<td>860</td>
</tr>
<tr>
<td>Ala Ile Lys Ser Gln Leu Lys Ile Cys Lys Asp Glu Val Asn Arg Leu</td>
<td>865</td>
<td>870</td>
<td>875</td>
</tr>
<tr>
<td>Ser Gly Leu Gln Pro Gln Ile Glu Arg Leu Lys Ile Gln Ser Ile Ala</td>
<td>885</td>
<td>890</td>
<td>895</td>
</tr>
<tr>
<td>Leu Lys Glu Lys Gly Glu Gly Pro Met Phe Leu Asp Ala Asp Phe Val</td>
<td>900</td>
<td>905</td>
<td>910</td>
</tr>
<tr>
<td>Ala Phe Thr Asn His Phe Lys Val Phe Ser Arg Val Gln Ala Arg</td>
<td>915</td>
<td>920</td>
<td>925</td>
</tr>
<tr>
<td>Glu Lys Glu Leu Gln Thr Ile Phe Asp Thr Leu Pro Pro Met Arg Tyr</td>
<td>930</td>
<td>935</td>
<td>940</td>
</tr>
<tr>
<td>Gln Glu Thr Met Ser Ala Ile Arg Thr Thr Leu Val Gln Ser Glu Thr</td>
<td>945</td>
<td>950</td>
<td>955</td>
</tr>
<tr>
<td>Lys Leu Ser Ile Pro Gln Leu Ser Val Thr Asp Tyr Glu Ile Met Glu</td>
<td>965</td>
<td>970</td>
<td>975</td>
</tr>
<tr>
<td>Gln Arg Leu Gly Glu Leu Gln Ala Leu Gln Ser Ser Leu Gln Glu Gln</td>
<td>980</td>
<td>985</td>
<td>990</td>
</tr>
</tbody>
</table>

Gln Ser Gly Leu Tyr Tyr Leu Ser Thr Thr Val Lys Gln Met Ser Lys
995
1000
1005

Lys Ala Ile Asp Arg Ser Glu Tyr Gln Ser Glu Phe Gln
1010
1015
1020

Glu Ile Glu Gly Asp Ser Leu Ser Ser Glu Ser Leu Val Glu
1025
1030
1035

His Cys Lys Gln Leu Gln Gln Leu Met Lys Leu Arg Lys Ile
1040
1045
1050

Gln Asn His Ile Gln Thr Leu Lys Lys Thr Met Ala Glu Val Asp
1055
1060
1065

Val Phe Leu Lys Gln Leu Thr Pro Ala Leu Gly Asp Ser Glu Ile
1070
1075
1080

Leu Lys Gln Leu Lys Gln Asp Arg Leu Leu Val Ser Asp Ile
1085
1090
1095

Gln Thr Ile Gln Pro Ser Leu Asn Ser Val Asn Glu Gly Gly Gln
1100
1105
1110

Lys Ile Asn Glu Ala Glu Pro Glu Phe Ala Ser Arg Leu Glu
1115
1120
1125

Thr Glu Leu Lys Glu Leu Asn Thr Glu Thr Asp His Met Cys Gln
1130
1135
1140

Gln Val Tyr Ala Arg Lys Glu Ala Leu Lys Gly Gly Leu Lys Glu
1145
1150
1155

Thr Val Ser Leu Gln Lys Asp Leu Ser Glu Met His Glu Thr Met
1160
1165
1170

Thr Glu Ala Glu Glu Tyr Leu Glu Arg Asp Phe Glu Tyr Lys
1175
1180
1185

-continued
Thr Pro Asp Glu Leu Gln Lys Ala Val Glu Glu Met Lys Arg Ala 1190 1195 1200
Lys Glu Glu Ala Gln Gln Lys Glu Ala Lys Val Lys Leu Leu Thr 1205 1210 1215
Glu Ser Val Asn Ser Val Ile Ala Gln Ala Pro Pro Val Ala Gin 1220 1225 1230
Glu Ala Leu Lys Lys Glu Leu Glu Thr Leu Thr Thr Asn Tyr Gln 1235 1240 1245
Trp Leu Cys Thr Arg Leu Asn Gly Lys Cys Lys Thr Leu Glu Glu 1250 1255 1260
Val Trp Ala Cys Trp His Glu Leu Leu Ser Tyr Leu Glu Lys Ala 1265 1270 1275
Asn Lys Trp Leu Asn Glu Val Glu Phe Lys Leu Lys Thr Thr Glu 1280 1285 1290
Asn Ile Pro Gly Gly Ala Glu Glu Ile Ser Glu Val Leu Asp Ser 1295 1300 1305
Leu Glu Asn Leu Met Arg His Ser Glu Asp Asn Pro Asn Gin Ile 1310 1315 1320
Arg Ile Leu Ala Gin Thr Leu Thr Asp Gly Gly Val Met Asp Glu 1325 1330 1335
Leu Ile Asn Glu Glu Leu Glu Thr Phe Asn Ser Arg Trp Arg Glu 1340 1345 1350
Leu His Glu Glu Ala Val Arg Gin Lys Leu Leu Glu Gin Ser 1355 1360 1365
Ile Gin Ser Ala Gin Glu Thr Glu Lys Ser Leu His Leu Ile Gin 1370 1375 1380
Glu Ser Leu Thr Phe Ile Asp Lys Gin Leu Ala Ala Tyr Ile Ala 1385 1390 1395
Asp Lys Val Asp Ala Ala Gin Met Pro Gin Glu Ala Gin Lys Ile 1400 1405 1410
Gln Ser Asp Leu Thr Ser His Glu Ile Ser Leu Glu Glu Met Lys 1415 1420 1425
Lys His Asn Gin Gly Lys Glu Ala Ala Gin Arg Val Leu Ser Gin 1430 1435 1440
Ile Asp Val Ala Gin Lys Leu Gin Asp Val Ser Met Lys Phe 1445 1450 1455
Arg Leu Phe Gin Lys Pro Ala Asn Phe Glu Gin Arg Leu Gin Glu 1460 1465 1470
Ser Lys Met Ile Leu Asp Glu Val Lys Met His Leu Pro Ala Leu 1475 1480 1485
Glu Thr Lys Ser Val Glu Gin Glu Val Val Gin Ser Gin Leu Asn 1490 1495 1500
His Cys Val Asn Leu Tyr Lys Ser Leu Ser Gin Val Lys Ser Gin 1505 1510 1515
Val Glu Met Val Ile Lys Thr Gly Arg Gin Ile Val Gin Lys Lys 1520 1525 1530
Gln Thr Gin Asp Gin Lys Leu Asp Gin Arg Val Thr Ala Leu 1535 1540 1545
Lys Lys His Tyr Gin Gins
-continued

Gln Gln Leu Glu Lys Cys Leu Lys Leu Ser Arg Lys Met Arg Lys
1565 1570 1575

Glu Met Asn Val Leu Thr Glu Trp Leu Ala Ala Thr Asp Met Glu
1580 1585 1590

Leu Thr Lys Arg Ser Ala Val Glu Gly Met Pro Ser Asn Leu Asp
1595 1600 1605

Ser Glu Val Ala Trp Gly Lys Ala Thr Gln Lys Glu Ile Glu Lys
1610 1615 1620

Gln Lys Val His Leu Lys Ser Ile Thr Glu Val Gly Glu Ala Leu
1625 1630 1635

Lys Thr Val Leu Gly Lys Lys Glu Thr Leu Val Glu Asp Lys Leu
1640 1645 1650

Ser Leu Leu Asn Ser Asn Trp Ile Ala Val Thr Ser Arg Ala Glu
1655 1660 1665

Glu Trp Leu Asn Leu Leu Leu Glu Tyr Gln Lys His Met Glu Thr
1670 1675 1680

Phe Asp Glu Asn Val Asp His Ile Thr Lys Trp Ile Ile Gln Ala
1685 1690 1695

Asp Thr Leu Leu Asp Glu Ser Glu Lys Lys Lys Pro Gln Gln Lys
1700 1705 1710

Glu Asp Val Leu Lys Arg Leu Lys Ala Glu Leu Asn Asp Ile Arg
1715 1720 1725

Pro Lys Val Asp Ser Thr Arg Asp Gln Ala Ala Asn Leu Met Ala
1730 1735 1740

Asn Arg Gly Asp His Cys Arg Lys Leu Val Glu Pro Gln Ile Ser
1745 1750 1755

Glu Leu Asn His Arg Phe Ala Ala Ile Ser His Arg Ile Lys Thr
1760 1765 1770

Gly Lys Ala Ser Ile Pro Leu Lys Glu Leu Glu Gln Phe Asn Ser
1775 1780 1785

Asp Ile Gln Lys Leu Leu Glu Pro Leu Glu Ala Glu Ile Gln Gln
1790 1795 1800

Gly Val Asn Leu Lys Glu Glu Asp Phe Asn Lys Asp Met Asn Glu
1805 1810 1815

Asp Asn Glu Gly Thr Val Lys Glu Leu Leu Gln Arg Gly Asp Asn
1820 1825 1830

Leu Gln Gln Arg Ile Thr Asp Glu Arg Lys Arg Glu Glu Ile Lys
1835 1840 1845

Ile Lys Gln Gln Leu Leu Gln Thr Lys His Asn Ala Leu Lys Asp
1850 1855 1860

Leu Arg Ser Gln Arg Arg Lys Lys Ala Leu Glu Ile Ser His Gln
1865 1870 1875

Trp Tyr Gln Tyr Lys Arg Gln Ala Asp Asp Leu Leu Lys Cys Leu
1880 1885 1890

Asp Asp Ile Glu Lys Leu Leu Ala Ser Leu Pro Glu Pro Arg Asp
1895 1900 1905

Glu Arg Lys Ile Lys Glu Ile Asp Arg Glu Leu Glu Lys Lys Lys
1910 1915 1920

Glu Glu Leu Asn Ala Val Arg Gln Ala Glu Gly Leu Ser Glu
1925 1930 1935

Asp Gly Ala Ala Met Ala Val Glu Pro Thr Gln Ile Gln Leu Ser
<table>
<thead>
<tr>
<th>1940</th>
<th>1945</th>
<th>1950</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Trp</td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Ile</td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Glu</td>
<td>Gln</td>
</tr>
<tr>
<td>Phe</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Arg</td>
<td>Glu</td>
</tr>
<tr>
<td>Thr</td>
<td>Met</td>
<td>Met</td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Glu</td>
</tr>
<tr>
<td>Asp</td>
<td>Met</td>
<td>Leu</td>
</tr>
<tr>
<td>Pro</td>
<td>Glu</td>
<td>Ile</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Tyr</td>
<td>Leu</td>
</tr>
<tr>
<td>Thr</td>
<td>His</td>
<td>Val</td>
</tr>
<tr>
<td>Ser</td>
<td>Gln</td>
<td>Ala</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td>Pro</td>
<td>Asp</td>
<td>Leu</td>
</tr>
<tr>
<td>Cys</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Asp</td>
<td>Lys</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td>Glu</td>
<td>Glut</td>
<td>Trp</td>
</tr>
<tr>
<td>Glu</td>
<td>Lys</td>
<td>Val</td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
<td>Asp</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Val</td>
</tr>
<tr>
<td>Thr</td>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td>Glu</td>
<td>Arg</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Gln</td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
<td>Lys</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Val</td>
<td>Glu</td>
<td>Lys</td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
<td>Lys</td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td>Trp</td>
</tr>
<tr>
<td>Glu</td>
<td>Lys</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Asp</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>Val</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>Trp</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>Asp</td>
<td>Gln</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Asp</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Ile</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>Glu</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Glu</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Glu</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Thr</td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Ile</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td>Thr</td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Lys</td>
</tr>
</tbody>
</table>
Lys Leu Glu Asp Leu Glu Glu Gln Leu Asn His Leu Leu Leu Trp
2330 2335 2340
Leu Ser Pro Ile Arg Asn Gln Leu Glu Ile Tyr Asn Gln Pro Asn
2345 2350 2355
Gln Glu Gly Pro Phe Asp Val Gln Glu Thr Glu Ile Ala Val Gln
2360 2365 2370
Ala Lys Gln Pro Asp Val Glu Glu Ile Leu Ser Lys Gly Gln His
2375 2380 2385
Leu Tyr Lys Glu Lys Pro Ala Thr Gln Pro Val Lys Arg Lys Leu
2390 2395 2400
Glu Asp Leu Ser Ser Glu Trp Lys Ala Val Asn Arg Leu Leu Gln
2405 2410 2415
Glu Leu Arg Ala Lys Gln Pro Asp Leu Ala Pro Gly Leu Thr Thr
2420 2425 2430
Ile Gly Ala Ser Pro Thr Gln Thr Val Thr Leu Val Thr Gln Pro
2435 2440 2445
Val Val Thr Lys Glu Thr Ala Ile Ser Lys Leu Glu Met Pro Ser
2450 2455 2460
Ser Leu Met Leu Gln Val Pro Ala Leu Ala Asp Phe Asn Arg Ala
2465 2470 2475
Trp Thr Glu Leu Thr Asp Trp Leu Ser Leu Leu Asp Gln Val Ile
2480 2485 2490
Lys Ser Gln Arg Val Met Val Gly Asp Leu Gln Asp Ile Asn Glu
2495 2500 2505
Met Ile Ile Lys Glu Ala Thr Met Gln Asp Leu Glu Gln Arg
2510 2515 2520
Arg Pro Gln Leu Glu Leu Ile Thr Ala Ala Gln Asn Leu Lys
2525 2530 2535
Asn Lys Thr Ser Asn Gln Glu Ala Arg Thr Ile Thr Asp Arg
2540 2545 2550
Ile Glu Arg Ile Gin Asn Gin Trp Asp Gin Val Gln Glu His Leu
2555 2560 2565
Gln Asn Arg Arg Gin Gln Leu Asn Glu Met Leu Lys Asp Ser Thr
2570 2575 2580
Gln Trp Leu Glu Ala Lys Glu Glu Ala Glu Gln Val Leu Gly Gln
2585 2590 2595
Ala Arg Ala Lys Leu Glu Ser Trp Lys Glu Gly Pro Tyr Thr Val
2600 2605 2610
Asp Ala Ile Gin Lys Ile Thr Glu Thr Lys Gin Leu Ala Lys
2615 2620 2625
Asp Leu Arg Gin Trp Gin Asp Val Gin Gin Gin Gin Val Asp Leu
2630 2635 2640
Ala Leu Lys Leu Leu Arg Asp Tyr Ser Ala Asp Asp Thr Arg Lys
2645 2650 2655
Val His Met Ile Thr Glu Asn Ile Asn Ala Ser Trp Arg Ser Ile
2660 2665 2670
His Lys Arg Val Ser Gin Gin Ala Leu Gin Gln Thr His
2675 2680 2685
Arg Leu Leu Gin Gin Phe Pro Leu Asp Leu Glu Lys Phe Leu Ala
2690 2695 2700
Ser Leu Ala Asp Leu Asn Asn Val Arg Phe Ser Ala Tyr Arg Thr
3080 3085 3090
Ala Met Lys Leu Arg Arg Leu Gln Lys Ala Leu Cys Leu Asp Leu
3105
Leu Ser Leu Ser Ala Ala Cys Asp Ala Leu Asp Gln His Asn Leu
3125 3130 3135
Lys Gln Asn Asp Gln Pro Met Asp Ile Leu Gln Ile Ile Asn Cys
3140 3145 3150
Leu Thr Thr Ile Tyr Asp Arg Leu Glu Gln Glu His Asn Asn Leu
3155 3160 3165
Val Asn Val Pro Leu Cys Val Asp Met Cys Leu Asn Trp Leu Leu
3170 3175 3180
Asn Val Tyr Asp Thr Gly Arg Thr Gly Arg Ile Arg Val Leu Ser
3195 3200 3205
Phe Lys Thr Gly Ile Ile Ser Leu Cys Lys Ala His Leu Glu Asp
3210 3215 3220
Lys Tyr Arg Tyr Leu Phe Lys Gln Val Ala Ser Ser Thr Gly Phe
3225 3230 3235
Cys Asp Gln Arg Arg Leu Gly Leu Leu Leu His Asp Ser Ile Gln
3240 3245 3250 3255
Ile Pro Arg Gln Leu Gly Glu Val Ala Ser Phe Gly Gly Ser Asn
3260 3265 3270
Ile Glu Pro Ser Val Arg Ser Cys Phe Gln Phe Ala Asn Asn Lys
3275 3280 3285
Pro Glu Ile Glu Ala Ala Leu Phe Leu Asp Trp Met Arg Leu Glu
3290 3295 3300
Pro Gln Ser Met Val Trp Leu Pro Val Leu His Arg Val Ala Ala
3305 3310 3315 3320
Ala Glu Thr Ala Lys His Gln Ala Lys Cys Asn Ile Cys Lys Glu
3325 3330 3335
Cys Pro Ile Ile Gly Phe Arg Tyr Arg Ser Leu Lys His Phe Asn
3340 3345 3350
Tyr Asp Ile Cys Gln Ser Cys Phe Phe Ser Gly Arg Val Ala Lys
3355 3360 3365
Gly His Lys Met His Tyr Pro Met Val Glu Tyr Cys Thr Pro Thr
3370 3375 3380
Thr Ser Gly Glu Asp Val Arg Asp Phe Ala Lys Val Leu Lys Asn
3385 3390 3395 3400
Lys Phe Arg Thr Lys Arg Tyr Phe Ala Lys His Pro Arg Met Gln
3405 3410 3415 3420
Tyr Leu Pro Val Gln Thr Val Leu Glu Gly Asp Asn Met Glu Thr
3425 3430 3435 3440 3445
Tyr Leu Asp Ser Ser Ile Ser Pro Asn Glu Ser Ile Asp Asp Glu
3450 3455 3460 3465 3470
His Leu Leu Ile Gln His Tyr Cys Gln Ser Leu Asn Gln Asp Ser
3470 3475 3480
Pro Leu Ser Gln Pro Arg Ser Pro Ala Gln Ile Leu Ile Ser Leu
3485 3490 3495
Glu Ser Glu Glu Arg Gly Glu Leu Glu Arg Ile Leu Ala Asp Leu
3500 3505 3510
Glu Glu Glu Asn Arg Asn Leu Gln Ala Glu Tyr Asp Arg Leu Lys
3515 3520 3525
Gln Gln His Glu His Lys Gly Leu Ser Pro Leu Pro Ser Pro Pro
3530 3535 3540
Glu Met Met Pro Thr Ser Pro Gln Ser Pro Arg Asp Ala Glu Leu
3545 3550 3555
Ile Ala Glu Ala Lys Leu Leu Arg Gln His Lys Gly Arg Leu Glu
3560 3565 3570
Ala Arg Met Gln Ile Leu Glu Asp His Asn Lys Gln Leu Glu Ser
3575 3580 3585
Gln Leu His Arg Leu Arg Gln Leu Leu Gln Pro Gln Ala Glu
3590 3595 3600
Ala Lys Val Asn Gly Thr Thr Val Ser Ser Pro Ser Thr Ser Leu
3605 3610 3615
Gln Arg Ser Asp Ser Ser Gln Pro Met Leu Leu Arg Val Val Gly
3620 3625 3630
Ser Gln Thr Ser Asp Ser Met Gly Glu Glu Asp Leu Leu Ser Pro
3635 3640 3645
Pro Gln Asp Thr Ser Thr Gly Leu Glu Glu Val Met Glu Gln Leu
3650 3655 3660
Asn Asn Ser Phe Pro Ser Ser Arg Gly Arg Asn Thr Pro Gly Lys
3665 3670 3675
Pro Met Arg Glu Asp Thr Met
3680 3685

<210> SEQ ID NO 2
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 2

guaccuccaa causaggguaugg
25

<210> SEQ ID NO 3
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 3

uaccucccaac aucaagggaauggc
25

<210> SEQ ID NO 4
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 4

acucucaac ucaaggaag uggca

<210> SEQ ID NO 5
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 5

ccuccuacu caaggaagau ggcacu

<210> SEQ ID NO 6
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 6

cuccuacacu aacaggaagau uggcau

<210> SEQ ID NO 7
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 7

ucuccuacuc uacaggaagau gcau

<210> SEQ ID NO 8
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 8

ccuccuacuac uacaggaagau gcacu

<210> SEQ ID NO 9
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 9

cuccuacuag acaaggaagau gcaucu
<210> SEQ ID NO 11
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 11
cacaucaagg aagauggcaau uucua

<210> SEQ ID NO 12
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 12
cacaucaagg aagauggcauu cuauu

<210> SEQ ID NO 13
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 13
cacaucaagg aagauggcauu cuauu

<210> SEQ ID NO 14
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 14
cacaucaagg aagauggcauu cuauu

<210> SEQ ID NO 15
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 15
cacaucaagg aagauggcauu cuauu

<210> SEQ ID NO 16
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 16
cacaucaagg aagauggcauu cuauu

<210> SEQ ID NO 17
aggaagaggucuucuaguggag

ggagaagggucuucuaguggag

gaagagggcauucuagguuggag

agaagggcauucuagguuggag

gaugggcauucuagguuggag

agaagggcauucuagguuggag
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUGCGAUAUGUGGAGAGUGCA</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td>UGCGAUUUGGAGAGUGCA</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td>GGCGAUUGGAGAGUGCA</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td>GCGAUAUUGGAGAGUGCA</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td>CCGAUAUUGGAGAGUGCU</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td>AUUGAUGGGAGAGUGCA</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
</tr>
</tbody>
</table>
-continued

uuucuaguuu ggagauucca guuuc

<210> SEQ ID NO 30
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 30

uuucuaguuu ggagauucca guuuc

<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 31

uuculuagulugluggcagullulucc

<210> SEQ ID NO 31
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 31

uuculuagulugluggcagullulucc

<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 32

cuagulluagullugagauuccucullulag

<210> SEQ ID NO 32
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 32

cuagulluagullugagauuccucullulag

<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 33

uaguuguuggauguguucucuuca

<210> SEQ ID NO 33
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 33

uaguuguuggauguguucucuuca

<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 34

aguguuggauguguucucuuca

<210> SEQ ID NO 34
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 34

aguguuggauguguucucuuca

<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 35

guuuugggauugguguuccuuagu

<210> SEQ ID NO 35
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 35

guuuugggauugguguuccuuagu

<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 36

uuguuggguugguugguuccuuagu
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 36
uwuggaaug gcguuuccu uagua

<210> SEQ ID NO 37
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 37
uwuggaugg caguuuccu aguaa

<210> SEQ ID NO 38
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 38
uggagauggc aguuuccuag usac

<210> SEQ ID NO 39
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 39
gagauuggc uucucuagu acca

<210> SEQ ID NO 40
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 40
agauggcag uccucuag aaccac

<210> SEQ ID NO 41
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 41
gauuggcagu uccucuagaa ccaaca

<210> SEQ ID NO 42
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 42
augcaguuc ccuaguaacc cacag
<210> SEQ ID NO 43
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 43
uggcaguuc cuuaguaacc acagg
<210> SEQ ID NO 44
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 44
ggcaguuc ucuaguaacc caggu
<210> SEQ ID NO 45
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 45
gcaguucuc uguacaccac agggu
<210> SEQ ID NO 46
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 46
caguuccuc uguacaccac gguug
<210> SEQ ID NO 47
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 47
aguuuccua uguacccacag guugu
<210> SEQ ID NO 48
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 48
guuuccuau guaccacagg uugu

<210> SEQ ID NO 49
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 49

uuuccuau guaccacagg uugu

<210> SEQ ID NO 50
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 50

uuccuau guaccacagg uugu

<210> SEQ ID NO 51
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 51

uccuau guaccacagg uugu

<210> SEQ ID NO 52
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 52

uccuau guaccacagg uugu

<210> SEQ ID NO 53
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 53

uccuau guaccacagg uugu

<210> SEQ ID NO 54
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 54

uccuau guaccacagg uugu

<210> SEQ ID NO 55
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 55
uaguaacac agguuguguc accag

<210> SEQ ID NO 56
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 56
aguaaccaca gguguuguca ccaga

<210> SEQ ID NO 57
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 57
guaccaccac guggugucac cagag

<210> SEQ ID NO 58
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 58
uaaccacagg uugugucacc agagu

<210> SEQ ID NO 59
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 59
accaccaggu uugucacca gagua

<210> SEQ ID NO 60
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 60
accaccguu guguacaccag aguua
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 61
ccacagguug uguaccaga guaac

<210> SEQ ID NO 62
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 62
cacagguugu uguaccagag uaac

<210> SEQ ID NO 63
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 63
acagguuguc uguaccagacu acag

<210> SEQ ID NO 64
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 64
cagguuguuc uguaccaguacagu

<210> SEQ ID NO 65
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 65
agguuguc uguaccaguacaguc

<210> SEQ ID NO 66
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 66
gguuguguc uguaccaguacagucu

<210> SEQ ID NO 67
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 67
-continued

```
<table>
<thead>
<tr>
<th>Seq ID</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>25</td>
<td>RNA</td>
<td>Artificial</td>
<td>oligonucleotide</td>
<td></td>
</tr>
</tbody>
</table>

guugugucac gagugacac gucug

ugugugucc caguguacag ucuga

ugugucacca gaguacacag ucuag

gugucacag aaguacacag uguag

ugucaccca aguacacag uguag

gucaccaga aacagucag uguag

ucaccagagu aacagucuga guagg
```

<210> SEQ ID NO 68
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 68

ugugugucac cagagacac gucug

ugugugucc cagagacag ucuga

ugugucacca gagagacag ucuag

gugucacag aagagacag uguag

ugucaccca agaagacag uguag

gucaccaga aacagacag uguag

ucaccagagu aacagacuga guagg

<210> SEQ ID NO 74
caccagagua acagucugag uagga

accagagua cagucugagu aggag

uuuucucug ocacucaugca uucug

auucaaugu cucaacacag uuugc

ccagucuca ucacagucuucu gacaa

caguugcau caaugucug ac
>> OTHER INFORMATION: oligonucleotide

SEQUENCE:

1. aguuagucucaugaucucg

LENGTH: 20

TYPE: RNA

ORGANISM: Artificial

2. gauagcugcuaucguacucu

LENGTH: 21

TYPE: RNA

ORGANISM: Artificial

3. gauagcugcuaucguacucuc

LENGTH: 22

TYPE: RNA

ORGANISM: Artificial

4. auagcugcuaucguacucucc

LENGTH: 23

TYPE: RNA

ORGANISM: Artificial

5. ulagcugcuaucguacucucc

LENGTH: 24

TYPE: RNA

ORGANISM: Artificial

6. ulagcugcuaucguacucucc

LENGTH: 25

TYPE: RNA

ORGANISM: Artificial

7. uugcugcuaucguacucucc

LENGTH: 26

TYPE: RNA

ORGANISM: Artificial

8. uugcugcuaucguacucucc

LENGTH: 27

TYPE: RNA

ORGANISM: Artificial

9. uugcugcuaucguacucucc

LENGTH: 28

TYPE: RNA

ORGANISM: Artificial

10. uugcugcuaucguacucucc

LENGTH: 29

TYPE: RNA

ORGANISM: Artificial

11. uugcugcuaucguacucucc

LENGTH: 30

TYPE: RNA

ORGANISM: Artificial

12. uugcugcuaucguacucucc

LENGTH: 31

TYPE: RNA

ORGANISM: Artificial

13. uugcugcuaucguacucucc

LENGTH: 32

TYPE: RNA

ORGANISM: Artificial

14. uugcugcuaucguacucucc

LENGTH: 33

TYPE: RNA

ORGANISM: Artificial

15. uugcugcuaucguacucucc

LENGTH: 34

TYPE: RNA

ORGANISM: Artificial

16. uugcugcuaucguacucucc

LENGTH: 35

TYPE: RNA

ORGANISM: Artificial

17. uugcugcuaucguacucucc

LENGTH: 36

TYPE: RNA

ORGANISM: Artificial

18. uugcugcuaucguacucucc

LENGTH: 37

TYPE: RNA

ORGANISM: Artificial

19. uugcugcuaucguacucucc

LENGTH: 38

TYPE: RNA

ORGANISM: Artificial

20. uugcugcuaucguacucucc

LENGTH: 39

TYPE: RNA

ORGANISM: Artificial

21. uugcugcuaucguacucucc

LENGTH: 40

TYPE: RNA

ORGANISM: Artificial

22. uugcugcuaucguacucucc

LENGTH: 41

TYPE: RNA

ORGANISM: Artificial

23. uugcugcuaucguacucucc

LENGTH: 42

TYPE: RNA

ORGANISM: Artificial

24. uugcugcuaucguacucucc

LENGTH: 43

TYPE: RNA

ORGANISM: Artificial

25. uugcugcuaucguacucucc

LENGTH: 44

TYPE: RNA

ORGANISM: Artificial

26. uugcugcuaucguacucucc

LENGTH: 45

TYPE: RNA

ORGANISM: Artificial

27. uugcugcuaucguacucucc

LENGTH: 46

TYPE: RNA

ORGANISM: Artificial

28. uugcugcuaucguacucucc

LENGTH: 47

TYPE: RNA

ORGANISM: Artificial

29. uugcugcuaucguacucucc

LENGTH: 48

TYPE: RNA

ORGANISM: Artificial

30. uugcugcuaucguacucucc

LENGTH: 49

TYPE: RNA

ORGANISM: Artificial

31. uugcugcuaucguacucucc

LENGTH: 50

TYPE: RNA

ORGANISM: Artificial

32. uugcugcuaucguacucucc

LENGTH: 51

TYPE: RNA

ORGANISM: Artificial

33. uugcugcuaucguacucucc

LENGTH: 52

TYPE: RNA

ORGANISM: Artificial

34. uugcugcuaucguacucucc

LENGTH: 53

TYPE: RNA

ORGANISM: Artificial

35. uugcugcuaucguacucucc

LENGTH: 54

TYPE: RNA

ORGANISM: Artificial

36. uugcugcuaucguacucucc

LENGTH: 55

TYPE: RNA

ORGANISM: Artificial

37. uugcugcuaucguacucucc

LENGTH: 56

TYPE: RNA

ORGANISM: Artificial

38. uugcugcuaucguacucucc

LENGTH: 57

TYPE: RNA

ORGANISM: Artificial

39. uugcugcuaucguacucucc

LENGTH: 58

TYPE: RNA

ORGANISM: Artificial

40. uugcugcuaucguacucucc

LENGTH: 59

TYPE: RNA

ORGANISM: Artificial

41. uugcugcuaucguacucucc

LENGTH: 60

TYPE: RNA

ORGANISM: Artificial

42. uugcugcuaucguacucucc

LENGTH: 61

TYPE: RNA

ORGANISM: Artificial
-continued

gcugauuuau ucuuucccca guugc

<210> SEQ ID NO 87
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 87
cugauuuau ucuuucccag uugca

<210> SEQ ID NO 88
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 88
ugaauuuau cuucccaguu ugcu

<210> SEQ ID NO 89
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 89
gauuuauuc uucccaguug gcuau

<210> SEQ ID NO 90
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 90
auuuauucu ucccaaguug ccauu

<210> SEQ ID NO 91
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 91
auuuauuucu ccccaaguug caucu

<210> SEQ ID NO 92
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 92
uuauuuuuc ccccaaguugca uuca

<210> SEQ ID NO 93
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 93
uauuucucc cagugcaau ucaau 25

<210> SEQ ID NO 94
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 94
uauuucucc cagugcaau caaug 25

<210> SEQ ID NO 95
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 95
uuucuccccc aguugcaau caaug 25

<210> SEQ ID NO 96
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 96
uuucuccccc aguugcaau caaug 25

<210> SEQ ID NO 97
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 97
uucuccccag ugcucaau caug 25

<210> SEQ ID NO 98
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 98
uucuccccag ugcucaau caug 25

<210> SEQ ID NO 99
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 99

uucccaugu guauucaug uucug

<210> SEQ ID NO 100
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 100

uucccaugu guauucaug uucug

<210> SEQ ID NO 101
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 101

ccccagua guauucaug uucug

<210> SEQ ID NO 102
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 102

cccauugu guauucaug uucug

<210> SEQ ID NO 103
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 103

cccaugu guauucaug uucug

<210> SEQ ID NO 104
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 104

ccaugu guauucaug uucug

<210> SEQ ID NO 105
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 105
aguuucuuc asguucusca casca

<210> SEQ ID NO 106
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<222> FEATURE: oligonucleotide
<400> SEQUENCE: 106

uccguuaga uacuggcauc

<210> SEQ ID NO 107
<211> LENGTH: 27
<212> TYPE: RNA
<213> ORGANISM: Artificial
<222> FEATURE: oligonucleotide
<400> SEQUENCE: 107

ugcagacuc cugccaccgc agauuca

<210> SEQ ID NO 108
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial
<222> FEATURE: oligonucleotide
<400> SEQUENCE: 108

uugcagacc cuugccacgg cagauucgg cuuc

<210> SEQ ID NO 109
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<222> FEATURE: oligonucleotide
<400> SEQUENCE: 109

guuucuuc aaguucugac acac

<210> SEQ ID NO 110
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<222> FEATURE: oligonucleotide
<400> SEQUENCE: 110

uugcucuuca uguucugac acau

<210> SEQ ID NO 111
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<222> FEATURE: oligonucleotide
<400> SEQUENCE: 111

ugcucuuca auuucugaccau cuuu

<210> SEQ ID NO 112
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 112
gcauucaug uucgacaac aguuu

<210> SEQ ID NO 113
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 113
cauucaaug uucgacaac guuug

<210> SEQ ID NO 114
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 114
aauucaaugu uucgacaacgu uugc

<210> SEQ ID NO 115
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 115
ucuagauuc gacaacag ugcg

<210> SEQ ID NO 116
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 116
cuaugauuc acacag ugcgc

<210> SEQ ID NO 117
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 117
aaugauuca cacag ugcgc
OTHER INFORMATION: oligonucleotide

SEQUENCE: 118

auguucugac acagauuugc gcug

SEQ ID NO 119
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 119
uguucugaca acagauuugcc gcugc

SEQ ID NO 120
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 120
guucugaca acaguugcc gcggc

SEQ ID NO 121
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 121
uucugacac aguugccgc gcgcc

SEQ ID NO 122
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 122
ucugacaac guuugccgcu gccca

SEQ ID NO 123
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 123
cugacacaac uuuugcgcug cccaa

SEQ ID NO 124
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 124
<210> SEQ ID NO 125
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 125

acacagacu ugcgccgcuu ccuuc 25
<210> SEQ ID NO 126
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 126

acacagacu ugcgccgcuu ccuuc 25
<210> SEQ ID NO 127
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 127

acacagacu ugcgccgcuu ccuuc 25
<210> SEQ ID NO 128
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 128

acacagacu ugcgccgcuu ccuuc 25
<210> SEQ ID NO 129
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 129

acacagacu ugcgccgcuu ccuuc 25
<210> SEQ ID NO 130
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 130

acacagacu ugcgccgcuu ccuuc 25
<210> SEQ ID NO 131
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 131

cacacagacu ugcgccgcuu ccuuc 25
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 131
aguuagcgc ugcacauceucc

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 132
guugccgcu gcccacaucc aucucc

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 133
uuugccgcu uccauuaucc uccug

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 134
uuugccgcu uccauuaucc uccug

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 135
ugccgcu uccauuaucc uccugg

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 136
geggccgcu cccauuaucc uggag

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<210> SEQ ID NO 137
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 137

cgcugccca augcauccu ggag

<210> SEQ ID NO 138
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 138

cgcugccca augcauccug gagu

<210> SEQ ID NO 139
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 139

uguuuugag gauugcugaa

<210> SEQ ID NO 140
<211> LENGTH: 40
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 140

uguucugaca acaguuugcc gcgcggccau gcgauccugg

<210> SEQ ID NO 141
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 141

cucggccug ucuuaagcc ugcuc

<210> SEQ ID NO 142
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 142

ucggccgu ucuaagacc gcucu

<210> SEQ ID NO 143
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 143

ucggccgu ucuaagacc gcucu
cugccuguc cuugaccucuc cuacag 25

<210> SEQ ID NO 144
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 144

uggccuguc cuugaccucuc uacag 25

<210> SEQ ID NO 145
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 145
ggcgcugcu aagaccuguc cagcu 25

<210> SEQ ID NO 146
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 146
ggcgcugcu aagaccuguc cagcu 25

<210> SEQ ID NO 147
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 147
ggcgcugcu aagaccuguc cagcu 25

<210> SEQ ID NO 148
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 148
ggcgcugcu aagaccuguc cagcu 25

<210> SEQ ID NO 149
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 149

ugcuccaaga cuugccuac cuuuc 25
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 150

guccuaagac cugcuagcu ucuuc 25

<210> SEQ ID NO 151
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 151

uccuaagcc ugcucagcu cuuuc 25

<210> SEQ ID NO 152
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 152

cuaaagcuc gucucagcu uuccu 25

<210> SEQ ID NO 153
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 153

cuaaagcuc gucucuucu ucuuc 25

<210> SEQ ID NO 154
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 154

uaagacugu cugcuuucu cuuua 25

<210> SEQ ID NO 155
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 155

aagacugu cagcuuucu cuuag 25
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 156

agaccugcu agcuucuucc uagc 25

<210> SEQ ID NO 157
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 157
gaccugcu gacucucuucc uagc 25

<210> SEQ ID NO 158
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 158
acccugcuc acucucuucc agcu 25

<210> SEQ ID NO 159
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 159
ccucucuc acucucuucc gcuc 25

<210> SEQ ID NO 160
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 160
cucucucuc uccucuucc gcuc 25

<210> SEQ ID NO 161
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 161
ugucucucu cuccuuccu uucca 25

<210> SEQ ID NO 162
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 162
gcuucuuc uaccuuaagc uucag

<210> SEQ ID NO 163
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 163
cucagcuuc uuccuagceuuc cagc

<210> SEQ ID NO 164
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 164
ucagcuucu cuccuacuuc cagc

<210> SEQ ID NO 165
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 165
cagcuucuc uccuacuuc cagc

<210> SEQ ID NO 166
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 166
agcuucuuc uaccuuaagc gcua

<210> SEQ ID NO 167
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 167
gcuucuuc uaccuuaagc ccau

<210> SEQ ID NO 168
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 168
uccuucuuc uaccuuaagc caug

<210> SEQ ID NO 169
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 169
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 169
uucuuccua gcuuccagcc auug

<210> SEQ ID NO 170
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 170
ucuuccua gcuuccagcc auug

<210> SEQ ID NO 171
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 171
cucuuccua gcuuccagcc auug

<210> SEQ ID NO 172
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 172
cccuccua gcuuccagcc auug

<210> SEQ ID NO 173
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 173
uccuucgu cccagcaug uguu

<210> SEQ ID NO 174
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 174
ccaucuc cccagcaaug uguu

<210> SEQ ID NO 175
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 175

cuagcuucc agccauugug uugaa

<210> SEQ ID NO 176
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 176

uaagcuucca gccauugugu ugsu

<210> SEQ ID NO 177
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 177

uaagcuuccag ccauugugus gsasu

<210> SEQ ID NO 178
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 178

agcuuccagc cauugugus aaucc

<210> SEQ ID NO 179
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 179

gcuuccagcc cauugugugu auccu

<210> SEQ ID NO 180
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 180

cuuccagcca uugugugas uccuu

<210> SEQ ID NO 181
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 181
-continued

uuccagccau guguguauc ccuua

<210> SEQ ID NO 182
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 182

uuccagccau guguguauc ccuua

<210> SEQ ID NO 183
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 183

cucgccau guguguauc uuuu

<210> SEQ ID NO 184
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 184

cucgccau guguguauc uuuu

<210> SEQ ID NO 185
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 185

cagc caugu guugu gauc uuuu

<210> SEQ ID NO 186
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 186

cagc caugu guugu gauc uuuu

<210> SEQ ID NO 187
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 187

ccauugugu guaaccuuu aacuu
cauugguuc aauccuuaa caaucu

ucagcucuc uuaagccacug

uucagcucu guaagccacu

uucagcucu guaagccacug g

uucagcucuc uuaagccacug a

uucagcucu guaagccacu ga

uucagcucu guaagccacu ga
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 194
ucagcuucug uuaagccacug a

<210> SEQ ID NO 195
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 195
ucagcuucuc guuagccacu ga

<210> SEQ ID NO 196
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 196
ucagcuucuc uuaagccacug au

<210> SEQ ID NO 197
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 197
ucagcuucuc guuagccacu gau

<210> SEQ ID NO 198
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 198
ucagcuucuc guuagccacu auu

<210> SEQ ID NO 199
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 199
ucagcuucuc guuagccacu gauu

<210> SEQ ID NO 200
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 200
ucagcuccug uuagccacug auua

<210> SEQ ID NO 201
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 201
ucagcuccug guuagccacu guua

<210> SEQ ID NO 202
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 202
ucagcuccug uuuagccacug auua

<210> SEQ ID NO 203
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 203
ucagcuccug uuagccacug auua

<210> SEQ ID NO 204
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 204
ucagcuccug uuagccacug auua

<210> SEQ ID NO 205
<211> LENGTH: 27
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 205
ucagcuccug uuagccacu guuua

<210> SEQ ID NO 206
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 206
caaguuccgu uagccacug

<210> SEQ ID NO 207
cagcuucugu uagccacuga u

agcuucugu agccacugau u

cagcuucugu uagccacuga uu

agcuucugu agccacugau uu

cagcuucugu uagccacuga uua

agcuucugu agccacugau uua

agcuucugu agccacugau uaa

agcuucugu agccacugau uaa
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 213

cagcuccug uagccacuga uuaa 24

<210> SEQ ID NO 214
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 214

gcuucugu uagccacgaa uuaa 24

<210> SEQ ID NO 215
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 215

cagcuccug uagccacgaa uuaa 25

<210> SEQ ID NO 216
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 216

gcuucugu uagccacgaa uuaa 24

<210> SEQ ID NO 217
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 217

gcuucugu uagccacgau 20

<210> SEQ ID NO 218
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 218

gcuucugu uagccacgau 20

<210> SEQ ID NO 219
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 219
<210> SEQ ID NO 220
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 220
gcuucuguu gcuccacugau u

<210> SEQ ID NO 221
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 221
gcuucuguu gcuccacugau a

<210> SEQ ID NO 222
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 222
gcuucugua gcuccacugau a

<210> SEQ ID NO 223
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 223
gcuucuguu gcuccacugau aa

<210> SEQ ID NO 224
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 224
gcuucugua gcuccacugau aaa

<210> SEQ ID NO 225
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 225
gcuucuguu gcuccacugau uaaa

<210> SEQ ID NO 226
-continued

<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 226
gcuucuua gcuacuguauu aas

<210> SEQ ID NO 227
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 227
ccauuuga uuaacaguucccc

<210> SEQ ID NO 228
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 228
agauacauu uguauuaagc

<210> SEQ ID NO 229
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 229
gccauuuuc aacagaauuc

<210> SEQ ID NO 230
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 230
gccauuuuc aacagaucu uca

<210> SEQ ID NO 231
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 231
auucucagga auuugugucu uuc

<210> SEQ ID NO 232
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 232
ucucaggaau uugugcuuuu c

<210> SEQ ID NO 233
<211> LENGTH: 18
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 233
guccagcucc uguuaagcc

<210> SEQ ID NO 234
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 234
cugauuaau ucuuuaauu c

<210> SEQ ID NO 235
<211> LENGTH: 18
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 235
gcgcgccauu cuscacacag

<210> SEQ ID NO 236
<211> LENGTH: 18
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 236
guuuuagca uguuccca

<210> SEQ ID NO 237
<211> LENGTH: 18
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 237
caggaauug uguuucuc

<210> SEQ ID NO 238
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 238
gcuuuucu uguugugc ucuu

<210> SEQ ID NO 239
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 239
gcuuuucu uguugugc ucuu 25

uuuucuuu agugcugc cuuu

<210> SEQ ID NO 240
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 240
uuuuucuuu agugcugc cuuuu 25

uucuuucu uguugcuc uuuc

<210> SEQ ID NO 241
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 241
uucuuucu uguugcuc uuuc 25

uucuuucu uguugcuc uuuc

<210> SEQ ID NO 242
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 242
uucuuucu uguugcuc uuucc 25

uucuuucu uguugcuc uuucc

<210> SEQ ID NO 243
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 243
uucuuucu uguugcuc uuuccag 25

uucuuucu uguugcuc uuuccag

<210> SEQ ID NO 244
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 244
cuuuuug cguccuuuu ccaag 25

cuuuuug cguccuuuu ccaag
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 245

uuuagugc ugcucuuuuc caggu

<210> SEQ ID NO 246
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 246

uuuagugcu gcuuuuuu caggu

<210> SEQ ID NO 247
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 247

uuagugcug cuuuuuuuc ggucu

<210> SEQ ID NO 248
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 249

uagugcucu cuuuuuu cag guca

<210> SEQ ID NO 249
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 249

agugcucu cuuuucag gucua

<210> SEQ ID NO 250
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 250

guagugcuc uuuucag guca

<210> SEQ ID NO 251
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<210> SEQ ID NO: 251
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 251

ugucugcuu uuccaggucu caagu

<210> SEQ ID NO: 252
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 252

ugucugcuu uuccaggucu aagug

<210> SEQ ID NO: 253
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 253

gcucucuu uuccaggucu cgagg

<210> SEQ ID NO: 254
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 254

cugucucuu cccaggucu gcagg

<210> SEQ ID NO: 255
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 255

ugucucuuu ccagguuca aggga

<210> SEQ ID NO: 256
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 256

gcucuuuuuc gcguuucag gcggc
cucuuuccg guucaagug ggaua

<210> SEQ ID NO 258
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 258
ucuuuccag guucaagug ggaua

<210> SEQ ID NO 259
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 259
ucuuuccag guucaagug

<210> SEQ ID NO 260
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 260
cuuuccagg uuaa uguag

<210> SEQ ID NO 261
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 261
uuuccaggu ucauggggg uacua

<210> SEQ ID NO 262
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 262
uuuccaggu cauggggga ucua

<210> SEQ ID NO 263
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 263
uuuccaggu ucuggggga cuag

<210> SEQ ID NO 264
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 264
uuuccaggu ucuggggga cuagc
-continued

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 264

uccagguua caggaaauac uagca

<210> SEQ ID NO 265
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 265
caggguucca gugggauac uagca

<210> SEQ ID NO 266
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 266
cagguucaag ugggauac ugcua

<210> SEQ ID NO 267
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 267
agguucaag ugggauac ugcua

<210> SEQ ID NO 268
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 268
gguucaag ugggauac ugcua

<210> SEQ ID NO 269
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 269
guucaggg gguuac uacua

<210> SEQ ID NO 270
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 270

ucaaguggg auacuagcau uguua

<210> SEQ ID NO 271
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 271

ucaaguggg auacuagcaau guuu

<210> SEQ ID NO 272
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 272

caguggga auacuagcaug uuuu

<210> SEQ ID NO 273
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 273

aaguggga auacuagcaug uuuu

<210> SEQ ID NO 274
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 274

agugggauu auacuagcaug uuuu

<210> SEQ ID NO 275
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 275

guguggauu auacuagcaug uuuu

<210> SEQ ID NO 276
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 276
-continued

ugggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 277
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 277

gggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 278
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 278

gggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 279
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 279

gggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 280
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 280

gggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 281
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 281

gggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 282
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 282

gggauacua gcaauguuauc ugcuc

<210> SEQ ID NO 283
cuagcaaugu uaucgcuucc cucca

uaagcaauguu uaucgcuucc uccaa

agcaaugua ugcuuccucc ccaac

gcaagauuu ugcuuccucc caacc

gcauauauu ugcuccucucc caacc

cuauguuauc ugcuccucucc aacca

auuguuauc guucuccuca accau
<400> SEQUENCE: 289

auguauacug cuuccuccaa ccaua

<410> SEQ ID NO: 290
<411> LENGTH: 25
<412> TYPE: RNA
<413> ORGANISM: Artificial
<420> FEATURE:
<423> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 290

uguauacug cuuccuccac cauaa

<410> SEQ ID NO: 291
<411> LENGTH: 25
<412> TYPE: RNA
<413> ORGANISM: Artificial
<420> FEATURE:
<423> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 291

agccucuuga ugcgcguu uguu

<410> SEQ ID NO: 292
<411> LENGTH: 25
<412> TYPE: RNA
<413> ORGANISM: Artificial
<420> FEATURE:
<423> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 292

gccucuagau ugcgcguu guuu

<410> SEQ ID NO: 293
<411> LENGTH: 25
<412> TYPE: RNA
<413> ORGANISM: Artificial
<420> FEATURE:
<423> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 293

cucuaagu ugcgcguu uuuu

<410> SEQ ID NO: 294
<411> LENGTH: 20
<412> TYPE: RNA
<413> ORGANISM: Artificial
<420> FEATURE:
<423> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 294

cucuaagu ugcgcguu

<410> SEQ ID NO: 295
<411> LENGTH: 20
<412> TYPE: RNA
<413> ORGANISM: Artificial
<420> FEATURE:
<423> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 295
<210> SEQ ID NO 296
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 296

ucuagauug cuggcuuguu uuuc 25

<210> SEQ ID NO 297
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 297

cuuugauuc gggcuuuggu uuuc 25

<210> SEQ ID NO 298
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 298

uuugauucg gucccggggu uuuu 25

<210> SEQ ID NO 299
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 299

uguauucgg cuuguuuguu uaaa 25

<210> SEQ ID NO 300
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 300

gauuguggu cuuuuug uuuu 25

<210> SEQ ID NO 301
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 301

gauuguggu cuuuuuuuc 20

<210> SEQ ID NO 302
-continued

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 302

auugcugguc uguuuuuca aaauuu

<210> SEQ ID NO 303
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 303

uugcugguc uguuuucaaa aaauuu

<210> SEQ ID NO 304
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 304

ugcuggucu guuuuccaa uuuug

<210> SEQ ID NO 305
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 305

gcuggucuu uuuccaaau uugg

<210> SEQ ID NO 306
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 306

cuggucuuug uuucuauuu uuggg

<210> SEQ ID NO 307
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 307

uugcugugu uuuuccaaau uuggc

<210> SEQ ID NO 308
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 308

ggcuuuguu uuaaaauuu uggca

SEQ ID NO 309
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:

OTHER INFORMATION: oligonucleotide

SEQUENCE: 309

gcuuuguu uuaaaauuu uggca

SEQ ID NO 310
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:

OTHER INFORMATION: oligonucleotide

SEQUENCE: 310

ucuuguuu ucaaaauuug ggcag

SEQ ID NO 311
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:

OTHER INFORMATION: oligonucleotide

SEQUENCE: 311

cuuguuuuc aaaaauuugg ggcag

SEQ ID NO 312
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:

OTHER INFORMATION: oligonucleotide

SEQUENCE: 312

uuguuuuuc aaaaauuugg gcggu

SEQ ID NO 313
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:

OTHER INFORMATION: oligonucleotide

SEQUENCE: 313

uguuuuuuu uuuugggca gcggu

SEQ ID NO 314
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:

OTHER INFORMATION: oligonucleotide

SEQUENCE: 314
guuuuuuuu auuuuggugc agcguu
<210> SEQ ID NO 315
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 315

uuuuuuau uuuggugcgc ggua
<210> SEQ ID NO 316
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 316

uuuuuuauu uuuggugugcgg uguu
<210> SEQ ID NO 317
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 317

uuuuuuauuu uuuggcugcgc guuu
<210> SEQ ID NO 318
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 318

uuuuuuuu uuugccuggugu uugu
<210> SEQ ID NO 319
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 319

uucuuuuu uuugcggugua uuga
<210> SEQ ID NO 320
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 320

caaaaaugug cgcggugauu augu
<210> SEQ ID NO 321
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 321
-continued

<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 321

aaauuuuggc cagcgguaau gaguu

<210> SEQ ID NO 322
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 322

aaauuuuggca cgguuaug aguuc

<210> SEQ ID NO 323
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 323

uuuuuggca gguuauga ucuu

<210> SEQ ID NO 324
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 324

uuuuuggcag guuaugag uucu

<210> SEQ ID NO 325
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 325

uuugggcaag guuaagac ucuuc

<210> SEQ ID NO 326
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 326

uugggcagc guuaagagcu ucuuc

<210> SEQ ID NO 327
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 327

uggccacgcg uuaugaguc uucu 25

<210> SEQ ID NO 328
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 328

ggcacgcgg uauauguc uucu 25

<210> SEQ ID NO 329
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 329

ggcaacggua uauguucu ccac 25

<210> SEQ ID NO 330
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 330

gcacgguua uauguucu ccac 25

<210> SEQ ID NO 331
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 331

cacgguua uauguucu ccac 25

<210> SEQ ID NO 332
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 332

gcgguaug aguucucca ccac 25

<210> SEQ ID NO 333
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 333

agcgguaug aguucucca ccac 25
-continued

cgguaaug guucuuccaa cuggg

<210> SEQ ID NO 334
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 334

cgguaaug guucuuccaa cuggg 25

<210> SEQ ID NO 335
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 335

gguauag guucuuccaa gggga 25

<210> SEQ ID NO 336
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 336

gguauag guucuuccaa ggg 22

<210> SEQ ID NO 337
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 337

guaugagu cuuccacug gggac 25

<210> SEQ ID NO 338
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 338

uaugagu cuuccacug ggg 25

<210> SEQ ID NO 339
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 339

aaugagu cuuccacugg gacgc 25

<210> SEQ ID NO 340
<210> SEQ ID NO 340
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 340
augaguuccu caacugggg acgcc

<210> SEQ ID NO 341
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 341
ugaguuccu caacugggg acgcc

<210> SEQ ID NO 342
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 342
gaguuccu caacugggg acgcc

<210> SEQ ID NO 343
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 343
aguguuccuacuggg acgcc

<210> SEQ ID NO 344
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 344
guuucuccu aacuggg acgcc

<210> SEQ ID NO 345
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 345
uuucucuccu aacuggg acgcc

<210> SEQ ID NO 346
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: oligonucleotide
<400> SEQUENCE: 346
uucucuccu aacuggg acgcc
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 346

ucuuccacu gggacgccu cuguu 25

<210> SEQ ID NO 347
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 347

ucuuccacug gggacgccuc uguuc 25

<210> SEQ ID NO 348
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 348

ucuuccacugg gggacgccuc guucc 25

<210> SEQ ID NO 349
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 349

ucuuccacugg gcgccucuc gucc 25

<210> SEQ ID NO 350
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 350

ccuacuggg acgccucuc gucc 25

<210> SEQ ID NO 351
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 351

ccuacuggg acgccucuc gucc 25

<210> SEQ ID NO 352
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 352
aacuggggac gcccuguuc ccaau

<210> SEQ ID NO 353
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 353

acugggacg cccuguucc aauuc

<210> SEQ ID NO 354
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 354

cuggggggc cccuguucucauuc

<210> SEQ ID NO 355
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 355

uggggggc ucguuuccaauuc

<210> SEQ ID NO 356
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 356

ggggggcuc ucuuuccaauuc

<210> SEQ ID NO 357
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 357

ggggggcuc ucguuuccaau uucu

<210> SEQ ID NO 358
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 358

gggagccuc guuuccaauuc cuuca

<210> SEQ ID NO 359

<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 359
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 359

gagcuccucu uuccaaucc ugcua

25

<210> SEQ ID NO 360
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 360

ccaauaggg ucaguccagg agcua

25

<210> SEQ ID NO 361
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 361

ccaauaggu caguuccagga gcuaag

25

<210> SEQ ID NO 362
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 362

aaauagggc aguccaggag cuagg

25

<210> SEQ ID NO 363
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 363

aaauugguca guccaggagc uaggu

25

<210> SEQ ID NO 364
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 364

aaauugguca guccaggagc u

21

<210> SEQ ID NO 365
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 365

uaguggcag uccaggacu agguc 25

<210> SEQ ID NO 366
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 366

aguggucagu cccagagcu ggua 25

<210> SEQ ID NO 367
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 367

guggucaguc caggagcag gugag 25

<210> SEQ ID NO 368
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 368

uggucagucc caggagcuagg ucagg 25

<210> SEQ ID NO 369
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 369

uggucagucc gaggacuagg ucagg 25

<210> SEQ ID NO 370
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 370

uggucagucc gaggacuagg caggc 25

<210> SEQ ID NO 371
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 371

gucuguccag gagcuaggu agguc 25
ucaguccagg agcuaggucag ggcug

<210> SEQ ID NO 372
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 372

caguccagg gcuaggucag gcugc

<210> SEQ ID NO 373
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 373

aguccagg gcuaggucag cugcu

<210> SEQ ID NO 374
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 374

guccagggc uaggucagc ugcuu

<210> SEQ ID NO 375
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 375

ucaggagcu uggucagcu gcuucu

<210> SEQ ID NO 376
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 376

ccaggacua ggucaggcug cuuug

<210> SEQ ID NO 377
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 377

cagggacuag gcuaggcucu uuugc

<210> SEQ ID NO 378
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 378
agaggcuagg ucaggcugcu ugc

<210> SEQ ID NO 379
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 379
ggagcuagg uaggcugcu ugc

<210> SEQ ID NO 380
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 380
gagcuagguc aaggcuguagg cccu

<210> SEQ ID NO 381
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 381
agcuagguc aaggcuguagc cccc

<210> SEQ ID NO 382
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 382
gcaggucag gcucuagucgc ccuc

<210> SEQ ID NO 383
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 383
cucagucaag guaagcuauagc guuu

<210> SEQ ID NO 384
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 384

cagcucuuga aguuaacggu uuacc
 25

<210> SEQ ID NO 385
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 385

gcucuugaag uuacgguu accgc
 25

<210> SEQ ID NO 386
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 386

cuagguaggg cuuucgcu cuacg
 25

<210> SEQ ID NO 387
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 387

uagguaggg guuugcuu uacgc
 25

<210> SEQ ID NO 388
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 388

aggcugggu gcuugcccu cuagcu
 25

<210> SEQ ID NO 389
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 389

ggcuagcugu cuuucgcccc uacgc
 25

<210> SEQ ID NO 390
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 390
gucgcucgc uggccccca gcucu

<210> SEQ ID NO 391
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 391

ucggcgcuc uggccucag cucuu

<210> SEQ ID NO 392
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 392

cagcgcucu ugccucaca gcucu

<210> SEQ ID NO 393
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 393

agcgcucuuc gccccacgcu cuuga

<210> SEQ ID NO 394
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 394

ggcgcucuuc cccacacug ucgaa

<210> SEQ ID NO 395
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 395

gcugcucuc ccucagcucu ugaag

<210> SEQ ID NO 396
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 396

cgcucuucgc cucagcucu gaag

<210> SEQ ID NO 397
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 397

ugcuuugccc ucacucuug aagua

25

<210> SEQ ID NO 398
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 398

gcuuugccu cagcuuuga aguua

25

<210> SEQ ID NO 399
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 399

cuugccucc agcucuugaa guuua

25

<210> SEQ ID NO 400
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 400

uugcuccua gcucuugaag uaaac

25

<210> SEQ ID NO 401
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 401

uugccuccacg cucuugaagu aaacg

25

<210> SEQ ID NO 402
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 402

ugccucacgc ucuugaagaa aacgg

25

<210> SEQ ID NO 403
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 403

gccucagcu cuugaagaua acggu

<210> SEQ ID NO: 404
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 404

ccucagcuc uugaagauaa cgguu

<210> SEQ ID NO: 405
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 405

ccucagcu uugaagaas

<210> SEQ ID NO: 406
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 406

ccucagcuc uugaagaac g

<210> SEQ ID NO: 407
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 407

ccucagcucu gaugaacgc

<210> SEQ ID NO: 408
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 408

ccucagcucu ugaagaacs cgguu

<210> SEQ ID NO: 409
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 409
ucaacuucc uauuaacgg uuuac

<210> SEQ ID NO 410
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 410

agcuuuga guaasaggu uaceg

<210> SEQ ID NO 411
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 411

cucaugau aacgguuua ccgcc

<210> SEQ ID NO 412
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 412

ccacagcu ugcacuucuc aaugc

<210> SEQ ID NO 413
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 413

ccagggcu gucucuuugc augcu

<210> SEQ ID NO 414
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 414

acagggcu gucucuugaa ugcug

<210> SEQ ID NO 415
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 415

cagggcuuc gucucuuaau gcugc

<210> SEQ ID NO 416
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 416

aggcguguca cuuugcaaug cugcu 25

<210> SEQ ID NO: 417
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 417
gccguguca cuuugcaaug ucgug 25

<210> SEQ ID NO: 418
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 418
gccguguca cuuugcaaug gcugu 25

<210> SEQ ID NO: 419
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 419
cguugacauc ugcagaugcu cuguc 25

<210> SEQ ID NO: 420
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 420
cguugacauc ugcagaugcug cug 23

<210> SEQ ID NO: 421
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 421
guugacacuu guaugcguac ugucu 25

<210> SEQ ID NO: 422
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
-continued

<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 422

uugccuuug caaugcugc gucuu

<210> SEQ ID NO 423
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 423

uugccuuugc aaugcugc gucuuc

<210> SEQ ID NO 424
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 424

gccuuugga auggcugc gucucu

<210> SEQ ID NO 425
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 425

cacuuuggca ucugcugc gucucu

<210> SEQ ID NO 426
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 426

cacuuuggca ucugcugc gucucu

<210> SEQ ID NO 427
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 427

cucuuggcau cuugcugc gucugc

<210> SEQ ID NO 428
<211> LENGTH: 28
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 428
uugcaaugc ugcugucuuc uugcu

<210> SEQ ID NO 429
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 429
gugcaaugc gcugucuuc ugcua

<210> SEQ ID NO 430
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 430
ugcaaugug cuugucuucu gcuau

<210> SEQ ID NO 431
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 431
gcaaugcug ugcuucuucg cuuag

<210> SEQ ID NO 432
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 432
cauaugcu guuucuucu guaug

<210> SEQ ID NO 433
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 433
aaugcuguc ucuucucug uuga

<210> SEQ ID NO 434
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 434
augucuguc guucucugua uggau

<210> SEQ ID NO 435
ugcuugucu ucuugcuau gaaua 25

<210> SEQ ID NO: 436
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide

<400>SEQUENCE: 436

gcuucuguuc ucuugcuau gaaua 25

<210> SEQ ID NO: 437
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide

<400>SEQUENCE: 437

cucuguucuc ucucugcuau aaua 25

<210> SEQ ID NO: 438
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide

<400>SEQUENCE: 438

ugcuucuguuc ucuugcuau gaugu 25

<210> SEQ ID NO: 439
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide

<400>SEQUENCE: 439

gcuucuguuc ucuugcuau auggu 25

<210> SEQ ID NO: 440
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: oligonucleotide

<400>SEQUENCE: 440

cucuguucugu cuucugcuau auguc 25

<210> SEQ ID NO: 441
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
ugcuuucug cuaucaauaa uguca

<210> SEQ ID NO 442
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 442

ugcuuucugucaaucaauaa uguca

<210> SEQ ID NO 443
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 443

ucuucucugucaaucaauaa ucaau

<210> SEQ ID NO 444
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 444

cuucucucugucaaucaauaa ucaau

<210> SEQ ID NO 445
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 445

ucucucucucugucaaucaauaa ucaau

<210> SEQ ID NO 446
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 446

ucucucucucugucaaucaauaa ucaau

<210> SEQ ID NO 447
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 447

ucucucucucugucaaucaauaa ucaau
cuucauuga uuaugguca uccga

<210> SEQ ID NO 448
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 448

uugcuauaa uuaugcuau ccgac

<210> SEQ ID NO 449
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 449

ugcuauaau uaugcuau ccacc

<210> SEQ ID NO 450
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 450

gcuauaauu augcuauucc gaccu

<210> SEQ ID NO 451
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 451

cuaauguaau ugucauucc accug

<210> SEQ ID NO 452
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 452

uaugaaauu gucaauccgac ccuga

<210> SEQ ID NO 453
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 453

augaaauaug ucaauccgac cugag

<210> SEQ ID NO 454
ugaaauaugu caaucgacc uagcu

<210> SEQ ID NO 455
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 455
gaaauauguc aaucgaccu gagcu

<210> SEQ ID NO 456
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 456
aaauauguc aaucgaccu agcuu

<210> SEQ ID NO 457
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 457
aaauauguc aaaucgaccu gcuu

<210> SEQ ID NO 458
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 459
uaauaugcau cagaccuug cuuug

<210> SEQ ID NO 459
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 459
aaauaugcauc cgaccuugac uuugu

<210> SEQ ID NO 460
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 460

augucaucc gaccugacu uguu

SEQ ID NO 461
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 461
ugucauccg accugacu uguug

SEQ ID NO 462
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 462
gucauccgac ccugacuu uguu

SEQ ID NO 463
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 463
cuauccgac ccuacuu uguu

SEQ ID NO 464
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 464
cuauccgacc ugcuccu uguu

SEQ ID NO 465
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 465
asuccgaccu gacccuu uguu

SEQ ID NO 466
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 466
asuccgaccu gacccuu guu
uaccgaccug agcuuuugu ugacu

<210> SEQ ID NO 467
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 467

uaccgaccug gcuuuugu agacu 25

<210> SEQ ID NO 468
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 468

cgccaccug cuuuuguugu gacu 25

<210> SEQ ID NO 469
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 469

cgccaccug cuuuuguug 20

<210> SEQ ID NO 470
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 470

cgccaccug cuuuuguuga cuau 25

<210> SEQ ID NO 471
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 471

gaccugac gcuuuuguaga cuau 25

<210> SEQ ID NO 472
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 472

accugac gcuuuuguagac uauca 25

<210> SEQ ID NO 473
-continued

<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 473

cuggagcuu guguagacu auc

<210> SEQ ID NO 474
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 474

cauuuugac cuacauuggc

<210> SEQ ID NO 475
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 475

uuugacacuugaugaaag

<210> SEQ ID NO 476
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 476

uacauuuacu acuacauug gaag

<210> SEQ ID NO 477
<211> LENGTH: 17
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 477

ggacucuuacu cuauu

<210> SEQ ID NO 478
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 478

ucuaccauagcuauggagaauga

<210> SEQ ID NO 479
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 479

auuuugacc ucaugggaa ag 22

<210> SEQ ID NO 480
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 480

uacgagugua uacgagggacc cag 23

<210> SEQ ID NO 481
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 481

guguucua uacuauagac uugg 25

<210> SEQ ID NO 482
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 482

ugucucugua uacucucuac cuau 24

<210> SEQ ID NO 483
<211> LENGTH: 23
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 483

ugcauguuuc agcguuugug ugg 23

<210> SEQ ID NO 484
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 484

caacuucca guccauuggc ucugg 25

<210> SEQ ID NO 485
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 485
auuuaccsa cacucaacucacuacugua

<210> SEQ ID NO 487
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 487

guceacacu aacuacacau a

<210> SEQ ID NO 488
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 488

gaucggugu gacuauacua gua

<210> SEQ ID NO 489
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 489

cuucuccuaacaguacuacag

<210> SEQ ID NO 490
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 490

gleuguacug uacuacuacag

<210> SEQ ID NO 491
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 491

guacauuac uaugccuacuuc

<210> SEQ ID NO 492
cuguugcagu asucuauagag

ugcaguauuc uaugaguuuc

gagucucucu ggcgucuu

ugccauugcuu ucaucagucu uuu

cucuguaguca uauugcagcu

uwgggaguuc uuuagggagcgc

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ccauuuug gaauguuuc uuugaacuc</code></td>
<td>30</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td><code>ccauuuugu gaauguuuc uuuu</code></td>
<td>24</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td><code>gaaaaauug caauaaccu uuuu</code></td>
<td>24</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td><code>wuugucauu accaaauuug ug</code></td>
<td>22</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td><code>ccccagaacs uuccausccu gaau</code></td>
<td>24</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td><code>aggaacucu ugcusuguu</code></td>
<td>20</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
<tr>
<td><code>ccauuuucu ugguuucuu</code></td>
<td>23</td>
<td>RNA</td>
<td>Artificial</td>
<td>Oligonucleotide</td>
<td>Oligonucleotide</td>
</tr>
</tbody>
</table>
<211> LENGTH: 31
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 511

gcucagcuc aucucgucgc aucuugcagu u

<210> SEQ ID NO: 512
<211> LENGTH: 16
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 512

ucugcuggcu ucuucg

<210> SEQ ID NO: 513
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 513

gcggcuugcc ucuaucugg gc

<210> SEQ ID NO: 514
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 514

gucauccc agaaacugg guc

<210> SEQ ID NO: 515
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 515

uauauacugu cuuagcucu uucu

<210> SEQ ID NO: 516
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 516

cucucauccg acauagggcu cc

<210> SEQ ID NO: 517
<211> LENGTH: 24
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 517

uuggaagac ugguaagcgg uuga

SEQ ID NO 518
LENGTH: 17
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 518

uaggugccu cggcacc

SEQ ID NO 519
LENGTH: 18
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 519

ucacugug gacacacc

SEQ ID NO 520
LENGTH: 21
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 520

cugacugcu ggaasugucgc c

SEQ ID NO 521
LENGTH: 30
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 521

cuggcuucca aauggguccu gaaasaagac

SEQ ID NO 522
LENGTH: 21
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 522

casuucuucc cacacagau u

SEQ ID NO 523
LENGTH: 19
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 523
-continued

uugaagucc uggagucuu

<210> SEQ ID NO 524
<211> LENGTH: 22
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 524
uccucaggag gcagcucuaa au

<210> SEQ ID NO 525
<211> LENGTH: 16
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 525
uggcucucuc ccaggg

<210> SEQ ID NO 526
<211> LENGTH: 27
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 526
gagaugguc ucucuccaggg acccugg

<210> SEQ ID NO 527
<211> LENGTH: 17
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 527
gggcacuug uugggcg

<210> SEQ ID NO 528
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 528
ggucccaaga aguuguugg

<210> SEQ ID NO 529
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE: OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 529
uggaugguc ccagcaagu guuug

<210> SEQ ID NO 530
guagacucu gucauuaugg g
<210> SEQ ID NO 530
<211> LENGTH: 21
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 530

<210> SEQ ID NO 531
<211> LENGTH: 26
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 531
gcucaagaga uccacugcaaa aaaaac

<210> SEQ ID NO 532
<211> LENGTH: 26
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 532
gccauacgu oguaucuaua acauuc

<210> SEQ ID NO 533
<211> LENGTH: 26
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 533
ucugcaggau auccauggc ugguc

<210> SEQ ID NO 534
<211> LENGTH: 27
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 534
gauccuccuc guucgucccua uauaug

<210> SEQ ID NO 535
<211> LENGTH: 24
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 535
ugcuuuaacuc uccuguauccu gaua

<210> SEQ ID NO 536
<211> LENGTH: 18
<220> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 536
gcgccuuu gagugac

SEQ ID NO 537
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 537
gcgccuuu uaaugucgu gcugc

SEQ ID NO 538
LENGTH: 19
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 538
cuuuaaugu cgugcgcgu

SEQ ID NO 539
LENGTH: 20
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

SEQUENCE: 539
ucaggaaga uggcaaunu

SEQ ID NO 540
LENGTH: 20
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

FEATURE:
NAME/KEY: modified_base
LOCATION: (5)...(5)
OTHER INFORMATION: 1

FEATURE:
NAME/KEY: misc_feature
LOCATION: (5)...(5)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 540
ucaggaaga uggc auu

SEQ ID NO 541
LENGTH: 20
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide

FEATURE:
NAME/KEY: modified_base
LOCATION: (6)...(6)
OTHER INFORMATION: 1

FEATURE:
NAME/KEY: misc_feature
LOCATION: (6)...(6)
OTHER INFORMATION: n is a, c, g, or u

<223> OTHER INFORMATION: oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (9) .. (9)
<223> OTHER INFORMATION: n is a, c, g, or u

<210> SEQ ID NO: 542
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: oligonucleotide
<222> LOCATION: (1) .. (1)

ucaaggaaga uggcauuccu

<210> SEQ ID NO: 543
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (12) .. (12)
<223> OTHER INFORMATION: n is a, c, g, or u

ucaaggaaga uggcauuccu

<210> SEQ ID NO: 544
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: oligonucleotide
<222> LOCATION: (13) .. (13)
<223> OTHER INFORMATION: n is a, c, g, or u

ucaaggaaga uggcauuccu

<210> SEQ ID NO: 545
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (1)
ncaggaaga uggcauuucu

ucaggaaga uggcauuucu

ucaggaaga uggcauuucu

ucaggaaga uggcauuucu
<223> OTHER INFORMATION: oligonucleotide
<220> FEATURES:
<221> NAME/KEY: modified_base
<222> LOCATION: (18)...(18)
<223> OTHER INFORMATION: n is a, c, g, or u
<220> FEATURES:
<221> NAME/KEY: misc_feature
<222> LOCATION: (18)...(18)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 549
ucaggaaga uggcauuncu

20

<210> SEQ ID NO 550
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURES:
<221> NAME/KEY: modified_base
<222> LOCATION: (20)...(20)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 550
ucaggaaga uggcauuncn

20

<210> SEQ ID NO 551
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURES:
<221> NAME/KEY: modified_base
<222> LOCATION: (3)...(3)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 551
ucaggaaga uggcauuucn

20

<210> SEQ ID NO 552
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURES:
<221> NAME/KEY: modified_base
<222> LOCATION: (4)...(4)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 552
ucaggaaga uggcauuucu

20

<210> SEQ ID NO 553
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (7) .. (7)
<223> OTHER INFORMATION: i
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (7) .. (7)
<223> OTHER INFORMATION: n is a, c, g, or u

<400> SEQUENCE: 53

ucaaggnaga uggcauuucu

20

<210> SEQ ID NO 554
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (8) .. (8)
<223> OTHER INFORMATION: i
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (8) .. (8)
<223> OTHER INFORMATION: n is a, c, g, or u

<400> SEQUENCE: 554

ucaagganga uggcauuucu

20

<210> SEQ ID NO 555
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (10) .. (10)
<223> OTHER INFORMATION: i
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (10) .. (10)
<223> OTHER INFORMATION: n is a, c, g, or u

<400> SEQUENCE: 555

ucaaggaga uggcauuucu

20

<210> SEQ ID NO 556
<211> LENGTH: 20
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (15) .. (15)
<223> OTHER INFORMATION: i
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (15) .. (15)
<223> OTHER INFORMATION: n is a, c, g, or u

<400> SEQUENCE: 556
ucasggaaga uggcnuuuucu

<u>SEQ ID NO 557</u>
<u>LENGTH: 26</u>
<u>TYPE: RNA</u>
<u>ORGANISM: Artificial</u>
<u>FEATURE: oligonucleotide</u>
<u>LOCATION: (7) .. (7)</u>
<u>OTHER INFORMATION: n is a, c, g, or u</u>

uuuggcncug cccaaugcga uccug

<u>SEQ ID NO 558</u>
<u>LENGTH: 26</u>
<u>TYPE: RNA</u>
<u>ORGANISM: Artificial</u>
<u>FEATURE: oligonucleotide</u>
<u>LOCATION: (10) .. (10)</u>
<u>OTHER INFORMATION: n is a, c, g, or u</u>

uuuggcgcn cccaaugcga uccug

<u>SEQ ID NO 559</u>
<u>LENGTH: 26</u>
<u>TYPE: RNA</u>
<u>ORGANISM: Artificial</u>
<u>FEATURE: oligonucleotide</u>
<u>LOCATION: (17) .. (17)</u>
<u>OTHER INFORMATION: n is a, c, g, or u</u>

uuuggcgcn cccaaugccga uccug

<u>SEQ ID NO 560</u>
<u>LENGTH: 26</u>
<u>TYPE: RNA</u>
<u>ORGANISM: Artificial</u>
<u>FEATURE: oligonucleotide</u>
<u>LOCATION: (4) .. (4)</u>
<u>OTHER INFORMATION: n is a, c, g, or u</u>
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 560

uwuccguc ucuaugccua ucucug

25

SEQ ID: 561
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (25) ... (25)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 561

uwuccguc ucuaugccua ucucum

25

SEQ ID: 562
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) ... (1)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 562

uwuccguc ucuaugccua ucucug

25

SEQ ID: 563
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (2) ... (2)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 563

uwuccguc ucuaugccua ucucug

25

SEQ ID: 564
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (3) ... (3)
<220> OTHER INFORMATION: 3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3) ... (3)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 564

uuugccgucgccauugcuaugg

<210> SEQ ID NO: 565
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (9) ... (9)
<223> OTHER INFORMATION: 1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (9) ... (9)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 565

uuugccgncgcuaugcuaugg

<210> SEQ ID NO: 566
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (15) ... (15)
<223> OTHER INFORMATION: 1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (15) ... (15)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 566

uuugccgucgccauugcuaugg

<210> SEQ ID NO: 567
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (20) ... (20)
<223> OTHER INFORMATION: 1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (20) ... (20)
<223> OTHER INFORMATION: n is a, c, g, or u
<400> SEQUENCE: 567

uuugccgucgccauugcuaugg

<210> SEQ ID NO: 568
<211> LENGTH: 25
<212> TYPE: RNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
- NAME/KEY: modified_base
- LOCATION: (4) (4)
- OTHER INFORMATION: n is a, c, g, or u

FEATURE:
- NAME/KEY: misc_feature
- LOCATION: (4) (4)
- OTHER INFORMATION: n is a, c, g, or u

SEQ ID NO: 568
uuuucenguc cccagugca ccuug

SEQ ID NO: 569
uuuguccguc cccagugca ccuug

SEQ ID NO: 570
uuugucgcgcuc cccagugca ccuug

SEQ ID NO: 571
uuugucgcgcgcuc cccagugca ccuug

SEQ ID NO: 572
uuugucgcgcgcgcuc cccagugca ccuug
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 571

uuugcgcug ccaauggca ucncng 25

SEQ ID NO 572
LENGTH: 25
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (14) (14)
OTHER INFORMATION: j
FEATURE:
NAME/KEY: misc_feature
LOCATION: (14) (14)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 572

uuugcgcug ccaauggca ucncug 25

SEQ ID NO 573
LENGTH: 20
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (10) (10)
OTHER INFORMATION: j
FEATURE:
NAME/KEY: misc_feature
LOCATION: (10) (10)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 573

ucagouucun uuaacccacug 20

SEQ ID NO 574
LENGTH: 20
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (14) (14)
OTHER INFORMATION: j
FEATURE:
NAME/KEY: misc_feature
LOCATION: (14) (14)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 574

ucagouucug uuancccacug 20

SEQ ID NO 575
LENGTH: 20
TYPE: RNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: oligonucleotide
FEATURE:
NAME/KEY: modified_base
LOCATION: (4) (4)
OTHER INFORMATION: n is a, c, g, or u

SEQUENCE: 575
ucancuucug uaagccacucg

ucagcuucug uaagccacun

Met Gly Ile Ser Ser Leu Pro Thr Gln Leu Phe Lys Cys Cys Phe
1 5 10 15

Cys Asp Phe Leu Lys Val Lys Met His Thr Met Ser Ser Ser His Leu
20 25

Phe Tyr Leu Ala Leu Cys Leu Leu Thr Phe Thr Ser Ser Ala Thr Ala
35 40 45

Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe
50 55 60

Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly
65 70 75 80

Ser Ser Ser Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys
85 90 95

Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu
100 105 110

Lys Pro Ala Lys Ser Ala Arg Ser Val Arg Ala Gln Arg His Thr Asp
115 120 125

Met Pro Lys Thr Gln Lys Lys Lys Gln His Leu Lys Asn Ala Ser Arg Gly
130 135 140

Ser Ala Gly Asn Lys Asn Tyr Arg Met
145 150
1. An isolated oligonucleotide comprising a sequence which is complementary to at least part of a dystrophin pre-mRNA exon or at least part of a non-exon region of a dystrophin pre-mRNA said part being a contiguous stretch comprising at least 8 nucleotides, wherein said oligonucleotide comprises one or both of an inosine nucleotide and a nucleotide containing a base able to form a wobble base pair with a complementary base to which it is paired.

2. An isolated oligonucleotide according to claim 1, wherein the contiguous stretch comprises between 13 and 50 nucleotides, of RNA of an exon of a dystrophin pre-mRNA.

3. An isolated oligonucleotide according to claim 2, wherein said exon comprises exon 51, 45, 53, 44, 46, 52, 50, 43, 6, 7, 8, 55, 2, 11, 17, 19, 21, 57, 59, 62, 63, 65, 66, 69, and/or 75.

4. (canceled)

5. An isolated oligonucleotide according to claim 1, wherein the oligonucleotide comprises a first part and a second part, wherein said first part comprises at least 8 consecutive nucleotides that are complementary to a first exon and wherein second part comprises at least 8 consecutive nucleotides that are complementary to a second exon in said dystrophin pre-mRNA.

6. An isolated oligonucleotide according to claim 5, wherein said first and said second exon are contiguous in said dystrophin pre-mRNA.

7. An oligonucleotide according to claim 5, wherein said first and said second exon are contiguous in said dystrophin pre-mRNA.

8. (canceled)

9. (canceled)

10. (canceled)

11. A composition comprising at least two distinct oligonucleotides as defined in claim 1.

12. A composition according to claim 11, wherein each said distinct oligonucleotide is dosed, independently, in an amount between 0.5 mg/kg and 10 mg/kg, inclusive.

13. A composition according to claim 11 in combination with one or more of:
 (a) an adjunct compound for reducing inflammation, preferably for reducing muscle tissue inflammation,
 (b) an adjunct compound for improving muscle function, integrity and/or survival, and
 (c) a compound exhibiting readthrough activity.

14. (canceled)

15. A method for alleviating one or more symptom(s) of Duchenne Muscular Dystrophy or Becker Muscular Dystrophy in an individual, the method comprising administering to said individual a composition as defined in claim 11.

16. An isolated oligonucleotide according to claim 2 wherein said contiguous stretch comprises between 14 and 25 nucleotides of RNA of an exon of a dystrophin pre-mRNA.

17. An isolated oligonucleotide according to claim 1, wherein the oligonucleotide comprises RNA.

18. An isolated oligonucleotide according to claim 17, wherein said RNA comprises a modified ribonucleotide.

19. An isolated oligonucleotide according to claim 18, wherein said modified ribonucleotide is a 2′-O-methyl modified ribose (RNA).

20. An isolated oligonucleotide according to claim 1, comprising a modified deoxyribose (DNA) base.

21. An isolated oligonucleotide according to claim 1, wherein said oligonucleotide comprises a peptide nucleic acid, a locked nucleic acid, a morpholino phosphorodiamidate, or a combination thereof.

22. An isolated oligonucleotide according to claim 21, comprising a morpholino phosphorodiamidate.

23. An isolated oligonucleotide according to claim 5, wherein said first and said second exon are contiguous in said dystrophin pre-mRNA.

24. The composition of claim 11, admixed with a pharmaceutically acceptable carrier, adjuvant, diluent and/or excipient.

25. The composition of claim 13, wherein said adjunct composition for reducing inflammation reduces tissue inflammation.

26. The method of claim 15, wherein the composition administered provides the individual with a functional dystrophin protein.

27. The method of claim 15, wherein the composition administered decreases the production of an aberrant dystrophin protein.

28. The method of claim 15, wherein the composition administered increases the production of a functional or a more functional dystrophin protein.

29. The method of claim 15, wherein the composition administered alleviates one or more symptom(s).

* * * *