SYSTEM FOR LIQUEFIED GAS STORAGE TANK HAVING ULTRA-LOW TEMPERATURE AND AUTOMATIC FLOW PATH CONVERSION VALVE FOR LIQUEFIED GAS STORAGE TANK HAVING ULTRA-LOW TEMPERATURE

Abstract: According to the present invention, an automatic flow path conversion valve for a liquefied gas storage tank having an ultra-low temperature includes: a valve main body having a first liquid phase inlet into which a liquid phase liquefied gas flows, a second gas phase inlet into which a gas phase liquefied gas flows, a first gasification outlet through which the liquefied gas is discharged to a main vaporizer on the opposite side, and a second return outlet through which the liquid phase liquefied gas is discharged to the outside; and a flow path conversion member converting to i) a boost mode, ii) a liquid phase discharge mode, or iii) a decompression mode according to the pressure applied to the first liquid phase inlet and the pressure applied to the second gas phase inlet.

고유번호: 본 발명은, 초기제 액화가스 저장탱크용 자동 유로 전환 밸브에 있어서: 액화가스가 유입되는 제 1 액상 입구와, 기상의 액화가스가 유입되는 제 2 기상 입구와, 외부의 메인 기기로 액화가스가 배출되기 위한 제 1 기상 용출구와, 외부로 액상의 액화가스가 배출되기 위한 제 2 복귀용출구가 형성되는 밸브 본체; 상기 제 1 액상 입구에 접속하는 암력 및 상기 제 2 기상 입구에 접속하는 암력에 따라 i) 승압 모드, ii) 액상 배출모드, iii) 감압 모드 중 어느 하나의 모드로 전환하는 유로전환부재;를 포함하여 이루어지는 것을 특징으로 한다.
명세서
발명의 명칭: 초저온 액화가스 저장탱크 시스템 및 초저온 액화가스 저장탱크용 자동 유로 전환 밸브

기술분야
[1] 본 발명은 젤소가스 혹은 천연가스와 같이 끓는점이 매우 낮은 가스를 보관할 수 있는 초저온 액화가스 저장탱크와 관련되는 기술이며, 특히 초저온 액화가스 저장탱크 내부의 기상 액화가스의 압력을 자동으로 조절할 수 있는 기술이다.

배경기술
[3] 끓는점이 극히 낮은 가스는 수송이나 보관시에는 액화시킨 상태로 유지하게 되며, 이를 위해 초저온 저장탱크가 사용된다. 보통 초저온 저장탱크는 단열체로 둘러싸여 열출입이 제제되도록 한다. 하지만 완벽하게 열출입을 차단할 수 없기 때문에 자연적으로 초저온 저장탱크에 저장된 액화가스는 부분적으로 기화되어 기상의 액화가스가 존재하게 되며, 이를 비오키(Boil-Off Gas, 이하 BOG라고 할)라고 한다.

[8] 상하로 길이가 길게 형성되며 수직으로 세워진 초저온 저장탱크(10)가 마련되며, 초저온 저장탱크(10) 내부에 일정 수위 이하로 액상의 액화가스가 저장된다. 초저온 저장탱크에 저장되는 액화가스로는 N2 가스를 예로 들 수 있다.

[10] 초저온 저장탱크(10)에 저장된 액상의 액화가스를 필요시 배출시키켜서 사용하기 위한 제1배출관(20)이 마련되며, 제1배출관(20)에는 기화기(40)가 연결된다.

[12] 제2배출관(30)에는 초저온 저장탱크(10)의 내부 압력이 규정치 이상이 될 때
자동적으로 기상의 액화가스를 배출시킬 수 있도록 하기 위한
이코노마이저(economizer)(31)가 마련된다.

[13] 이코노마이저(31)가 조절을 저장탱크(10) 내부 압력 변화에 따라 개폐되기
위하여, 저조온 저장탱크(10) 측의 단부가 제1배출관(20)측의 단부보다 일정
압력 이상이 될 경우 이코노마이저(31)는 열리게 되며, 그렇지 않을 경우
이코노마이저(31)는 닫히게 된다.

[14] 이코노마이저(31)가 열리게 되면 기상의 액화가스가 제2배출관(30)을 통하여
유동하면서 제1배출관(20)을 거쳐 기화기(40)로 흘러나가게 된다.

[15] 한편 이코노마이저(31)가 조절은 저장탱크(10) 측의 단부와 제1배출관(20)측의
단부와의 압력차에 따라 작동하기 위하여 제1배출관(20)이 액상 액화가스의
수위보다 높은 지점을 지나도록 하여 제1배출관(20) 내부에 액상 액화가스의
수위에 해당하는 지점의 압력보다 낮은 압력을 가진 부위가 나타나도록
설계하고 그 부위와 조절은 저장탱크(10) 측의 단부와의 압력차에 의하여
이코노마이저(31)가 작동되도록 설계한다.

[16] 이와 같은 설계 기법에 의할 경우 이코노마이저(31)는 통상 조절은
저장탱크(10)의 상단부에 배치되어야 한다. 이는 이코노마이저(31)의 유지
보수를 어렵게 한다는 문제를 일으킨다.

[17] 이와 같은 문제를 해결하기 위하여 도 2와 같은 종래 기술이 사용되고 있다.

[19] 도 2 또한 도 1과 마찬가지로 조절은 저장탱크(10), 제1배출관(20),
제2배출관(30), 이코노마이저(31), 기화기(40)로 구성되어 있다.

[20] 도 2에서 조절은 저장탱크(10), 제1배출관(20), 기화기(40)의 구성 및 배치는 도
1과 동일하다.

[21] 그러나 도 2에서 이코노마이저(31)는 유지 보수의 문제를 풀리하게 하기
위하여 지상에 인접하게 설치된다. 즉 도 1에서 이코노마이저(31)는 조절은
저장탱크(10)의 상단 위에 설치되나, 도 2에서 이코노마이저(31)는 조절은
저장탱크(10)의 하단 높이 부위에 설치된다.

[22] 이와 같은 배치를 위하여 도 2에서 제2배출관(30)은 조절은 저장탱크(10)의
상단에서부터 시작하여 수직 하부 방향으로 연장된 후 이코노마이저(31)와 만난
후 다시 수직 상부 방향으로 연장된 후 제1배출관(20)과 연결되는 구조이다.

[23] 도 2의 배치는 이코노마이저(31)의 유지 보수가 편리하다는 장점이 있지만,
배관이 매우 복잡하고 또한 배관이 길어진다는 문제를 발생시키며, 이로 인하여
배관을 고정하기 위한 지지대 등의 잡차가 매우 많이 설치되어야 한다는
문제를 발생시킨다.

[24] 조절은 저장탱크(10)의 높이를 10M라고 가정할 경우, 수직 방향을 따라
연장되는 배관의 길이는 다음과 같다.

[25] 도 1에서 제1배출관(20)은 조절은 저장탱크(10)의 하단에서 상단까지 연장되는
길이 10M와, 조절은 저장탱크(10)의 상단에서 하단까지 연장되는 길이 10M, 총
20M를 필요로 한다.

도 2에서 제1배출관(20)은 조지온 저장탱크(10)의 하단에서 상단까지 연장되는 길이 10M와, 조지온 저장탱크(10)의 상단에서 하단까지 연장되는 길이 20M를 필요로 하며, 아울러 제2배출관(30)은 조지온 저장탱크(10)의 상단에서 하단까지 연장되는 길이 10M와, 조지온 저장탱크(10)의 하단에서 상단까지 연장되는 길이 20M를 필요로 하여, 제1배출관(20)과 제2배출관(30)의 합은 40M가 된다.

즉 도 2의 배치 구조는 도 1의 배치 구조에 비하여 총 20M (40M - 20M)의 배관 길이가 더 필요하게 되며, 이에 따라 배관을 설치하기 위한 소프트 등의 잠자재 및 이별 위한 설치 작업이 추가적으로 필요하게 된다.

아울러 도 1 및 도 2의 종래 기술에 의한 경우 이코노마이저(31)는 조지온 저장탱크(10) 측의 단부와 제1배출관(20)측의 단부와의 압력차에 따라 작동하게 되는데, 조지온 저장탱크(10) 내부에 액상 액화가스가 가득 차 있을 경우 이때는 차압이 거의 발생하지 않게 되어 기상 액화가스의 압력이 상승하는 경우에도 이코노마이저(31)가 작동하지 않을 가능성이 높으며, 또한 이코노마이저(31)가 작동하는 경우에도 기상 액화가스의 방출이 적어 압력 강가가 제대로 이루어지지 않아 결국 안전밸브를 통하여 기상 액화가스를 대기에 배출하게 된다는 문제가 있다.

발명의 상세한 설명
기술적 과제

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안호된 것으로서, 유지보수가 보다 편리하며 배관의 길이를 최소화할 수 있으며 조지온 액화가스 저장탱크 내부의 기상의 액화가스의 압력을 자동으로 조절할 수 있는 조지온 액화가스 저장탱크 시스템 및 이를 위한 자동 유로 전환 밸브를 제공하고자 한다.

과제 해결 수단

상기의 과제를 해결하기 위하여 본 발명은, 수적으로 세워지게 배치되며, 액화가스가 저장되는 조지온 저장탱크; 일반이 상기 조지온 저장탱크의 하부에 연결되어 액상의 액화가스가 배출되도록 마련되는 제1배출관; 일반이 상기 조지온 저장탱크의 상부에 연결되어 기상의 액화가스의 유동로로서 기능하는 제2기상관; 일반이 상기 제2기상관의 타단에 연결되어 기상의 액화가스가 배출되도록 마련되는 제3배출관; 일반이 상기 제2기상관의 타단에 마련되어 승압용 액화가스의 유동로로서 기능하는 제4승압관; 상기 제4승압관의 중간부에 마련되는 보조 기화기; 상기 제1배출관의 타단과 연결되는 제1액상
임구와, 상기 제3배출관의 타단과 연결되는 제2기상 입구와, 외부의 메인 기화기와 연결되는 제1기화용 출구와, 상기 제4승압관의 타단과 연결되는 제2복귀용 출구가 형성되는 벨브 본체와, 상기 제1액상 입구에 걸리는 압력 및 상기 제2기상 입구에 걸리는 압력에 따라 i) 상기 제1액상 입구와 상기 제1기화용 출구는 서로 연결되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로 연결되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의 연동이 차단되는 승압 모드, ii) 상기 제1액상 입구와 상기 제1기화용 출구는 서로 연결되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로간의 연동이 차단되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의 연동이 차단되는 액상 배출모드, iii) 상기 제2기상 입구와 상기 제1기화용 출구는 서로 연결되며 상기 제1액상 입구는 상기 제1기화용 출구 및 상기 제2복귀용 출구와의 연동이 차단되는 감압 모드 중 어느 하나의 모드로 진화하는 유로전환부재를 포함하여 이루어지는 자동 유로 전환 벨브 ;를 포함하여 이루어지는 것을 특징으로 한다.

[34] 상기에 있어서, 상기 제1배출관은 상기 초저온 저장탱크의 상단 높이보다 낮은 높이에서만 배치되며; 상기 제2기상관은, 상하 방향으로 연장되는 상하 연장부와, 상기 상하 연장부와 상기 초저온 저장탱크의 상부를 연결하는 상단부와, 상기 상하 연장부와 상기 제3배출관 및 상기 제4승압관을 연결하는 하단부로 구분되며; 상기 제2기상관의 상단부는 상기 초저온 저장탱크의 하단 높이보다 높은 높이에서만 배치되며; 상기 제2기상관의 하단부는 상기 초저온 저장탱크의 상단 높이보다 낮은 높이에서만 배치되는 것 ;이 바람직하다.

[35] 한편 본 발명의 다른 사상으로서, 초저온 액화가스 저장탱크용 자동 유로 전환 벨브에 있어서 : 액상의 액화가스가 유입되는 제1액상 입구와, 기상의 액화가스가 유입되는 제2기상 입구와, 외부의 메인 기화기로 액화가스가 배출되기 위한 제1기화용 출구와, 외부로 액상의 액화가스가 배출되기 위한 제2복귀용 출구가 형성되는 벨브 본체 ; 상기 제1액상 입구에 걸리는 압력 및 상기 제2기상 입구에 걸리는 압력에 따라 i) 상기 제1액상 입구와 상기 제1기화용 출구는 서로 연결되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로 연결되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의 연동이 차단되는 승압 모드, ii) 상기 제1액상 입구와 상기 제1기화용 출구는 서로 연결되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로간의 연동이 차단되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의 연동이 차단되는 액상 배출모드, iii) 상기 제2기상 입구와 상기 제1기화용 출구는 서로 연결되며 상기 제1액상 입구는 상기 제1기화용 출구 및 상기 제2복귀용 출구와의 연동이 차단되는 감압 모드 중 어느 하나의 모드로 진화하는 유로전환부재 ;를 포함하여 이루어지는 것을 특징으로 한다.

[37]
본 발명의 또다른 사례로서, 초저온 액화가스 저장탱크용 자동 유도 전환 벨브에 있어서: 액상의 액화가스가 유입되는 제1액상 입구와, 상기 제1액상 입구와 연결되는 제1액상 입구실과, 기상의 액화가스가 유입되는 제2기상 입구와, 상기 제1액상 입구실의 상부에 형성되는 제1기화용 출구실과, 상기 제1기화용 출구실과 연통되는 제1기화용 출구와, 상기 제1기화용 출구실과 상기 제2기상 입구 사이에 형성되며 상기 제1기화용 출구실과 연통되는 제2기상 입구실과, 상기 제1액상 입구실의 하부에 형성되는 보조통로실과, 상기 보조통로실의 하부에 형성되는 제2복귀용 출구실과, 상기 제2복귀용 출구실과 연통되는 제2복귀용 출구와, 상기 제1기화용 출구실의 상부에 형성되며 상기 제1기화용 출구실과 연통되는 제1기화용 출구실과 연통되는 스프링실을 포함하여 이루어지는 벨브 본체; 상기 스프링실에 마련되는 메인타스켓; 상기 스프링실에 마련되어 상기 메인타스켓의 하방형 압력과 상기 제1기화용 출구실의 압력 차이에 따라 상하로 이동하도록 마련되는 압력 차이 감지부; 상단이 상기 압력 차이 감지부에 고정되어 하단이 상기 제1기화용 출구실까지 연장되며 상기 압력 차이 감지부의 상하 이동과 연동하여 상하로 이동하는 메인 로드; 상단이 상기 메인 로드에 고정되며 하단이 상기 보조통로실까지 연장되어 상기 메인 로드의 상하 이동과 연동하여 상하로 이동되어 상기 제1기화용 출구실과 상기 보조통로실을 연통시키는 보조 연통로가 내부를 따라 형성되는 한편 하부가 상기 제1액상 입구실과 상기 보조통로실간의 연통을 차단하게 되는 보조 로드; 상기 제1액상 입구실에 위치되며 상기 보조 로드에 고정되어 상기 보조 로드의 상하 이동에 따라 상기 제1액상 입구실과 상기 제1기화용 출구실간의 개폐를 조절하게 되는 제1벨브체; 상기 제1ベル브체를 상방향으로 탄성지지하는 제1스프링; 상기 제2복귀용 출구실에 위치하여 상하로 이동가능하게 마련되며 제2스프링에 의하여 상방향으로 탄성지지되며 상기 보조 로드의 하방향 이동에 따라 상기 보조 로드로부터 하방향의 압력을 받게 되어 상기 제2복귀용 출구실과 상기 보조통로실간의 개폐를 조절하게 되는 제2ベル브체; 상기 제2ベルブ체는 상기 제1ベルブ체의 입구실에 위치되어 상기 제2기상 입구의 압력과 상기 제2기상 입구실로 탄성지지하는 제3스프링의 압력 차이에 의하여 상기 제2기상 입구실과 상기 제2기상 입구간의 개폐를 조절하게 되는 제3ベルブ체; 를 포함하여 이루어지는 것을 특징으로 한다.

상기에 있어서, 상기 제3ベルブ체는, 상기 제2ベルブ체의 압력과 상기 제2기상 입구의 반대측으로 탄성지지하는 제4스프링의 압력 차이에 의하여 상기 제2기상 입구실과 상기 제2기상 입구간의 개폐를 조절하게 되는 제4ベルブ체를 더 포함하여 이루어지는 것일 수 있다.

상기에 있어서, 상기 제2ベルブ체는, 상기 보조 로드와 접촉하기 위한 접촉용 로드와, 상기 접촉용 로드를 상기 제2ベルブ체에 대하여 상하 방향으로 이동시키기 위한 접촉 간격 조절부를 더 포함하여 이루어지는 것일 수 있다.
발명의 효과

상기와 같이 본 발명은 자동 유로 전환 밸브가 지면에 인접하여 설치되어 그 유지보수가 매우 편리하며, 또한 필요한 배관의 길이를 최소화할 수 있으며, 배관의 길이가 최소화됨에 따라 이에 필요한 배관 지지대 등의 잡자재 및 그 설치 작업이 불필요하게 되어 매우 경제적이며, 아울러 초저온 액화가스 저장탱크 내부의 기상의 액화가스의 압력을 자동상으로 조절할 수 있는 초저온 액화가스 저장탱크 시스템 및 초저온 액화가스 저장탱크용 자동 유로 전환 밸브를 제공하게 된다.

또한 본 발명은 순수하게 기상 액화가스의 압력 혹은 액상 액화가스의 압력에 따라 자동 유로 전환 밸브가 작동되며, 기상 액화가스와 액상 액화가스의 압력차이를 이용하지 않기 때문에, 액상 액화가스가 저장탱크에 가득 찬 경우에도 자동 유로 전환 밸브는 정상적인 작동이 가능하게 되며, 따라서 종래의 안전밸브를 통한 기상 액화가스의 배출 문제를 완벽히 해결할 수 있다.

도면의 간단한 설명

도 1은 종래기술로서 초저온 저장탱크에 저장된 액화가스로부터 발생되는 BOG의 처리장치에 대한 개념도,

도 2는 다른 종래기술로서 초저온 저장탱크에 저장된 액화가스로부터 발생되는 BOG의 처리장치에 대한 개념도,

도 3은 본 발명에 따른 일 실시예인 초저온 액화가스 저장탱크 시스템의 개념도,

도 4는 도 3의 A-A 기준 자동 유로 전환 밸브의 개념 단면도,

도 5는 도 4의 주요부 확대 단면도,

도 6은 도 4의 주요부품 분리 단면도,

도 7은 도 3의 B-B 기준 자동 유로 전환 밸브의 개념 단면도,

도 8은 도 7의 주요부 확대 단면도,

도 9는 도 7의 주요부품 분리 단면도,

도 10은 도 5의 지시자의 평면도,

도 11은 도 3이 승압 모드인 경우의 작동도,

도 12는 도 11 상태에서의 자동 유로 전환 밸브의 A-A 기준 작동 단면도

도 13은 도 11 상태에서의 자동 유로 전환 밸브의 B-B 기준 작동 단면도

도 14는 도 3이 액상 배출 모드인 경우의 작동도,

도 15는 도 14 상태에서의 자동 유로 전환 밸브의 A-A 기준 작동 단면도

도 16은 도 14 상태에서의 자동 유로 전환 밸브의 B-B 기준 작동 단면도

도 17은 도 3이 감압 모드인 경우의 작동도,

도 18은 도 17 상태에서의 자동 유로 전환 밸브의 A-A 기준 작동 단면도

도 19는 도 17 상태에서의 자동 유로 전환 밸브의 B-B 기준 작동 단면도,
발명의 실시를 위한 최선의 형태

이하에서는 첨부한 도면을 참조하여 본 발명이 충족하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기체가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.

도 3은 본 발명에 따른 일 실시예인 조치온 액화가스 저장탱크 시스템의 개념도이며, 도 4는 도 3의 A-A 기준 자동 유로 전환 밸브의 개념 단면도이며, 도 5는 도 4의 주요 부확대 단면도이며, 도 6은 도 4의 주요 부품 분리 단면도이며, 도 7은 도 3의 B-B 기준 자동 유로 전환 밸브의 개념 단면도이며, 도 8은 도 7의 주요 부확대 단면도이며, 도 9는 도 7의 주요 부품 분리 단면도이며, 도 10은 도 5의 지시자의 평면도이다.

이하에서는 페킹, 볼트, 너트 등과 같이 밸브 작동을 위하여 반드시 필요하며 매우 일반적인 부재들에 대하여는 그 상세한 설명을 생략한다.

본 발명의 일 실시예에 의한 조치온 저장탱크 시스템은 기존의 기술보다 유지보수가 편리하며 배관의 간이를 줄일 수 있다는 장점을 가지고 있다.

보다 구체적으로 본 발명은 조치온 저장탱크(100)와, 제1배출관(110)과, 제2기상관(120)과, 제3배출관(130)과, 제4승압관(140)과, 자동 유로 전환 밸브(200) 등을 포함하여 이루어진다.

조치온 저장탱크(100)에 액화가스가 저장되며, 단열재로 감싸져 있어 액화가스를 적절한 온도로 유지할 수 있도록 이루어진다. 조치온 저장탱크(100)에 저장되는 액화가스로는 액화질소, 액화천연가스와 같은 것이며, 조치온 저장탱크(100)는 상하 방향으로 갈라진 형상을 가지며, 아울러 수직으로 세워지게 배치된다.

조치온 저장탱크(100)에 액화가스는 소량의 수위만큼 저장되며, 조치온 저장탱크(100)에 저장되는 액화가스는 자연적으로 증발되어 조치온 저장탱크(100)의 상부에는 기상의 액화가스가 존재하게 된다. 조치온 저장탱크(100) 내부에 형성되는 기상의 액화가스에 의해 조치온 저장탱크(100) 내부 압력이 증가하게 되는데, 조치온 저장탱크 내부 압력은 적절하게 조절되다.
필요가 있다.

즉, 초기온 저장탱크(100)의 내부 압력이 제1기준값보다 높으면 감압이 이루어지도록 해야 하며, 제2기준값보다 낮으면 승압이 이루어지도록 하여야 한다. 이때 초기온 저장탱크(100)의 내부 압력을 조절할 수 있도록 하면서도 기상의 액화가스를 폐기하지 않고 사용이 가능하도록 할 필요가 있다.

이에 본 발명은 제1배출관(110), 제2기상관(120), 제3배출관(130), 제4승압관(140) 및 자동 유로 전환 밸브(200)를 이용하여 배관의 길이를 줄이면서도 유지보수가 간편하고 기상의 액화가스를 재활용할 수 있도록 하는 기술을 제공하게 된다.

초저온 저장탱크(100)의 하부에 제1배출관(110)이 연결되며, 제1배출관(110)의 입단은 초기온 저장탱크(100)의 하부에 연결된 후 지면을 따라 연장되며, 제1배출관(110)을 통해서 액상의 액화가스가 배출될 수 있다.

연급된 종래기술과 비교하면 제1배출관(110)의 길이는 횡기적으로 짧아질 수 있다. 종래기술의 경우 초기온 저장탱크(100)에 저장된 액화가스의 수두압을 이용하여 향기 때문에 제1배출관(110)을 초기온 저장탱크(100)의 상부로 연장한 후 다시 지면 근처로 내려야만 했었다.

하지만 본 발명에서는 초기온 저장탱크(100)의 하단 부위에 제1배출관(110)을 연결함으로써 제1배출관(110)이 초기온 저장탱크(100)의 상부로 연장된 후 다시 하강할 필요가 없기 때문에 그 길이를 대폭적으로 줄일 수 있다는 효과가 있다.

초저온 저장탱크(100)의 내부 상측에 모이게 되는 기상의 액화가스를 배출시키기 위하여 제2기상관(120) 및 제3배출관(130)이 마련된다.

제2기상관(120)의 입단이 초기온 저장탱크(100)의 상부에 연결된 후 지면 근처로 연장되게 배치되며, 제2기상관(120)의 타단에 제3배출관(130)의 입단이 연결된다.

제2기상관(120)은 기상의 액화가스의 유동으로서 기능하며, 아울러 제3배출관(130)은 기상의 액화가스가 배출되는 통로로서 이용된다.

함께 제2기상관(120)의 타단에 제4승압관(140)의 입단이 연결된다.

제4승압관(140)은 승압용 액화가스의 유동으로서 기능하며, 제4승압관(140)에는 보조 기화기(141)가 마련되어 액상의 액화가스를 기상의 액화가스로 기화시키게 된다.

이와 같이 제2기상관(120)의 타단은 분기되어 제3배출관(130)과 제4승압관(140)이 각각 연결되는 형태이다.

제1배출관(110)과 제3배출관(130)과 제4승압관(140)의 타단은 각각 자동 유로 전환 밸브(200)에 연결된다.

자동 유로 전환 밸브(200)는 두 개의 입구(201, 202)와 두 개의 출구(203, 204)를 갖는 밸브이며, 제1배출관(110)이 어느 하나의 입구인 제1액상 입구(201)와 연결되고 제3배출관(130)은 또 하나의 입구인 제2기상 입구(202)와 연결되며, 제4승압관(140)은 어느 하나의 출구인 제2복귀용 출구(204)와 연결된다.
[89] 현판 자동 유로 전환 벨브(200)의 제1기화용 출구(203)에는 메인 기화기(150)가 연결될 수 있다. 메인 기화기(150)는 저온화 액상 혹은 기상 액화가스를 적당한 온도로 가온시키기 위한 일종의 열교환기와 같은 것이다.

[90] 아울러 메인 기화기(150)의 전단에는 메인 기화기(150)로 액화가스가 유입되는 것을 차단하기 위한 기화기용 벨브(151)가 마련된다. 기화기용 벨브(151)는 메인 기화기(150)의 유지 보수 등과 같이 메인 기화기(150)가 사용되지 않을 경우에 닫히게 된다.

[91] 상기와 같은 자동 유로 전환 벨브(200)는 제1액상 입구(201)에 걸리는 압력 및 제2기상 입구(202)에 걸리는 압력에 따라 자동으로 작동하여, i) 제1액상 입구(201)와 제1기화용 출구(203)는 서로 연통되며 제1액상 입구(201)와 제2복귀용 출구(204)는 서로 연통되며 제2기상 입구(202)와 제1기화용 출구(203)는 서로간의 연통이 차단되는 승압 모드, ii) 제1액상 입구(201)와 제1기화용 출구(203)는 서로 연통되며 제1액상 입구(201)와 제2복귀용 출구(204)는 서로간의 연통이 차단되며 제2기상 입구(202)와 제1기화용 출구(203)는 서로간의 연통이 차단되는 액상 배출모드, iii) 제2기상 입구(202)와 제1기화용 출구(203)는 서로 연통되며 제1액상 입구(201)와 제1기화용 출구(203)는 서로간의 연통이 차단되며 제2복귀용 출구(204)와 제1기화용 출구(203)는 서로간의 연통이 차단되는 습압 모드 중 어느 하나의 모드로 전환하게 된다.

[92] 또한 자동 유로 전환 벨브(200)의 벨브 본체에는, 제1액상 입구(201)와 연통되는 제1액상 입구실(210)과, 제1액상 입구실(210)의 상부에 형성되며 제1기화용 출구(203)와 연통되는 제1기화용 출구실(230)과, 제1액상 입구실(210)의 하부에 형성되는 보조통로실(250)과, 보조통로실(250)의 하부에 형성되는 제2복귀용 출구실(240)과, 제1기화용 출구실(230)과 제2기상 입구(202) 사이에 형성되며 제1기화용 출구실(230)과 연통되는 제2기상 입구실(220)과, 제1기화용 출구실(230)의 상부에 형성되며 제1기화용 출구실(230)과 연통되는 스프링실(270)이 형성된다.

[93] 또한 자동 유로 전환 벨브(200)의 벨브 본체에는 각종 유로전환부재들이 마련되어 그 유로를 전환하게 된다.

[94] 스프링실(270)에 메인탄생체(271)와 압력 차이 감지부(272)가 마련된다.

[95] 메인탄생체(271)는 압력차이 감지부(272)에 하방향 압력을 인가하게 되며, 압력 차이 감지부(272)는 메인탄생체(271)의 하방향 압력과 제1기화용 출구실(230)의 압력 차이에 따라 상하 방향으로 이동하게 된다.

[96] 본 설계에서는 압력 차이 감지부(272)로서 벨로우즈(272a)와 감지판(272b)이 사용되었으며, 감지판(272b)은 메인탄생체(271)로부터 하방향의 압력을 받고 아울러 제1기화용 출구실(230)의 압력에 의하여 상방향의 압력을 받아 이들 압력의 차이에 의하여 상하로 이동하게 된다.

[97] 벨로우즈(272a)는 메인탄생체(271)가 위치한 공간과 감지판(272b)의 하부
공간을 구획하기 위하여 마련되는 것이다.

[98] 이와 같은 압력 차이 감지부(272)는 주기 관용의 기술인 멤브레인 방식에 의하여도 구현될 수 있다.

[99] 물론 감지판(272b)의 하부 공간은 제1기화용 출구실(230)의 압력과 동일한 압력이 결릴 수 있도록 제1기화용 출구실(230)과 연통되어 있는 상태이다.

[100] 상기와 같은 감지판(272b)의 하부에 메인 로드(281a)가 마련된다.

[101] 메인 로드(281a)는 상단이 감지판(272b)에 고정되며 하단이 제1기화용 출구실(230)까지 연장되며 감지판(272b)의 상하 이동과 연동하여 상하로 이동하게 된다.

[102] 상기와 같은 메인 로드(281a)에 보조 로드(282a)가 연결된다.

[103] 보조 로드(282a)는 그 상단이 메인 로드(281a)의 하단에 고정되며 하단이 보조통로실(250)까지 연장되어 메인 로드(281a)의 상하 이동과 연동하여 상하로 이동하게 된다.

[104] 한편 보조 로드(282a)에는 제1기화용 출구실(230)과 보조통로실(250)을 연결시키는 보조 연동로(282b)가 내부를 따라 형성된다.

[105] 아울러 보조 로드(282a)의 하부에는 제1액상 입구실(210)과 보조통로실(250)간의 연통을 차단하게 된다.

[106] 즉 보조 로드(282a)에 의하여 제1기화용 출구실(230)과 보조통로실(250)이 서로 연통되는 한편 제1액상 입구실(210)과 보조통로실(250)은 그 연통이 차단된다.

[107] 상기와 같은 보조 로드(282a)에 제1벨브체(283)가 고정 마련된다.

[108] 제1벨브체(283)는 제1액상 입구실(210)에 위치되며, 보조 로드(282a)의 상하 이동에 따라 제1액상 입구실(210)과 제1기화용 출구실(230)간의 개폐를 조절하게 된다.

[109] 아울러 제1액상 입구실(210)에는 제1벨브체(283)에 상방향의 탄성력을 인가하게 되는 제1스프링(284)이 마련된다.

[110] 제2복귀용 출구실(240)에 제2벨브체(285)가 상하로 이동가능하게 마련된다.

[111] 제2ベル브체(285)는 제2복귀용 출구실(240)에 마련된 제2스프링(286)에 의하여 상방향으로 탄성지지를 이루어 있다. 따라서 제2ベル브체(285)는 외력이 없을 경우 보조통로실(250)과 제2복귀용 출구실(240)간의 연통을 차단하게 된다.

[112] 아울러 제2ベルブ체(285)는 보조 로드(282a)의 하방향 이동에 따라 보조 로드(282a)와 접촉하면서 보조 로드(282a)로부터 하방향의 압력을 받게 되어 보조통로실(250)과 제2복귀용 출구실(240)이 서로 연통되도록 그 개폐 정도를 조절하게 된다.

[113] 한편 제2ベルブ체(285)에는 보조 로드(282a)와 접촉하기 위한 접촉용 로드(287)가 상부로 돌출되어 있다.

[114] 또한 본 실시에는 접촉용 로드(287)가 제2ベルブ체(285)에 고정되어 있는 것이 아니라, 접촉용 로드(287)가 제2ベルブ체(285)에 대하여 상하로 이동할 수 있는 구조를 갖추고 있다.
즉, 제2ベル브체(285)에는 접촉용 로드(287)를 제2ベル브체(285)에 대하여 상하 방향으로 이동시키기 위한 접촉 간격 조절부(288)를 더 구비하고 있다.

본 실시예에서 접촉 간격 조절부(288)의 구조는, 상부에 접촉용 로드(287)가 형성되며, 상하방향 중간부에 제2ベル브체(285)에 대하여 나사 결합되어 있는 암사부(288a)가 형성되며, 하부에는 암사부(288a)의 회전 정도, 즉 접촉용 로드(287)의 높출 정도를 표시하는 지시자(288b, indicator)가 마련되는 구조이다.

따라서 암사부(288a)를 회전시키면 암사부(288a)가 상부 또는 하부로 이동하며 이에 의하여 접촉용 로드(287)가 상부 또는 하부로 이동되어, 결과적으로 접촉용 로드(287)와 보조 로드(282)간의 간격이 조절될 수 있다.

본 실시예에서 접촉용 로드(287)는 접촉 간격 조절부(288)의 일부를 형성하고 있지만, 실시예에 따라서는 접촉용 로드(287)와 접촉 간격 조절부(288)가 서로 독립적으로 마련될 수도 있다.

제2기상 입구설(220)에 제3ベル브체(289)가 마련된다.

제3ベル브체(289)는 제3스프링(290)에 의하여 제2기상 입구(202)측으로 탄성지지된다.

따라서 제3ベルブ체(289)는 외력이 없을 경우 제2기상 입구설(220)과 제2기상 입구(202)간의 연동을 차단하게 된다.

그러나 제2기상 입구(202)의 압력이 기준치 이상으로 높아지면, 즉 제3스프링(290)의 탄성력보다 높아지게 되면 제3ベルブ체(289)는 열리게 된다.

또한 제3ベルブ체(289)에는 제4스프링(292)과 제4ベルブ체(291)가 마련된다.

제4스프링(292)은 제4ベルブ체(291)를 제2기상 입구(202)의 반대측으로 탄성지지하여, 제4ベルブ체(291)는 제4스프링(292)의 탄성력과 제2기상 입구설(220)의 압력 차이에 의하여 제2기상 입구설(220)과 제2기상 입구(202)간의 개폐를 조절하게 된다.

미설명부호 293은 필터이다.

이와 같은 자동 유로 전환ベルブ(200)의 작동을 설명한다.

먼저 초저온 저장탱크(100)의 내부 압력이 제2기준값보다 낮은 경우를 도 11 내지 도 13을 참고하여 설명한다.

초저온 저장탱크(100)의 내부 압력은 내부의 기상 액화가스의 압력에 따라 결정되며, 따라서 내부 압력이 낮을 경우 기상 액화가스의 압력을 증압시킬 필요가 있다.

기상 액화가스의 압력이 낮으므로 제2기상관(120) 및 제3배출관(130)과 연결된 자동 유로 전환ベルブ(200)의 제2기상 입구(202)의 압력이 낮으므로 제3ベルブ체(289)는 열리지 않게 되며, 따라서 제2기상 입구(202)와 제2기상 입구설(220)간의 연통이 차단된다.

아울러 제1기화용 출구설(230)에 낮은 압력이 걸리므로 압력 차이 감지부(272)가 하부로 이동하며 이와 연동하여 메인 로드(281) 및 보조
로드(282)가 하부로 이동하며, 보조 로드(282)에 고정된 제1발브체(283)가 하부로 이동하며, 아울러 보조 로드(282)의 하단부의 하방향 이동에 의하여 보조 로드(282)의 하단이 제2발브체(285)의 접촉용 로드(287)를 하부로 밀어 제2발브체(285)가 하부로 이동하여, 제1액상 입구실(210)은 제1기화용 출구실(230)과 연결되며, 아울러 보조통로실(250)은 제2복귀용 출구실(240)과 연결된다.

[132] 이와 같은 과정에 의하여 자동 유로 전환 밸브(200)는, 제1액상 입구(201)와 제1기화용 출구(203)는 서로 연결되며 제1액상 입구(201)와 제2복귀용 출구(204)는 서로 연결되며 제2기상 입구(202)와 제1기화용 출구(203)는 서로간의 연결이 차단되는 승압 모드로 변환된다.

[133] 한편 제1액상 입구(201)와 제2복귀용 출구(204)간의 연통은, 제1액상 입구(201)와 제1액상 입구실(210)간의 연결, 제1액상 입구실(210)과 제1기화용 출구실(230)간의 연결, 보조 로드(282)의 보조 통로(282a)를 통한 제1기화용 출구실(230)과 보조통로실(250)간의 연결, 보조통로실(250)과 제2복귀용 출구실(240)간의 연결, 제2복귀용 출구실(240)과 제2복귀용 출구(204)간의 연결에 의하여 형성되는 것이다.

[134] 따라서 도 11에서 확인되는 바와 같이 제1배출관(110)으로 배출되는 액상의 액화가스의 일부는 제1기화용 출구(203)를 거쳐 메인 기화기(150)를 지나면서 기화되어 외부로 배출되는 한편, 제1배출관(110)으로 배출되는 액상의 액화가스의 일부는 제2복귀용 출구(204)를 거쳐 제4승압관(140)의 보조 기화기(141)에서 기화된 후 제2기상관(120)을 거쳐 조절온 저장탱크(100)의 내부로 유입된다.

[135] 이에 의하여 조절온 저장탱크(100)의 내부 압력이 상승하게 된다.

[136] 한편 상기와 같은 작동에 의하여, 제2복귀용 출구(204)로 액상 액화가스가 배출되기 위하여는 먼저 제1발브체(283)가 열린 후 다음으로 제2발브체(285)가 열려야 하며, 만일 제2발브체(285)의 오작동으로 인하여 제2발브체(285)가 제대로 닫히지 않은 경우에도 제1발브체(283)가 열리지 않았다면 제2복귀용 출구(204)로 액상 액화가스가 배출되지 못하게 되어, 제2발브체(285)의 오작동으로 인한 위험 부담을 감소시키게 된다.

[137] 다음으로 조절온 저장탱크(100)의 내부 압력이 제2기준값과 제1기준값 사이인 경우를 도 14 내지 도 16을 참고하여 설명한다.

[138] 조절온 저장탱크(100)의 내부 압력은 제2기준값과 제1기준값 사이인 경우 액상의 액화가스가 메인 기화기(150)로 배출되는 것으로 충분하다.

[139] 기상 액화가스의 압력이 여전히 제1기준값보다 낮으므로 제2기상관(120) 및 제3배출관(130)과 연결된 자동 유로 전환 밸브(200)의 제2기상 입구(202)의 압력이 낮으므로 제3발브체(289)는 열리지 않게 되며, 따라서 제2기상 입구(202)와 제2기상 입구실(220)간의 연결이 차단된다.
아울러 제1기화용 출구실(230)에 낮은 압력이 길리므로 압력 차이 감지부(272)가 하부로 이동하려고 한다.

그러나 비교적 높은 압력의 액상의 액화가스가 제1액상 입구(201)로 유입되므로, 제1액상 입구실(210)의 압력이 상승하며 이에 따라 제1밸브체(283)가 액상의 액화가스로부터 상방향의 압력을 받게 되어 제1밸브체(283)가 고정된 보조 로드(282)는 상부로 이동하려고 한다.

이와 같이 압력 차이 감지부(272)가 받는 압력과 제1밸브체(283)가 받는 압력에 의하여 메인 로드(281) 및 보조 로드(282)는 중간 정도의 높이에 위치하게 된다. 이때 보조 로드(282)의 하단은 제2밸브체(285)의 접촉용 로드(287)와 접촉하지 않는 상태가 되므로, 보조 로드(282)는 제2밸브체(285)에 하방향의 압력을 인가하지 않게 된다.

따라서 제2밸브체(285)는 제2스프링(286)의 탄성력에 의하여 상부로 이동하여 보조통로실(250)과 제2복귀용 출구실(240)간의 연통을 차단하게 된다.

한편 접촉 간격 조절부(288)에 의하여 접촉용 로드(287)의 돌출 높이가 조정될 수 있으며, 따라서 접촉용 로드(287)의 상단과 보조 로드(282)의 하단간의 간격이 조절될 수 있다. 이와 같은 간격 조절은 보조 로드(282)가 접촉용 로드(287)와 접촉되지 위한 높이를 설정하는 것으로, 현장 상황에 맞게끔 적절히 설정될 수 있다.

이와 같은 과정에 의하여 자동 유로 전환밸브(200)는, 제1액상 입구(201)와 제1기화용 출구(203)는 서로 연통되며, 제1액상 입구(201)와 제2복귀용 출구(204)는 서로간의 연통이 차단되며, 제2기상 입구(202)와 제1기화용 출구(203)는 서로간의 연통이 차단되는 승압 모드로 변환된다.

따라서 도 14에서 확인되는 바와 같이 제1배출관(110)으로 배출되는 액상의 액화가스 전부는 제1기화용 출구(203)를 거쳐 메인 기화기(150)를 지나면서 기화되어 외부로 배출된다. 이는 정상적인 작동 과정이다.

다음으로 초기온 저장탱크(100)의 내부 압력이 제1기준값보다 큰 경우를 도 17 내지 도 19를 참고하여 설명한다.

초기온 저장탱크(100)의 내부 압력이 제1기준값보다 큰 경우 기상 액화가스가 메인 기화기(150)로 배출되면서 초기온 저장탱크(100)의 내부 압력을 낮출 수 있다.

기상 액화가스의 압력이 제1기준값보다 크면 제2기상관(120) 및 제3배출관(130)과 연결된 자동 유로 전환밸브(200)의 제2기상 입구(202)의 압력이 높으므로 제3밸브체(289)가 열리게 되며, 따라서 제2기상 입구(202), 제2기상 입구실(220), 제2기화용 출구실(230)이 서로 연통되게 된다.

아울러 제1기화용 출구실(230)에 높은 압력이 길리므로 압력 차이 감지부(272)가 상부로 이동되며, 이에 연결된 메인 로드(281) 및 보조 로드(282)가 상부로 이동하게 된다.
보조 로드(282)의 상부 이동에 따라 보조 로드(282)에 고정된 제1벨브체(283)가 상부로 이동하여 제1액상 입구실(210)과 제1기화용 출구실(230)간의 연통이 차단된다.

아울러 제2벨브체(285)는 제2스프링(286)의 탄성력에 의하여 상부로 이동하여 보조통로실(250)과 제2복귀용 출구실(240)간의 연통이 차단된다.

이와 같은 과정에 의하여 자동 유로 전환 밸브(200)는, 제2기상 입구(202)와 제1기화용 출구(203)는 서로 연통되며 제1액상 입구(201)는 제1기화용 출구(203) 및 제2복귀용 출구(204)와의 연통이 차단되는 감압 모드로 변환된다.

따라서 도 17에서 확인되는 바와 같이 조저온 저장탱크(100) 내부의 기상의 액화가스는 제2기상관(120)과 제3배출관(130)을 거쳐 제2기상 입구(202)로 유입된 후 제1기화용 출구(203)를 거쳐 메인 기화기(150)를 지나면서 승온되어 외부로 배출된다. 이와 같은 과정에 의하여 조저온 저장탱크(100)의 내부 압력은 정상화되며, 아울러 기상의 액화가스는 연료 등으로 활용될 수 있다.

한편 도 11 내지 도 19는 메인 기화기(150)가 정상 가동이 된다는 전체에서 설명하였다. 그러나 필요에 따라서 메인 기화기(150)를 사용하지 않는 경우가 있을 수 있으며 이 경우 기화기용 밸브(151)가 닫히게 된다.

이 경우 제1기화용 출구실(230)과 기화기용 밸브(151) 사이에는 액상의 액화가스가 감히게 되며, 이 상태가 장기간 지속될 경우 액상의 액화가스는 기화하여 그 내부 압력이 급격히 상승할 위험이 있다.

이와 같이 제1기화용 출구실(230)과 기화기용 밸브(151) 사이의 압력이 비정상적으로 상승하는 경우에서의 본 설시에의 작동을 도 20 내지 도 22를 참고하여 설명한다.

제1기화용 출구실(230) 및 제2기상 입구실(220)의 압력이 급격히 상승한 경우 이 상승된 압력에 의하여 제4백브체(291)가 열리게 된다.

즉 제2기상 입구실(220)의 압력이 제4스프링(292)의 탄성력보다 높게 되면 제4백브체(291)가 열리게 된다.

따라서 제1기화용 출구실(230)의 액화가스는 제2기상 입구실(220) 및 제2기상 입구(202)를 통하여 제3배출관(130)으로 배출되며, 이후 제2기상관(120)을 통하여 조저온 저장탱크(100) 내부로 유동하게 된다.

따라서 제1기화용 출구실(230)과 기화기용 밸브(151) 사이에서 액상 액화가스가 감히 후 기화하는 경우에도 제1기화용 출구실(230)과 기화기용 밸브(151) 사이의 압력은 안전한 압력값을 유지할 수 있다.

상기와 같이 본 설시에는 조저온 저장탱크(100)의 압력치가 제1기준값을 초과하면 액상 액화가스가 배출되는 제1배출관(110)이 연결된 자동 유로 전환 밸브(200)의 제1액상 입구(201)가 닫히게 되어 액상의 액화가스는 더 이상 배출되지 않고 순수하게 제2기상관(120) 및 제3배출관(130)을 통해서 기상의
액화가스만이 배출되기 때문에 보다 신속하게 조제온 저장탱크(100) 내부에 생성된 기상 액화가스를 배출시킬 수 있다는 장점이 있다.

[167]

[168] 상기와 같이 본 실시에는 배관의 길이를 최소화할 수 있고, 자동 유로 전환 벨브를 지면 근처에 마련되도록 할 수 있기 때문에 유지보수에 편리함을 제공할 수 있다는 장점이 제공할 수 있다.

[169] 상기와 같은 본 발명의 장점은 도 3에 도시된 바와 같이 배관의 구성표를 컴팩트하게 설계하여 그 장점이 극대화될 수 있다.

[170] 즉 제1배출관(110)은 조제온 저장탱크(100)의 상단 높이보다 낮은 높이, 바람직하게는 조제온 저장탱크(100)의 중간 높이보다 낮은 높이에서만 배치되는 것이 바람직하다. 즉 제1배출관(110)은 조제온 저장탱크(100)의 하부, 혹은 지면 인접한 높이에서 연장되는 것으로 충분하다.

[171] 또한 제2기상관(120)은 상하 방향으로 연장되는 상하 연장부(122)와, 상하 연장부(122)와 조제온 저장탱크(100)의 상부를 연결하는 상단부(121)와, 상하 연장부(122)와 제3배출관(130) 및 제4승압관(140)을 연결하는 하단부(123)로 구분될 수 있다.

[172] 또한 상단부(121)는 조제온 저장탱크(100)의 하단 높이보다 높은 높이, 바람직하게는 조제온 저장탱크(100)의 중간 높이보다 높은 높이에서만 배치되며, 하단부(123)는 조제온 저장탱크(100)의 상단 높이보다 낮은 높이, 바람직하게는 조제온 저장탱크(100)의 중간 높이보다 낮은 높이에서만 배치되는 것이 바람직하다. 실제로는 상단부(121)는 조제온 저장탱크(100)의 상단부 높이에만 마련되며 하단부(123)는 조제온 저장탱크(100)의 하단부 높이에만 마련된 것이다.

[173] 이와 같은 본 실시예의 배관 길이는 실시예에 따라 상이하나, 조제온 저장탱크(100)의 높이를 10M라고 가정할 경우, 수직 방향을 따라 연장되는 배관의 길이는 다음과 같다.

[174] 도 3에서 제2기상관(120)이 조제온 저장탱크(100)의 상단에서 하단까지 연장되는 길이 10M만이 필요하다.

[175] 즉 도 1의 20M, 도 2의 40M에 비하여 수직 방향을 따라 연장되는 배관의 길이가 50%, 혹은 75%가 절감되며, 이에 따라 필요한 배관 지지대의 수가도 대폭 감소하게 되어, 자체비 및 설치비의 절감이 가능하게 된다.

[176] 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 설치될 수도 있으며, 마찬가지로 분산된 것으로
설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.

본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 근본 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

산업상 이용가능성

본 발명은 절소가스 혹은 천연가스와 같이 끓는점이 매우 낮은 가스를 보관할 수 있는 초저온 액화가스 저장탱크와 관련되어, 초저온 액화가스 저장탱크 내부의 가상 액화가스의 압력을 자동으로 조절하기 위하여 이용될 수 있다.
청구범위

[청구항 1]
수직으로 세워지게 배치되며, 액화가스가 저장되는 초저온 저장탱크;
일단이 상기 초저온 저장탱크의 하부에 연결되어 액상의 액화가스가 배출되도록 마련되는 제1배출관;
일단이 상기 초저온 저장탱크의 상부에 연결되어 기상의 액화가스의 유동으로서 기능하는 제2기상관;
일단이 상기 제2기상관의 타단에 연결되어 기상의 액화가스가 배출되도록 마련되는 제3배출관;
일단이 상기 제2기상관의 타단에 마련되어 승압용 액화가스의 유동으로서 기능하는 제4승압관;
상기 제4승압관의 중간부에 마련되는 보조 기화기;
상기 제1배출관의 타단과 연결되는 제1액상 입구와, 상기 제3배출관의 타단과 연결되는 제2기상 입구와, 외부의 범인 기화기와 연결되는 제1기화용 출구와, 상기 제4승압관의 타단과 연결되는 제2복귀용 출구가 형성되는 벨브 본체와,
상기 제1액상 입구에 걸리는 압력 및 상기 제2기상 입구에 걸리는 압력에 따라 i) 상기 제1액상 입구와 상기 제1기화용 출구는 서로 연통되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로 연통되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의 연통이 차단되는 승압 모드, ii) 상기 제1액상 입구와 상기 제1기화용 출구는 서로 연통되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로 연통되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의 연통이 차단되는 액상 배출모드, iii) 상기 제2기상 입구와 상기 제1기화용 출구는 서로 연통되며 상기 제1액상 입구는 상기 제1기화용 출구 및 상기 제2복귀용 출구와의 연통이 차단되는 감압 모드 중 어느 하나의 모드로 전환하는 유로전환부재를 포함하여 이루어지는 자동 유로 전환 벨브;
를 포함하여 이루어지는 것을 특징으로 하는 초저온 액화가스 저장탱크 시스템.

[청구항 2]
 제 1항에 있어서,
상기 제1배출관은 상기 초저온 저장탱크의 상단 높이보다 낮은 높이에서만 배치되며;
상기 제2기상관은, 상하 방향으로 연장되는 상하 연장부와, 상기 상하 연장부와 상기 초저온 저장탱크의 상부를 연결하는 상단부와, 상기 상하 연장부와 상기 제3배출관 및 상기
제4승입관을 연결하는 하단부로 구분되며.
상기 제2기상관의 상단부는 상기 초저온 저장탱크의 하단
높이보다 높은 높이에서만 배치되며,
상기 제2기상관의 하단부는 상기 초저온 저장탱크의 상단
높이보다 낮은 높이에서만 배치되는 것.
을 특징으로 하는 조치된 액화가스 저장탱크 시스템.
초저온 액화가스 저장탱크용 자동 유로 전환 벨브에 있어서:
액상의 액화가스가 유입되는 제1액상 입구와, 기상의 액화가스가
유입되는 제2기상 입구와, 외부의 액화가스가
배출되기 위한 제1기화용 출구와, 외부로 액상의 액화가스가
배출되기 위한 제2복귀용 출구가 형성되는 벨브 본체.
상기 제1액상 입구에 걸리는 압력 및 상기 제2기상 입구에 걸리는
압력에 따라 i) 상기 제1액상 입구와 상기 제1기화용 출구는 서로
연통되며 상기 제1액상 입구와 상기 제2복귀용 출구는 서로
연통되며 상기 제2기상 입구와 상기 제1기화용 출구는 서로간의
연통이 차단되는 승압 모드, ii) 상기 제1액상 입구와 상기
제1기화용 출구는 서로 연통되며 상기 제1액상 입구와 상기
제2복귀용 출구는 서로간의 연통이 차단되며 상기 제2기상 입구와
상기 제1기화용 출구는 서로간의 연통이 차단되는 액상 배출모드,
iii) 상기 제2기상 입구와 상기 제1기화용 출구는 서로 연통되며
상기 제1액상 입구는 상기 제1기화용 출구 및 상기 제2복귀용
출구와의 연통이 차단되는 감압 모드 중 어느 하나의 모드로
전환하는 유로전환부재.
를 포함하여 이루어지는 것을 특징으로 하는 초저온 액화가스
저장탱크용 자동 유로 전환 벨브.
초저온 액화가스 저장탱크용 자동 유로 전환 벨브에 있어서:
액상의 액화가스가 유입되는 제1액상 입구와, 상기 제1액상
입구와 연통되는 제1액상 입구설과, 기상의 액화가스가 유입되는
제2기상 입구와, 상기 제1액상 입구설의 상부에 형성되는
제1기화용 출구설과, 상기 제1기화용 출구설과 연통되는
제1기화용 출구와, 상기 제1기화용 출구설과 상기 제2기상 입구
사이에 형성되며 상기 제1기화용 출구설과 연통되는 제2기상
입구설과, 상기 제1액상 입구설의 하부에 형성되는 보조통로설과,
상기 보조통로설의 하부에 형성되는 제2복귀용 출구설과, 상기
제2복귀용 출구설과 연통되는 제2복귀용 출구와, 상기 제1기화용
출구설의 상부에 형성되며 상기 제1기화용 출구설과 연통되는
스프링설을 포함하여 이루어지는 벨브 본체.
상기 스프링설에 마련되는 메인탄성체;
상기 스프링실에 마련되어 상기 볼턴단층체의 하방향 압력과 상기 제1기화용 출구설의 압력 차이에 따라 상하로 이동하도록 마련되는 압력 차이 감지부;
상단이 상기 압력 차이 감지부에 고정되어 하단이 상기 제1기화용 출구설까지 연장되어 상기 압력 차이 감지부의 상하 이동과 연동하여 상하로 이동하는 메인 로드;
상단이 상기 메인 로드에 고정되어 하단이 상기 보조통로설까지 연장되어 상기 메인 로드의 상하 이동과 연동하여 상하로 이동하되 상기 제1기화용 출구설과 상기 보조통로설을 연통시키는 보조 연통로가 내부를 따라 형성되는 한편 하부가 상기 제1액상 입구설과 상기 보조통로설간의 연통을 차단하게 되는 보조 로드;
상기 제1액상 입구설에 위치되며 상기 보조 로드에 고정되어 상기 보조 로드의 상하 이동에 따라 상기 제1액상 입구설과 상기 제1기화용 출구설간의 개폐를 조절하게 되는 제1밸브체;
상기 제1밸브체를 상방향으로 탄성지지하는 제1스프링;
상기 제2복귀용 출구설에 위치되어 상하로 이동가능하게 마련되며 제2스프링에 의하여 상방향으로 탄성지지되며 상기 보조 로드의 하방향 이동에 따라 상기 보조 로드로부터 하방향의 압력을 받게 되어 상기 제2복귀용 출구설과 상기 보조통로설간의 개폐를 조절하게 되는 제2밸브체;
상기 제2기상 입구설에 위치되어 상기 제2기상 입구의 압력과 상기 제2기상 입구측으로 탄성지지하는 제3스프링의 압력 차이에 의하여 상기 제2기상 입구설과 상기 제2기상 입구간의 개폐를 조절하게 되는 제3밸브체;
를 포함하여 이루어지는 것을 특정으로 하는 초저온 액화가스 저장탱크용 자동 유로 전환 밸브.

[첨부 5]

상기 제3밸브체는, 제2기상 입구설의 압력과 상기 제2기상 입구의 반대측으로 탄성지지하는 제4스프링의 압력 차이에 의하여 상기 제2기상 입구설과 상기 제2기상 입구간의 개폐를 조절하게 되는 제4밸브체를 더 포함하여 이루어지는 것을 특정으로 하는 초저온 액화가스 저장탱크용 자동 유로 전환 밸브.

[첨부 6]

상기 제2밸브체는, 상기 보조 로드와 접촉하기 위한 접촉용 로드와, 상기 접촉용 로드를 상기 제2밸브체에 대하여 상하 방향으로 이동시키기 위한 접촉 간격 조절부를 더 포함하여 이루어지는 것을 특정으로 하는 초저온 액화가스 저장탱크용 자동
유로 전환 빌브.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

F17C 13/04(2006.01)i, F17C 3/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F17C 13/04; F16K 31/122; F17D 1/00; F17C 6/00; H01B 12/16; F16K 17/04; F17C 9/02; F25B 9/00; F17C 3/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practical, search terms used)
eKOMPASS (KIPO internal) & Keywords: flow conversion valve, vaporizer, storage tank

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10-2007-036027 A (FURUKAWA ELECTRIC CO., LTD. et al.) 02 April 2007 See pages 5-8 and figures 2-4.</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>JP 2009-168221 A (CHUGOKU ELECTRIC POWER CO INC:THE) 30 July 2009 See claims 1, 2 and figure 1.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 20-1999-0021600 U (POSCO) 25 June 1999 See claim 1 and figures 2, 3.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1122763 B1 (CHO, Jin Sik et al.) 23 March 2012 See abstract, claim 1, and figure 1.</td>
<td>1-6</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed
 “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 “&” document member of the same patent family

Date of the actual completion of the international search
10 MARCH 2014 (10.03.2014)

Date of mailing of the international search report
10 MARCH 2014 (10.03.2014)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 159 Seonja-eo, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 1969158 B</td>
<td>22/12/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1969158 C0</td>
<td>23/05/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1780482 A1</td>
<td>02/05/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-728601 B2</td>
<td>20/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-001203 A1</td>
<td>05/01/2006</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))
F17C 13/04(2006.01)i, F17C 3/00(2006.01)i

B. 조사된 분야
조사된 최소문헌(국제특허문헌을 기재)
F17C 13/04; F16G 31/122; F17D 1/00; F17C 6/00; H01B 12/16; F16K 17/04; F17C 9/02; F25B 9/00; F17C 3/00
조사된 기술분야에 속하는 최소문헌 외의 문헌
한국특허등록공고 및 한국공개등록공고: 조사된 최소문헌 외에 기재된 IPC
일본특허등록공고 및 일본공개등록공고: 조사된 최소문헌 외에 기재된 IPC
국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & القرار: 유로전원 멤브, 기화기, 저장탱크

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10-2007-0036027 A(후두카와 윈치 고교 가부시키가야 산 외 1명) 2007.04.02 5-8 페이지 및 도면 2-4 참조.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 2009-168221 A (CHUGOKU ELECTRIC POWER CO INC :THE) 2009.07.30 정구항 1, 2 및 도면 1 참조.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 20-1999-0021600 II (포항중합재료 주식회사) 1999.06.25 정구항 1 및 도면 2, 3 참조.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1122763 B1 (조진식 외 1명) 2012.03.23 요약, 정구항 1 및 도면 1 참조.</td>
<td>1-6</td>
</tr>
</tbody>
</table>

* 인용문헌의 특별 카테고리:
 "A" 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
 "E" 국제특허문헌에 따른 문헌 또는 관련문헌 없이 빠른 출원일 또는 우선일을 가진 국제특허문헌 이후에 공개된 출원일 또는 특허문헌
 "L" 관련분야에 정의되어 있는 문헌 또는 관련분야의 기술을 정의한 문헌 또는 관련분야의 기술을 정의한 문헌
 "P" 관련분야에서 공개된 문헌 또는 공개된 문헌

입증문헌이 C(계속)에 기재되어 있습니다.
다음특허의 관련 별지를 참조하십시오.

국제조사의 실시 완료일
2014년 03월 10일 (10.03.2014)

국제조사보고서 발송일
2014년 03월 10일 (10.03.2014)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정자로 189, 4층 (문산동, 정부대전청사)
팩스번호 +82-42-472-7140

심사관
박상현
전화번호 +82-42-481-5434

서식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 1969158 B</td>
<td>2010/12/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1969158 C0</td>
<td>2007/05/23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1780482 A1</td>
<td>2007/05/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-728601 B2</td>
<td>2011/07/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006-012654 A</td>
<td>2006/01/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008-0202127 A1</td>
<td>2008/08/28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-001203 A1</td>
<td>2006/01/05</td>
</tr>
</tbody>
</table>