wo 2013/191852 A1]I NF 1 0O 00O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(10) International Publication Number

WO 2013/191852 A1l

27 December 2013 (27.12.2013) WIPO | PCT
(51) International Patent Classification: Corporation, LCA - International Patents, One Microsoft
GO6F 9/445 (2006.01) Way, Redmond, Washington 98052-6399 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2013/042791 kind of national protection available). AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
28 May 2013 (28.05.2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MF,
(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
13/525,356 18 June 2012 (18.06.2012) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: MICROSOFT CORPORATION [US/US]; . o
One Microsoft Way, Redmond, Washington 98052-6399 (84) Designated States (uniess otherwise indicated, for every
(US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Inventors: TROFIN, Mircea; c/o Microsott Corporation, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). CWALINA,
Krzysztof, c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). DUSSUD, Patrick H.; c/o Microsoft

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ADAPTIVE PORTABLE LIBRARIES

MARKED UP PLATFORM-

MODIFIED

SMARTPHONE SPECIFIC 116a

GAME BOX SPECIFIC 116¢

TABLET SPECIFIC 116b

FIG. 1b

SOURCE CODE ——»| |—»| | AcNosTIC
110 COMPILER 112 PORTION 114 [™"DESKTOP SPECIFIC 116d
DEVICE SPECIFIC n 1160 |
s T T T
PLAT-AGNOSTIC
SMARTPHONE SMARTPHONE a120a
118a SPECIFIC 116a
PLAT-AGNOSTIC PLAT-AGNOSTIC
PORTION 114 RT ON TABLET PORTION 114
SMARTPHONE 1186 TABLET SPECIFIC b 1200
SPECIFIC 1162 116b
TABLET SPECIFIC
116b PLAT-AGNOSTIC
GAME BOX RT ON GAME BOX PORTION 114 EXEC RESULT
DESKTOP SPECIFIC 116¢
SPECIFIC 116d —
LSngl\gl‘(::Ei?ﬂ | PLAT-AGNOSTIC
T -RT ON DESKTOP PORTION 114
118d DESKTOP d120d
SPECIFIC 116d
/_) PLAT-AGNOSTIC
“RTONDEVICEn PORTION 114 EXEC RESULT
109 V" e DEVICE
[U | n

(57) Abstract: Platform-agnostic source code can be augmented
with one or more portions of source code annotated for different
platforms and/or versions. The source code including both the plat-
form-agnostic and platform-specific and/or version-specific portions
can be compiled once to create a single executable that can be dis-
tributed to and can run on multiple device platforms and/or multiple
versions of one or more platforms. Platform-specific or version-spe-
cific executables (e.g., assemblies, binaries, etc.) can be embedded
into a binary or executable as resources (e.g., data). When the com-
piled code is executed on a device, the runtime can extract the plat-
form-specific portion corresponding to the device on which the ex-
ecutable is being run, can bind the extracted portion to the execut-
able and can load and execute the executable. Hence the same bin-
ary can produce ditferent results or functionalities depending on the
capabilities of the platform on which the binary runs.

WO 2013/191852 A1 WK 00TV AV AT A O AN AU

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))

a patent (Rule 4.17(ii)) — before the expiration of the time limit for amending the

— as to the applicant's entitlement to claim the priority of claims and to be republished in the event of receipt of
the earlier application (Rule 4.17(iii)) amendments (Rule 48.2(h))

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

ADAPTIVE PORTABLE LIBRARIES
BACKGROUND
[0001] The term “portability” as used in computer science refers to the ability to use the
same software in different computing environments. The term “portable code” can be
used to refer to code that is not platform-specific. That is, the very same software can run
on any platform or at least on multiple platforms. The term “portable code” can also be
used to refer to code that can be more cost-effectively changed to run on a different
platformthan writing the software from scratch. To distinguish these different usages of
the same term, the term “universally portable code” will be used to refer to platform-
agnostic code that can run on any platform. The term “portable code”will be used to refer
to codethat can be changed to run on different platforms cost-effectively.
[0002] One way to create different versions of code to run on different platforms is by
conditional compilation. Conditional compilation enables the compiler to produce
multiple different executables associated with multiple different platforms by compiling
the code multiple times. The compiler is run with one set of parameters or directives to
generate an executable for a first platform and is run with another set of parameters or
directives to generate an executable for a second platform and so on.
SUMMARY
[0003] Platform-agnostic portions of source code can be augmented to include one or
more portions that are annotated for different platforms and/or versions of software. The
source code including both the platform-agnostic and platform-specific and/or version-
specific portions can be compiled once to create a single executable that can be distributed
to and can run on multiple device platforms and/or multiple versions of one or more
platforms. Platform-specific attributes of a development environment can enable
compilers to provide platform-specific auto-completion and type-checking. Platform-
specific or version-specific executables (e.g., assemblies, binaries, etc.) can be embedded
into universally portable (platform-agnostic) executables as resources (e.g., data). A
platform-specific abstraction layer and/or version-specific interface can also be created
and can be embedded into the universally portable executable as a resource or data. The
platform-specific abstraction layer can be implemented at execution time by a
corresponding platform-specific executable. Development tools, for example an IDE
(integrated development environment), can set up the executable so that when the
executable is executed on a particular device, the executable will execute correctly. When

the compiled code is executed on a device, the program execution manager (e.g.,

S 1-

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

runtime)can extract the platform-specific data corresponding to the device on which the
executable is being run, can bind the extracted data to the executable and can load and
execute the executable. Hence the same binary can produce different results or
functionalities depending on the capabilities of the platform on which the binary runs.
[0004] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] In the drawings:

FIG. laillustrates an example of a system 100 as known in the art that
conditionally compiles portable code;

FIG. Ibillustrates an example of a system 109that generates a single executable
that can run on multiple platforms in accordance with aspects of the subject matter
disclosed herein;

FIG. Ic illustrates an example of a system 121that generates a single executable
that can run on multiple platforms in accordance with aspects of the subject matter
disclosed herein;

FIG. 2 illustrates an example of a method 200 for generating a single executable
and executing the generated executablein accordance with aspects of the subject matter
disclosed herein;

FIG. 3 is a block diagram of an example of a computing environment in
accordance with aspects of the subject matter disclosed herein; and

FIG. 4 is a block diagram ofan example of an integrated development environment
(IDE) in accordance with aspects of the subject matter disclosed herein.

DETAILED DESCRIPTION

Overview

[0006] FIG. 1a illustrates a system for producing universally portable code as is known in
the art. Traditionally, source code with conditional compilation directives (such as source
code 101) is compiled to run on a target device. For example, source code is compiled on
a compiler 102 once to run on a target device such as a smartphone and produces a binary
for a smartphone such as a binary for a smartphone such as binary for smartphone 104a.
Source code with different directives can be compiled a second time to produce a binary

that can run on a tablet (e.g., binary for tablet 104b). Source code with still different

.

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

directives can be compiled again to produce a binary that can run on a gamebox (e.g.,
binary for game box 104c) or desktop (e.g., binary for desktop 104d) or other device (e.g.,
binary for device n 104n). Thus the portable code is compiled multiple times to produce
multiple binaries, each binary designed to run on a particular platform.

[0007] One consequence of such a design is that when software is packaged for
deployment to a device, the appropriate binary has to be selected for that device. For
example, the binary 104a for the smartphone has to be deployed to a smartphone and the
runtime of the smartphone 106a will execute the binary 104a to produce some execution
result a 108a. Similarly, the binary 104b for the tablet has to be deployed to a tablet and
the runtime of the tablet 106b will execute the binary 104b to produce some execution
result b 108b which may be different from execution result a 108a. Similarly, the binary
104c¢ for the game box has to be deployed to a game box and the runtime of the game box
106¢ will execute the binary 104cto produce some execution result ¢ 108¢ which may be
different from execution result a 108a and different from execution result b 108b.The
binary 104d for the desktop has to be deployed to a desktop and the runtime of the desktop
106d will execute the binary 104dto produce some execution result d 108d which may be
different from execution results of other devices. That is, a device-specific binary 104n
has to be deployed to the corresponding device and the runtime of that device 106n will
execute the binary 104n to produce particular results 108n. If the code is reused, the code
has to be modified to change the device-specific portions.

[0008] FIG 1D illustrates a system 109 that generates a single binary (which can also be
called a reference library) in accordance with aspects of the subject matter described
herein. In accordance with aspects of the subject matter described herein, source code
such as source code 110 can be compiled by a modified compiler 112 once to produce a
single binary (e.g., binary 115) that can run on multiple target platforms.A binary as
known in the art can include a code portion and a non-code portion representing resources
or data. The binary 115 can include one or more portions such as version and/or platform-
agnostic portion 114 that comprises version and/or platform-agnostic code and one or
more portions that are version-specific and/or platform-specific (e.g., smartphone specific
portion 116a, tabletspecific portion 116b, game box specific portion 116c¢, desktopspecific
portion 116d or any devicespecific portion n 116n). The platform-specific portions can be
labeled as resources or data. The single binary 115 can be deployed to multiple different

platforms.

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

[0009] At runtime the binary 115 can be executed by the program execution manager such
as but not limited to a runtime (e.g., a runtime 118a for the smartphone, a runtime 118b for
the tablet, a runtime 118c for the game box, a runtime 118d for the desktop and in general
a runtime 118n for a device n.) The runtime can extract an appropriate (matching)
version-specific and/or platform-specific portion of the binary, (e.g., from the portion of
the binary labeled as a resource ordata) and bind the extracted version-specific and/or
platform-specific portion of the binary to the version and/or platform-agnostic portion of
the binary. That is for example, the runtime 118a of a smartphone can bind the
smartphone specific portion of the binary 116a to the platform-agnostic portion 114 and
can execute it to produce an execution result a 120a for the smartphone. Similarly, the
runtime 118b of a tablet can bind the tablet specific portion of the binary 116b to the
platform-agnostic portion 114 and can execute it to produce an execution result b 120b for
the tablet. The runtime 118c of a game box can bind the game box specific portion of the
binary 116c to the platform-agnostic portion 114 and can execute it to produce an
execution result ¢ 120c for the game box. The runtime 118d of a desktop can bind the
desktop specific portion of the binary 116d to the platform-agnostic portion 114 and can
execute it to produce an execution result d 120d for the desktop. Similarly, the runtime
118n of a particular device can bind the device specific portion of the binary 116n to the
platform-agnostic portion 114 and can execute it to produce an execution result n 120n for
the device.

[0010] Likewise version-specific and/or platform-specific platform abstraction layers (not
shown in FIG. 1b) can be extracted from the data portion of the binary and can be bound
to the version-specific and/or platform-agnostic portion 114. In accordance with some
aspects of the subject matter described herein, the single binary 115 is produced in such a
way that the one or more version-specific and/or platform-specific portions of the code are
understood by the runtime as normal units of re-use (e.g., the binary is created in a format
that the runtime recognizes).

Adaptive Portable Libraries

[0011] FIG. 1c illustrates a block diagram of a system121 that generates a single portable
executable in accordance with aspects of the subject matter disclosed herein. FIG. Ic also
illustrates execution of the portable executable in accordance with aspects of the subject
matter described herein. All or portions of system 121may reside on one or more
computers or computing devices such as the computers described below with respect to

FIG. 3. System 121or portions thereof may be provided as a stand-alone system or as a

-4 -

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

plug-in or add-in. System 121 may execute in whole or in part on a software development
computer such as the software development computer described with respect to FIG. 4.
All or portions of system 121 may be operated upon by development tools. For example,
all or portions of system 121 may execute within an integrated development environment
(IDE) such as for example, IDE 125, described more fully with respect to FIG. 4 or can
execute outside an IDE.

[0012] System 121may include one or more computing devices or computers such as
computing devicel22. Computing devicel22 can includeone or more processors such as
processor 142, etc., a memory such as memory 144, and one or more modules such as
module 123 that generate a single universally portable executable. The one or more
modules represented by module 123 can comprise apart of a compilation chain 124.
Module 123 can be a part of a compiler or a compiler pre-processor or a compiler post-
processoror any combination thereof. It will be appreciated that one or more modules
such as module 123, etc. can be loaded into memory 144 to cause one or more processors
such as processor 142, etc. to perform the actions attributed to the module123.

[0013] System 121 may include one or more other computersor computing
devicesincluding but not limited to a smartphone, a tablet, a desktop computer, a game box
or any kind of computing device. Each of these computing devices may includeone or
more processors (not shown), a memory (not shown) and other components well-known in
the arts.

[0014] A source code file such as source code file 134 may include one or more portions
of platform-agnostic code such as platform-agnostic code 130. Source code file 134 may
also include one or more portions of platform-specific code such as platform-specific code
132, etc. The one or more portions of platform-specific code can comprise code that is
specific for running on a device such as device 1 135, device 2 137... device n 139 and so
on. Devices such as device 1 135, device 2 137...device n 139 can include devices such
as a smartphone, a tablet, a game box, a desktop computer, a laptop computer, a notebook
computer or any other computing device now known or created in the future. The one or
more portions of version-specific and/or platform-specific code can be annotated with
identifying annotations that indicate the version and/or the type of device for which it is
specific. For example, a first annotation or type of annotation can denote that the
annotated section of program source code is specific for a smartphone or for a version of
software for the smartphone. A second annotation or type of annotation can denote that

the annotated section of program source code is specific for a tablet or for a version of

-5-

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

software for the tablet and so on. The particular annotations used may control
whichcompiler or versin of compiler that is used to create the binary.

[0015] Module 123 may receive source code file 134 and in combination with other
components of the compile chain 124 can create a single binary 129 that includes one or
more portions of version-agnostice and/or platform-agnostic code such as platform-
agnostic binary 126 and one or more portions of version-specific and/or platform-specific
code such as, for example, platform-specific binary 128, etc. The version-specific and/or
platform-specificbinary 128 can include “light-up code”. Light-up code can comprise one
or more features that exist in one platform or version but do not exist in another platformor
version and thus “lights up” in a user interface in one platform or version but does not
“light up” in a user interface for another platform or version. Version-specific and/or
platform-specific binaries such as, for example, platform-specificbinary 128, etc. can be
designated as resources such as data associated with platform-agnostic binary 126.
Module 123, etc. may also generate an abstraction layer (e.g., a platform-specific
interface) for each type of platform-specific code portion encountered, based on the code
associated with that platform. For example, a first platform-specific binary such as
platform-specific binary 128 may be associated with a first platform-specific abstraction
layer such as abstraction layer 128a and so on. Alternatively, source code can be compiled
multiple times using standard conditional compilation techniques to produce multiple
platform-specific binaries that can be combined in a post-compilation operation to create a
single multi-platform binary.

[0016] The same binary, e.g., binary 129 can be deployed to multiple different platforms.
When the software is executed on the device to which it has been deployed, the runtime of
the device (e.g., runtime 136, runtime 138 or runtime 140, etc.) can use the appropriate
platform-specific binary, binding it to the platform-agnostic binary to create an executable
that runs on the device. For example, suppose a platform-agnostic binary, binary A uses a
platform-specific binary, binary B. At execution time, the platform-specific binary B
appropriate for the device can be selected by the runtime to bind with binary A and the
resulting executable can then be executed. It will be appreciated that in addition to
different platforms, different versions can be similarly accommodated. The appropriate
platform abstraction layer for the platform can be implemented by the runtime based on
the platform-specific code selected at binding time. It will be appreciated that although

described within the context of a managed language in a virtual machine environment, the

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

concepts described herein can be applied in a native code environment. In a native code
environment, platform-agnostic code can be more difficult to create.

[0017] FIG. 2 illustrates a method 200 that can create a single binary that can run on
multiple different platforms. The binary can be deployed to one or more different
platforms. When the binary is executed, the runtime of the device on which the binary has
been deployed can determine the appropriate platform-specific binary, extract the
appropriate platfor-specific binary and can bind it to produce a platform-specific binary
for the device. Hence the same binary can produce different results when run on different
devices. The method described in FIG. 2 can be practiced by a system such as but not
limited to the one described with respect to FIGs. 1b and 1¢. While method 200 describes
a series of operations that are performed in a sequence, it is to be understood that method
200 is not limited by the order of the sequence. For instance, some acts may occur in a
different order than that described. In addition, an act may occur concurrently with
another act. In some instances, not all acts may be performed. Moreover, it will be
appreciated that although described with respect to different platforms, the operations
describe below apply similarly to creation, generation, deployment and execution of
different versions of software as well.

[0018] At operation201 platform-agnostic source code can be received by a source code
editor of an IDE or other software tool. At operation 202, source code that has been
annotated can be received. Source code that is platform-specific can be annotated so as to
identify the platform for which the source code is intended. At operation 204 the source
code including both one or more platform-agnostic portions and one or more platform-
specific portions can be compiled into a single binary. At operation 206 the platform-
specific portions of the binary can be appended to the platform-agnostic binary labeled or
designated as data or non-code resources. At operation 208 the binary can be deployed to
one or more different platforms. At operation 210 the runtime of one of the devices to
which the binary has been deployed can receive a request to execute the binary. The
runtime can determine and extract the appropriate platform-specific portion to bind to the
platform-agnostic binary. At operation 212 the extracted platform-specific portion can be
bound to the platform-agnostic binary. At operation 214 the binary can be loaded and at
216 the binary can be executed.

Example of a Suitable Computing Environment

[0019] In order to provide context for various aspects of the subject matter disclosed

herein, FIG. 3and the following discussion are intended to provide a brief general

-7 -

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

description of a suitable computing environment 510 in which various embodiments of the
subject matter disclosed herein may be implemented. While the subject matter disclosed
herein is described in the general context of computer-executable instructions, such as
program modules, executed by one or more computers or other computing devices, those
skilled in the art will recognize that portions of the subject matter disclosed herein can also
be implemented in combination with other program modules and/or a combination of
hardware and software. Generally, program modules include routines, programs, objects,
physical artifacts, data structures, etc. that perform particular tasks or implement particular
data types. Typically, the functionality of the program modules may be combined or
distributed as desired in various embodiments. The computing environment 510 is only
one example of a suitable operating environment and is not intended to limit the scope of
use or functionality of the subject matter disclosed herein.

[0020] With reference to FIG. 3, a computing device in the form of a computer 512 is
described. Computer 512 may include at least one processing unit 514, a system memory
516, and a system bus 518. The at least one processing unit 514 can execute instructions
that are stored in a memory such as but not limited to system memory 516. The
processing unit 514 can be any of various available processors. For example, the
processing unit 514 can be a graphics processing unit (GPU). The instructions can be
instructions for implementing functionality carried out by one or more components or
modules discussed above or instructions for implementing one or more of the methods
described above. Dual microprocessors and other multiprocessor architectures also can be
employed as the processing unit 514. The computer 512 may be used in a system that
supports rendering graphics on a display screen. In another example, at least a portion of
the computing device can be used in a system that comprises a graphical processing unit.
The system memory 516 may include volatile memory 520 and nonvolatile memory 522.
Nonvolatile memory 522 can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM) or flash memory. Volatile memory
520 may include random access memory (RAM) which may act as external cache
memory. The system bus 518 couples system physical artifacts including the system
memory 516 to the processing unit 514. The system bus 518 can be any of several types
including a memory bus, memory controller, peripheral bus, external bus, or local bus and
may use any variety of available bus architectures. Computer 512 may include a data

store accessible by the processing unit 514 by way of the system bus 518. The data store

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

may include executable instructions, 3D models, materials, textures and so on for graphics
rendering.

[0021] Computer 512 typically includes a variety of computer readable media such as
volatile and nonvolatile media, removable and non-removable media. Computer
readablemedia may be implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or
other data. Computer readablemedia include computer-readable storage media (also
referred to as computer storage media) and communications media. Computer storage
media includes physical (tangible) media, such as but not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CDROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices that can store the desired data and which can be
accessed by computer 512, Communications media include transitory media such as, but
not limited to, communications signals, modulated carrier waves or any other transitory
mediawhich can be used to communicatethe desired information and which can be
accessed by computer 512.

[0022] It will be appreciated that FIG. 3 describes software that can act as an intermediary
between users and computer resources. This software may include an operating system
528 which can be stored on disk storage 524, and which can allocate resources of the
computer 512. Disk storage 524 may be a hard disk drive connected to the system bus 518
through a non-removable memory interface such as interface 526. System applications
530 take advantage of the management of resources by operating system 528 through
program modules 532 and program data 534 stored either in system memory 516 or on
disk storage 524. It will be appreciated that computers can be implemented with various
operating systems or combinations of operating systems.

[0023] A user can enter commands or information into the computer 512 through an input
device(s) 536. Input devices 536 include but are not limited to a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone, voice recognition and gesture
recognition systems and the like. These and other input devices connect to the processing
unit 514 through the system bus 518 via interface port(s) 538. An interface port(s) 538
may represent a serial port, parallel port, universal serial bus (USB) and the like. Output
devices(s) 540 may use the same type of ports as do the input devices. Output adapter 542
is provided to illustrate that there are some output devices 540 like monitors, speakers and

printers that require particular adapters. Output adapters 542 include but are not limited to

-9.-

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

video and sound cards that provide a connection between the output device 540 and the
system bus 518. Other devices and/or systems or devices such as remote computer(s) 544
may provide both input and output capabilities.

[0024] Computer 512 can operate in a networked environment using logical connections
to one or more remote computers, such as a remote computer(s) 544. The remote
computer 544 can be a personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements
described above relative to the computer 512, although only a memory storage device 546
has been illustrated in FIG. 3. Remote computer(s) 544 can be logically connected via
communication connection(s)550. Network interface 548 encompasses communication
networks such as local area networks (LANs) and wide area networks (WANs) but may
also include other networks. Communication connection(s) 550 refers to the
hardware/software employed to connect the network interface 548 to the bus 518.
Communication connection(s)550 may be internal to or external to computer 512 and
include internal and external technologies such as modems (telephone, cable, DSL and
wireless) and ISDN adapters, Ethernet cards and so on.

[0025] It will be appreciated that the network connections shown are examples only and
other means of establishing a communications link between the computers may be used.
One of ordinary skill in the art can appreciate that a computer 512 or other client device
can be deployed as part of a computer network. In this regard, the subject matter disclosed
herein may pertain to any computer system having any number of memory or storage
units, and any number of applications and processes occurring across any number of
storage units or volumes. Aspects of the subject matter disclosed herein may apply to an
environment with server computers and client computers deployed in a network
environment, having remote or local storage. Aspects of the subject matter disclosed
herein may also apply to a standalone computing device, having programming language
functionality, interpretation and execution capabilities.

[0026] FIG. 4 illustrates an integrated development environment (IDE) 600 and Common
Language Runtime Environment 602. An IDE 600 may allow a user (e.g., developer,
programmer, designer, coder, etc.) to design, code, compile, test, run, edit, debug or build
a program, set of programs, web sites, web applications, and web services in a computer
system. Software programs can include source code (component 610), created in one or
more source code languages (e.g., Visual Basic, Visual J#, C++. C#, J#, Java Script, APL,
COBOL, Pascal, Eiffel, Haskell, ML, Oberon, Perl, Python, Scheme, Smalltalk and the

-10 -

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

like). The IDE 600 may provide a native code development environment or may provide a
managed code development that runs on a virtual machine or may provide a combination
thereof. The IDE 600 may provide a managed code development environment using the
Microsoft NET™ framework. An intermediate language component 650 may be created
from the source code component 610 and the native code component 611 using a language
specific source compiler 620 using a modeling tool 652 and model store 653 and the
native code component 611 (e.g., machine executable instructions) is created from the
intermediate language component 650 using the intermediate language compiler 660 (e.g.
just-in-time (JIT) compiler), when the application is executed. That is, when an
intermediate language (IL) application is executed, it is compiled while being executed
into the appropriate machine language for the platform it is being executed on, thereby
making code portable across several platforms. Alternatively, in other embodiments,
programs may be compiled to native code machine language (not shown) appropriate for
its intended platform.

[0027] A user can create and/or edit the source code component according to known
software programming techniques and the specific logical and syntactical rules associated
with a particular source language via a user interface 640 and a source code editor 651 in
the IDE 600. Thereafter, the source code component 610 can be compiled via a source
compiler 620, whereby an intermediate language representation of the program may be
created, such as assembly 630. The assembly 630 may comprise the intermediate
language component 650 and metadata 642.

Application designs may be able to be validated before deployment.

[0028] The various techniques described herein may be implemented in connection with
hardware or software or, where appropriate, with a combination of both. Thus, the
methods and apparatus described herein, or certain aspects or portions thereof, may take
the form of program code (i.e., instructions) embodied in tangible media, such as floppy
diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium,
wherein, when the program code is loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing aspects of the subject matter
disclosed herein. As used herein, the term “machine-readable storage medium” shall be
taken to exclude any mechanism that provides (i.e., stores and/or transmits) any form of
propagated signals. In the case of program code execution on programmable computers,
the computing device will generally include a processor, a storage medium readable by the

processor (including volatile and non-volatile memory and/or storage elements), at least

-11 -

10

WO 2013/191852 PCT/US2013/042791

one input device, and at least one output device. One or more programs that may utilize
the creation and/or implementation of domain-specific programming models aspects, e.g.,
through the use of a data processing API or the like, may be implemented in a high level
procedural or object oriented programming language to communicate with a computer
system. However, the program(s) can be implemented in assembly or machine language, if
desired. In any case, the language may be a compiled or interpreted language, and
combined with hardware implementations.

[0029] Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

-12-

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

What is Claimed:
1. A system comprising:
at least one processor of a computing device;
a memory communicably coupled to the at least one processor of the computing
device; and
at least one module loaded into the memory causing the at least one processor to:
receive a platform-agnostic portion of source code;
receive a plurality of platform-specific portions of source code, the plurality
of platform-specific portions of code designated as resources;
compile the platform-agnostic portion of source code and the plurality of
platform-specific portions of source code into a single executable; and
deploy the single universally portable executable to a plurality of different
platforms.
2. The system of claim 1, wherein the computing device is a smartphone, tablet, game
box, desktop computer or notebook.
3. The system of claim 1, further comprising at least one module that when loaded
into the memory causes the at least one processor to generate a platform-specific
abstraction layer comprising an interface.
4. The system of claim 1, wherein a platform-specific portion of the plurality of
platform-specific portions of source code comprises a version of software.
5. The system of claim 1, wherein annotations in the source code determine a
compiler that compiles the platform-agnostic portion of the source code and the plurality
of platform-specific portions of the source code into the single executable.
6. A method comprising:
receiving by a processor of a computing device a single executable comprising a
platform-agnostic portion and a plurality of platform-specific portions, the plurality of
platform-specific portions comprising a platform-specific portion for a first platform and a
platform-specific portion for a second platform;
determining a platform of the processor of the computing device, the platform of
the processor comprising the first platform;
extracting from the plurality of platform-specific portions of the single executable,
the platform-specific portion for the first platform;
binding the platform-specific portion for the first platform to the platform-agnostic
portion of a binary; and

- 13-

10

15

20

25

30

WO 2013/191852 PCT/US2013/042791

loading the bound binary.
7. The method of claim 6, wherein the first platform comprises a smartphone, a
tablet, a game box, a desktop computer or a notebook.
8. The method of claim 6, further comprising:

receiving the single executable comprising a plurality of platform-specific platform
abstraction layer portions, the plurality of platform-specific platform abstraction layer
portions comprising a platform-specific platform abstraction layer for the first platform
and a platform-specific platform abstraction layer for the second platform.
9. The method of claim 6, further comprising:

extracting from the plurality of platform-specific platform abstraction layer
portions of the single executable, the platform-specific platform abstraction layer for the
first platform;

binding the platform-specific platform abstraction layer portion for the first
platform to the platform-agnostic portion of a binary; and

loading the bound binary.
10. A computer-readable storage medium comprising computer-executable
instructions which when executed cause at least one processor of a computing device to:

receive by a processor of a computing device a single executable comprising a
code portion and a non-code portion, the single executable comprising a platform-agnostic
portion in the code portion and a plurality of platform-specific portions in the non-code
portion, the plurality of platform-specific portions comprising a platform-specific portion
for a first platform and a platform-specific portion for a second platform;

determine a platform of the computing device, the platform of the computing
device comprising the first platform;

extract from the plurality of platform-specific portions of the single executable, the
platform-specific portion for the first platform;

bind the platform-specific portion for the first platform to the platform-agnostic
portion of a binary; and

load the bound binary.

- 14 -

WO 2013/191852 PCT/US2013/042791

1/6

BINARY FOR SMARTPHONE 104a
BINARY FOR TABLET 104b
SOURCE CODE l
WITH ———p
CONDITIONAL —; COMPILER 102 BINARY FOR GAME BOX 104¢c
COMPILATION [— — —)>
DIRECTIVES 101
BINARY FOR DESKTOP 104d

BINARY FOR SMARTPHONE 104a RT ON SMARTPHONE 106a —»{ EXEC RESULT a 108a

5
BINARY FOR TABLET104b |—>»| RTONTABLET106b [—»| EXEC RESULT b 108b
—>
—>

BINARY FOR GAME BOX 104c RT ON GAME BOX 106c | —»{ EXEC RESULT c 108c
BINARY FOR DESKTOP 104d RT ON DESKTOP 106d —»{ EXEC RESULT d 108d
BINARY FOR DEVICE n 104n :— —)} RT ON DEVICE n 106n |— > EXEC RESULT n 108n |

e e e e e e e - ————

100

Prior art

FIG. 1a

WO 2013/191852

MARKED UP

SOURCE CODE —

110

PCT/US2013/042791

PLAT-AGNOSTIC
PORTION 114

SMARTPHONE
SPECIFIC 116a
TABLET SPECIFIC
116b
GAME BOX
SPECIFIC 116¢c
DESKTOP
SPECIFIC 116d

DEVICE n |

15

~J

109

FIG. 1b

2/6
SMARTPHONE SPECIFIC 116a
PLATFORM- TABLET SPECIFIC 116b
MODIFIED | .l | AGNOSTIC | GAME BOX SPECIFIC 116¢
COMPILER 112 PORTION 114 | DESKTOP SPECIFIC 116d
DEVICE SPECIFIC n 116n
e
PLAT-AGNOSTIC
RT ON | 5| PORTION114 | I EXEC RESULT
{ SMARTPHONE SMARTPHONE a120a
118a SPECIFIC 116a
PLAT-AGNOSTIC
RTONTABLET || PORTION114 | | EXECRESULT
118b TABLET SPECIFIC b 120b
116b
PLAT-AGNOSTIC
RT ONGAMEBOX|__,| PORTION114 | | EXEC RESULT
118¢ GAME BOX ¢ 120c
SPECIFIC 116¢
PLAT-AGNOSTIC
RT ON DESKTOP PORTION114 |] EXEC RESULT
118d DESKTOP d 120d
SPECIFIC 116d
PLAT-AGNOSTIC
;'R?OWDEVEEF |_,| PORTION114 | fEXEC RESULT
L Msn | DEVICEn | h 1200
L SPECIFIC 116n |

WO 2013/191852 PCT/US2013/042791

3/6

COMPUTING DEVICE 122

L PROCESSOR 142 <«—>»| MEMORY 144

IDE 125 PLATFORM-AGNOSTIC 129
BINARY 126
COMPILE CHAIN 124
PLATFORM
il mopuLe 123 > PLATBFI?IT\;;S:’ZECIFIC "1 »{ABSTRACTION LAYERF,
L — 128 !
A . J - — J
PLATFORM-AGNOSTIC
CODE 130
PLATFORM-SPECIFIC CODE | |
132 I
— e — —————— .
SOURCE CODE FILE 134
|
I
_135 37 o _(139I
BIN 12 BIN 129 : BIN 129 :
! |
DEVICE 1 DEVICE 2 |[DEVICE n ||
RUNTIME RUNTIME || RUNTIME ||
136 138 IL_140
L —a

~

121

FIG. 1c

WO 2013/191852 PCT/US2013/042791

4/6

RECEIVE PLATFORM-AGNOSTIC CODE_201
v
RECEIVE PLATFORM-SPECIFIC CODE_202
v
COMPILE INTO A SINGLE BINARY 204
DESIGNATE PLATFORMiPECIFIC CODE AS DATA
206

v

DEPLOY TO PLURALITY OF PLATFORMS 208
DETECT PLATFORM 210
BIND PLATFORM-SPECIFY PORTION TO

PLATFORM-AGNOSTIC PORTION OF SINGLE
BINARY 212

v

LOAD PLATFORM-SPECIFIC BINARY 214
EXECUTE PLATFORM-SPECIFIC BINARY 21

200 }

FIG. 2

WO 2013/191852

5/6

: OPERATING SYSTEM 528
I
| |APPLICATIONS 530
—————— -|
: : MODULES 532
| I
| | |DATA 534
| I
| I
I [
I
| PROCESSING
| UNIT 514 OUTPUT OUTPUT
| ADAPTER(S) 542 F—=€T] DEVICE(S) 540
|
|
SYSTEM INTERFACE
:— T > MEMORY 516 PORT(S) 538 €T VO ?f: ICE(S)
| VOLATILE 520
: NON VOLATILE
| 522
: <« SYSTEMBUS 518
|
| INTERFACE 228 COMMUNICATION
NETWORK
| CONNECTION(S) [M—>{ N TERFACE 548
550 _
|
|
| DISK STORAGE
_ _|— 524
MEMORY
STORAGE
COMPUTER 512 246
REMOTE
COMPUTER(S)
MNA 544
510

FIG.

3

PCT/US2013/042791

WO 2013/191852

6/6

PCT/US2013/042791

NATIVE
CODE 611

IL
COMPILER
660

/ ~
INTERMEDIATE

LANGUAGE
COMPONENT 650

METADATA
642

USER
INTERFACE
640

SOURCE
CODE EDITOR
651

SOURCE
CODE
COMPONENT
610

A

SOURCE
COMPILER
620

COMMON LANGUAGE RUNTIME
COMPILATION ENVIRONMENT 602

FIG. 4

MODELING
TOOL 652

MODEL
STORE 653

IDE 600

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/042791

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/445
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X SANG KIL CHA ET AL: "Platform-independent 1

programs",

PROCEEDINGS OF THE 17TH ACM CONFERENCE ON

COMPUTER AND COMMUNICATIONS SECURITY, CCS

'10,

4 October 2010 (2010-10-04), pages

547-558, XP055082130,

New York, New York, USA

DOI: 10.1145/1866307.1866369

ISBN: 978-1-45-030245-6
A page 547 - page 555 2-10
X US 20117276954 A1l (FONTENOT NATHAN [US] ET 1-10

AL) 10 November 2011 (2011-11-10)

paragraph [0026] - paragraph [0030];

figure 6

- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 October 2013

Date of mailing of the international search report

22/10/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kalejs, Eriks

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/042791
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 860 006 A (OSBORNE JAMES W [US] ET 1-10
AL) 12 January 1999 (1999-01-12)
column 4 - column 6; figures 2,4
A US 2006/080680 Al (ANWAR MAJID [GB] ET AL) 1-10

13 April 2006 (2006-04-13)
paragraph [0049] - paragraph [0128]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/042791
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011276954 Al 10-11-2011 NONE
US 5860006 A 12-01-1999 NONE
US 2006080680 Al 13-04-2006 CN 101040259 A 19-09-2007
CN 101040260 A 19-09-2007
US 2006080680 Al 13-04-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - wo-search-report
	Page 24 - wo-search-report
	Page 25 - wo-search-report

