发明名称
涡旋式压缩机

摘要
本发明的涡旋式压缩机，具备：密闭容器，在其底部储存制冷机油，压缩机构部，其对吸入的制冷剂进行压缩；电动机，其由电动机转子和电动机定子构成，并驱动经由轴而连接的压缩机构部；子框架，其固定于密闭容器，并随电动机的下侧将轴支承为旋转自如；平衡配重，其设置于电动机转子的下端面；以及固定部件，其设置于子框架的上端，并包围平衡配重。
1. 一种涡旋式压缩机，其特征在于，具备：
密闭容器，其底部存在有制冷机油；
压缩机构部，其对吸收到所述密闭容器内的制冷剂进行压缩；
电动机，其由电动机转子和电动机定子构成，对经由轴向牵引的所述压缩机构部驱动；
子框架，其固定于所述密闭容器，且从所述电动机的下侧将所述轴支承为旋转自如；
平衡配重，其设置于所述电动机转子的下端部；
固定杯状件，其设置于所述子框架的上端，且包围所述平衡配重；
上杯状件，其设置于所述电动机转子的上端；
排出管，其贯通设置于密闭容器，将制冷剂向所述密闭容器外释放，以及
所述电动机转子在其内部轴向形成有贯通流路，
形成于所述固定杯状件的上端与所述电动机转子的下端之间的间隙空间的纵剖面面积
大于所述贯通流路的纵剖面面积。
2. 根据权利要求1所述的涡旋式压缩机，其特征在于，
所述固定杯状件在从所述子框架的上端到所述平衡配重为止的空间内，将内包所述平衡配重的内侧空间、与不内包所述平衡配重的外侧空间隔开。
3. 根据权利要求1或2所述的涡旋式压缩机，其特征在于，
所述制冷机油的液面封入到比所述电动机的下端靠上的位置。
4. 根据权利要求1或2所述的涡旋式压缩机，其特征在于，
所述固定杯状件通过将基座部件与杯状部件接合而构成，所述基座部件用于固定于所述子框架，所述杯状部件包围所述平衡配重。
5. 根据权利要求4所述的涡旋式压缩机，其特征在于，
所述基座部件与所述杯状部件通过焊接而接合。
说明 书

涡旋式压缩机

技术领域

【0001】本发明涉及对制冷机油流出到密闭容器外的量进行抑制的涡旋式压缩机。

背景技术

【0002】以往，在使用由电动机单元驱动的压缩机构时，对导入到密闭容器内的制冷剂进行压缩的涡旋式压缩机中，存在对制冷机油流出到密闭容器外的量进行抑制的涡旋式压缩机（例如，参照专利文献1和2）。

【0003】专利文献1表示的涡旋式压缩机，立式密闭外壳1的下部内装压缩单元2，在该压缩单元2的上部内装具有驱动轴4的马达3。在该马达的上部设置有上述驱动轴4的轴承15，在上述驱动轴4的下部设有供油泵8。设置有与该供油泵8连结并向上上述轴承15供油的强制供油通路18，并且在上述马达3的转子31的外周面设置有螺旋槽19，该螺旋槽19使供给到上述轴承15的油强制地向下返油。从而不设置特别的油分离器，而能够一边强制地向上部的轴承15供油、一边使润滑油的油向上述供油泵侧返油。

【0004】作为分，专利文献2表示的涡旋式压缩机，收纳有：涡旋式压缩机构11的外壳3的内部对制冷剂进行压缩；驱动马达13的通涡旋式压缩机构11与驱动轴15连结的驱动该涡旋式压缩机构11，涡旋式压缩机构11由主框架21构成轮轴的外壳3，驱动马达13的驱动轴15由轴承板8支撑于外壳3，轴承板8具有将上下的空间连通的开口部8E。在驱动马达13的轴承板8之间具有覆盖驱动轴15的周边的盖80，盖80具分割为通过开口部8E的刀具的多个盖部件80A，80B。

【0005】专利文献1：日本特开平5-302581号公报（例如，参照图1）

【0006】专利文献2：日本特开2013-47481号公报（例如，参照图1）

【0007】但是，专利文献1和2所示的现有的涡旋式压缩机，在运转开始时，因电动机的驱动而致设置于电动机的转子的下端的平衡配重旋转。而且，在制冷机油、或者制冷机油与制冷剂的混合液的液面处于电动机单元的下端附近或者比电动机单元的下端空间的位置的情况下，存在因平衡配重而搅拌制冷机油、或者制冷机油与制冷剂的混合液的情况。其结果存在如下问题：制冷机油向密闭容器外流出而导致轴承的可靠性降低，从而导致制冷回路内的油量增加而使循环效率降低。

发明内容

【0008】本发明是为了解决以上那样的课题而提出的，目的在于得到在电动机驱动时、防止搅拌制冷机油、或者制冷机油与制冷剂的混合液，从而抑制制冷机油流出到密闭容器外的量的涡旋式压缩机。

【0009】本发明的涡旋式压缩机具备：密闭容器，在其底部存积有制冷机油；压缩机构部分，其对吸入到所述密闭容器内的制冷剂进行压缩；电动机，其由电动机转子和电动机定子构成，对经由轴向连结的所述压缩机构部分进行驱动；子框架，其固定于所述密闭容器，并从所述电动机的下侧将所述轴支承为旋转自如；平衡配重，其设置于所述电动机转子的下端面；
以及固定杯状件，其设置于所述子框架的上端，且包围所述平衡配重。

【0010】根据本发明的涡旋式压缩机，由于在固定于密闭容器的子框架的上端设置有固定杯状件，因此即使在电动机驱动时，固定杯状件也不旋转。另外，由固定杯状件包围平衡配重。因此，能够防止平衡配重的旋转所带来的制冷机油、或者制冷机油与制冷剂的混合液的搅动，从而能够抑制制冷机油向密闭容器外流出的量，由此提高轴心的可靠性，进一步提高制冷回路的循环效率。

附图说明

【0011】图1是本发明的实施方式1的涡旋式压缩机的纵剖视图。
【0012】图2是图1的主要部分放大图。
【0013】图3是图1的A-A剖面中的引导框架的横剖视图。
【0014】图4是图1的B-B剖面中的电动机定子的横剖视图。
【0015】图5是本发明的实施方式3的固定杯状件的横剖视图。
【0016】图6A、图6B是表示本发明的实施方式5的电动机转子的贯通流路的剖视图。
【0017】图7是表示本发明的实施方式5的涡旋式压缩机的间隙空间的纵剖面面积与制冷机油的循环量的关系的图。
【0018】附图标记说明：1...固定涡旋件；1a...（固定涡旋件）台板部；1b...（固定涡旋件）的板状涡旋齿；1c...（固定涡旋件）的十字头引导槽；1d...排出口；1e...吸入口；1f...压缩室；2...摆动涡旋件；2a...（摆动涡旋件）台板部；2b...（摆动涡旋件）板状涡旋齿；2c...（摆动涡旋件）的十字头引导槽；2d...凸台部；2e...摆动轴承；2f...推力面；2g...摆动涡旋件排气孔；2k...台板外周部空间；2n...台板部外径空间；3...柔性框架；3a...推力轴承；3b...滑动面；3c...主轴承；3d...辅助主轴承；3e...连通孔；3f...连通孔；3g...中间压力调整阀；3h...中间压力调整阀柱护套；3k...中间压力调整弹簧；3n...中间压力调整空间；3p...（柔性框架的）圆筒面；3t...推力轴承开口部；4...引导框架；4a...框架上部空间；4b...框架下部空间；4c...（引导框架的）圆筒面；4f...第一切缺部；4g...第一排出通路；4h...开口部；5...电动机；5a...电动机转子；5b...电动机定子；5c...电动机定子线圈；5f...贯通流路；5g...第二切缺部；5h...导线；6...主轴；6a...摆动轴部；6b...主轴部；6c...副轴部；6d...供油口；6f...主轴平衡配重；7a...上部环状密封件；7b...下部环状密封件；8...子框架；8a...副轴承；9...十字头机构；9a...十字头机构的固定侧键；9b...十字头机构的摆动侧键；9c...十字头机构环状部；10...密闭容器；10a...玻璃端子；11...储油部；12...排出管；12a...（排出管的）前端部；13...吸入管；14...压缩机构件；15...平衡配重；15a...上平衡配重；15b...下平衡配重；16...盖；16a...第二排出通路；16b...开口部；17...上杯状件；18...固定杯状件；18a...杯状部件；18b...基座部件；18c...接合部；18d...间隙空间；18e...杯状件内侧空间；18f...杯状件外侧空间；100...涡旋式压缩机。

具体实施方式

【0019】以下，基于附图对本发明的实施方式进行说明。另外，本发明不被以下说明的实施方式限定。并且，在以下的附图中，存在各构成部件的大小关系与实际不同的情况。
说明书

[0020] 实施方式1

图1是本发明的实施方式1的涡旋式压缩机100的纵剖视图，图2是图1的主要部分放大图。

[0022] 本发明的实施方式1的涡旋式压缩机100，其在密闭冷却型的密闭容器10的内部具备；压缩机构部14，其由固定涡旋轮1和搅动涡旋轮2构成，对抑制剂进行压缩；电动机5，其由电动机转子5a和电动机定子5b构成，驱动经由主轴6而连结的压缩机构部14。

[0023] 固定涡旋轮1由台板部1a和板状涡旋齿1b构成，其外周部借由螺栓（未图示）而紧固于引导框架4。在台板部1a的一方的面（图1中为下侧）设置有板状涡旋齿1b，同时在固定涡旋轮1的外周部以大致在一条直线上的方式，形成有两处十字头引导槽1c。另外，十字头机构9的固定侧键9a，以往复滑动自如的方式卡合于上述十字头引导槽1c。另外，在台板部1a的中央部形成有供制冷剂排出的排出口1d。此外，吸入管13以贯通密闭容器10并使吸入口1e成为内侧的方式插入到固定涡旋轮1。

[0024] 摆动涡旋轮2由台板部2a和板状涡旋齿2b构成。在台板部2a的一方的面（图1中为上侧）形成有板状涡旋齿2b，该板状涡旋齿2b与固定涡旋轮1的板状涡旋齿1b为实质上相同的形状，固定涡旋轮1的板状涡旋齿1b与摆动涡旋轮2的板状涡旋齿2b在几何上形成压缩室1f。而且，被吸入到密闭容器10内的制冷剂，随着该压缩室1f的容积变化而被压缩。另外，在台板部2a的与设置有板状涡旋齿2b的面相反侧的面（图1中为下侧，以下称为下表面），在其中央部设置有中空圆筒的凸台部2d，凸台部2d将轴6的上端部的转动轴部6a支承为旋转自如。此外，在台板部2a的下表面且在凸台部2d靠外周侧的位置，形成有推力面2f，该推力面2f能够与柔性框架3的推力轴承3a压接滑动。

[0025] 在摆动涡旋轮2的台板部2a的外周部，大致在一条直线上形成有两处十字头引导槽2c，这二处十字头引导槽2c具有与固定涡旋轮1的十字头引导槽1c成90度的相位差，十字头机构9的摆动侧键9b往复滑动自如地卡合于上述十字头引导槽2c。另外，在台板部2a形成有将压缩室1f与推力面2f贯通的摆动涡旋轮2抽气孔2g，摆动涡旋轮2抽气孔2g形成有压缩中途的制冷剂气体抽出、并向推力面2f引导的结构。

[0026] 由设置于引导框架4的内周部的圆筒面4c、4d，沿径向对柔性框架3的设置于其外周部的上下两个圆筒面3p、3s进行支承，并且在柔性框架3的中心部形成有主轴承3c以及辅助主轴承3d，该主轴承3c以及辅助主轴承3d沿径向对由电动机5旋转驱动的轴6进行支承。另外，形成有从推力轴承3a内面朝向轴向贯通的连通孔3e，并且在与摆动涡旋轮2抽气孔2g对应的位置，形成有推力轴承3a的开口部3t。

[0027] 另外，在柔性框架3的推力轴承3a的外侧，形成有供十字头机构环状部9c往复滑动移动的滑动面3b，并且将台板外周部空间2k与框架上部空间4a连通的连通孔3f形成于，与十字头机构环状部9c的内侧连通。此外，在柔性框架3设置有对凸台部外径空间2n的压力进行调整的中间压力调整阀3g以及中间压力调整阀3g的连通管3h，并形成有用于收纳中间压力调整弹簧3k的中间压力调整阀空间3n。而且，中间压力调整弹簧3k以比自然长缩短的方式被收纳。

[0028] 图3是图1的A-A剖面中的引导框架4的横剖视图。

[0029] 如图3所示，引导框架4的外周部通过热压配合或焊接等固定安装于密闭容器10，在该引导框架4的外周部形成有第一切缺部4f，该第一切缺部4f作为制冷剂与制冷机油的
混合气体的通路。另外，如图1所示，第一切缺部4f形成在与排出管12相反的位置。此外，设置有从引导框架4下端中央连通到侧面的第一排出通路4g，排出管12贯通密闭容器10，并设置为前端部12a收纳于第一排出通路4g内部。在引导框架4的一方的面（图1中为下侧）具有开口部4h，并设置有盖16，该盖16形成与第一排出通路4g连通的第二排出通路16a以及开口部16b。

[0030] 由引导框架4的内侧面与柔性框架3的外侧面所形成的框架下部空间4b，其下部被上部环状密封件7a以及下部环状密封件7b分隔。另外，在引导框架4的内侧面且在两处形成有环状的密封槽，该密封槽收纳上部环状密封件7a以及下部环状密封件7b，但是该密封槽也可以形成于柔性框架3的外侧面。框架下部空间4b仅与柔性框架3的连通孔3e连通，从而成为将从摆动涡旋件抽气孔2g供给的压缩中途的制冷剂气体封入的结构。另外，由摆动涡旋件2的台板部2a和柔性框架3将上下包围而成的推力轴承3a的外周侧的空间，即台板外周部空间2k，成为吸入气体环境（吸入压力）的低压空间。

[0031] 电动机转子5a配置于电动机定子5b的内侧，并在内部沿轴向形成有贯通流路5f。电动机定子5b配置于电动机转子5a的外侧，在电动机定子5b卷绕有电动机定子线圈5c。在电动机转子5a的内侧固定有主轴6b的主轴6b，由于电动机转子5a旋转，从而主轴6也旋转，并向由轴6c的连接的压缩机构部14传送驱动力。另外，在电动机定子5b的外周部与密闭容器10之间形成有第二切缺部5g，该第二切缺部5g成为制冷剂与制冷机油的混合气体的通路。

[0032] 在主轴6的上端部形成有摆动轴部6a，摆动轴部6a旋转自如地支承于摆动涡旋件2的摆动轴承2e，在主轴6的下侧热压配合有主轴6b，该主轴6b旋转自如地支承于柔性框架3的主轴承3c以及辅助主轴承3d。另外，主轴6的下侧形成有副轴部6c，该副轴部6c旋转自如地支承于在电动机5的下侧设置的子框架8的副轴承8a，该子框架8的外周部通过热压配合或焊接等固定安装于密闭容器10。另外，在副轴6c与上述的主轴6b之间热压配合有电动机转子5a。而且，在密闭容器10的底部的储油部11内积有制冷机油，利用设置于主轴6的供油机构，从形成于主轴6的下端面的供油口6d将制冷机油吸上来。

[0033] 在电动机转子5a的上端面固定有上平衡部15a，在下端面固定有下平衡部15b，与上述的主轴6b平衡配重6f配合地利用合计三个部位的平衡配重，取得静平衡以及动平衡。即，利用这些平衡配重，取得电动机5停车时的平衡，并且使得在电动机5驱动时由压缩机构部14产生的离心力与力矩的不平衡相互抵消，从而取得平衡。另外，以包围上平衡配重15a的方式，在电动机转子5a的上端设置有上杯状件17，并且以包围下平衡配重15b的方式，在子框架8的上端设置有固定杯状件18。而且固定杯状件18形成如下结构；在从子框架8的上端到下平衡配重15b的空间内，将内包下平衡配重15b（形成于固定杯状件18的内侧）的杯状件内侧空间18e，和内包上平衡配重15a（形成于固定杯状件18的外侧）的杯状件外侧空间18f隔开。另外，图2所示，在固定杯状件18的上端与电动机转子5a的下端之间，形成有间隙空间18d。

[0034] 图4是图1的B-B剖面中的电动机定子5b的横剖视图。

[0035] 如图4所示，电动机定子5b的外周部通过热压配合或焊接等固定安装于密闭容器10，在其外周部设置有第二切缺部5g，该第二切缺部5g成为制冷剂与制冷机油的混合气体。
的通路。另外，如图1所示，在密封容器10的侧面设置有玻璃端子10a，供来自电动机定子5b的导线5h接合。

【0037】 在涡旋式压缩机100启动时以及运转时，吸入制冷剂从吸入管13被吸入，并进入由固定涡旋件1的板状涡旋齿1b与摆动涡旋件2的板状涡旋齿1b形成的压缩室1f。由电动机5驱动的摆动涡旋件2，伴随偏心旋转运动而使压缩室1f的容积减少。吸入制冷剂借助上述压缩行程而成为高压。另外，在上述压缩行程中，压缩中间的中间压力的制冷剂气体，从摆动涡旋件2的摆动涡旋件抽气孔2g，经由柔性框架3的连通孔3e，被引导至框架下部空间4b，从而维持该框架下部空间4b的中间压力环境。

【0038】 经由上述压缩行程，从固定涡旋件1的吸入口1e吸入，并从排出口1d排出的制冷剂与制冷机油的混合气体，通过形成于引导框架4的外周部的第一切缺部4f、以及形成于电动机定子5b的外周部的第二切缺部5g，被引导到密封容器10的底面。制冷剂与制冷机油的混合气体，在被引导到密封容器10的底面的过程中被分离。分离后的制冷剂气体，经由固定杯状件18的上端与电动机转子5a的下端之间的间隙空间18d，以及电动机转子5a的贯通流路5f而通过排出管12，从而向密闭容器10外释放。

【0039】 接下来，对实施方式1的涡旋式压缩机100停止时的状态进行说明。

【0040】 在涡旋式压缩机100停止时，在涡旋式压缩机100的温度较低的情况下，制冷回路内的制冷剂液化而流入涡旋式压缩机100，并成为与制冷机油混合的混合液，混合液的液面到达卷绕于电动机定子5b的电动机定子线圈5c的下端附近或到达比该电动机定子线圈5c的下端靠上的位置。

【0041】 接下来，对实施方式1的涡旋式压缩机100运转开始时的动作进行说明。

【0042】 由于在子框架8的上端设有固定杯状件18，所以即使电动机5驱动时，固定杯状件18也不旋转。另外，由固定杯状件18包围下平衡配重15b。因此能够防止下平衡配重15b的旋转所引起的制冷机油，或者制冷机油与制冷剂的混合液的搅拌，从而能够抑制制冷机油向密闭容器外流出的量，由此提高全部轴承（摆动轴承2c、推力轴承3a、主轴承3c、辅助主轴承3d、副轴承8a）的可靠性，进一步提高制冷回路的循环效率。

【0043】 另外，制冷机油存在与制冷剂有相溶性或者非相溶性的制冷机油，在相溶性的制冷机油，在涡旋式压缩机100停止时，释放到制冷回路内的制冷机油与从制冷回路内流入的制冷剂一起，也返回到涡旋式压缩机100中，从而混合液的液面比非相溶的制冷机油的情况高，因此在使用相溶性的制冷机油的情况下，固定杯状件18更加有效。

【0044】 实施方式2

【0045】 接下来，对实施方式2的涡旋式压缩机进行说明。在实施方式2中，在涡旋式压缩机中，制冷机油的液面封入到比卷绕于电动机定子5b的电动机定子线圈5c的下端靠上的位置。

【0046】 另外，以下省略与实施方式1共同的结构以及动作的说明。

【0047】 在将涡旋式压缩机搭载于具有大型的制冷回路的空调机或制冷机的情况下，为了确保涡旋式压缩机的可靠性，与制冷回路内的制冷剂量的增加相配合，使封入到涡旋式压缩机的制冷机油增加，并且将制冷机油的液面封入到比电动机5的下端靠上的位置。

【0048】 如上所述，即使在制冷机油的液面封入到比电动机5的下端靠上的位置的状态下，
由于下平衡配重15b被子子框架8的上端放置的固定杯状件18包围，所以能够防止由下平衡配重15b的旋转所引起的制冷机油、或者制冷机油与制冷剂的混合液的搅拌，从而能够抑制制冷机油向密闭容器外流出的量，即使在具有大型的制冷回路的空调机或制冷机中，也能够提高全部轴承的可靠性，进一步提高制冷回路的循环效率。

[0049] 实施方式3

[0050] 接下来，对实施方式3的涡旋式压缩机进行说明。在实施方式3中，在涡旋式压缩机中，固定杯状件18成为由两个部件形成的结构。

[0051] 另外，以下省略与实施方式1或者实施方式2共同的结构以及动作的说明。

[0052] 图5是本发明的实施方式3的固定杯状件18的纵剖视图。

[0053] 图5所示，固定杯状件18由基座部件18b和杯状部件18a构成，并且杯状部件18a通过其接合部18c而与基座部件18b接合，其中上述基座部件18b用于固定于子框架8，上述杯状部件18a包围下平衡配重15b。

[0054] 以上，由于固定杯状件18由基座部件18b和杯状部件18a这两个部件组成，所以能够使基座部件18b具有厚度而保持固定强度，另外，为了降低材料费，杯状部件18a能够形成较薄。

[0055] 实施方式4

[0056] 接下来，对实施方式4的涡旋式压缩机进行说明。在实施方式4中，在涡旋式压缩机中，基座部件18b与杯状部件18a通过焊接而接合。

[0057] 另外，以下省略与实施方式1～3中的任一项共同的结构以及动作的说明。

[0058] 在图5中，杯状部件18a通过焊接而在其接合部18c接合于基座部件18b。

[0059] 如上所述，由于固定杯状件18通过焊接而将基座部件18b与杯状部件18a接合，所以能够防止因杯状件内侧空间18e与杯状件外侧空间18f的压力差，而使杯状部件18a从基座部件18b脱离。

[0060] 实施方式5

[0061] 接下来，对实施方式5的涡旋式压缩机进行说明。在实施方式5中，在涡旋式压缩机中，规定电动机转子5a与固定杯状件18之间的尺寸。

[0062] 此外，以下省略与实施方式1～4中任一项共同的结构以及动作的说明。

[0063] 图6a表示本发明的实施方式5的电动机转子5a的纵剖视图，图6b表示电动机转子5a的横剖视图。

[0064] 在本发明的实施方式5的涡旋式压缩机中，以使图2表示的固定杯状件18的上端与电动机转子5a的下端之间的间隙空间18d的纵剖面面积，大于图6a、图6b以及图7表示的电动机转子5a的贯通流路5f的纵剖面面积的方式，规定固定杯状件18的尺寸。

[0065] 图7是表示本发明的实施方式5的涡旋式压缩机的间隙空间的纵剖面面积、与制冷机油的循环量的关系的图。另外，图7中横轴为间隙空间18d的纵剖面面积，纵轴为涡旋式压缩机运转时制冷机油的循环量。另外，虚线表示图7中的电动机转子5a的贯通流路5f的纵剖面面积的位置。

[0066] 如图7所示，若间隙空间18d的纵剖面面积，大于电动机转子5a的贯通流路5f的纵剖面面积，则涡旋式压缩机运转时制冷机油的循环量降低。根据该关系，以使间隙空间18d的纵剖面面积大于电动机转子5a的贯通流路5f的纵剖面面积的方式，规定固定杯状件18的
高度尺寸或者直径尺寸，从而能够降低从运转时的涡旋式压缩机向制冷回路内释放的制冷机油的量。因此提高全部轴承的可靠性，进一步提高制冷回路的循环效率。