(12) 发明专利申请

(21) 申请号 20110031496.5
(22) 申请日 2011.01.29
(71) 申请人 中北大学
地址 030051 山西省太原市尖草坪区学院路
3 号
(72) 发明人 陈旭远 高文宏 石云波 张文栋
(74) 专利代理机构 山西太原科卫专利事务所
14100
代理人 骆洋
(51) Int. Cl.
G02B 27/48 (2006.01)

(54) 发明名称
基于米氏散射及光学器件的散斑消除装置

(57) 摘要
本发明涉及以相干光为光源的显示技术领域，具体是一种基于米氏散射及光学器件的散斑消除装置，解决了现有散斑消除方法存在的消除散斑效果不佳、实现结构复杂、易损坏、成本高等问题，包括其上设有入射光耦合装置和透射出射面的光学反腔，正对光学反腔合装耦合装置设置的光学器件；所述光学器件为能改变光束入射光学反射腔入射光耦合装置时的入射角度的光学器件；光学反射腔中透射出射面内壁之外的内壁为“镜面”内壁，光学反射腔内设有填充整个光学反射腔的透明固体物质，且透明固体物质内散布有其线度能引起入射激光发生米氏散射的介质粒子。本发明结构合理、紧凑，散斑消除效果好，激光利用率高，性能稳定，安全可靠，并且具有匀光功能。
1. 一种基于米氏散射及光学器件的散斑消除装置，其特征在于：包括其上设有入射光耦合装置（301）和透射出射面（303）的光学反射腔（302），正对光学反射腔（302）入射光耦合装置（301）设置的光学器件（308）；所述光学器件（308）为能改变光束入射光学反射腔（302）入射光耦合装置（301）时的入射角度的光学器件；光学反射腔（302）除透射出射面（301）内壁之外的内壁皆为“镜面”内壁，光学反射腔（302）内设有填满整个光学反射腔（302）的透明固态物质（401），且透明固态物质（401）内散布有其线度能引起入射激光发生米氏散射的介质粒子（402）。

2. 根据权利要求1所述的基于米氏散射及扫描微镜的散斑消除装置，其特征在于：光学反射腔（302）的透射出射面（303）表面设有与入射光束波段匹配的增透膜。

3. 根据权利要求1所述的基于米氏散射及扫描微镜的散斑消除装置，其特征在于：所述光学器件（308）可以采用扫描微镜，或者可变焦微透镜。

4. 根据权利要求1所述的基于米氏散射及扫描微镜的散斑消除装置，其特征在于：所述透明固态物质（401）为对入射激光无透射损失的透明固态物质。

5. 根据权利要求1所述的基于米氏散射及扫描微镜的散斑消除装置，其特征在于：所述介质粒子（402）采用聚苯乙烯微球或者二氧化钛粒子。
基于米氏散射及光学器件的散斑消除装置

技术领域
[0001] 本发明涉及以相干光为光源的显示技术领域，具体是一种基于米氏散射及光学器件的散斑消除装置，主要针对激光显示技术及光学仪器中存在的光学散斑现象。

背景技术
[0002] 以激光为光源照射屏幕时，由于激光的相干性及屏幕的粗糙，导人眼看到被散斑覆盖的图像，严重影响图像显示质量，阻碍观察者从图像中提取有用信息。因此，如何消除散斑一直是以激光为光源的光学仪器领域和显示技术领域中的研发热点。而就目前的研究结果来看，为消除散斑所用的方法大致可以分为两大类：一、通过控制激光光束的时间相干性来降低散斑，其原理是通过调整激光波长（或者频率）及波长光束产生沸腾散斑，目前通过控制激光时间相干性成功消除散斑达到实用要求的技术方案基本上以多光束叠加为主；二、通过控制激光光束空间相干性消除散斑，是目前消除散斑的主要方法，基本原理是调整激光光束中基元光波的相位分布，从而改变散斑的空间分布，将多个散斑图像在人眼积分时间内相叠加，得到一个光能分布均匀的图像，进而实现消除散斑的目的。具体的方法有，采用旋转散射体、振动屏幕、振动具有 Hadamard 图形散射体、高频振动光纤等。上述方法，或要借助机械振动，甚至需要高频或大幅振动，或要集成多光源，实现结构复杂、易损坏、成本高，更主要的是散斑消除效果不佳。

[0003] 也有未借助机械振动的技术方案，例如：专利号为 200820122639.7 的中国专利公开了“一种基于散射的消相干匀场装置”，要求使用含有直径必须小于入射光波长十分之一的颗粒的散射介质，以实现对入射激光形成瑞利散射。专利中利用无机盐或有机醇水溶液（如 NaCl、KCl、KNO₃ 或 ZnSO₄ 水溶液）作为散射介质，基于无机盐或有机醇水溶液的存在形式是水合离子或大分子，相对于激光波长小很多，会对入射激光形成瑞利散射，以此实现入射激光分束，并在光导管内传导，以期降低入射激光的相干性来消除散斑，同时利用光导管的混光作用，将上述分束光进行匀化来均匀相相干。但按该申请所述技术方法进行试验，在室温下，利用长度为 50mm、充满饱和 NaCl 水溶液的光导管消除散斑，结果如图 1 所示，其散斑对比度为 70%，几乎没有起到降低散斑的作用。

发明内容
[0004] 本发明为了解决现有散斑消除方法存在的消除散斑效果不佳、实现结构复杂、易损坏、成本高等问题，提供了一种基于米氏散射及光学器件的散斑消除装置。

[0005] 本发明是采用如下技术方案实现的：基于米氏散射及光学器件的散斑消除装置，包括其上设有入射光耦合装置和透射出射面的光学反射腔、正对光学反射腔入射光耦合装置设置的光学器件；所述光学器件为能改变光束入射光学反射腔入射光耦合装置的入射角度的光学器件；光学反射腔除透射出射面内壁之外的内壁皆为“镜面”内壁（即内壁具有高反射率特性，能“全反射”入射于光学反射腔内的激光光束），光学反射腔内设有填满整个光学反射腔的透明固态物质，且透明固态物质内散布有其线度能引起入射激光发生米氏散
所述光学器件可以采用扫描微镜，或可变焦微透镜。

应用时，如图 5、6、8、9 所示，由激光光源发射的激光光束经光学器件（扫描微镜或可变焦微透镜）调制后，以不同入射角穿过光学反射腔上入射光耦合装置入射到光学反射腔的透明总体物质中。与透明总体物质中散布的介质粒子作用发生米氏散射（如图 4 所示），当入射激光 101 照射介质粒子 402 发生米氏散射时，入射激光 101 散射后的散射光光
强分布在一个很宽的角度范围内，主要集中在前向散射光 104、105、106，一般占总散射 90% 以上；后向散射光 102 只占很小部分，通常小于 10%；沿入射激光前进方向的散射光 105 光
强最强，垂直方向的散射光 103、107 最弱，因此入射激光经介质粒子 402 散射后，分束多个强度不等的散射光，同时散射光散射角分布扩大，分束多个强度不等的散射光，或经光学反射腔内壁反射，或再次与透明总体物质中散布的介质粒子作用发生米氏散射，散射光分束为更多的散射光，经多次米氏散射后，由光学反射腔的透射出射面出射；而光学器件使激光光束入射光学反射腔的入射角连续变化，导致各时刻入射激光光束经散射得到的散射光在透明总体物质中传播方向、路径变化，最终在光学反射腔出射面出射的散射光的相位分布、散射角分布随机变化。而不同时刻的出射散射光具有不同的相位分布、散射角分布，经投影后，分别对应产生一个散斑图像，在人眼积分时间（50ms）内，多个散斑图像相叠加，会得到一个光能分布均匀的图像，进而实现了消除散斑现象的目的。

与现有技术相比，本发明设置光学反射腔，于光学反射腔内对入射激光进行米氏
散射，进行散射分束，并以光学器件连续激光进入光学反射腔的角度，进而随机改变散
射光束在光学反射腔中的传播方向和路径，使得光学反射腔出射面在不同的时间以不同的相
位分布和散射角分布出射入射激光的散射光，从而改变投影后产生散斑的空间分布，使多
个散斑图像在人眼积分时间内相叠加，得到一个光能分布均匀的图像，进而有效消除散斑。

且经试验测试，应用本发明所述装置后，图像的散斑对比度可低于 4%，如图 7、10 所示，图像
的散斑对比度分别达到 3.72% 和 3.91%，散斑消除效果极好；并可以通过提高透明总体物质
中的介质粒子浓度及光学器件的调制状态（如：扫描微镜角度变化幅度、可变焦微透镜焦距
变化幅度）来提高散斑消除效果；本发明于光学反射腔中对入射激光进行“全反射”，入射激
光的总体光能损失甚微，保证了激光的高利用率，并在“全反射”过程中实现了均匀目的；本
发明所述装置的各组成部分均为固态，不存在液体泄漏、悬浮液沉降等问题，性能稳定，安
全可靠。

本发明结构合理、紧凑、散斑消除效果好，激光利用率高，性能稳定，安全可靠，并具
有均匀功能。

附图说明

图 1 为利用一现有技术消除散斑获得的测试结果图；
图 2 为本发明的一种结构示意图；
图 3 为本发明的另一种结构示意图；
图 4 为米氏散射的光强角分布图；
图 5 为扫描微镜以某一角度入射激光时本发明所述装置的状态示意图；
图 6 为扫描微镜改变入射激光入射角后本发明所述装置的状态示意图；
具体实施方式

[0011] 如图 2、3 所示，基于米氏散射及光学器件的散斑消除装置，包括其上设有入射光耦合装置 301 和透射出射面 303 的光学反射腔 302。正对光学反射腔 302 入射光耦合装置 301 设置的光学器件 308。所述光学器件 308 为能改变光束入射光学反射腔 302 入射光耦合装置 301 时的入射角度的光学器件。光学反射腔 302 除透射出射面 301 内壁之外的内壁皆为“镜面”内壁（即内壁具有高反射率特性，能“全反射”入射于光学反射腔内的激光光束），光学反射腔 302 内设有填满整个光学反射腔 302 的透明固态物质 401，且透明固态物质 401 内散布有高精度能引起入射激光发生米氏散射的介质粒子 402。所述光学器件 308 可以采用扫描微镜，或者可变焦微透镜。

[0012] 具体实施时，所述扫描微镜采用一维扫描微镜，或者二维扫描微镜皆可；所述可变焦微透镜采用可变焦凸透镜，或者可变焦凹透镜皆可；所述透明固态物质 401 应为对入射激光无透射损失的透明固态物质，如高分子凝胶等。所述介质粒子 402 可以采用聚苯乙烯微球、二氧化钛粒子（TiO₂）等介质粒子。所述光学反射腔 302 多选用金属、平面镜、透明塑料或玻璃加工制作，且其形状无特别限定，一般多采用管状腔体；光学反射腔 302 的透射出射面 303 多选用透明塑料或玻璃加工制作，且多为矩形平面，且表面设有与入射光束波段匹配的增透膜。所述光学反射腔 302 上的入射光耦合装置 301 可以按如下结构实现：采用透射入射面，并在表面设有与入射光束波段匹配的增透膜；或者采用入射光孔结构，亦可以在入射光孔 304 上配设有光学耦合元件，如透镜。

[0013] 本发明所述散斑消除装置能应用于激光投影显示技术中，例如如图 11 所示，应用于点扫描投影（Raster-Scanned Displays）系统，信号源 601、602、603 根据二维图像上每个像素的信息分别调制三基色激光器 501、502、503 输出功率；三个入射激光通过镜子 504、505、506 摆入射入本发明所述散斑消除装置 300，经调制后于出射面导出，通过透镜
700 和微扫描镜 (Scan Mirror) 701 投影到屏幕 800。在电信号的驱动下，微扫描镜 701 根据二位图像逐像素扫描到屏幕上。本应用实例适用于点扫描的激光投影仪和激光电视显示。

[0014] 如图 12 所示，应用于全帧显示投影 (Full-Frame Displays) 系统，三基色激光器 501、502、503 输出恒定功率激光束，分别耦合导入本发明所述散斑消除装置 305、306、307；经调制后，由中继透镜 701、704、707，平面镜 708 及 TIR 梯镜 703、705、709 汇聚到光调制器 DLP 702、706、710；光调制器 DLP 702、706、710 根据每帧二维图像信息调制生成单色图像；三基色图像经棱镜 711 熔合，由透镜 700 投影至屏幕 800。本应用实例适用于基于 DMD，LCOS 等光调制器件的激光投影仪和激光电视显示。