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JOINT FOUNTAIN CODING AND NETWORK CODING FOR LOSS-TOLERANT
INFORMATION SPREADING

RELATED APPLICATIONS
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent
Application Serial No. 62/035,267, filed on August 8, 2015, under Attorney Docket No.
U1198.70063US00 and entitled “JOINT FOUNTAIN CODING AND NETWORK CODING
FOR LOSS-TOLERANT INFORMATION SPREADING” which application is hereby

incorporated herein by reference in its entirety.

BACKGROUND

Information spreading plays a central role in human society. In the information age, how to
efficiently and reliably spread information with low delay may be critical for numerous activities
involving humans and machines, e.g., the spread of tweets in Twitter, the dissemination of data
collected by wireless sensor networks, and delivery of Internet TV. With information spreading
over lossy communication channels (also known as erasure channels), a problem exists wherein
packets may be lost/discarded due to bit errors or buffer overflow. For wired networks over optical
fiber channels, the bit error rate can be as low as 10712, and so packet loss is mainly due to
overflow of the buffers at routers rather than bit errors. For wireless channels, packet loss is mainly
due to uncorrectable bit errors, which may be caused by fading, shadowing, interference, path loss,
noise, etc. [17]. At the transmitter, most physical layer schemes encode messages by both an
error-detecting code such as cyclic redundancy check (CRC) and an error-correction code. At the
receiver, a received packet is first decoded by the error-correction decoder. If the resulting packet
has uncorrectable bit errors, it will not pass the check of the error-detecting module. Most physical

layer designs will drop those packets that have uncorrectable bit errors.

To address the packet loss problem, three approaches can be used [12, 22]. The first
approach is retransmission or Automatic Repeat reQuest (ARQ). The Transmission Control
Protocol (TCP) uses ARQ for packet loss recovery. An advantage of ARQ is its adaptation to
time-varying channel condition (e.g., network congestion status or signal-to-interfer-
ence-plus-noise ratio (SINR)) in the following manner: when the channel condition is very good

(e.g., no congestion or very high SINR) and induces no packet loss, no retransmission is needed;
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the poorer the channel condition, the more lost packets, resulting in more retransmitted packets.
Hence, ARQ is suitable for the case that the transmitter has little knowledge of the channel
condition. A disadvantage of ARQ is that it is not suitable for reliable multicast communication

due to the feedback implosion problem.

The second approach is Forward Error Correction (FEC). FEC is achieved by channel
coding, which includes Reed-Solomon codes, convolutional codes, turbo codes, Low-Density
Parity-Check (LDPC) code, and fountain codes (or rateless codes). FEC is suitable for the case in
which the transmitter has good knowledge of SINR of the channel; in this case, the transmitter
chooses a channel code with appropriate code rate (which depends on network congestion status or
the SINR) so that the receiver can recover all the native packets without retransmission. If the
transmitter has little knowledge of the channel condition, it does not know how much redundancy
(parity bits) should be added to the coded packets: adding too much redundancy wastes
communication resource while adding too little redundancy makes lost packets unrecoverable by
the receiver. Another advantage of FEC is that it is well suited for reliable multicast applications
since FEC does not need feedback and hence does not suffer from the feedback implosion problem

like ARQ.

The third approach is hybrid ARQ, which combines certain features of ARQ and FEC.
Under hybrid ARQ, the transmitter does not need to have knowledge of the channel condition. For
non-erasure error-prone channels, there are two types of hybrid ARQ: Type I and Type II. Under
Type I hybrid ARQ, the transmitter transmits a coded packet with error correction and error
detection capability; if a packet has uncorrectable errors, the receiver sends a retransmission

request to the transmitter and the transmitter transmits another coded packet.

Under Type II hybrid ARQ, the transmitter first transmits a coded packet with error
detection capability only. If the packet has errors, the receiver sends a retransmission request and
the transmitter transmits a new coded packet. Combining the previously coded packet and the
newly coded packet forms a longer codeword, which has better error correction capability than a
single packet. The receiver jointly decodes the previously received packet and newly received
packet. If the errors are still uncorrectable, the receiver sends another retransmission request, and

this process continues until the errors are corrected.

However, Type I and Type II hybrid ARQ are not suitable for erasure channels since lost
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packets cannot be treated as correctable errors in received packets. For erasure channels, the
transmitter can use a fountain code and keep transmitting coded packets until the receiver is able to
decode all the native packets of a file or a batch (here, a batch is a group of native packets,
specified by a user or an application). The transmitter does not need knowledge of the channel
condition, and it is able to adapt to the channel condition. Since a fountain code has no fixed code
rate, it is called rateless code and is well suited for time-varying wired/wireless channel conditions
and multicast applications with heterogeneous receivers. Network coded TCP (CTCP) [10] can be
regarded as a hybrid ARQ approach for erasure channels.

Related Work

Erasure Codes
Packets may be dropped due to 1) congestion at a router or 2) uncorrectable bit errors,
which may be caused by fading, shadowing, interference, path loss, or noise in a wireless channel.

The packet loss rate in some real-world wireless networks can be as high as 20-50% [1].

Erasure codes can be used to recover native packets without feedback and retransmission.
Under linear erasure coding, the coded packets are generated by linearly combining the native
packets with coefficients from a finite field (Galois field) F,, where q = 2! (i € N)and N is the
set of natural numbers (i.e., positive integers). Erasure codes can be nonlinear [16] (for example,
triangular codes [15]). A nonlinear erasure code can reduce the computational complexity by using
only binary addition and shift operations instead of more complicated finite field multiplications as
in a linear erasure code. Hence, nonlinear erasure codes may be particularly suited for mobile

phone applications, which require low computational complexity and low power consumption.

Under an erasure code, a receiver can recover K native packets from n coded packets
(received by the receiver), where n = (1 + €)K and &€ can be very small, e.g., € can be as small
as 107® for RQ codes [19]. To recover the K native packets, it does not matter which packets the
receiver has received; as long as it has received any K linearly independent packets, the receiver
is able to decode the K native packets. FIG. 2 illustrates an exemplary erasure channel and erase

channel coding.

Erasure codes include Reed-Solomon codes, LDPC codes, and fountain codes [16].

According to [19], an erasure code can be classified as a fountain code if it has the following
-3-
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properties:

* (Ratelessness) The number of coded packets that can be generated from a given set of
native packets should be sufficiently large. The reason why this code is called fountain code is
because the encoder generates an essentially unlimited supply of codewords, in analogy to a water

fountain, which produces essentially unlimited drops of water [16].

* (Efficiency and flexibility) Irrespective of which packets the receiver has received,
the receiver should be able to decode K native packets using any K linearly independent received
coded packets. Just like an arbitrary collection of water drops will fill a glass of water and quench
thirst, irrespective of which water drops had been collected, a collection of any K linearly
independent fountain-coded packets will be sufficient for the receiver to decode K native packets

[16].

* (Linear complexity) The encoding and decoding computation cost should be a linear

function of the number of native packets K.

Network Coding

Simply forwarding packets may not be an optimal operation at a router from the
perspective of maximizing throughput. Network coding was proposed to achieve maximum
throughput for multicast communication [2]. Network coding techniques can be classified into two
categories: intra-session (where coding is restricted to the same multicast or unicast session) [2, 7,
11] and inter-session (where coding is applied to packets of different sessions) [9, 18, 24]. The
pioneering works on intra-session network coding include [2, 7, 11]; all these intra-session
network coding techniques apply to multicast only. In [2], Ahlswede et al. showed that in a
single-source multicast scenario, instead of simply forwarding the packets they receive, relay
nodes can use network coding—i.e., mixing packets destined to different destinations—to achieve
multicast capacity, which is higher than that predicted by the max-flow-min-cut theorem. In [11],
Li et al. proved that linear network coding is enough to achieve the multicast capacity for many
cases. In [7], Ho et al. introduced random linear network coding for a distributed implementation
of linear network coding with low encoding/decoding cost. Examples of inter-session network

coding schemes include [6, 9, 18, 24].

For wireless communication, cross-next-hop network coding [9, 18] and intra-session
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network coding [13, 25, 26] are often used. Under cross-next-hop network coding, a relay node
applies coding to packets destined to different next-hop nodes. Cross-next-hop network coding is a
special type of inter-session network coding. Cross-next-hop network coding uses per-next-hop
queueing at each relay node while inter-session network coding may use per-flow queueing at each
relay node or add a very large global encoding vector to the header of each coded packet [6].
Hence, cross-next-hop network coding is more scalable than a general inter-session network
coding. As such, for core routers, it may be desirable to use cross-next-hop network coding instead

of a general inter-session network coding.

Cross-next-hop network coding has been heavily studied in the wireless networking area.
The major works include [9, 18]. In [9], Katti et al. proposed an opportunistic network coding
scheme for unicast flows, called COPE, which can achieve throughput gains from a few percent to
several folds depending on the traffic pattern, congestion level, and transport protocol. In [18],
Rayanchu el al. developed a loss-aware network coding technique for unicast flows, called
CLONE, which improves reliability of network coding by transmitting multiple copies of the same

packet, similar to repetition coding [12].

Intra-session network coding has been used in combination with a random linear erasure
code for unicast/multicast communication in [13, 25, 26]. Note that intra-session network coding
should not be used alone at relay nodes (without the aid of erasure coding/decoding at the
source/destination); otherwise, the performance will be very poor, i.e., the source needs to send
much more redundant (duplicate) packets for the receiver to recover all the native packets,

compared to joint erasure coding and intra-session network coding.

Joint Erasure Coding and Intra-Session Network Coding (JEN) and BATched Sparse
(BATS)

The following Joint Erasure coding and intra-session Network coding (JEN) approach has
been used for unicast/multicast communication in [13]: The source node uses random linear
erasure coding (RLEC) to encode the native packets and add a global encoding vector to the header
of each coded packet. A relay node uses random linear network coding (RLNC) to re-code the
packets it has received (i.e., the relay node generates a coded packet by randomly linearly
combining the packets that it has received and stored in its buffer); the relay node also computes

the global encoding vector of the re-coded packet and adds the global encoding vector to the
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header of the re-coded packet. A destination node can decode and recover K native packets as
long as it receives enough coded packets that contain K linearly independent global encoding
vectors. Note that under the JEN approach, a relay node does not decode the packets received by
this relay node; packets are only decoded by the destination node. Hence, JEN takes an end-to-end
erasure coding approach, which is different from the hop-by-hop erasure coding approach that
applies erasure encoding and decoding to each link/hop. It has been proved that JEN can achieve

the multicast capacity for lossy networks in a wide range of scenarios [13, 23].

JEN has two control parameters: density and non-aggressiveness [21]. The ratio of the
number of non-zero entries in the encoding vector to the total number of entries in the encoding
vector is called the density of the code. Lower density corresponds to less computational
complexity, but it also corresponds to a lower network-coding-gain. The ratio of the number of
packets participating in computing a coded packet at a relay node to the total number of packets
transmitted by the source node, is called non-aggressiveness (or patience) of the relay node. The
smaller the value of non-aggressiveness/patience, the more aggressive the relay node is (or the less
patient the relay node is). In other words, the relay node waits for a shorter time in buffering
incoming packets for RLNC, which translates to a smaller end-to-end delay. Still, the smaller
value of non-aggressiveness may result in a lower network-coding-gain since less packets

participate in computing a coded packet.

In practice, under JEN, the data to be transmitted is partitioned into multiple segments [21]
(or generations [4], blocks [14], or batches [3]), and coding is restricted within the same segment.
In doing so, the encoding vector is small enough to be put into the header of a coded packet. Silva
et al. proposed a network coding technique with overlapping segments [20] to improve the

performance of JEN with non-overlapping segments.

BATched Sparse (BATS) codes have also been proposed [25, 26]. A BATS code consists
of an inner code and an outer code over a finite field [F,. The outer code is a matrix generalization
of a fountain code. At a source node, the outer code encoder encodes native packets into batches,
each of which contains M packets. When the batch size M is equal to 1, the outer code reduces to
a fountain code. The inner code is an RLNC performed at each relay node. At each relay node,
RLNC is applied only to the packets within the same batch of the same flow; hence the structure of

the outer code is preserved.
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Specifically, for unicast, a BATS coding approach works as follows. The source node uses
a matrix-form fountain code as its outer code, where the matrix consists of a batch of M packets
and each column of the matrix corresponds to a packet—in contrast to the original fountain code
[19], which uses a vector form (i.e., a packet consisting of multiple symbols), and to JEN, which
uses a RLEC—to encode the native packets and add an encoding vector of M X log,q bits to the
header of each coded packet (where g is the size of the finite field of the coding coefficients). A
relay node uses RLNC to re-code all the received packets of the same batch, i.e., the relay node
generates M coded packets by randomly linearly combining all the packets that it received for the
same batch. The relay node also computes the encoding vector of the re-coded packet and adds the
encoding vector to the header of the re-coded packet. A destination node can decode and recover

K native packets as long as it receives enough coded packets.

SUMMARY

Some aspects include a network system for increasing data throughput and decreasing
transmission delay from a source node to a sink node via a relay node. The network system may
comprise a source node configured to encode a plurality of data packets using rateless coding and
transmit the plurality of data packets; at least one relay node configured to receive at least one of
the plurality of data packets from the source node, and if the at least one relay node has received a
sufficient quantity of the plurality of data packets, regenerate, re-encode, and relay the plurality of
data packets; and a sink node configured to receive one or more of the plurality of data packets
from the at least one relay node, and if the sink node has received the sufficient quantity of the
plurality of data packets, regenerate and decode the plurality of data packets.

Further aspects include a method for increasing data throughput and decreasing
transmission delay from a source node to a sink node via a relay node. The method may comprise
receiving, from at least one source node, at least one of a plurality of data packets encoded by the at
least one source node using fountain coding; and if a sufficient quantity of the plurality of data
packets are received, regenerating, re-encoding, and relaying the plurality of data packets to a sink
node for regenerating and decoding of the plurality of data packets.

Additional aspects include at least one computer-readable storage medium encoded with

executable instructions that, when executed by at least one processor, cause the at least one
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processor to perform a method for increasing data throughput and decreasing transmission delay

from a source node to a sink node via a relay node. The method may comprise receiving, from at
least one source node, at least one of a plurality of data packets encoded by the at least one source
node using fountain coding; and if a sufficient quantity of the plurality of data packets are received,
regenerating, re-encoding, and relaying the plurality of data packets to a sink node for regenerating

and decoding of the plurality of data packets.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an exemplary source node, relay nodes, and a sink (or
destination) node of a network in which some embodiments of the application may be
implemented.

FIG. 2 is a diagram illustrating an exemplary erasure channel and erase channel coding
according to some embodiments of the application.

FIGS. 3A and 3B are diagrams illustrating an exemplary source node, relay nodes, and a
destination node of a network according to some embodiments of the application.

FIGS. 4A, 4B, and 4C are diagrams illustrating an exemplary structure and header
structures of data packets according to some embodiments of the application.

FIGS. 5A and 5B are a flowchart of an exemplary method of increasing data throughput
and decreasing transmission delay from a source node to a sink node via a relay node according to
some embodiments.

FIG. 6 is a flowchart of an exemplary method of increasing data throughput and decreasing
transmission delay from a source node to a sink node via a relay node according to some
embodiments.

FIG. 7 is a diagram illustrating a computer system on which some embodiments of the
invention may be implemented.

FIG. 8 is an exemplary algorithm for XOR encoding according to some embodiments.

FIG. 9 is an exemplary algorithm for XOR decoding according to some embodiments.

FIG. 10 is an exemplary algorithm for outer decoding according to some embodiments.

FIG. 11 is an exemplary algorithm for inner encoding according to some embodiments.
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DETAILED DESCRIPTION

The inventors have recognized and appreciated that higher data throughput (rate of
successful message delivery over a communication channel) and lower delay than other network
coding methods for uncoordinated transmitting of the same data from multiple sources to one
destination may be achieved with a method of Forward Error Correction (FEC), referred to herein
as joint FoUntain coding and Network coding (FUN). Under the FUN coding approach, each
source node may use a fountain code to encode information packets (native packets); each
intermediate node (or a relay node) may use intra-session network coding to re-code the packets in
the same batch of the same session received from the upstream node, and, if possible, may use
cross-next-hop network coding to re-code packets destined to different next-hop nodes; a sink or
destination node may decode the coded packets on the fly, and may be able to reconstruct all the
native packets as long as it receives a sufficient number of coded packets to perform the
reconstruction of the native packets. A “sufficient” number of coded packets may be assessed
based on a fixed threshold. Alternatively or additionally, a “sufficient” number may be a
dynamically established threshold. Herein, a unicast session may be identified by a unique
source/destination IP address pair while a multicast session may be identified by a tuple of the

source IP address and all the multicast receiver IP addresses.

Comparisons

Joint Erasure Coding and Intra-Session Network Coding (JEN) Compared to Fountain
Codes and BATched Sparse (BATS)

The inventors have recognized and appreciated that JEN and fountain codes have notable
differences. First, for a fountain code, only the source node may participate in encoding; relay
nodes may not participate in re-coding, which may be different from JEN. Hence, a fountain code
may not achieve throughput at the full network capacity when there is packet loss. In contrast, JEN
can achieve network capacity for lossy networks [13, 23]. Second, fountain codes are sparse codes
and have linear encoding/decoding complexity. In contrast, the RLEC and RLNC are dense codes;

hence they may not be encoded and decoded as efficiently as fountain codes.

The inventors have recognized and appreciated that JEN and BATS codes also have

notable differences. Different from JEN, BATS codes may preserve desirable properties of
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fountain codes such as low encoding/decoding complexity; furthermore, the computational
complexity and buffer requirement for a BATS code at a relay node may be independent of the
total number of native packets to be transmitted by the source. It may be theoretically verified for
certain cases and numerically demonstrated for some general cases that BATS codes
asymptotically achieve rates very close to the network capacity. Compared to the segment-based
JEN [4, 14, 21], BATS codes may achieve higher rates for the following reason: under a BATS
code, a source node may apply a fountain code to all the native packets, while under seg-

ment-based JEN, a source node may apply RLEC only to a segment.

FUN Compared to Erasure Codes

The inventors have recognized and appreciated that, compared to erasure codes (including
fountain codes), the FUN approach can achieve much higher throughput for communication over
multihop wireless networks. The lower bound on the end-to-end packet loss rate under FUN may
be maXx;eq 5. n,3Pi (Where p; may be the packet loss rate of Link { and N, may be the number
of hops from the source to the destination) while the end-to-end packet loss rate under an erasure
codeis 1 — H?’:’ll (1 —p;) [25], which may be much larger than max;eg »,...y,3p; for large Ny,
For example, for N, = 2 and p; = 0.1 (i = 1,2), the end-to-end packet loss rate under FUN may
be 0.1 while the end-to-end packet loss rate under an erasure code is 0.19; for N, = 10 and
p; = 0.1 (Vi), the end-to-end packet loss rate under FUN may still be 0.1 while the end-to-end
packet loss rate under an erasure code is 0.65, which is 6.5 times higher than 0.1. The much lower
end-to-end packet loss rate achieved by FUN may translate to much higher throughput (data rate)
compared to erasure codes. In simulations conducted by the inventors, it was observed that the

throughput under FUN may be 35 times as large as that under a fountain code (RQ code) where
Np, =10 and p; = 0.1 (Vi).

While not being bound by any particular theory of operation, the inventors theorize that
FUN may achieve higher throughput over multihop lossy networks than erasure codes is that under
FUN, each relay node may perform network coding, and so coded packets that are lost at each hop
may be regenerated/re-coded for the next hop. A useful analogy may be as follows: a person
carries a leaky tank of water from the source node to the destination; in each hop, the tank leaks p
percent of water; at each relay node, the tank gets refilled to its full capacity; finally, the tank only
lost p percent of water from the source node to the destination since only the lost water in the last

-10 -
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hop is not refilled. In contrast, erasure codes (including fountain codes) are analogous to no
refilling of the water at any relay node since network coding is not used at any relay node, and so
the tank loses (1 — (1 — p/100)¥?) x 100 percent of water from the source node to the

destination. Here, p/100 is the percentage (e.g., p = 10 gives p/100 = 10%).

FUN Compared to Network Coding

The inventors have recognized and appreciated that, different from COPE [9], which does
not add redundancy to the coded packets, the FUN approach may add redundancy to the received
packets at a relay node. Specifically, under FUN, a relay node may re-code the received packets
using random linear coding [25, 26]. Different from CLONE [18], which uses repetition coding,
the FUN approach may use random linear coding instead of repetition coding and may thereby
gain efficiency. Experimental results show that FUN may achieve much higher throughput over

lossy channels compared to COPE.

FUN Compared to Joint Erasure Coding and Intra-Session Network Coding (JEN)

The inventors have recognized and appreciated that the FUN approach may have a smaller
global encoding vector than the JEN approach. For the JEN approach, the global encoding vector
may consist of (3}; K;) X logq bits, where K; is the total number of packets to be transmitted for
Session/Flow i, and q is the size of the finite field F, that coding coefficients belong to. For
example, considering 10 flows, for g = 256, K; = 64,000 packets (i = 1,---,10), the global
encoding vector may consist of 640,000 bytes. It may be impossible to add such a large global
encoding vector to a packet header. Therefore, a joint erasure coding and inter-session network

coding approach may not be practicable for the JEN approach.

Implementation of the System

FIG. 1 is a diagram illustrating a system 100 that may employ techniques for increasing
data throughput and decreasing transmission delay from a source node to a sink node via a relay
node as described herein. In the example of FIG. 1, a source node 110 may encode data packets for
transmission. According to some embodiments, the source node 110 may encode the data packets
using fountain coding (as illustrated at stage 510 of FIG. SA). However, any suitable coding,
including rateless coding, may be used to encode the data packets. The source node 110 may also

transmit the data packets to a first relay node 130 via connection 120 (as illustrated at stage 520 of
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FIG. 5A), which may be a wireless connection. However, any suitable connection or

communication technology may be used to communicate among the nodes.

The first relay node 130 may receive at least one of the data packets from the source node
110 (as illustrated at stage 530 of FIG. 5A and stage 610 of FIG. 6). If the first relay node 130 has
received a sufficient quantity of the data packets needed to perform regeneration of the data
packets (as illustrated at stage 540 of FIG. 5A and stage 620 of FIG. 6), the first relay node 130
may regenerate and re-encode the data packets (as illustrated at stage 550 of FIG. 5A and stage 630
of FIG. 6). As discussed above, a “sufficient” number of data packets may be assessed based on a
fixed threshold and/or a dynamic threshold. According to some embodiments, the first relay node
130 may combine multiple of the plurality of packets for retransmission; alternatively or
additionally, the first relay node 130 may re-encode the data packets using intra-session network
coding and/or cross-next-hop network coding (as illustrated at stage 550 of FIG. 5A and stage 630
of FIG. 6). However, any suitable coding may be used to re-encode the data packets. In addition,
the first relay node 130 may relay or transmit the data packets to a second relay node 150 via
connection 140 (as illustrated at stage 560 of FIG. 5A and stage 640 of FIG. 6), which may be a

wireless connection.

The second relay node 150 may receive at least one of the data packets from the first relay
node 130. If the second relay node 150 has received a sufficient quantity of the data packets, the
second relay node 150 may regenerate and re-encode the data packets. According to some
embodiments, the second relay node 150 may combine multiple of the plurality of packets for
retransmission; alternatively or additionally, the second relay node 150 may re-encode the data
packets using intra-session network coding and/or cross-next-hop network coding. In addition, the
second relay node 150 may relay or transmit the data packets to a sink node 170 via connection 160,

which may be a wireless connection.

In some embodiments, the first relay node 130 and/or the second relay node 150 may
regenerate, re-encode, and relay the data packets conditionally, based on the quantity of the data
packets received at the given relay node. For example, the first relay node 130 and/or the second
relay node 150 may receive a subset of the data packets, and based on the subset of the data packets,
the first relay node 130 and/or the second relay node 150 may regenerate the data packets,

re-encode the regenerated data packets, and transmit the regenerated, re-encoded data packets.
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The sink node 170 may receive one or more data packets from the second relay node 150
(as illustrated at stage 570 of FIG. 5B). If the sink node 170 has received a sufficient quantity of the
data packets (as illustrated at stage 580 of FIG. 5B), the sink node 170 may regenerate and decode
the data packets as shown in FIG. 2 (as illustrated at stage 590 of FIG. 5B).

FIG. 1 shows only two relay nodes, the first relay node 130 and the second relay node 150.
This number of relay nodes is shown for simplicity of illustration. It should be appreciated that a

network system may have many more nodes and relay nodes.

Since a wireless channel is a shared medium, it can be regarded as a broadcast
channel—i.e., a transmitted packet can be overheard by all the nodes within the transmission range
of the sender of the packet. Given a pair of nodes Node A and Node B, assume that there are two
unicast flows between the two nodes—i.e., a forward flow from Node A to Node B and a backward
flow from Node B to Node A. Two coding schemes may be possible, herein referred to as FUN-1

and FUN-2:

* According to some embodiments, a FUN-1 relay node may need to recover

BATS-coded packets of the forward flow before recovering packets of the backward flow.

* According to further embodiments, each FUN-2 relay node may need to add a new
encoding vector to the header of a re-coded packet, and only the destination node may perform

decoding.

Under some embodiments according to FUN-1, two sub-layers, i.e., Layer 2.1 and Layer
2.2, may be inserted between Layer 2 (MAC) and Layer 3 (IP). Layer 2.1 may be for
cross-next-hop network coding. Layer 2.2 may be for BATS coding [25]. At a source node, Layer
2.2 may use a fountain code to encode all native packets from upper layers; there may be no Layer
2.1 at a source node. At a relay node, Layer 2.1 may be used for cross-next-hop network coding
and Layer 2.2 may be used for intra-session network coding; for Layer 2.2, the relay node may run
a procedure called FUN-1-2.2-Proc, which may perform RLNC within the same batch. At a
destination node, Layer 2.2 may decode the coded packets received; there may be no Layer 2.1 ata
destination node. FIG. 3A illustrates these layers for each node for some embodiments according

to FUN-1.

Under some embodiments according to FUN-2, only one sub-layer—i.e., Layer 2.2—may
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be inserted between Layer 2 (MAC) and Layer 3 (IP). At a source node, Layer 2.2 may use a
fountain code to encode all native packets from upper layers. At a relay node, if Layer 2.2 receives
a packet with FUN-2 switch enabled, it may run a procedure called FUN-2-2.2-Proc for mixing
packets from two flows; otherwise, it may run the procedure FUN-1-2.2-Proc, which may not mix
packets from two different flows. Unlike a BATS code, FUN-2-2.2-Proc may perform re-coding
of batches from two different flows. At a destination node, Layer 2.2 may decode the coded
packets received. FIG. 3B illustrates these layers for each node for some embodiments according

to FUN-2.

Different from COPE, FUN-2 may, according to some embodiments, provide an
end-to-end solution—i.e., a re-coded packet may never be decoded at a relay node. In contrast,
under COPE, a next-hop node such as Node A may need to recover the native packet, whose
next-hop node is Node A; the recovery process is like decoding; and the relay node may not
recover the native packet if the relay node does not have enough known packets that are mixed in

the XOR-ed packet.

According to some embodiments, both FUN-1 and FUN-2 may be restricted to two
flows—i.e., forward flow and backward flow between two nodes. An advantage of this is that there
may be no need for coordination while a higher coding gain can be achieved. A limitation is that it

may restrict its use to two flows between two nodes.

FIG. 4A illustrates the structure of a FUN-1 or FUN-2 packet according to some
embodiments. Both FUN-1 packets and FUN-2 packets may have two headers as shown in FIG.
4A. If a re-coded packet is mixed from two flows (i.e., forward and backward flows), it may have

a non-empty Header 2; otherwise, there may be no Header 2.

According to some embodiments, Header 1 and Header 2 may have the same structure for
FUN-1 and FUN-2. FIG. 4B illustrates the header structure of a FUN-1 packet according to some
embodiments. FIG. 4C illustrates the header structure of a FUN-2 packet according to some
embodiments. In FIGS. 4B and 4C, the NC switch may include two bits and indicate one of the
following four schemes is used: 1) FUN-1, 2) FUN-2, 3) RLNC, 4) no network coding. COPE may
relate to a special case of FUN-1, where there may be no encoding vector in FUN Headers; in other
words, if the NC switch equals 00 (in binary format) and there is no encoding vector in FUN

Headers, then the packet may be a COPE packet. BATS may relate to a special case of FUN-2,
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where there may be no FUN Header 2. The fountain code corresponds to the no-network-coding
case with the NC switch equal to 11 (in binary format) and no encoding vectors in FUN header and
no Header 2. The FUN architecture may be extensible to accommodate more than two flows and

more than two FUN headers.

Description of FUN-1 Coding
According to some embodiments of FUN-1, at a source node, Layer 2.2 may use a RaptorQ
(RQ) code [19] to encode all native packets from Layer 3. The RQ code may be the most advanced

fountain code that is available commercially.

Assume Node A will transmit K native packets to Node B and that Node B will transmit
K native packets to Node A (although using the same number K of packets is used for both flows
here to simplify notation, FUN may use different numbers of packets for the two flows). Each
packet may have T symbols in a finite field [F,, where g may be the size of the field. A packet
may be denoted by a column vector in ]FZ;. The set of K native packets may be denoted by the

following matrix herein
B = [by, by, -+, bg], (1)
where b; may be the i-th native packet. Packets as elements of a set may be written b; € B,

B’ € B, etc.

Outer Code of FUN-1
According to some embodiments, the outer code of FUN-1 may be the same as the outer

code of a BATS code. The outer coding of FUN-1 may be performed at a source node at Layer 2.2.

At a source node, each coded batch may have M coded packets. The i-th batch X; may be

generated from a subset B; C B (B € ]FEXK ) by the following operation

Xi = BiGi (2)
where G; € ]ngXM may be called the generator matrix of the i-th batch; B; € ]FZ;Xdi; X; € ]FZ;XM .

Matrix B; may be randomly formed by two steps: 1) sampling a given degree distribution
W = (¥, ¥;, -, Px) and obtaining a degree d; with probability W, ; 2) uniformly randomly

choosing d; packets from B to form B;. Matrix G; may be randomly generated; specifically, all
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the entries in G; may be independent and identically distributed with a uniform distribution in IF,.

According to some embodiments, G; may be generated by a pseudorandom number generator and
can be recovered at the destinations using the same pseudorandom number generator with the

same seed.

Inner Code of FUN-1
According to some embodiments of FUN-1, at a relay node, Layer 2.2 may perform inner
coding of FUN-1, which may be the same as that for a BATS code. Assume that X;; are the set of
packets of the i-th batch correctly received by Node R; and transmitted by the source, where
Node R; may be the first down-stream relay node. Since there may be lost packets from the source

to Node R, it can be written that X; ; € X;. It can also be written that
Xi; =XE;; (3)

where E; ; may be an erasure matrix representing the erasure channel between the source and
Node R;. E;; maybe an M X M diagonal matrix whose entry may be one if the corresponding
packet in X; is correctly received by Node R;, and whose entry may be zero otherwise. Hence,

- TXM
matrix X;; € F

may have the same dimensions as X;. Here, each lost packet in X; may be
replaced by a column vector whose entries are all zero, which may result in matrix X} ;.
At Node R, the inner coding of FUN-1 may be performed by
Y, =X;,H;; =X;E;;H;; =B,GE;;H;,, 4)
where H;; € FM*M may be the transfer matrix of an RLNC for the i-th batch at Node R;. After
inner-coding, each column of the product matrix E;{H;; may be added to the header of the

corresponding coded packet as a global encoding vector, which may be needed by the destination

node for decoding.

At the relay node of the j-th hop, which may be denoted as Node R;, the following

re-coding may be performed
Yi; =XiHi; =Y;;1E;;H;
= B,GE;;H;; - E;;H; j, (5)

where E; ; may be an erasure matrix of the i-th batch for the erasure channel from Node R;_; to
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Node R;; H;; € ]F’C‘{’ *M may be the transfer matrix of an RLNC for the i-th batch at Node R;.
After inner-coding, each column of the product matrix E; ;H; --- E; jH; ; may be used to update

the global encoding vector of the corresponding coded packet.

The above inner-coding procedure may be implemented in software module

FUN-1-2.2-Proc.

XOR Coding of FUN-1
At Node R; with respect to the forward flow from Node A to Node B, the XOR encoding

procedure is shown in Algorithm 1 (FIG. 8). The XOR decoding procedure is shown in Algorithm
2 (FIG. 9).

Precoding of FUN-1
According to some embodiments of FUN-1, at a source node, precoding may be performed.
The precoding can be achieved by a traditional erasure code such as LDPC and Reed-Solomon
code. The precoding of FUN-1 may be performed at a source node at Layer 2.2. After precoding,

the resulting packets may be further encoded by the outer encoder.

Computational Complexity and Delay Induced by FUN-1

According to some embodiments, FUN-1 may incur extra computation overhead compared
to TCP for encoding and decoding, and hence extra delay. For the outer code of FUN-1, since a
batch mode may be used, the encoding complexity (in terms of number of additions and
multiplications per coded packet) may be linear with respect to the batch size M. Since M may
usually be small, the delay incurred by the outer code of FUN-1 may be small. For the inner code
of FUN-1, again, since a batch mode may be used, the encoding complexity (in terms of number of
additions and multiplications per coded packet) may be linear with respect to the batch size M.
Since M may usually be small, the delay incurred by the inner code of FUN-1 may be small.
Similarly, the XOR encoding complexity and the XOR decoding complexity of FUN-1 (in terms
of number of additions and multiplications per coded packet) may be linear with respect to the
batch size M. The complexity of precoding of FUN-1 (in terms of number of additions and
multiplications per coded packet) may be O(1) since the precoding may be applied to all the
native packets K rather than running in a batch mode (for a batch mode, each coded packet may

need a batch of packets to participate in coding or decoding). Overall, the computational
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complexity and delay incurred by FUN-1 may be small.

Description of FUN-2 Coding

FUN-2 may include outer code, inner code, and precoding.

Outer Code of FUN-2
According to some embodiments of FUN-2, the outer code of FUN-2 may be the same as

the outer code of FUN-1, except for the decoding process. In the decoding process, the destination
node of the forward flow may also be a source node of the backward flow. This destination node
can use its known packets of the backward flow to decode the coded packets of the forward flow.
To limit the size of the encoding vector in the packet header, at a relay node, FUN-2 may only
allow the mixing of two batches from two flows once—i.e., if a packet is already a mixture of two
packets from two flows, it may not be re-coded again at a relay node. The FUN-2 outer decoding
procedure is shown in Algorithm 3 (FIG. 10). For simplicity, the two nodes may be denoted as
Node 0 and 1. The equation in Step 17 can be proved as follows. Since the inner coding may be a

mixture of two flows according to Eq. (8), it may be written that
Y;; = [B;j Bx1_j1[H;j, Hi 11" (6)
=B H;; + By jHy;_; (7)

Hence, B; jH; ; =Y, ; — By 1_jHy 1_;. Since B; ;H; ; may be the coded packets of the i-th batch

and Destination j, B; ;H; ; may be assigned to Y; ;. This may prove the equation in Step 17.

Inner Code of FUN-2
According to some embodiments of FUN-2, the inner code of FUN-2 may be similar to the
inner code of FUN-1 in the sense that both of them may use RLNC. The difference may be that
FUN-2 may mix the packets of two flows while FUN-1 may not do so. Specifically, under FUN-2,
at the relay node of the j-th hop, which may be denoted as Node R;, the following re-coding may

be applied to two juxtaposed matrices of received packets:
Zi;=1[Z;j_1Ei;, Zy js1Ex j1H; , (®)

where Z; ; € ]FZ;XM may contain M re-coded packets of the i-th batch, generated by Node R;;

Ek’ ; € FY*™ may be an erasure matrix of the k-th batch for the erasure channel from Node Rjq
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to Node R;; and H; ; € F2"*" may be the transfer matrix of an RLNC for the i-th batch of the
forward flow and the k-th batch of the backward flow at Node R;. The FUN-2 inner-coding
procedure is shown in Algorithm 4 (FIG. 11), where Destination 0 and 1 may denote the
destination of the forward and backward flow, respectively; Packet y; ,,, may have batchID i and
its position in the batch may be m; a buffer being complete means that a buffer may be full with M
packets OR a newly arriving packet may have a batch ID, which may be larger than that of the
packets in the buffer. After inner-coding, each column of the matrix H; ; may be added to the
global encoding vector of the corresponding coded packet. The inner-coding procedure may be

implemented in software module FUN-2-2.2-Proc.

Precoding of FUN-2
The precoding of FUN-2 is the same as the precoding of FUN-1.

Computational Complexity and Delay Induced by FUN-2

According to some embodiments, FUN-2 may incur extra computation overhead compared
to TCP for encoding and decoding, and hence extra delay. For the outer code of FUN-2, since a
batch mode may be used, the encoding complexity (in terms of number of additions and
multiplications per coded packet) may be linear with respect to the batch size M. Since M may
usually be small, the delay incurred by the outer code of FUN-2 may be small. For the inner code
of FUN-2, again, since a batch mode may be used, the encoding complexity (in terms of number of
additions and multiplications per coded packet) may be linear with respect to the batch size M.
Since M may usually be small, the delay incurred by the inner code of FUN-2 may be small. The
complexity of precoding of FUN-2 (in terms of number of additions and multiplications per coded
packet) may be O(1) since the precoding may be applied to all the native packets K rather than
running in a batch mode. Overall, the computational complexity and delay incurred by FUN-2 may

be small.

Examples based on Simulation

Simulator
QualNet was used in these examples to implement FUN coding according to some

embodiments [27]. For comparison, QualNet was also used to implement a BATS code [25], a
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fountain code (specifically, the RQ code [19]), RLNC [21], and COPE [9]. For COPE, only the
XOR operation for mixing two flows was implemented, with Layer 4 in the COPE scheme being
TCP. The reason for using TCP for COPE is that each scheme may need to achieve perfect

recovery of lost packets to make a fair comparison.

For RLNC, a file may be segmented into batches, each of which may consist of M native
packets. Each batch may be transmitted independently as if it is a single file; there may be no
coding across two batches. A source node may keep transmitting coded packets of a batch until the
source node receives an ACK message from the destination node. A relay node may have a buffer
of M packets; when a relay node receives a packet from its upstream node, it may place the packet
in the buffer; if the buffer is full, the newly arriving packet may push out the oldest packet; then the
relay node may take all the packets in the buffer as input and generate one RLNC-coded packet,
which may then be sent out to its downstream node. When a destination node decodes all the native
packets in a batch, the destination node may transmit an ACK message toward the source node.
Upon receiving the ACK message, the source node may stop transmitting the coded packets of the

current batch, and may start to transmit the coded packets of the next batch.

IEEE 802.11b was used for the physical layer and MAC layer of each wireless node, and
the Ad hoc On-Demand Distance Vector (AODV) protocol was used for routing. For COPE, TCP
was used as the Layer 4 protocol; for FUN-1, FUN-2, BATS, fountain code, and RLNC, UDP was
used as the Layer 4 protocol. These examples had the following settings: packet size T = 1024
bytes; batch size M = 16 packets.

Exemplary Results
The following results indicate the effectiveness of the techniques of FUN coding as

described herein.

The inventors conducted experiments for the following four examples: 1) two hops with no
node mobility (fixed topology) under various packet loss rate per hop, 2) various number of hops
with no node mobility (fixed topology) under fixed packet loss rate per hop, 3) two hops with fixed
source/destination nodes and a moving relay node (dynamic topology), 4) a large number of nodes
with node mobility (dynamic topology). There are two flows (forward and backward flows)
between each source/destination pair. For each example, the inventors compared the performance

of seven schemes: FUN-1, FUN-2, a BATS code, a fountain code, RLNC, COPE, and TCP.
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The lower the packet sending rate of UDP, the lower the throughput. Too high of a packet
sending rate of UDP, however, may incur congestion and packet loss. Hence, in the experiments of
FUN-1, FUN-2, BATS, fountain code, and RLNC, which use UDP as their Layer 4 protocol, the
inventors tuned the packet sending rate of UDP to find the maximum throughput for each of these
five schemes. At the optimal packet sending rate of UDP, the inventors conducted ten experiments
for each of these five schemes and took the average throughput of the ten experiments as the

performance measure of each scheme.

For COPE and TCP, the inventors conducted ten experiments for each of these two

schemes and took the average throughput of the ten experiments as the performance measure of

COPE and TCP.

Example 1: Two Hops with No Node Mobility
The inventors arranged this set of experiments as follows. There are three nodes in the
network: a source node, a destination node, and one relay node. The communication path from the
source node to the destination node has two hops. All three nodes are immobile, and so the

network topology is fixed.

The number of native packets to be transmitted by the source is denoted K. In the
experiments, the inventors measured the throughput in Mbits/s under different values of K and
different packet loss rate (PLR). The PLR may be the same for all the links/hops in the network.
Here, the PLR may not include packet loss due to the thermal noise in the physical layer and packet
collision, which may not be directly controllable; here the PLR may be achieved by randomly

dropping a correctly received packet at Layer 2 with a probability equal to the given PLR.

Table I shows the total throughput of the two flows (i.e., forward/backward flows) of the

seven schemes under Example 1. The inventors made the following observations:

* For both the lossless and lossy situations, FUN-1 and FUN-2 may achieve the highest
throughput.

* The throughput of FUN-2 may be higher than or equal to that of FUN-1. This may be
because FUN-2 may use RLNC at a relay node and RLNC has a higher coding gain than the XOR

operation used in FUN-1.

* For both the lossless and lossy situations, the fountain code may achieve a higher
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throughput than the BATS code. This is because a BATS code may only achieve higher
throughput than a fountain code when there are more than two hops or the PLR is high (e.g., 20%).

* For the lossless situation, COPE may achieve a higher throughput than the BATS and
the fountain code for K = 1600 but may achieve a lower throughput than the BATS and the
fountain code for K = 6400 and 16000. This may be due to the fact that BATS codes and
fountain codes are erasure channel coding (while COPE is not) and hence, the more the native

packets to transmit, the higher the coding gain is.

* For both the lossless and lossy situations, RLNC may achieve a lower throughput
than the fountain code and the BATS code. This may be because a coded packet in RLNC may be
restricted to one batch of M native packets while a coded packet in the BATS code and the
fountain code may be a random mixture of all the K native packets; hence each native packet may
have less chance of being recovered in RLNC for the same number of coded packets compared to

the BATS code and the fountain code.

* RLNC may achieve a lower throughput than COPE in the lossless situation, but may
achieve a higher throughput than COPE in the lossy situation. This may be because RLNC is
erasure channel coding: when there is no packet loss, the redundancy induced by RLNC may
reduce the throughput; when there is packet loss, the reliability induced by RLNC may make it
achieve a higher throughput.

* TCP may achieve the least throughput for the lossless situation. This is because TCP
may have a slow start and a congestion avoidance phase, which may reduce throughput. In contrast,
COPE may have network coding gain and FUN-1, FUN-2, the BATS code, the fountain code, and
RLNC may use UDP with an optimal packet sending rate.

* For PLR=10%, COPE and TCP may time out and not receive all K number of
packets due to high packet loss rate. This may be consistent with TCP performing poorly under

environments of high packet loss rates [8].
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TABLE I. THROUGHPUT UNDER EXAMPLE 1

K Scheme Throughput (Mbits/s)
PLR =0 PLR = 10%

FUN-1 0.697 0.652

FUN-2 0.697 0.668

BATS 0.484 0.488

1600 Fountain 0.498 0.508

RLNC 0.460 0.340

COPE 0.520 N/A

TCP 0.375 N/A

FUN-1 0.720 0.665

FUN-2 0.727 0.669

BATS 0.517 0.502

6400 Fountain 0.533 0.513

RLNC 0.460 0.340

COPE 0.500 N/A

TCP 0.378 N/A

FUN-1 0.714 0.637

FUN-2 0.714 0.655

BATS 0.521 0.487

16000 Fountain 0.533 0.493

RLNC 0.460 0.340

COPE 0.504 N/A

TCP 0.379 N/A

Example 2: Various Number of Hops with No Node Mobility
The inventors arranged this set of experiments as follows. The network consists of a source
node, a destination node, and 1 or 2 or 4 relay nodes. All the nodes in the network form a chain
topology from the source node to the destination node. The communication path from the source
node to the destination node has 2 or 3 or 5 hops. All the nodes are immobile, and so the network
topology is fixed. For all the experiments in Example 2, the inventors set PLR=10% for each
hop/link. Again, the PLR does not include packet loss due to the thermal noise in the physical layer

and packet collision.

Table II shows the throughput of seven schemes under Example 2. The inventors made the

following observations:

* For both the lossless and lossy situations, FUN-1 and FUN-2 may achieve similar
throughput and their throughput may be the highest among the seven schemes.
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* When the number of hops is two, the throughput of FUN-2 may not be less than
FUN-1. This may be because FUN-2 may use RLNC at a relay node.

* When the number of hops is more than two, FUN-1 may achieve a higher throughput
than FUN-2. This may be because FUN-2 may only allow mixing two flows once but FUN-1 may
allow mixing two flows an unlimited number of times. Therefore, FUN-1 may potentially have a
higher coding gain than FUN-2 due to more coding opportunities. However, this may not always
be true. Since FUN-1 may always use broadcast, and FUN-2 may have to use unicast when FUN-2
packet has already been mixed from two flows once, FUN-2 unicast packets may be more reliably
received than FUN-1 broadcast packets under 802.11 MAC. In the 802.11 unicast mode, packets
may be immediately acknowledged by their intended next-hop nodes; if no ACK message is
received, the 802.11 MAC layer may retransmit the packet a number of times (with exponential
backoff) until an ACK message is received or a time-out event happens. A broadcast packet may

not be acknowledged and retransmitted under 802.11, however.

* When the number of hops is two, the fountain code may achieve a higher throughput
than the BATS code; and when the number of hops is more than two, the BATS code may achieve

a higher throughput than the fountain code.

* COPE and TCP may time out and not receive all K number of packets due to high
packet loss rate. Thus, COPE and TCP may achieve the least throughput.

* For all the situations in Example 2, RLNC achieves a lower throughput than the
BATS code. This is because a coded packet in RLNC is restricted to one batch of M native

packets while a coded packet in the BATS code is a random mixture of all the K native packets.

* When the number of hops is 2 and 3, RLNC achieves a lower throughput than the
fountain code. This is because a coded packet in RLNC is restricted to one batch of M native
packets while a coded packet in the fountain code is a random mixture of all the K native packets.
But when the number of hops is 5, RLNC achieves a higher throughput than the fountain code.
This is because the more relay nodes, the more opportunities for network coding in RLNC while
the fountain code does not have such a benefit.

* For the example of K = 6400 and five hops, the fountain code does not receive all
the K native packets within 6000 seconds, which we call “timeout”. The timeout is because the

end-to-end packet loss is too high for five hops.
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TABLE II. THROUGHPUT UNDER EXAMPLE 2

K Scheme Throughput (Mbits/s)

2 hops 3 hops 5 hops

FUN-1 0.652 0.413 0.045

FUN-2 0.652 0.364 0.042

BATS 0.488 0.317 0.036

1600 Fountain 0.508 0.271 0.005
RLNC 0.340 0.202 0.024

COPE N/A N/A N/A

TCP N/A N/A N/A

FUN-1 0.665 0.376 0.026

FUN-2 0.669 0.357 0.033

BATS 0.502 0.327 0.025

6400 Fountain 0.513 0.220 N/A
RLNC 0.340 0.202 0.024

COPE N/A N/A N/A

TCP N/A N/A N/A

Example 3: Two Hops with Fixed Source/Destination Nodes and a Moving Relay

Node
The inventors arranged this set of experiments as follows. There are three nodes in the

network: a fixed source node, a fixed destination node, and one moving relay node. The distance
between the source node and the destination node is 1200 meters; the transmission range of each
node is 700 meters. Hence, the source node cannot directly communicate with the destination node;
a relay node is needed. The relay node is moving back and forth along the straight line, which is
perpendicular to the straight line that links the source node and the destination node; in addition,
the relay node has equal distance to the source node and the destination node. When the relay node
moves into the transmission range of the source node, it can pick up the packets transmitted by the
source node and relay the packets to the destination node. When the relay node moves out of the
transmission range of the source node, it cannot receive packets transmitted by the source node
although the source node keeps transmitting; in this example, all the packets transmitted by the
source node will be lost. The communication path from the source node to the destination node has
two hops. Since the relay node moves around, the network topology is dynamic.

In this set of experiments, the number of native packets to be transmitted by the source is
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1600 packets—i.e., K = 1600. Table III shows the throughput of seven schemes under Example 3.
The inventors made the following observations:

* FUN-1 and FUN-2 may achieve the highest throughput among the seven schemes.

* The fountain code may achieve a slightly higher throughput than the BATS code.
This is because when the relay node moves out of the transmission range of the source node, the
BATS code may suffer more than the fountain code. This can be illustrated by an example for the
BATS code: the relay node may hold M /2 packets of the same batch when it moves out of the
transmission range; when the relay node comes back within the transmission range of the source
node, the source node may already transmit M /2 packets of another batch (which may be lost due
to being out of range) and may transmit the remaining M /2 packets of this batch; in this situation,
two batches lost 50% of the packets, resulting in more BATS-coded packets to be transmitted to
recover the native packets that correspond to the lost packets, in comparison to the fountain code.

* RLNC may achieve a lower throughput than the BATS code. This is because coding
in RLNC may be restricted to a batch of M native packets while BATS may not.

* COPE may achieve a lower throughput than RLNC. This is because RLNC may use
erasure channel coding, which may be more robust against packet loss when the relay node moves
out of the transmission range.

* TCP may achieve the least throughput. This may be because all other six schemes

have coding gain.

TABLE III. THROUGHPUT UNDER EXAMPLE 3

Scheme Throughput
(Mbits/s)

FUN-1 0.250
FUN-2 0.250
BATS 0.232
Fountain 0.237
RLNC 0.220
COPE 0.109
TCP 0.105

Example 4: A Large Number of Nodes with Node Mobility

The inventors arranged this set of experiments as follows. There are 400 nodes in the
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network. All the nodes move under the random waypoint mobility model—i.e., each node selects a
random position, moves towards it in a straight line at a constant speed that is randomly selected
from a range, and pauses at that destination; and each node repeats this process throughout the
experiment. Due to node mobility, the communication routes change over time. Hence, the
network topology is dynamic.

In this set of experiments, the range of the nodes’ speed is from 5 meters/s to 10 meters/s.
All the nodes move in a square area of 3000 meters by 3000 meters. The inventors measured the
throughput between a specific pair of source/destination nodes. This pair of source/destination
nodes do not move and are not in the transmission range of each other. Hence, they need relay
nodes to forward packets to the destination. The relay nodes are moving around. The number of
hops between the intended source and the intended destination is varying since the relay nodes are
moving around.

To make the experiments more realistic, the inventors also generated some background
traffic. The background traffic was generated in the following manner: 100 pairs of nodes were
randomly selected out of the 400 nodes; a Constant Bit Rate (CBR) is generated between each pair
of nodes. Each CBR flow lasts for 30 seconds with a random start time. Since the data rate needs to
be constant for CBR, the source generates a packet every T, second (T, € (0,1]); the packet size is
1024 bytes. For example, for T, = 1 second, the data rate is 1024 bytes/s. The number of hops
from the source node to the destination node is random, depending on the positions of all the nodes.
Since all the nodes are mobile, the network topology is dynamic.

In this set of experiments, the number of native packets to be transmitted by the source
under study is 1600 packets—i.e., K = 1600. Table IV shows the throughput of seven schemes
under Example 4. The inventors made the following observations:

* FUN-2 may achieve the highest throughput and FUN-1 may achieve the second
highest throughput. This may be because the number of hops in Example 4 may usually be small
(mostly two hops) and hence FUN-2 may perform better than FUN-1 as in Example 1.

* COPE may achieve the third highest throughput and TCP may achieve the fourth
highest throughput. Their throughput may be higher than the BATS code, the fountain code, and
RLNC; this may be because congestion and MAC contention are serious performance-limiting
problems in multihop wireless networks and COPE and TCP both may have congestion control to

avoid congestion/contention with the background traffic while the BATS code, the fountain code,
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and RLNC may not.

* The fountain code may achieve a higher throughput than the BATS code. The reason
may be the same as in Example 3. The BATS code may be less robust against moving relay nodes
compared to the fountain code.

* RLNC may achieve a lower throughput than the BATS code as in Example 3.

TABLE IV. THROUGHPUT UNDER EXAMPLE 4

Scheme Throughput
(Mbits/s)

FUN-1 0.669
FUN-2 0.691
BATS 0.330
Fountain 0.385
RLNC 0.291
COPE 0.493
TCP 0.451

In summary, all the experimental results demonstrated that the FUN approach may achieve
higher throughput than BATS code, fountain code (RQ code), RLNC, COPE, and TCP for

multihop wireless networks.
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Computing Environment

Techniques for increasing data throughput and decreasing transmission delay from a
source node to a sink node via a relay node may be implemented on any suitable hardware,
including a programmed computing system. For example, FIG. 1 illustrates a system implemented
with multiple computing devices, which may be distributed and/or centralized. Also, FIGS. 5A,
5B, and 6 illustrate algorithms executing on at least one computing device. FIG. 5 illustrates an
example of a suitable computing system environment 300 on which embodiments of these

algorithms may be implemented. This computing system may be representative of a computing
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system that implements the described technique of increasing data throughput and decreasing
transmission delay from a source node to a sink node via a relay node. However, it should be
appreciated that the computing system environment 300 is only one example of a suitable
computing environment and is not intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing environment 300 be interpreted as
having any dependency or requirement relating to any one or combination of components
illustrated in the exemplary operating environment 300.

The invention is operational with numerous other general purpose or special purpose
computing system environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for use with the invention include, but
are not limited to, personal computers, server computers, hand-held or laptop devices,
multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, distributed computing
environments or cloud-based computing environments that include any of the above systems or
devices, and the like.

The computing environment may execute computer-executable instructions, such as
program modules. Generally, program modules include routines, programs, objects, components,
data structures, etc. that perform particular tasks or implement particular abstract data types. The
invention may also be practiced in distributed computing environments where tasks are performed
by remote processing devices that are linked through a communications network. In a distributed
computing environment, program modules may be located in both local and remote computer
storage media including memory storage devices.

With reference to FIG. 5, an exemplary system for implementing the invention includes a
general purpose computing device in the form of a computer 310. Though a programmed general
purpose computer is illustrated, it should be understood by one of skill in the art that algorithms
may be implemented in any suitable computing device. Accordingly, techniques as described
herein may be implemented in a system for increasing data throughput and decreasing
transmission delay from a source node to a sink node via a relay node. These techniques may be
implemented in such network devices as originally manufactured or as a retrofit, such as by
changing program memory devices holding programming for such network devices or software

download. Thus, some or all of the components illustrated in FIG. 7, though illustrated as part of a
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general purpose computer, may be regarded as representing portions of a node or other component
in a network system.

Components of computer 310 may include, but are not limited to, a processing unit 320, a
system memory 330, and a system bus 321 that couples various system components including the
system memory 330 to the processing unit 320. The system bus 321 may be any of several types of
bus structures including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of example and not limitation, such
architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local
bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.

Computer 310 typically includes a variety of computer readable media. Computer readable
media can be any available media that can be accessed by computer 310 and includes both volatile
and nonvolatile media, removable and non-removable media. By way of example, and not
limitation, computer readable media may comprise computer storage media and communication
media. Computer storage media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of information such
as computer readable instructions, data structures, program modules or other data. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any
other medium that can be used to store the desired information and that can by accessed by
computer 310. Communication media typically embodies computer readable instructions, data
structures, program modules, or other data in a modulated data signal such as a carrier wave or
other transport mechanism and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of example and not limitation,
communication media includes wired media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF), infrared (IR), and other wireless media.
Combinations of any of the above should also be included within the scope of computer readable

media.
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The system memory 330 includes computer storage media in the form of volatile and/or
nonvolatile memory such as read only memory (ROM) 331 and random access memory (RAM)
332. A basic input/output system 333 (BIOS), containing the basic routines that help to transfer
information between elements within computer 310, such as during start-up, is typically stored in
ROM 331. RAM 332 typically contains data and/or program modules that are immediately
accessible to and/or presently being operated on by processing unit 320. By way of example and
not limitation, FIG. 7 illustrates operating system 334, application programs 335, other program
modules 336, and program data 337.

The computer 310 may also include other removable/non-removable, volatile/nonvolatile
computer storage media. By way of example only, FIG. 7 illustrates a hard disk drive 341 that
reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 351 that
reads from or writes to a removable, nonvolatile magnetic disk 352, and an optical disk drive 355
that reads from or writes to a removable, nonvolatile optical disk 356 such as a CD-ROM or other
optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid
state ROM, and the like. The hard disk drive 341 is typically connected to the system bus 321
through an non-removable memory interface such as interface 340, and magnetic disk drive 351
and optical disk drive 355 are typically connected to the system bus 321 by a removable memory
interface, such as interface 350.

The drives and their associated computer storage media discussed above and illustrated in
FIG. 7, provide storage of computer readable instructions, data structures, program modules, and
other data for the computer 310. In FIG. 7, for example, hard disk drive 341 is illustrated as storing
operating system 344, application programs 345, other program modules 346, and program data
347. Note that these components can either be the same as or different from operating system 334,
application programs 335, other program modules 336, and program data 337. Operating system
344, application programs 345, other program modules 346, and program data 347 are given
different numbers here to illustrate that, at a minimum, they are different copies. A user may enter
commands and information into the computer 310 through input devices such as a keyboard 362
and pointing device 361, commonly referred to as a mouse, trackball, or touch pad. Other input

devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the
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like. These and other input devices are often connected to the processing unit 320 through a user
input interface 360 that is coupled to the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port, or a universal serial bus (USB). A monitor 391 or
other type of display device is also connected to the system bus 321 via an interface, such as a
video interface 390. In addition to the monitor, computers may also include other peripheral output
devices such as speakers 397 and printer 396, which may be connected through an output
peripheral interface 395.

The computer 310 may operate in a networked environment using logical connections to
one or more remote computers, such as a remote computer 380. The remote computer 380 may be
a personal computer, a server, a router, a network PC, a peer device, or some other common
network node, and typically includes many or all of the elements described above relative to the
computer 310, although only a memory storage device 381 has been illustrated in FIG. 7. The
logical connections depicted in FIG. 7 include a local area network (LAN) 371 and a wide area
network (WAN) 373, but may also include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.

When used in a LAN networking environment, the computer 310 is connected to the LAN
371 through a network interface or adapter 370. When used in a WAN networking environment,
the computer 310 typically includes a modem 372 or other means for establishing communications
over the WAN 373, such as the Internet. The modem 372, which may be internal or external, may
be connected to the system bus 321 via the user input interface 360, or other appropriate
mechanism. In a networked environment, program modules depicted relative to the computer 310,
or portions thereof, may be stored in the remote memory storage device. By way of example and
not limitation, FIG. 7 illustrates remote application programs 385 as residing on memory device
381. It will be appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers may be used.

Having thus described several aspects of at least one embodiment of this invention, it is to
be appreciated that various alterations, modifications, and improvements will readily occur to
those skilled in the art.

Such alterations, modifications, and improvements are intended to be part of this
disclosure, and are intended to be within the spirit and scope of the invention. Further, though

advantages of the present invention are indicated, it should be appreciated that not every
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embodiment of the invention will include every described advantage. Some embodiments may not
implement any features described as advantageous herein and in some instances. Accordingly, the
foregoing description and drawings are by way of example only.

The above-described embodiments of the present invention can be implemented in any of
numerous ways. For example, the embodiments may be implemented using hardware, software or
a combination thereof. When implemented in software, the software code can be executed on any
suitable processor or collection of processors, whether provided in a single computer or distributed
among multiple computers. Such processors may be implemented as integrated circuits, with one
or more processors in an integrated circuit component. Though, a processor may be implemented
using circuitry in any suitable format.

Further, it should be appreciated that a computer may be embodied in any of a number of
forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a tablet
computer. Additionally, a computer may be embedded in a device not generally regarded as a
computer but with suitable processing capabilities, including a Personal Digital Assistant (PDA), a
smart phone or any other suitable portable or fixed electronic device.

Also, a computer may have one or more input and output devices. These devices can be
used, among other things, to present a user interface. Examples of output devices that can be used
to provide a user interface include printers or display screens for visual presentation of output and
speakers or other sound generating devices for audible presentation of output. Examples of input
devices that can be used for a user interface include keyboards, and pointing devices, such as mice,
touch pads, and digitizing tablets. As another example, a computer may receive input information
through speech recognition or in other audible format.

Such computers may be interconnected by one or more networks in any suitable form,
including as a local area network or a wide area network, such as an enterprise network or the
Internet. Such networks may be based on any suitable technology and may operate according to
any suitable protocol and may include wireless networks, wired networks or fiber optic networks.

Also, the various methods or processes outlined herein may be coded as software that is
executable on one or more processors that employ any one of a variety of operating systems or
platforms. Additionally, such software may be written using any of a number of suitable

programming languages and/or programming or scripting tools, and also may be compiled as
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executable machine language code or intermediate code that is executed on a framework or virtual
machine.

In this respect, the invention may be embodied as a computer readable storage medium (or
multiple computer readable media) (e.g., a computer memory, one or more floppy discs, compact
discs (CD), optical discs, digital video disks (DVD), magnetic tapes, flash memories, circuit
configurations in Field Programmable Gate Arrays or other semiconductor devices, or other
tangible computer storage medium) encoded with one or more programs that, when executed on
one or more computers or other processors, perform methods that implement the various
embodiments of the invention discussed above. As is apparent from the foregoing examples, a
computer readable storage medium may retain information for a sufficient time to provide
computer-executable instructions in a non-transitory form. Such a computer readable storage
medium or media can be transportable, such that the program or programs stored thereon can be
loaded onto one or more different computers or other processors to implement various aspects of
the present invention as discussed above. As used herein, the term “computer-readable storage
medium” encompasses only a computer-readable medium that can be considered to be a
manufacture (i.e., article of manufacture) or a machine. Alternatively or additionally, the invention
may be embodied as a computer readable medium other than a computer-readable storage
medium, such as a propagating signal.

The terms “program” or “software” are used herein in a generic sense to refer to any type of
computer code or set of computer-executable instructions that can be employed to program a
computer or other processor to implement various aspects of the present invention as discussed
above. Additionally, it should be appreciated that according to one aspect of this embodiment, one
or more computer programs that when executed perform methods of the present invention need not
reside on a single computer or processor, but may be distributed in a modular fashion amongst a
number of different computers or processors to implement various aspects of the present
invention.

Computer-executable instructions may be in many forms, such as program modules,
executed by one or more computers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. Typically the functionality of the program modules may

be combined or distributed as desired in various embodiments.
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Also, data structures may be stored in computer-readable media in any suitable form. For
simplicity of illustration, data structures may be shown to have fields that are related through
location in the data structure. Such relationships may likewise be achieved by assigning storage for
the fields with locations in a computer-readable medium that conveys relationship between the
fields. However, any suitable mechanism may be used to establish a relationship between
information in fields of a data structure, including through the use of pointers, tags or other
mechanisms that establish relationship between data elements.

Various aspects of the present invention may be used alone, in combination, or in a variety
of arrangements not specifically discussed in the embodiments described in the foregoing and is
therefore not limited in its application to the details and arrangement of components set forth in the
foregoing description or illustrated in the drawings. For example, aspects described in one
embodiment may be combined in any manner with aspects described in other embodiments.

Also, the invention may be embodied as a method, of which an example has been provided.
The acts performed as part of the method may be ordered in any suitable way. Accordingly,
embodiments may be constructed in which acts are performed in an order different than illustrated,
which may include performing some acts simultaneously, even though shown as sequential acts in
illustrative embodiments.

Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim
element does not by itself connote any priority, precedence, or order of one claim element over
another or the temporal order in which acts of a method are performed, but are used merely as
labels to distinguish one claim element having a certain name from another element having a same
name (but for use of the ordinal term) to distinguish the claim elements.

Also, the phraseology and terminology used herein is for the purpose of description and

2% <<

should not be regarded as limiting. The use of “including,” “comprising,” or “having,”

“containing,” “involving,” and variations thereof herein, is meant to encompass the items listed
thereafter and equivalents thereof as well as additional items.

In the attached claims, various elements are recited in different claims. However, the
claimed elements, even if recited in separate claims, may be used together in any suitable

combination.

What is claimed is:
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Claims

1. A network system for increasing data throughput and decreasing transmission delay from a
source node to a sink node via a relay node, the network system comprising:
a source node configured to encode a plurality of data packets using rateless coding and
transmit the plurality of data packets;
at least one relay node configured to:
receive at least one of the plurality of data packets from the source node, and
if the at least one relay node has received a sufficient quantity of the plurality of
data packets, regenerate, re-encode, and relay the plurality of data packets; and
a sink node configured to:
receive one or more of the plurality of data packets from the at least one relay node,
and
if the sink node has received the sufficient quantity of the plurality of data packets,

regenerate and decode the plurality of data packets.

2. The network system of claim 1, wherein the source node is further configured to encode the

plurality of data packets using fountain coding.

3. The network system of claim 2, wherein the at least one relay node is further configured to,
if the at least one relay node has received the sufficient quantity of the plurality of data packets,

combine multiple of the plurality of packets for retransmission.

4. The network system of claim 2, wherein the at least one relay node is further configured to,
if the at least one relay node has received the sufficient quantity of the plurality of data packets,
re-encode the plurality of data packets using intra-session network coding and/or cross-next-hop

network coding.

5. The network system of claim 2, wherein the at least one relay node is further configured to,
if the at least one relay node has received the sufficient quantity of the plurality of data packets,

regenerate the plurality of data packets using local encoding vectors.
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6. The network system of claim 5, wherein the at least one relay node is further configured to,
if the at least one relay node has received the sufficient quantity of the plurality of data packets,
regenerate a plurality of data packets of a forward flow and subsequently regenerate a plurality of

data packets of a backward flow.

7. The network system of claim 20, wherein the relay node is further configured to, if the at
least one relay node has received the sufficient quantity of the plurality of data packets, add a new

encoding vector to a header of each of the at least one of the plurality of data packets regenerated.

8. A method for increasing data throughput and decreasing transmission delay from a source
node to a sink node via a relay node, the method comprising:

receiving, from at least one source node, at least one of a plurality of data packets encoded
by the at least one source node using fountain coding; and

if a sufficient quantity of the plurality of data packets are received, regenerating,
re-encoding, and relaying the plurality of data packets to a sink node for regenerating and decoding

of the plurality of data packets.

0. The method of claim 8, further comprising, if the sufficient quantity of the plurality of data

packets are received, combining multiple of the plurality of packets for retransmission.

10. The method of claim 8, further comprising, if the sufficient quantity of the plurality of data
packets are received, re-encoding the plurality of data packets using intra-session network coding

and/or cross-next-hop network coding.

11. The method of claim 8, further comprising, if the sufficient quantity of the plurality of data

packets are received, regenerating the plurality of data packets using local encoding vectors.

12. The method of claim 11, further comprising, if the sufficient quantity of the plurality of
data packets are received, regenerating a plurality of data packets of a forward flow and

subsequently regenerating a plurality of data packets of a backward flow.
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13. The method of claim 80, further comprising, if the sufficient quantity of the plurality of
data packets are received, adding a new encoding vector to a header of each of the at least one of

the plurality of data packets regenerated.

14. At least one computer-readable storage medium encoded with executable instructions that,
when executed by at least one processor, cause the at least one processor to perform a method for
increasing data throughput and decreasing transmission delay from a source node to a sink node
via a relay node, the method comprising:

receiving, from at least one source node, at least one of a plurality of data packets encoded
by the at least one source node using fountain coding; and

if a sufficient quantity of the plurality of data packets are received, regenerating,
re-encoding, and relaying the plurality of data packets to a sink node for regenerating and decoding

of the plurality of data packets.

15. The at least one computer-readable storage medium of claim 0, the method further
comprising, if the sufficient quantity of the plurality of data packets are received, combining

multiple of the plurality of packets for retransmission.

16. The at least one computer-readable storage medium of claim 14, the method further
comprising, if the sufficient quantity of the plurality of data packets are received, re-encoding the
plurality of data packets using intra-session network coding and/or cross-next-hop network

coding.
17. The at least one computer-readable storage medium of claim 0, the method further
comprising, if the sufficient quantity of the plurality of data packets are received, regenerating the

plurality of data packets using local encoding vectors.

18. The at least one computer-readable storage medium of claim 17, the method further

comprising, if the sufficient quantity of the plurality of data packets are received, regenerating a

- 40 -
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plurality of data packets of a forward flow and subsequently regenerating a plurality of data

packets of a backward flow.
19. The at least one computer-readable storage medium of claim 140, the method further

comprising, if the sufficient quantity of the plurality of data packets are received, adding a new

encoding vector to a header of each of the at least one of the plurality of data packets regenerated.
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ALGORITHM 1 XOR ENCODING OF FUN-1

1: WHILE AT LEAST ONE FLOW (FORWARD OR BACKWWARD FLOW) ISALIVE DO
2 IFLAYER 2.2 OUTPUT QUEUES FOR THE FORWARD FLOW AND THE BACKWARD FLOW BOTH HAVE AT LEAST ONE BATCH OF M RE-CODED
PACKETS, SAY, THE #TH BATCH FOR THE FORWARD FLOWAND THE /TH BATCH FOR THE BACKWARD FLOW  THEN
FORm=1,...,MDO
PICK PACKET y; iy AT THE HEAD OF LAYER 2.2 OUTPUT QUEUE FOR THE FORWARD FLOW,

3
4
h: PICK PACKET ;71 mAT THE HEAD OF LAYER 2.2 UTPUT QUEUE FOR THE BACKWARD FLOW;
6.
]

im i
PﬂT THE FOLE&)WWG INTHE HEADER OF PACKET p,,- 1) PACKET D m, 2) THE MAC ADDRESS OF THE NEXT-HOP NODE OF PACKET
im 3) BATCH D/ OF PACKET im 4) THE MAC ADDRESS OF THE NEXT-HOP NODE OF PACKET }71" m 3| BATCH D jOF
PACKET Jim 6)LOCAL ENCODING VECTORS OF PACKETS Jim AND }71" "
8 ENABLE THE BIT FUN_XOR INTHE HEADER OF PACKET p,,, L., FUN_XOR =1
% PLACE PACKET py, INLAYER 2.1 QUTPUT QUEUE;
1. ENDFOR
11: ELSE
12 FLAYER 2.2 OUTPUT QUEUE OF ONE FLOW (FORWARD OR BACKWARD) HAS AT LEAST TWO BATCH OF MRE-CODED PACKETS, SAY, THE
TH BATCH BEING THE HEAD-OF-LINE BATCH THEN
5 FORm=1,...,MDO
4 PICK PACKET Jim AT THE HEAD OF LAYER 2.2 QUTPUT QUEUE OF THE FLOW:
15: DISABLE THE BIT FUN_XOR INTHE HEADER OF PACKET im |E., FUN _XOR=0:
16: PLACE PACKET Jim INLAYER 2.1 QUTPUT QUEUE;
1. ENDFOR
1. ENDIF
19 ENDIF
20 END WHILE

FIG. 8
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ALGORITHM 2 XOR ENCODING OF FUN-1

1 WHILE AT LEAST ONE FLOW (FORWARD OR BACKWARD FLOW) [SALIVE DO
2: IF THE HEAD-OF-LINE PACKET TO LAYER 2.2 INPUT QUEUE HAS FUN _XOR = THEN
3 MOVETHIS HEAD-OF-LINE PACKET TO LAYER 2.1 INPUT QUEUE;
ELSE
MOVE THIS HEAD-OF-LINE PACKET TO TS CORRESPONDING QUEUE IN THE BUFFER OF LAYER 2.1 (EACH QUEUE IS UNIQUELY IDENTIFIED
BY THE SAME SET OF RECEIVER MAC ADDRESSES IN THE PACKET HEADER);
6: IF AQUEUE N THE BUFFER OF LAYER 2.1 HAS TWO BATCHES OF RECEIVED PACKETS (ASSUME THE HEAD-OF-LINE XOR-ED BATCH HAS
BATCH D FOR THE FORWARD FLOW AND BATCH D FOR THE BACKWARD FLOW) THEN
T. WHILE THE HEAD-OF-LINE PACKET, SAY p,,, HAS TS FORWARD-FLOW BATCH ID EQUALT DO
8 RECOVER THE PACKET OF THE FORWARD FLOWBY y; = p, © i WHERE Jim ISAPACKETIN Yj e
Yj | Ej 1 Hj 1.1, WHERE /15 THE INDEX OF THE CURRENTNODE Ry - 18 THE INDEX OF THE NEXT-HOPNODE R,
OF THE BACKWARD FLOW, Y. il IS THE MATRIX WHOSE COLUMNS ARE CODED PACKETS, RE-CODED BY NODE A 4 FOR THE
BACKWARD FLOW, Ej, L AKl ERASURE MATRIX FOR THE ERASURE CHANNEL FROMINODE R, TONODE Ry E; 11 CANBE
OBTAINED BY NODE R VIA THE GLOBAL ENCODING VECTOR IN FUN-1 PACKET HEADER, H, 11 ISTHE TR/-\NSFEE( MATRIX OF
ANRLNG FOR THE -TH BATCHAT NODE R, 4 FOR THE BACKWARD FLOW, Hj 11 CANBE OBIFAINED BY THE LOCAL ENCODING
VECTORS IN FUN-1 PACKET HEADER:
) RECOVER THE PACKET OF THE BACKWARD FLOW BY iy @ fim WHERE y, ,,ISAPACKET Y Ik
, L 1, WHERE /18 THE INDEX OF THE CLRRENT NODE R #ISTHE INDEX OF THE NEXT- HO%’ NODE R4 OF
T{% LOWARD FLOW, Yj,+ 1S THE MATRIX WHOSE COLUMNG ARE GODED PACKETS, RE-CODED BY NODE R4 FOR THE FOWARD
FLOW,E; .4 15 AN ERASURE MATRIX OR THE ERASURE CHANNEL FROMNODE Ry TONODE Ry, E; 114 CAN BE OBTAINED
BY NODE Ry VIATHE GLOBAL ENCODING VECTOR IN FUN-1 PACKET HEADER, H',I+1 ISTHE TRANSFEJR MATRIX OF AN RLNC
FOR THE -TH BATCH AT NODE Ry, FOR THE FORWARD FLOW, ij iy CANBE OETAINED BY THE LOCAL ENCODING VECTORS N
FUN-1 PACKET HEADER;
(: ENDWHILE
i ENDFF
2 ENDIF
3: ENDWHILE

1
1
1
1

FIG. 9
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ALGORITHM 3 QUTER DECODING OF FUN-2 ATNODE /j € {01}

1: WHILE NOTALL NATIVE PACKETS DESTINED TO NODE jARE DECODED DO

2 |FTHE RECEIVING QUEUE OF LAYER 2.2 15 COMPLETE THEN

3 PICKPACKETS OF THE SAME BATCH FROM THE HEAD OF THE RECENING QUEUE OF LAYER 22,

4 IFFUN-2HEADER 2 ISNOT EMPTY THEN

5 IF THE DESTINATION IP ADDRESS IN FUN-2 HEADER 1 IS THAT OF NODE ] THEN

6: LET /EQUAL THE BATCH D IN FUN-2 HEADER 1 OF ANY PICKED PACKET,

T LET k EQUAL THE BATCH ID INFUN-2 HEADER 2 OF ANY PICKED PACKET.

8 LET Hkﬂ-j BE A MATRIX WHOSE COLUMNS ARE THE GLOBAL ENCODING VECTORS IN FUN-2 HEADER 2 OF ALL THE PICKED

PACKETS;

LET Bkﬂ-j BE A MATRIXWHOSE COLUMNS ARE NATIVE PACKETS OF THE k-TH BATCH, SENT FROM NODE j TONGDE 1 -

(. ELSE

1 LET /EQUAL THE BATCH D IN FUN-2 HEADER 2 OF ANY PICKED PACKET,

2 LET k EQUALTHE BATCH ID INFUN-2 HEADER 1 OF ANY PICKED PACKET

3 LET Hk,H BE A MATRIX WHOSE COLUMNS ARE THE GLOBAL ENCODING VECTORS IN FUN-2 HEADER 1 OF ALLTHE PICKED
PACKETS;

4 LET Bk,H BE A MATRIXWHOSE COLUMNS ARE NATIVE PACKETS OF THE k-TH BATCH, SENTFROMNODE j TONODE 1 -

5 ENDIF

6 LE Y,'y' BE A MATRIX WHOSE COLUMNS ARE THE PAYLOADS OF ALL THE PICKED PACKETS;

. COMPHJTE Y"J‘ Y’J Bm_j Hm_j;

§ ELSE

O LET/EQUALTHEBATCH D INFUN-2HEADER 1 OF ANY PICKED PACKET;

2 LETYijBE AMATRIX WHOSE COLUMNS ARE THE PAYLOADS OF ALLTHE PICKED PACKETS;

2. ENDIF

22 DOOUTER DECODING IN THE SAME WAY AS BATS OUTER DECODING WITH INPUT PACKETS Y,'y ;

23 ENDIF

24 END WHILE

[ S G WY 2 =

FIG. 10
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ALGORITHH 4 NNER ENCODING OF FUN:
TFORFOTO DO
2 NTIALZE TWOBLFFERS FORDESTIATION, HHICHARE DENOTEDBY F g AND il
5 ENDFOR
4; WHILE AT LEAST ONE FLOW [FORWARD OR BACKVIARD FLOW) S ALVE DO
5 IFLAYER 3 0UTPUT QUELE S NOT ENPTY THEN
G PICKPACKET AT THE HEAD OF LAYER 3 OUTPUT QUEUE: ASSUNE THE DESTIATION OF PACKET 5 5
SHITCH [STATE OF BUFFERS e Fitt Pl
CASEBUFFERaneWISNOTCéﬁMPLEJfE
NSERT y5 TOTHE TH POSTIONOF BUFFER F ey
IFBUFFER F 1S CONPLETE THEN
QT0STERT

0
1
2 ENDIF
J CASEBUFFERFippyIS CONPLETE ANDBUFFER IS ENPTY ANDBUEFER . EVPTY
E o NOVEALTH PCKETSINF oy TOF

. IFTHEPACKETSINF, i WERE NXEDSEFORE THEN
i PR TOAL THE RCKETSINF,gAND GENERATEMRE-CODED PAKETS
T NOVETHERECODED PACKETSTOTHE UNCASTOUTPUT QUELE OF LYER

& ENDF

19 CASE BUFFERF 5 CONPLETE AND BUEFERF i S ENPTY ANDBBUFFER g S CONPLETE:
B MOVEALLTHE PACKETS NF gy TOF i

7 IFTHEPACKETS N g VERE NDED SEFORE THEN

2 APPLYRLAGTOALLTHE PACKETS N, ghND GENERATEMRE CODED PAKETS

% WVETHERECODED PACKETSTOTHE UNCASTOUTRUT UELE OF LYVER

2% ELSE

% APPLYRLNC TOALLTHE PACKETS INFiqiyAND Fr.; iyAND GENERATE HRE-CODED PACKETS,
% NOVETHERECODED PACKETS TOTHE BROADCHST OUTPUTQLELE OF LAVER?

7. ENDF

2 CASE BUFFER i IS CONPLETE ANDBUFFER ;515 CONPLETE ANDBUFFER . g S ENPTY:
0 APPLYRLNCTOALLTHE PACKETS N, ghND GENERATEMRE CODED PAKETS

0 NOVETHERECODEDPACKETS TO HE UNCASTOUTRUTQUELE OF LAYER

M MOFEALTHEPACKETSINF ey TOF g
% FTHEPACETS NF g5 WEREHIAED BEORE THEN

5 EYRNCTON RS NF oifAND GENERATE MRE-CODED PACKETS,
% NOVETHERECODED PACKETSTOTHE UNCASTOUTRUT QUELE OF LYVER

B ENDF

% ENDSWITCH

T Iy HASNOTBEEN NSERTEDINTOF, ey THEN

B INSERTyjp TOTHE iTHPOSITON O iy

% ENDF

i BNDF

41;END WHLLE

T
§:
g
10:
1
1.
1
1
1
1
1
1

FIG. 11
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