This invention relates to a can punch and sealer and has for an object to provide a new and improved can punch and sealer especially useful for opening sealed cans of liquids and for temporarily sealing the same until the contents are used up.

A further object of this invention is to provide an improved can punch and sealer which may quickly and easily be temporarily attached to the top of a sealed can of liquid so as to remain firmly in place until the contents thereof are used up and which may then be easily removed and placed on a new can of liquid.

Still another object of this invention is to provide a can punch and sealer especially useful for punching a pair of holes in a sealed can such as a can of milk, tomato juice, fruit juices or other liquids or oils such as are sold in sealed cans and where it is desirable to use all or less than all of the liquid contents of the can at one time so that when less than all of the contents of the can are used at the same time, the can may be quickly and easily temporarily sealed until it is desirable to use more of the contents thereof.

A still further object of this invention is to provide a quick and easy attaching means for securing a can punch and sealer to the top of the can, which attaching means may be in several different forms.

With the foregoing and other objects in view, as will hereinafter become apparent, this invention comprises the constructions, combinations and arrangements of parts hereinafter set forth, claimed and illustrated in the accompanying drawings:

Fig. 1 is a top plan view of the can punch and sealer using one form of securing means.

Fig. 2 is a front elevation of Fig. 1 showing the securing means.

Fig. 3 is a side elevation of Fig. 2.

Fig. 4 is a partly sectional side elevation on lines 4—4 of Fig. 1.

Fig. 5 is a top plan view of the punch and sealer using another form of securing means.

Fig. 6 is a perspective view of the securing means of Fig. 5, and

Fig. 7 is a perspective view of still another securing means.

There is shown at 10 a can containing a liquid 11 such as condensed or evaporated milk, vegetables or fruit juices, oils and the like. The can 10 is generally of such a material that the contents will not spoil during the limited period of time after the can is opened, provided it is possible to seal the opened can against the entrance of dirt, air, etc.

While these cans 10 come in a number of sizes according to the quantity of the contents, these sizes are more or less standardized and the can punch and sealer shown at 12, constituting this invention, is generally made for a particular size but will fit slight variations from the particular size for which it is intended.

This can punch and sealer comprises a band 13 whose ends are secured as at 14 to the opposite sides of a can 15 by means of a bolt and nut 16 passing through the ends 14 and a suitable aperture in the can 15. The cam 15 is provided with a lever or handle 18 which may be moved from the dot-dash line of Fig. 4 shown at 1' to the full-line position, thereby causing the band 13 to tighten up and the cam 15 to press into the side of the can 16 and securely hold the band 13 in position thereon.

The bridge 17 secured on the band 13 provides a support for a punch bar 18. The punch bar 18 is provided with a pair of awl points 19 at the bottom thereof and is supported on a pivoting handle 20 which passes through the bridge 17 and is secured to the punch bar 18. A compression spring 21 is provided on the shaft 22 of the pivoting handle beneath the bridge 17 and above the punch bar 18.

In operation the band 13 is placed at the upper edge of the can 10 that is to be opened, as shown in Fig. 4, with the handle or lever 18 in the position 16'. The handle is then moved from the position 16' to the position 16, causing the cam 15 to press against the side of the can 10, thereby securely fastening the band 13 and the mechanism 12 to the top of the can 10. The punch bar 18 will then be depressed slightly as with the heel of the hand, forcing the awl points 19 to pass through the top 23 of the can 10, forming two openings through the top of the can 23. The 40 handle is then raised to withdraw the awl points 19 from the holes and rotate to leave the holes in the top 23 free of the awl points 19.

A compression spring 21 will serve to retain the punch bar 18 in the rotated position as shown 45 at 18' with the openings free from the awl points 19. The liquid 11 may then be poured from the can 10, one of the holes serving as a pouring spout and the other serving as an air inlet.

After the desired quantity of liquid has been removed from the can 11, the handle 20 is manipulated to again bring the awl points 19 over the openings in the can 23 and the awl points 19 are then allowed to reenter the openings in the top 23, being held in position therein by the cam...
pression spring 21. The awl points 19 will thus serve to seal the openings in the top 23, preventing the entrance of air, dirt or dust, etc., into the can and likewise preventing loss of the contents 11 from the can. When it is desired to use more of the contents, it is only necessary to manipulate the handle 20 to again remove the points from the openings.

After the can 10 is emptied, the handle or lever 16 of the cam 18 is moved to the position 18', allowing the punch and sealer 12 to be removed from the empty can and placed on another can as desired.

Instead of using a cam and lever as securing means for the band 13, other suitable securing means may be used. In Figs. 5 and 6, this securing means is shown as a double threaded bolt 30, which is placed between the threaded ends 31 of the band 32 and by rotating the bolt 30 in one direction the band 32 is secured to the cam and rotating it in the opposite direction, the band 32 is removed therefrom. The same punch and seal mechanism 12 is mounted on the band 32 and operated in the same way as just described.

In Fig. 7, a closed band 35 is provided for use on a can 10. A spring flap 36 is secured at one end to the inside of the band 35 and adjacent its other end a thumb screw 37 is threaded through the band 35. By turning the thumb screw 37 in one direction, the free end of the spring flap 36 will be pressed against the side of the can 10 while the band 35 will be extended to tighten it about the top of the can. To remove it from the can it is only necessary to reverse rotate the thumb screw 37 and the band 35 can be released from the can.

The novel features and the operation of this device will be apparent from the foregoing description. While the device has been shown and the structure described in detail, it is obvious that this is not to be considered limited to the exact form disclosed and that any changes may be made therein within the scope of what is claimed without departing from the spirit of this invention.

Having thus set forth and disclosed the nature of this invention, what is claimed is:

A liquid can punch and sealer comprising a band, means for securing said band in direct squeezing contact with the upper cylindrical surface of a liquid can, a bridge secured directly on said band, and a punch and sealing mechanism pivotally mounted on said bridge, the ends of said band being spaced apart, a pin member lying in a tangential direction to said band securing the ends of said band together, and said means for securing said band to the can comprising a cam eccentrically pivoted on said securing pin and adapted to be rotated so as to press the cam portion directly against the cylindrical side of the can.

ALFRED J. CLARK.