发明名称
一种壬基酚的生产方法
摘要
本发明公开了一种壬基酚的生产方法，将苯酚预热到115-125℃，接着将常温下的壬烯与预热后的苯酚充分混合，进入第一级反应器，冷却到120℃左右后进入二级反应器同时滴加壬烯，二级反应冷却到85℃左右，进入三级反应器反应同时滴加壬烯，经过三级反应生成的壬基酚反应液进入薄膜蒸发器脱酚，脱酚后的粗壬基酚进入蒸馏釜蒸馏出高纯度的壬基酚。本发明反应停留时间短，副产物少，质量好，所需动力小，能耗低。整个生产过程连续化进行，稳定性好，并提高了生产效率。
1. 一种壬基酚的生产方法，其特征在于包括以下步骤，其中涉及比例均为重量比：

1）首先分别将作为原料的苯酚和壬烯脱除铁离子，之后将苯酚预热到115～125℃，接着将常温下的壬烯与预热后的苯酚充分混合，混合比例为苯酚：壬烯＝1.8～2.5：1；

2）将混合后的物料依次进入三个填充有烷基酚专用树脂催化剂的反应器中进行连续三级的反应，反应的同时滴加壬烯；

3）第12级反应后的物料送入冷凝器冷却至55～65℃，之后输送至反应液罐中，

4）将反应液罐中的物料输出到薄膜蒸发器中进行分离处理；

5）分离出的苯酚重新输送至步骤1)，而分离出的粗壬基酚先进入粗壬基酚罐，再输至蒸馏釜中加热蒸馏，蒸馏过程中，根据化验结果将蒸馏的物料依次输送到反应液罐，粗壬基酚罐、壬基酚罐和二壬基酚罐中。

2. 根据权利要求1所述的壬基酚的生产方法，其特征在于步骤2）的具体过程是：

a) 第1级反应器的输入速度为1.7～1.9吨/小时，进料温度为115～125℃，进料同时滴加壬烯，滴加速度为380～430升/小时；

b) 第1级反应后的物料送入冷凝器冷却至95～105℃，再进入第2级反应器，第2级反应器的输入速度为1.9～2.1吨/小时，进料温度为95～105℃，进料同时滴加壬烯，滴加速度为280～320升/小时；

c) 第2级反应后的物料送入冷凝器冷却至80～90℃，再进入第3级反应器，第3级反应器的输入速度为2.4～2.6吨/小时，进料温度为80～90℃，进料同时滴加壬烯，滴加速度为180～220升/小时。

3. 根据权利要求1或2所述的壬基酚的生产方法，其特征在于进行步骤2）之前，将用于反应的三个反应器冲入氮气进行保护。

4. 根据权利要求1或2所述的壬基酚的生产方法，其特征在于步骤4）的具体过程为：物料进入薄膜蒸发器前先预热到150℃，之后加热并控制在175～185℃，输出到薄膜蒸发器的流量为2～6吨/小时，薄膜蒸发器中的真空度控制在-0.08～-0.09KPa，之后物料在高温和负压下，粗壬基酚由薄膜蒸发器的底部分离出；而苯酚和其它组分从薄膜蒸发器的顶部分离出。

5. 根据权利要求1或2所述的壬基酚的生产方法，其特征在于步骤5）中，蒸馏釜温度控制在190～210℃，真空度为-0.08～-0.09KPa，当开始蒸馏后50～70分钟，此时蒸馏釜温度达到190℃，把蒸馏出的物料切到反应液罐中；之后再等50～70分钟，此时釜温达到200℃，根据化验苯酚含量小于5%时，把蒸馏的物料切到粗壬基酚罐中；接下来蒸馏釜温度保持200～210℃，物料化验后当苯酚含量小于0.4%时切到壬基酚罐中，待出料颜色大于30号，二壬基酚含量大于2%，再把物料切到二壬基酚罐中。

6. 根据权利要求1或2所述的壬基酚的生产方法，其特征在于在步骤4）中反应液罐中的物料在反应结束后进入脱水塔，进行脱水处理，去除其中的水分。
一种壬基酚的生产方法

技术领域
[0001] 本发明涉及一种化合物的生产方法，具体为壬基酚的生产方法。

背景技术
[0002] 壬基酚，也称壬基苯酚，英文名称为 Nonyl Phenol（简称 NP），分子式为 C_{19}H_{38}O。壬基酚是一种重要的精细化工原料和中间体，外观在常温下为无色或淡黄色液体，略带苯酚气味，不溶于水，溶于丙酮。壬基酚主要用于生产表面活性剂，也用于抗氧剂、纺织印染助剂、润滑油脂添加剂、农药乳化剂、树脂改性剂、树脂及橡胶稳定剂等领域。

[0003] 现有壬基酚的生产方法是将苯酚和壬烯反应生产壬基酚，国内现有生产壬基酚的烷基化装置采用一級固定床反应装置。由于该装置体积庞大、传热、传质慢、带来许多不足之处：所需动力大、能耗多、只能使用低活性的普通树脂催化剂，物料停留时间长、死角多、造成付产物多，影响产品质量。

[0004] 中国发明专利“一种壬基酚精制工艺”（申请号：200510123489.2 申请日：2005-11-23）公开了一种壬基酚的制备方法，具体是壬烯和苯酚在催化剂的作用下合成的工业壬基酚的精制工艺，包括蒸发脱除大部分苯酚、蒸馏脱残酚、壬基酚精馏和间歇蒸馏获得壬基酚四个工艺步骤。A) 蒸发：去除工业壬基酚中的大部分苯酚，得到蒸发器底部出料；B) 蒸馏：去除蒸发器底部出料中的苯酚，得到粗壬基酚，蒸馏塔进料温度为 70℃～120℃，塔顶温度为 40℃～85℃，塔釜温度为 170℃～215℃，总回流比压为 0.4KPA～1.0KPA，回流比 R 控制在 0.5～2 之间，理论塔板数为 6～30 块；C) 精馏：精馏粗壬基酚，得到精制壬基酚和粗二壬基酚，精馏塔进料温度为 90℃～130℃，塔顶温度为 80℃～170℃，塔釜温度为 180℃～260℃，总回流比压为 0.4KPA～1.0KPA，回流比 R 控制在 0.4～2.5 之间，理论塔板数为 4～28 块。依靠该工艺，改善了产品壬基酚的色泽稳定性、增加了产品收率。但是该工艺的缺陷在于在整个生产过程中存在苯酚的过量反应，壬烯和苯酚的配比不是很理想，从而降低了产品的含量以及催化剂的使用寿命、选择性和转化率。同时反应器的结构也存在缺陷，用体积大的反应器不仅浪费了催化剂，又使物料在反应器中得不到充分的停留时间，影响催化剂本身的寿命，同时得不到更好的选择性和转化率。再者大反应器需要用大功率的搅拌棒进行搅拌，会破坏催化剂的结构和浪费能耗；在精馏时没有更详细的分离出其它烯烃，粗壬基酚和二壬基酚，从而影响整体壬基酚的含量。在整个生产过程中没有体现出循环利用副产物，从而增加了生产成本和废料处理的成本。还有此工艺在生产过程中没有加入脱水系统，当长时间的反应后会产生微量的水分，有可能产品中带有水分，更主要是保护好催化剂的寿命，催化剂生产过程中不能有水分。

发明内容
[0005] 本发明所要解决的技术问题是提供一种将苯酚和壬烯反应生产壬基酚的工艺方法，该工艺方法相对现有的方法脱除的壬基酚含量高，提存时间短，能耗低，催化剂的使用寿命延长，物料反应充分，选择性和转化率提高了，整体能耗降低，副产物进行转换成物料
继续使用。

[0006] 本发明所述的一种壬基酚的生产方法，其主要包括以下步骤，其中涉及比例均为重量比：

[0007] 1) 首先分别将作为原料的苯酚和壬烯脱除铁离子，之后将苯酚预热到 115 ～ 125℃，接着将温水下的壬烯与预热后的苯酚充分混合，混合比例为苯酚：壬烯 = 1.8 ～ 2.5 : 1；

[0008] 2) 将混合后的物料依次进入三个填充有烷基酚专用树脂催化剂的反应器中进行连续三级的反应，反应的同时滴加壬烯；

[0009] 3) 第三级反应后的物料送入冷凝器冷却至 55 ～ 65℃，之后输送至反应液罐中，

[0010] 4) 再将反应液罐中的物料输出到薄膜蒸发器中进行分离处理；

[0011] 5) 分离出的苯酚重新输送至步骤 1)，而分离出的粗壬基酚进入粗壬基酚槽，再输至蒸馏釜中进行蒸馏，蒸馏过程中，根据化验结果把蒸馏的物料依次输送到反应液罐，粗壬基酚槽、壬基酚槽和二壬基酚槽中。

[0012] 上述步骤 2) 的具体过程是：

[0013] a) 第一级反应器的输入速度为 1.7 ～ 1.9 吨 / 小时，进料温度为 115 ～ 125℃，进料同时滴加壬烯，滴加速度为 380 ～ 430 升 / 小时；此时第一级反应器底阀控制开启度为 25 ～ 35%。

[0014] b) 第一级反应后的物料送入冷凝器冷却至 95 ～ 105℃，再进入第二级反应器，第二级反应器的输入速度为 1.9 ～ 2.1 吨 / 小时，进料温度为 95 ～ 105℃，进料同时滴加壬烯，滴加速度为 280 ～ 320 升 / 小时；此时第二级反应器底阀控制开启度为 45 ～ 55%。

[0015] c) 第二级反应后的物料送入冷凝器冷却至 80 ～ 90℃，再进入第三级反应器，第三级反应器的输入速度为 2.4 ～ 2.6 吨 / 小时，进料温度为 80 ～ 90℃，进料同时滴加壬烯，滴加速度为 180 ～ 220 升 / 小时，此时第三级反应器底阀控制开启度为 60 ～ 70%。

[0016] 进行上述步骤 2) 之前，将用于反应的三个反应器冲入氮气进行保护。

[0017] 上述步骤 4) 具体过程为：物料进入薄膜蒸发器前先预热到 150℃，之后加热并控制在 175 ～ 185℃，输出到薄膜蒸发器的流量为 2 ～ 6 吨 / 小时，薄膜蒸发器中的真空度控制在 -0.08 ～ -0.09KPa，之后物料在高温和负压下，粗壬基酚由薄膜蒸发器的底部分离出；而苯酚和其他组分从薄膜蒸发器的顶部分离出。

[0018] 上述步骤 5) 中，蒸馏釜温度控制在 190 ～ 210℃，真空度为 0.07 ～ 0.09KPa，当开始蒸馏后 50 ～ 70 分钟，此时蒸馏釜温度达到 190℃，把蒸馏出的物料切换到反应液罐中；之后再等 50 ～ 70 分钟，此时釜温达到 200℃，根据化验苯酚含量小于 5% 时，把蒸馏的物料切换到粗壬基酚中；接下来蒸馏釜温度保持 200 ～ 10℃，物料化验后当苯酚含量小于 0.4% 时切换到壬基酚中，待出料颜色大于 30 号，二壬基酚含量大于 2%，再把物料切换到二壬基酚中。

[0019] 上述步骤 4) 中反应液罐中的物料在反应结束后进入脱水塔进行脱水处理，去除其中的水分。

[0020] 上述反应液罐的作用是：由于反应系统是连续生产的，每秒钟都在出料，反应液罐可以起到盛放反应液（即反应后生成的物料）的作用，为进一步的薄膜蒸发器进行脱酚作准备，同时也为蒸馏过程中物料切换时作盛料作用（切换反应液）。
[0021] 根基酚酸作用是;盛放脱酚过程中所出来的根基酚,同时为下部的蒸馏作准备,也为蒸馏过程中物料切换时作盛料作用(切换根基酚酸)。
[0022] 本发明的有益效果:
[0023] 其解决了传统工艺中催化剂用量大,能耗高,付产物多,选择性和转化率低的问题。
[0024] 本发明的工艺连续性好,在相同大小装置的情况下,产能将大大提高,同时整个生产过程可以使用 DCS 全自动化控制系统,使生产过程连续化,稳定性好和提高生产效率。
[0025] 由于传统装置体积庞大,必须使用大功率循环泵对物料进行外循环,以最大限度地消除物料在反应器内停留时间过长和死角的影响,而本发明工艺流程采用了三级反应器,各级反应器体积大大缩小,所用的循环泵功率也相应减小,经测算,在能耗方面可以节电 120 度/吨(产量)。
[0026] 经测试,采用本工艺的付产物二甲基苯酸由原来 3%下降到 1.5%,根基酚纯度由原来的 97%提高到 98.5%以上,而且本工艺可以分离出苯酚、根基酚和二甲基苯酸,并可以循环利用,减少了生产成本和废料处理的成本。
[0027] 本发明在生产过程中加入脱水系统,既可以消除产品中的水份,更主要可以延长催化剂的寿命。

附图说明
[0028] 图 1 是本发明的流程图;
[0029] 图 2 是本发明中一个反应器的结构示意图。

具体实施方式
[0030] 以下结合具体实施例对本发明作详细说明。
[0031] 实施例 1:
[0032] 如图 1 所示,首先分别将作为原料的苯酚和壬基酚送入脱铁柱反应器中脱除铁离子,之后将苯酚预热到 115℃,接着将壬基酚预先后的苯酚充分混合,混合比例为苯酚：壬基酚＝1.8:1。将混合后的物料依次进入主要由三个反应器组成的三级固定床绝热反应装置,每个反应器的容量一样,都是 6 立方米/个,每个反应器如图 2 所示,反应器顶部是入口 1,底部是出料阀门 2,靠近出料阀门 2 处设有筛板和水盖 3,在反应器内部填充有 5 立方烷基酚专用树脂催化剂 4,该催化剂为美国罗门哈斯公司生产的 A36 型烷基酚专用树脂催化剂,在反应器上、中、下三段分别设有温度计对物流反应温度进行监控。其中第一级反应器的输入速度为 1.7 吨/小时,进料温度为 115℃,第一级反应器底阀控制开启度为 25%。第一级反应后的物料送入冷凝器冷却至 95℃,再进入第二级反应器,第二级反应器的输入速度为 1.9 吨/小时,进料温度为 95℃,进料同时滴加壬基酚,滴加速度为 280 升/小时,第二级反应器底阀控制开启度为 45%。第二级反应后的物料送入冷凝器冷却至 80℃,再进入第三级反应器,第三级反应器的输入速度为 2.4 吨/小时,进料温度为 80℃,进料同时滴加壬基酚,滴加速度为 180 升/小时;第三级反应器底阀控制开启度为 60%。第三级反应后的物料送入冷凝器冷却至 55℃,从第三反应器下来的物料进入反应液罐中,此时反应液罐里的物料成分为:壬基酚 1.5%左右,苯酚 24%左右,壬基酚 74%左右,罐内温度大约为 70 度左右。之
后用泵将物料输到薄膜蒸发器中进行脱酚分离处理，流量为 2-6 吨 / 小时（根据所需要的产量）。物料进入薄膜蒸发器前预热到 150 度，之后开始加热，温度控制在 180 度左右，真空度控制在-0.085KPa 左右。之后物料在高温和负压作用下，把物料中的粗甲基酚和苯酚等分离出来，其中粗甲基酚在薄膜蒸发器的底部出料进入粗甲基酚罐，苯酚和其他组分从薄膜蒸发器的顶部出料，苯酚再经冷却器冷却后进入苯酚中间罐，此时冷却器冷却下来的温度为 65℃左右。粗甲基酚再用泵输到蒸馏釜中，流量为 30 吨 / 小时，打料 1 小时左右。之后开始蒸馏，蒸馏温度为 205℃左右，真空度为 0.08KPa 左右，经过 1 小时左右，蒸馏釜温度在 190℃左右，首先把蒸馏的物料输出切换到反应液罐中，因为此时的温度不高，而且粗甲基酚的成分较多。之后再等 1 小时左右，釜温在 200℃左右，根据化验结果（苯酚含量小于 5%）把蒸馏的物料切换到粗甲基酚罐中，这是由于此时蒸馏釜中的温度虽然已达到，但甲基酚的含量不是最理想，同时苯酚的含量也较高。接下来釜温保持 200-208℃，物料化验后（此时苯酚含量小于 0.4%）再切换到甲基酚罐中。出料大概 7 小时左右，每 20 分钟化验一次，当物料中的二甲基酚含量开始上升（大于 2%），颜色大于 30 号，再把物料切换到二甲基酚罐中，切换到二甲基酚的时间大约半小时后，当蒸馏釜和出料口的温度开始下降，说明釜中已没有物料了。整个蒸馏时间约为 10 小时左右。本实施例生成的甲基酚纯度达到 98.5%。

[0033] 实施例 2：

[0034] 如图 1 所示，首先分别将作为原料的苯酚和壬烯送入脱铁柱反应器中脱除铁离子，之后将苯酚预热到 125℃，接着将壬烯与预热后的苯酚充分混合，混合比例为苯酚：壬烯 = 2.5 : 1，将混合后的物料依次进入三级固定床绝热反应装置，每级反应器中填充有 5 立方烷基酚专用树脂催化剂，该催化剂为美国罗门哈斯公司生产的 A36 型烷基酚专用树脂催化剂。其中第一级反应器的入料速度为 1.9 吨 / 小时，进料温度为 125℃，第一级反应器底膜控制开启度为 35%。第一级反应器后的物料送入冷凝器冷却至 105℃，再进入第二级反应器，第二级反应器的入料速度为 2.1 吨 / 小时，进料温度为 105℃，进料同时滴加壬烯；滴加速度为 320 升 / 小时，第二级反应器底膜控制开启度为 55%。第二级反应器后的物料送入冷凝器冷却至 90℃，再进入第三级反应器，第三级反应器的入料速度为 2.6 吨 / 小时，进料温度为 90℃，进料同时滴加壬烯；滴加速度为 220 升 / 小时；第三级反应器底膜控制开启度为 70%。第二级反应器后的物料送入冷凝器冷却至 65℃，第三级反应器后的物料送入冷凝器冷却至 55℃，从第三反应器下来的物料进入反应液罐中，此时反应液罐中的物料成分为：壬烯 2.0%左右，苯酚 23%左右，壬基酚 75%左右，罐内温度大约为 70 度左右。之后用泵将物料输到薄膜蒸发器中进行脱酚分离处理，流量为 2-6 吨 / 小时（根据所需要的产量），物料进入薄膜蒸发器前预热到 150 度，之后开始加热，温度控制在 175 度左右，真空度控制在-0.08KPa 左右，之后物料在高温和负压作用下，把物料中的粗甲基酚和苯酚等分离出来，其中粗甲基酚在薄膜蒸发器的底部出料进入粗甲基酚罐，苯酚和其他组分从薄膜蒸发器的顶部出料，苯酚再经冷却器冷却后进入苯酚中间罐，此时冷却器冷却下来的温度为 65℃左右。粗甲基酚再用泵输到蒸馏釜中，流量为 30 吨 / 小时，打料 1 小时左右。之后开始蒸馏，蒸馏温度为 205℃左右，真空度为 0.085KPa 左右，经过 1 小时左右，蒸馏釜温度在 190℃左右，首先把蒸馏的物料输出切换到反应液罐中，之后再等 1 小时左右，釜温在 200℃左右，根据化验结果（苯酚含量小于 5%）把蒸馏的物料切换到粗甲基酚罐中。接下来釜温
保持 200-208°C，物料化验后（此时苯酚含量小于 0.4%）再切换到壬基酚罐中，出料大概 7 小时左右，每 20 分钟化验一次，当物料中的壬基酚含量开始上升（大于 2%），颜色大于 30 号，再把物料切换到壬基酚罐中，切换到壬基酚的时间大约半小时，当蒸馏釜和出料口的温度开始下降，说明釜中没有物料了。整个蒸馏时间约为 10 小时左右。本实施例生成的壬基酚纯度达到 98.4%。

实施例 3：

如图 1 所示，首先分别将作为原料的苯酚和壬烯送入脱铁柱反应器中脱除铁离子，之后将苯酚预热到 120°C，接着将壬烯与预热后的苯酚充分混合，混合比例为苯酚：壬烯 = 2：1。将混合后的物料依次进入三级固定床绝热反应装置，每级反应器中填充有 5 立方烷基酚专用树脂催化剂，该催化剂为美国罗门哈斯公司生产的 A36 型烷基酚专用树脂催化剂。其中第一级反应器的输入速度为 1.8 吨/小时，进料温度为 120°C，第一级反应器底阀控制开启度为 30%。一级反应器后的物料送入冷凝器冷却至 100°C，再进入第二级反应器，第二级反应器的输入速度为 2 吨/小时，进料温度为 100°C，进料同时滴加壬烯，滴加速度为 300 升/小时，第二级反应器底阀控制开启度为 50%。第二级反应器后的物料送入冷凝器冷却至 85°C，再进入第三级反应器，第三级反应器的输入速度为 2.5 吨/小时，进料温度为 85°C，进料同时滴加壬烯，滴加速度为 200 升/小时，第三级反应器底阀控制开启度为 65%。第三级反应器后的物料送入冷凝器冷却至 60°C，从第三反应器下来的部分物料进入反应液罐，此时反应液中的物质成分为：壬烯 1.5%左右，苯酚 24%左右，壬基酚 74%左右，罐内温度大约为 70°C 左右，之后用泵输到薄膜蒸发器中（脱酚），流量为 2-6T/H（根据需要的流量），物料进入前薄膜蒸发器温度预热到 150°C，之后开始加热，温度控制在 180°C 左右，真空度控制在 -0.090kPa 左右，其中壬基酚在薄膜蒸发器的底部出料进入粗壬基酚罐，苯酚和其他组分从薄膜蒸发器的顶部出料，苯酚经冷却器冷却后进入苯酚中间罐，此时冷却器冷却下来的温度为 65°C 左右。粗壬基酚再用泵输到蒸馏釜中，流量为 30 吨/小时，打料 1 小时左右。之后开始蒸馏，整个蒸馏温度最高为 210°C 左右，真空度为 0.09kPa 左右，经过 1 小时左右，蒸馏釜温度为 190°C 左右，首先把蒸馏的物料输出切换到反应液罐中，之后再等 1 小时左右，釜温在 200°C 左右，根据化验结果（苯酚含量小于 5%）把蒸馏的物料切换到粗壬基酚罐中。接下来釜温保持 200-208°C，物料化验后（此时苯酚含量小于 0.4%）再切换到壬基酚罐中，出料大概 7 小时左右，每 20 分钟化验一次，当物料中的壬基酚含量开始上升（大于 2%），颜色大于 30 号，再把物料切换到壬基酚罐中，切换到壬基酚的时间大约半小时后，当蒸馏釜和出料口的温度开始下降，说明釜中已没有物料了。整个蒸馏时间约为 10 小时左右。本实施例生成的壬基酚纯度达到 98.5%以上。
图 2