
(19) United States
US 2011 003 0045A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0030045 A1
Beauregard et al. (43) Pub. Date: Feb. 3, 2011

(54) METHODS AND SYSTEMS FOR
CONTROLLING ACCESS TO RESOURCES
AND PRIVILEGES PER PROCESS

(76) Inventors: Peter David Beauregard, Dover,
NH (US); Andrey Kolishchak,
Luxembourg (LU); Shannon E.
Jennings, Exeter, NH (US); Robert
F. Hogan, Portsmouth, NH (US)

Correspondence Address:
SHEPPARD, MULLIN, RICHTER & HAMPTON
LLP
390 Lytton Avenue
Palo Alto, CA 94301 (US)

(21) Appl. No.: 12/772,914

(22) Filed: May 3, 2010

Related U.S. Application Data

(60) Provisional application No. 61/174.513, filed on May
1, 2009.

Authorized Users

NeoExec Active Directory
Select Authorized Users

Authorized Users

Publication Classification

(51) Int. Cl.
G06F 21/00 (2006.01)
G06F 15/16 (2006.01)

(52) U.S. Cl. ... 726/9; 709/229

(57) ABSTRACT

To control privileges and access to resources on a per-process
basis, an administrator creates a rule that may be applied to
modify a token of a process. The rule may include an appli
cation-criterion set and changes to be made to the groups
and/or privileges of the token. The rule may be set as a policy
within a group policy object (GPO), where a GPO is associ
ated with one or more groups of computers or users. When a
GPO containing a rule is applied to a computer, a driver
installed on the computer may access the rule(s) anytime a
logged-on user executes a process. If the executed process
satisfies the criterion set of a rule, the changes contained
within the rule are made to the process token, and the user has
expanded and/or contracted access and/or privileges for only
that process.

BUILTIN Everyone

Authorized Users are the users that can run Privileged Applications. By default, the logged on user(s) can
run any Privileged Application.
You can restrict who has the right to execute Privileged Application by removing the Everyone group and
replacing it with one or more groups of your choice.

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 1 of 31 Patent Application Publication

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 2 of 31 Patent Application Publication

Patent Application Publication Feb. 3, 2011 Sheet 3 of 31 US 2011/00300.45 A1

New Privilege Manager Properties

Application Integrity Level

Path rule - Target an application by its program file path
Path rule - Target an application by its prodram file path
Hash rule - Target an application by a hash of its file

Path: Folder rule - Target all applications in a folder
MS Path rule-Target installations by MSI file path
MS Folder rule - Target installations by MS file folder

Security ActiveX rule Target an IE ActiveX Control installation
Certificate rule - Target an application by its certificate

Apply rul Shell rule - Target any application started from Explorer
CD\DVD Rule: Target a CD-ROM or DVD D Require Sé C EXUSC2O

Arguments:

Apply rule only if program is owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder

O Apply rule to all processes launched by the targeted application
Notes

By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
Otherwise affect the user.
If a program is launched that meets the above criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

FIG. 3

Patent Application Publication Feb. 3, 2011 Sheet 4 of 31 US 2011/00300.45 A1

New Privilege Manager Properties

Application Integrity Level

Hash rule - Target an application by a hash of its file

Hash: OX10AAF138C5OB03E982922B2BD9CC60D68867E9 ; , , , ;

Arguments:

Security: 0x801.20000 ...

Apply rule only if user can authenticate (must provide Credentials)
Require user to enter text justification

D Apply rule only if program is owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder

D Apply rule to all processes launched by the targeted application
Notes

By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
otherwise affect the user.
If a program is launched that meets the above criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

FIG. 4A

Patent Application Publication Feb. 3, 2011 Sheet 5 of 31 US 2011/00300.45 A1

mmc.exe Properties

Application Integrity Level

f Path rule - Target an application by its program file path

Path: %SystemRoot%\system32\mmc.exe ...

Security: 0x801.20000 ...

O Apply rule only if user can authenticate (must provide credentials)
Require user to enter text justification

O Apply rule only if program is Owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder

D Apply rule to all processes launched by the targeted application
Notes

By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
Otherwise affect the user.
If a program is launched that meets the above Criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

FIG. 4B

Patent Application Publication Feb. 3, 2011 Sheet 6 of 31 US 2011/00300.45 A1

mmc.exe Properties

Application integrity Level

f Path rule - Target an application by its program file path

Path: %SystemRoot%\system32\mmc.exe ...
Arguments: %SystemRoot%\system32\eventvwr.msc
Security: 0x80 120000 ...

Apply rule only if user can authenticate (must provide credentials)
Require user to enter text justification
Apply rule only if program is owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder
Apply rule to all processes launched by the targeted application

Notes

By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
Otherwise affect the USer.
If a program is launched that meets the above criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

FIG. 5

Patent Application Publication Feb. 3, 2011 Sheet 7 of 31 US 2011/00300.45 A1

mmc.exe Properties

Application Integrity Level

Specify changes to the permissions of the targeted application.

To elevate the application you need to add the Administrators group (or
its localized equivalent).

Security Group Action SD
BUILTINVAdministrators S-1-5-32-544

FIG. 6

Patent Application Publication Feb. 3, 2011 Sheet 8 of 31 US 2011/00300.45 A1

mmc.exe Properties

Application Integrity Level

Specify changes to the permissions of the targeted application.

To elevate the application you need to add the Administrators group (or
its localized equivalent).

Security Group Action SD
BULTINVAC ministrators Add S-1-5-32-544
BUILTIN\Remote Desktop Users Remove S-1-5-32-555

Patent Application Publication Feb. 3, 2011 Sheet 9 of 31 US 2011/00300.45 A1

mmc.exe Properties

Application Integrity Level

Specify changes to the permissions of the targeted application.

Remove all privileges before applying
Privilege
Back up files and directories Grant
Restore files and directories Grant
ACCeSS Credential Manager as a trusted caller (Vista)
Act as part of the operating system
Add WorkStations to a domain
Bypass traverse checking
Change the system time
Change the time zone (Vista)
Create a pagefile
Create a token object
Create global objects during Terminal Services sessions
Create permanent shared objects
Create symbolic links (Vista)
Debug programs
Enable Computer and user accounts to be trusted for...
Force shutdown from a remote system

OK Cancel Apply Help

FIG. 8

US 2011/00300.45 A1 Patent Applica

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 11 of 31 Patent Application Publication

[3] Wd 00:00:9 | - |[3] Ww 00:00:6

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 12 of 31 Patent Application Publication

OLN

O 1. O AL ZOO !.

US 2011/00300.45 A1

ON
22O ?O NI

SEA,

CON

Feb. 3, 2011 Sheet 13 of 31

9 | O || .

Patent Application Publication

SEJA SEA,

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 14 of 31 Patent Application Publication

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 15 of 31 Patent Application Publication

O9O 1. O £ O L

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 16 of 31 Patent Application Publication

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 17 of 31 Patent Application Publication

Patent Application Publication Feb. 3, 2011 Sheet 18 of 31 US 2011/00300.45 A1

Specify process integrity level (Vista and Server 2008 only)

By default most applications execute with a Medium integrity level. Set
untrusted applications to LOW integrity and Critical applications to High.

Integrity Levels

O Untrusted level

O LOW integrity level

O) Medium integrity level

O High integrity level

O System integrity level

FIG. 14

Patent Application Publication Feb. 3, 2011 Sheet 19 of 31 US 2011/00300.45 A1

%SystemRoot%\System32\btes.exe Properties

Application Integrity Level

T

Shell rule - Target any application started from Explorer

She: %SystemRoot%\System32\btes.exe

Security: 0x801 20000

O Apply rule only if user can authenticate (must provide Credentials)
O Require user to enter text justification
O Apply rule only if program is owned by the Administrators group
O Apply rule to all programs in all subfolders of the specified folder
w Apply rule to all processes launched by the targeted application
Notes

The Shell rule type allows you to execute any application. This policy
is used to increase or reduce the permissions and/or privileges of
applications started from out Windows Explorer Shell's Extension.
The default policy will create a full Administrative token
Administrators group and all privileges).

There can only be ONE Shell rule.

FG, 15A

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 20 of 31 Patent Application Publication

89|| ‘9||-|| tat-t=f sanae, H=5

Patent Application Publication Feb. 3, 2011 Sheet 21 of 31 US 2011/00300.45 A1

New Privilege Manager Properties

Application Integrity Level

Tor

Certificate rule-Target an application by its Certificate

Cert: XXX Corporation

Security: 0x801 20000 .

Apply rule only if user can authenticate (must provide credentials)
Require user to enter text justification

O Apply rule only if program is owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder
Apply rule to all processes launched by the targeted application

Notes

By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
otherwise affect the user.
If a program is launched that meets the above criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

Apply

FIG. 16

Patent Application Publication Feb. 3, 2011 Sheet 22 of 31 US 2011/00300.45 A1

%SystemRoot%\System32\btes.exe Properties

Application Entegrity Level

eas

Path rule-Target an application by its program file path

Path: C:\myfolder\myeXe.exe ..

Security: Ox80 120 000

Apply rule only if user can authenticate (must provide Credentials)
Require user to enter text justification

O Apply rule only if program is owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder

D Apply rule to all processes launched by the targeted application

Notes

By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
otherwise affect the user.
If a program is launched that meets the above criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

FIG. 17A

Patent Application Publication Feb. 3, 2011 Sheet 23 of 31 US 2011/00300.45 A1

Privilege Manager Authorization

Authorize execution of application with administrative privileges.

& Registry Editor
Microsoft Corporation
C:\Windows\regedit.exe

To continue, type your Windows password, and click OK.

User: DSCOVERY \to user

FIG. 17B

Patent Application Publication Feb. 3, 2011 Sheet 24 of 31 US 2011/00300.45 A1

%SystemRoot%\System32\btes.exe Properties

Application Integrity Level

CD\DVD Rule: Target a CD-ROM or DVD

CD-ROM: - 1445.3495.67

Security: Ox8O12OOOO ...

Apply rule only if user can authenticate (must provide credentials)
D Require user to enter text justification
O Apply rule only if program is owned by the Administrators group

Apply rule to all programs in all subfolders of the specified folder
Apply rule to all processes launched by the targeted application

Notes

The CD-ROM rule type allows you to associate a given set of
permissions, privileges and integrity levels to all applications of a
given CD-ROM. This rule is particularly useful when used to allow
end-users to run installation programs from authorized CD-ROMs.

The default policy will create a full Administrative token
Administrators group and all privileges).

FIG. 18

Patent Application Publication Feb. 3, 2011 Sheet 25 of 31 US 2011/00300.45 A1

reged it.exe Properties

Application Integrity Level

T

Path rule - Target an application by its program file path W.

Path C:\Windows\regedit.exe

Security: Ox8O12OOOO

Apply rule only if user can authenticate (must provide credentials)
Require user to enter text justification

O Apply rule only if program is owned by the Administrators group
Apply rule to all programs in all subfolders of the specified folder

O Apply rule to all processes launched by the targeted application

Notes
By default each process a user launches inherits the user's access
token. This policy is used to increase or reduce the permissions
and/or privileges held by the target process token, but does not
otherwise affect the user.
If a program is launched that meets the above criteria, the process
token will be altered as directed by the Permissions, Privileges and
Integrity tabs.

FIG. 19A

Patent Application Publication Feb. 3, 2011 Sheet 26 of 31 US 2011/00300.45 A1

Privilege Manager Authorization

Authorize execution of application with administrative privileges.

& Registry Editor
Microsoft Corporation
C:\Windows\regedit.exe

To continue, type justification, your Windows password, and click OK.

Justification: : 8 s

Justification Text

User: DSCOVERY \to USer

FIG. 19B

Patent Application Publication Feb. 3, 2011 Sheet 27 of 31 US 2011/00300.45 A1

Event Properties

Event

Date: 4/10/2009 Source: privman
Time: 7:31:11 PM Category: None
Type: Information Event ID: 28677
User: DISCOVERY\to user

Computer. WXPCL1

Description:
C:\Windows\regedit.exe executed because: Need to be able to modify the
registry to troubleshoot a problem with an application.

Data: O Bytes O Words

FIG. 19C

US 2011/00300.45 A1

81.02

Feb. 3, 2011 Sheet 28 of 31

800Z 700Z

Patent Application Publication

LXELNOO SSE3)OHd EZIT?VI LINI
SEI),

Å HOWE WN O || SSHOOHd dV/W
||SETTOEH SSE OO\ld WABN

US 2011/00300.45 A1

(9):

Feb. 3, 2011 Sheet 29 of 31

ZZOZ OZOZ

Patent Application Publication

ON

0£OZ

ON
å SSBOO Hd EIHL O L ÅTc|c|\7 ET15) NHS ÅT NO SE OO

SEA
SISIXE ANW HI ‘ENIT CIVNO SSBOO Hd OL NIVOV SXIOOH HEATHQ SSEC) OHd E. HIL EI WNTSEY]

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 30 of 31 Patent Application Publication

&SSHOOHd CJTIHO V SSBOO Hd SI

US 2011/00300.45 A1 Feb. 3, 2011 Sheet 31 of 31 Patent Application Publication

ZGOZ 970Z

HLINA SEL?gIH LLW NEXOL 39NVHO OL NEXOL OL OBITddw (S)ET/TH SH|ToddV ET [TH ENO HO AT ddV ET[n}} TTV +| BN|WN HELBC]

US 2011/00300.45 A1

METHODS AND SYSTEMIS FOR
CONTROLLING ACCESS TO RESOURCES

AND PRIVLEGES PER PROCESS

CROSS-REFERENCE TO RELATED
APPLICATION

0001. The present application claims benefit of U.S. Pro
visional Patent Application No. 61/174.513 filed May 1,
2009, and entitled “Methods and Systems for Modifying the
Integrity Level of an Application” which is incorporated
herein by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The disclosed methods and systems related gener
ally to securing resources and privileges on a computer, and
more particularly to controlling access to resources and con
trolling privileges per process.
0004 2. Background Information
0005. A user logs on to a computer locally by giving his
user name and password to the operating system (“OS). The
OS then creates a logon session and an access token for that
user. The access token includes a unique identifier (i.e.,
known as a security ID (“SID) for the logged-on user), a list
of privileges the user has or the user's groups has, and a list of
all the groups to which the user, as identified by his/her unique
SID, belongs. Each group is also identified by a unique SID.
For each process that is created during the logon session, the
OS assigns a copy of the original access token to that process.
A token assigned to a process is a process token. An example
of a process token is shown in FIG. 1.
0006. A user's membership in different groups determines
what securable objects the user is able to access, presuming
the object allows members of that group access. A securable
object includes, but is not limited to, a file, process, event, or
anything else having a security descriptor. For example, a user
will not be able to access a securable object if access to that
securable object, is limited to a group of which the user is not
a member. Similarly, a user's privileges are limited to those
associated with the access token.
0007 Whenever a process tries to access a securable
object, the OS performs an access check. The OS compares
the process token to an access control list (ACL) of the
securable object. An access control list is a list of security
protections that applies to the securable object. An entry in an
ACL is known as an access control entry (ACE). An ACE
contains a set of access rights, such as read/write, etc., and a
SID that identifies a group and/or user for whom the rights are
allowed, denied, or audited. If the SID in the process token
matches an SID in the ACL of the securable object, and if the
ACE (for that SID) rights are set to “allow, then the process
associated with the process token will be able to access the
securable object. Otherwise, the process will be denied access
to the securable object.
0008 Access to the securable object may also be denied if,
for example, within the ACE of that SID, rights are set to
“deny,” even if the process token contains a copy of the SID
that is in the securable object's ACL.
0009. It is also possible that some privileges instruct the
OS to bypass the securable object’s ACL. Under such a secu
rity arrangement, each process created by the OS in response
to a given process's request therefore has the same token as

Feb. 3, 2011

the requesting process, and thus share the same access to
securable objects and privileges.
0010 Situations may arise, however, where, in order to
perform a task, a user needs access to securable objects and/or
privileges that are outside the scope of his current group
membership and/or privileges listed in the user's access
token. One solution to this problem is to make the user a
member of a group that has expanded access and/or privi
leges, such as the Administrators Group in a Windows-brand
OS. This solution may have unintended consequences, as the
user gains not only the needed access and/or privilege(s), but
greater access and other privileges as well. Making the user a
member of the Administrators Group enables the user to
access the particular needed object, but may also enable the
user to install unauthorized applications, perform unautho
rized modifications to the configuration of their computer,
and so on. Potentially even more importantly, users with
elevated privileges and access are more Vulnerable to mal
ware (e.g., viruses, trojans, worms, and the like) which may
threaten the user's computer, the user's account, shared
accounts, and the network. Thus, a means of granting only
needed access and/or privileges is desirable.
10011. In MICROSOFTTM WINDOWSTM, a Group Policy
Object (GPO) is a collection or grouping of configuration
settings that are applied to computers automatically. Group
Policy is a MICROSOFTTM implementation of the general
concept of policy-based management, which is a computer
management model. One potential implementation of a group
policy system is described in U.S. Pat. No. 6,466.932. By
applying the configuration settings to the computers, a system
administrator or other entity may define and set the behavior
and appearance or configuration of the computers. Accord
ingly, a GPO is generally configured by a system administra
tor or other high-level administrator, and as an object, a GPO
can be associated with a hierarchical grouping known as a
“container. A container may be a domain, a site, an organi
Zation unit (OU), or other association of computers, systems,
or users. In some example instances, a GPO may define Script
options, security options, Software-installation options,
folder-redirection options, Software-maintenance options,
and other configuration options.
0012. Each GPO has a list that controls whether the GPO’s
settings are applied to given users, groups, and/or computers.
An entity that is on the list has the GPO’s settings applied to
it. An entity not on the list does not have the GPO’s settings
applied to it. The use of groups, as opposed to user or com
puter identities, as the criterion on which the settings appli
cation decision is made may be referred to as GPO-level
filtering. Accordingly, GPO-level filtering allows a system
administrator to specify whether a GPO is applied or denied
to users or computers. The GPO is thus applied in its entirety,
or denied in its entirety, to a user, computer, or system.
(0013. In a MICROSOFTTM implementation, GPOs are
populated with settings by a Group Policy Object Editor
(GPOE). Settings are applied on client computers by corre
sponding extensions, called Client-Side Extensions (CSEs).
There is a documented extension model that MICROSOFTTM
provides for software vendors to extend these systems and, by
doing so, provide new functionality within the WINDOWSTM
Group Policy architecture.

SUMMARY OF THE INVENTION

0014. In various embodiments, there is provided, for
modifying access to securable objects, a method including

US 2011/00300.45 A1

providing a rule that includes an application-criterion set
which includes at least one criterion for token modification in
accordance with the rule. The rule may specify at least one
group to be added to a token of a process that satisfies the
application-criterion set and whose access to securable
objects is controlled by an operating system in accordance
with the token. At least one of said specified group may be a
group other than the Administrators Group. Before the oper
ating system employs a process's token to determine that
process's access to securable objects, the method may com
prise making a determination of whether that process satisfies
the criterion set, and, if that determination is affirmative,
adding to that process's token in response to that rule each
group that the rule specifies. In some embodiments, the addi
tion only occurs if and only if that determination is affirma
tive.
0015 The rule may be one of a plurality of such rules. In
Some embodiments, the method may include assigning rela
tive priorities to the rules. Further, the method may include
adding a group to the process's token in response to a given
rule only if the process satisfies the application-criterion set
of no rule whose priority is higher than the given rules. The
rule may be any kind of rule, including, but not limited to a
path rule, a hash rule, a folder rule, an MSI path/folder rule, a
shell rule, a certificate rule, an ActiveX rule, or a CD/DVD
rule.
0016. The process may execute an executable entity. In
Some embodiments, at least one said criterion may be that the
executable entity match an executable-entity identifier speci
fied by that criterion. The executable entity may be an execut
able file. Further, the executable-entity identifier may be a
hash on the executable file's contents. In various embodi
ments, the executable-entity identifier may represent the
executable file's path. The executable-entity may be a
CD/DVD or an Active X-related application. The executable
entity identifier may be a certificate.
0017. The rule may further specify at least one privilege to
be added to the token of a process that satisfies the applica
tion-criterion set. Further, the method may include adding
each privilege that the rule specifies to a process token if the
process satisfies the application-criterion set.
0018. In some embodiments, the rule may further include
an inheritance option set to either block or allow inheritance
by any child process of any group or groups added to the token
of a parent process. If the inheritance option is set to “block”
and the process does not satisfy any of said rule's application
criterion set, the method may further include determining if
the process is the child of another process and if the process is
the grandchild of another process, and if both determinations
are affirmative, make that process token the same as the token
as its grandparent process, and if not, make that process token
the same as an unmodified access token.
0019. One said criterion may be that the user match a user
identifier specified by that criterion. The user identifier may
be a user authentication, Such as a password, a biometric scan,
and the like. Another criterion may be that the user provide a
justification for modifying access to the securable object.
0020. An exemplary method for modifying a user's privi
leges to perform systems-related operations comprises pro
viding a rule that includes an application-criterion set which
includes at least one criterion for token modification in accor
dance with the rule, the rule specifying at least one privilege
to be added to a token of a process that satisfies the applica
tion-criterion set and whose performance of system opera

Feb. 3, 2011

tions is controlled by an operating system in accordance with
the token. The method may further comprise, before the oper
ating system employs a process's token to determine that
process's privileges, making a determination of whether that
process satisfies the criterion set, and if that determination is
affirmative, adding to that process's token in response to that
rule each privilege that the rule specifies. In some embodi
ments, the addition only occurs if and only if the determina
tion is affirmative.
0021. In some embodiments, the rule may further specify
at least one group to be added to the token of a process that
satisfies the application-criterion set. Further, the method
may further include adding each group that the rule specifies
to the process token if the process satisfies the application
criterion set.

0022. The rule may also further include an inheritance
option set to either “block” or “allow inheritance by any
child process, of any privilege or privileges added to the token
of a parent process. If the inheritance option is set to “block”
and the process does not satisfy any of said rule's application
criterion set, the method may further include determining if
the process is the child of another process and if the process is
the grandchild of another process, and if both determinations
are affirmative, make that process token the same as the token
as its grandparent process, and if not, make that process token
the same as an unmodified access token.

0023. One said criterion may be that the user match a user
identifier specified by that criterion.
0024. An exemplary method for blocking inheritance of a
modified token of a process comprises providing at least one
rule that includes an application-criterion set including at
least one criterion for token modification in accordance with
the rule, the rule specifying (1) at least one change to be made
to a token of a process that satisfies the application-criterion
set and whose privileges and access to securable objects are
controlled by an operating system in accordance with the
token, and (2) an inheritance option set to either block or
allow inheritance, by any child process, of any changes made
to the token of a parent process. The method may further
comprise, if the inheritance option is set to block and the
process does not satisfy any said rule's application-criterion
set, determining if the process is the child of another process.
This determination may occur before the operating system of
the computer employs a process's token to determine that
process's privileges and access to securable objects. If the
process is the grandchild of another process, and if both
determinations are affirmative, the method may comprise
making that process's token the same as the token of its
grandparent process. If the process is not a grandchild of
another process, the method may comprise making that pro
cess's token the same as an unmodified access token.
0025. The at least one change may be one of adding a
group, removing a group, adding a privilege, and removing a
privilege. The process may execute an executable entity. At
least one said criterion may be that the executable entity
match an executable-entity identifier specified by that crite
rion. One said criterion may be that the user match a user
identifier specified by that criterion.
0026. An exemplary method for limiting changes made to
a token of a process may comprise providing a rule that
includes an application-criterion set including at least one
criterion for token modification in accordance with the rule,
wherein one said criterion is that the user match a user iden
tifier specified by that criterion, the rule specifying at least

US 2011/00300.45 A1

one change to be made to a token of a process that satisfies the
application-criterion set and whose access to securable
objects and privileges is controlled by an operating system in
accordance with the token. Before the operating system
employs a process's token, the method may further comprise
determining that process's access to securable objects and
privileges by making a determination of whether that process
satisfies the criterion set, and if that determination is affirma
tive, changing that process's token in response to that rule
according to each change that the rule specifies. In some
embodiments, the changing occurs if and only if the determi
nation is affirmative.

0027. The at least one change may be one of adding a
group, removing a group, adding a privilege, and removing a
privilege. The rule may be one of a plurality of such rules. The
method may further comprise assigning relative priorities to
the rules and/or changing the process's token in response to a
given rule only if the process satisfies the application-crite
rion set of no rule whose priority is higher than the given
rules. The method may further comprise executing an
executable entity. At least one said criterion may further
include that the executable entity match an executable-entity
identifier specified by that criterion.
0028. An exemplary method for managing, over a net
work, changes to process tokens created in computers opera
tively coupled to the network, where the computers on the
network are organized into groups, comprises creating a rule
that includes an application-criterion set including at least
one criterion for token modification in accordance with the
rule, the rule specifying at least one change to be made to a
token of a process that satisfies the application-criterion set
and whose access to securable objects and privileges is con
trolled by an operating system in accordance with the token,
associating each created rule to respective selected ones of
group policy objects, where at least one selected group policy
object applies to at least one of the groups of computers,
applying each group policy object to its group of computers,
and for each computer in each group, before the operating
system of that computer employs a process's token to deter
mine that process's access to securable objects and privileges,
making a determination of whether that process satisfies the
criterion set, and if and only if that determination is affirma
tive, changing that process's token in response to that rule
according to each change that the rule specifies.
0029. One said criterion may be that the user match a user
identifier specified by that criterion. The method may further
include adding, in response to user input, at least one user
defined filter criterion to a selected group policy object.
Applying each group policy object to its group of computers
may further include applying each group policy object to each
computer in its associated group of computers if that com
puter satisfies the user-defined filter criterion. The at least one
user-defined criterion may include at least one user identifier.
0030. An exemplary computer readable medium may
comprise executable instructions to perform a method to
modify access to securable objects on a computer, the method
comprising receiving a rule that includes an application-cri
terion set including at least one criterion for token modifica
tion in accordance with the rule, the rule specifying at least
one group to be added to a token of a process that satisfies the
application-criterion set and whose access to securable
objects is controlled by an operating system of the computer
in accordance with the token, at least one said specified group
being a group other than the Administrators Group, and

Feb. 3, 2011

before the operating system of the computer employs a pro
cess's token to determine that process's access to securable
objects, making a determination of whether that process sat
isfies the criterion set, and if and only if that determination is
affirmative, adding to that process's token in response to that
rule each group that the rule specifies.
0031. Another exemplary computer readable medium
may comprise executable instructions to perform a method to
modify a user's privileges to perform systems-related opera
tions on a computer, the method may comprise receiving a
rule that includes an application-criterion set including at
least one criterion for token modification in accordance with
the rule, the rule specifying at least one privilege to be added
to a token of a process that satisfies the application-criterion
set and whose performance of system operations is controlled
by an operating system of the computer in accordance with
the token, and before the operating system of the computer
employs a process's token to determine that process's privi
leges, making a determination of whether that process satis
fies the criterion set, and if and only if that determination is
affirmative, adding to that process's token in response to that
rule each privilege that the rule specifies.
0032. Yet another exemplary computer readable medium
may comprise executable instructions to perform a method to
block inheritance of a modified token of a process on a com
puter, the method comprising receiving at least one rule that
includes an application-criterion set including at least one
criterion for token modification in accordance with the rule,
the rule specifying (1) at least one change to be made to a
token of a process that satisfies the application-criterion set
and whose privileges and access to securable objects are
controlled by an operating system of the computer in accor
dance with the token, and (2) an inheritance option set to
either block or allow inheritance, by any child process, of any
changes made to the token of a parent process, and if the
inheritance option is set to block and the process does not
satisfy any said rule's application-criterion set, before the
operating system of the computer employs a process's token
to determine that process's privileges and access to securable
objects, determining if the process is the child of another
process and if the process is the grandchild of another pro
cess, and if both determinations are affirmative, making that
process's token the same as the token of its grandparent
process, and if not, make that process's token the same as an
unmodified access token.

0033. In some embodiments, an exemplary computer
readable medium may comprise executable instructions to
perform a method to limit changes made to a token of a
process on a computer, the method may comprise receiving a
rule that includes an application-criterion set including at
least one criterion for token modification in accordance with
the rule, wherein one said criterion is that the user match a
user identifier specified by that criterion, the rule specifying at
least one change to be made to a token of a process that
satisfies the application-criterion set and whose access to
securable objects and privileges is controlled by an operating
system inaccordance with the token, and before the operating
system employs a process's token to determine that process's
access to securable objects and privileges, making a determi
nation of whether that process satisfies the criterion set, and if
and only if that determination is affirmative, changing that
process's token in response to that rule according to each
change that the rule specifies. The user identifier may be a
password, a biometric scan, and the like.

US 2011/00300.45 A1

0034. In another embodiment, there is provided a com
puter program product to manage, over a network, changes to
process tokens created in computers operatively coupled to
the network, where the computers on the network are orga
nized into groups, the computer program product comprising
computer code to: create a rule that includes an application
criterion set including at least one criterion for token modifi
cation in accordance with the rule, the rule specifying at least
one change to be made to a token of a process that satisfies the
application-criterion set and whose access to securable
objects and privileges is controlled by an operating system in
accordance with the token, associating each created rule to
respective selected ones of group policy objects, where at
least one selected group policy object applies to at least one of
the groups of computers, applying each group policy object to
its group of computers; and for each computer in each group,
before the operating system of that computer employs a pro
cess's token to determine that process's access to securable
objects and privileges, making a determination of whether
that process satisfies the criterion set, and if and only if that
determination is affirmative, changing that process's token in
response to that rule according to each change that the rule
specifies.
0035. In various embodiments, an exemplary computer
readable medium may comprise executable instructions to
perform a method to modify a user's privileges to perform
systems-related operations on a computer, the method com
prising configuring a token for a process the user may
execute, wherein the token relates to a level of access to a
systems-related operation, and before the operating system of
the computer executes a systems-related operation, accessing
the user's token to determine that the user's privileges include
executing the system-related operation.
0036. In some embodiments, An exemplary computer
readable medium may comprise executable instructions to
perform a method to set an integrity level for at least one
indicated process, wherein setting the integrity level of the at
least one process does not modify the integrity level of any
other non-indicated process and before the operating system
of the computer executes the at least one process, accessing
the integrity level indication to determine under what integ
rity level to execute the process.
0037. The method may further comprise verifying the
identity of a user requesting that the integrity level be set
and/or prior to setting the integrity level, requesting a justifi
cation from a user requesting that the integrity level be set.
Setting the integrity level may be done in accordance with at
least one rule. The at least one rule may be a shell rule,
wherein the integrity level is set for an individual process
upon user on-demand request. The at least one rule may be a
certificate rule, wherein the integrity level is set if at least one
criteria of the process certificate is met. The at least one rule
may be an administrator-defined rule, wherein the integrity
level is set upon providing a user credential. The at least one
rule may be an external media and memory rule, wherein the
integrity level is set for all processes executed from an indi
cated external media or memory. The Integrity Level may also
be set for path, hash, folder, MSI path, MSI folder, and
ActiveX rules. The method may also comprise logging of the
execution that is generated when the operating system of the
computer executes the at least one process.
0038. In various embodiments, an exemplary computer
readable medium may comprise executable instructions to
perform a method to modify a user's or group of users access

Feb. 3, 2011

to a process on a computer, the method may comprise deter
mining if one or more rules apply to a process that a user or
group of users executes, configuring a token for the process,
wherein the token relates to a level of access to the process in
accordance with an applicable rule, and before the computer
executes the process, accessing the process token to deter
mine at least one of a permission, a privilege, and an integrity
level with which to execute the process. In some embodi
ments, the method may apply the rule only if a user can
authenticate or if the process is owned by an Administrators
Group. The method may further comprise applying the rule to
all processes launched by a specified application. Further, the
method may further comprise applying the rule to all pro
grams in all subfolders of a specified folder. The method may
require the user to enter a justification prior to configuring the
token.

BRIEF DESCRIPTION OF THE DRAWINGS

0039. The description below refers to the accompanying
drawings, of which:
0040 FIG. 1 is an example of the contents of a process
token.
0041 FIG. 2 is a graphical user interface of an exemplary
security management system described herein including a
privilege manager tab, through which rules may be created,
edited, and/or deleted.
0042 FIG. 3 is a graphical user interface for selecting the
type of rule in some embodiments.
0043 FIGS. 4A and 4B are respective graphical user inter
faces for selecting processes to which a rule applies, accord
ing to type of rule chosen in some embodiments.
0044 FIG. 5 is a graphical user interface for optionally
limiting a rule to apply only if a particular command line of a
process is used in some embodiments.
0045 FIG. 6 is a graphical user interface for adding one or
more groups to the rule in Some embodiments.
0046 FIG. 7 is a graphical user interface for removing one
or more groups from the rule in some embodiments.
0047 FIG. 8 is a graphical user interface for adding and/or
removing one or more privileges from the rule orchanging the
integrity level of the token in some embodiments.
0048 FIG. 9 is a graphical user interface for optionally
limiting application of the rule to specified users in some
embodiments.
0049 FIG. 10 depicts a filter graphical user interface
showing options available for adding administrator-defined
filter criteria to a policy or policy object in some embodi
mentS.

0050 FIGS. 11A-11D are exemplary flowcharts showing
how a local digital device may applies the rule(s) it receives as
policies to processes as they execute on the local digital
device in some embodiments.
0051 FIG. 12 shows an exemplary unmodified process
token containing a user's SID and the SIDs of the group that
user is a member of
0052 FIG. 13 shows the process token of FIG. 12 modi
fied to include a new group and its corresponding SID in some
embodiments.
0053 FIG. 14 shows the properties of a privilege manager
in accordance with various embodiments of the present inven
tion.
0054 FIG. 15A shows the application of the shell rule in
the graphical user interface in accordance with various
embodiments.

US 2011/00300.45 A1

0055 FIG. 15B shows a right click option to elevate appli
cations on demand in the graphical user interface in accor
dance with various embodiments.
0056 FIG. 16 shows a certificate rule to elevate applica
tions on demand in the graphical user interface in accordance
with various embodiments.
0057 FIG.17A and FIG. 17B show user authentication to
create a rule in the graphical user interface in accordance with
various embodiments.
0058 FIG. 18 shows a CD/DVD rule enabling the user to
elevate all applications on a certain CD or DVD in the graphi
cal user interface in accordance with various embodiments.
0059 FIG. 19A and FIG. 19B show the graphical user
interface to enterajustification for the application elevation in
accordance with various embodiments.
0060 FIG. 19C shows an exemplary event log in a client
machine in accordance with various embodiments.
0061 FIG. 20A, 20B, 20O, and 20D depict flowcharts
explaining the various process steps in the application of
different policies on the local digital device in accordance
with various embodiments.

DETAILED DESCRIPTION

0062) To provide an overall understanding, certain illus
trative embodiments will now be described. It will be under
stood by one of ordinary skill in the art, however, that the
systems and methods described herein may be adapted and
modified to provide systems and methods for other suitable
applications and that other additions and modifications may
be made without departing from the scope of the systems and
methods described herein.
0063. Unless otherwise specified, the illustrated embodi
ments may be understood as providing exemplary features of
varying detail of certain embodiments, and therefore, unless
otherwise specified, features, components, modules, and/or
aspects of the illustrations may be otherwise combined, sepa
rated, interchanged, and/or rearranged without departing
from the disclosed systems or methods. Additionally, the
shapes and sizes of components are also exemplary and
unless otherwise specified, may be altered without affecting
the scope of the disclosed and exemplary systems or methods
of the present disclosure.
0064. Some embodiments as described below allow an
administrator of a computer network to set privileges and
access to securable objects on a per-process basis, thereby
creating a more secure, manageable environment. Some
embodiments may use a group/policy management system,
such as WINDOWSTM GPO management. The disclosed
methods and systems, however, are not limited to Such an
example embodiment. As such, the disclosed methods and
systems may be understood to apply to other group and/or
policy-based management systems and techniques.
0065 FIG. 2 shows a graphical user interface of an exem
plary security management system described herein, includ
ing a privilege manager tab 202, through which rules may be
created, edited, and/or deleted. Before creating a rule or rules
to be used in modifying process tokens, the administrator or
other user may select a policy object to add policies to,
remove policies from, or modify the existing policies of
Subsequently, the user may create one or more rules that a
digital device may use to modify the token of a process (e.g.,
a process token), to edit one or more existing rules, or delete
one or more existing rules. A digital device is any device that
has a processor and memory. Examples of digital devices

Feb. 3, 2011

include, but are not limited to, laptops, computers, servers,
personal digital assistants, Smartphones, mobile devices,
media devices, tablets, and the like.
0066. A rule may identify one or more processes to be
applied. The user may select a rule for identifying a process.
In some examples, a process may be identified by a hash rule,
a path rule, a folder rule, an MSI Path rule, an MSI folder rule,
an ActiveX rule, a certificate rule, a shell rule, or a CD/DVD
rule, as shown in FIG. 3. FIG. 3 is a graphical user interface
for selecting a type of rule in Some embodiments.
0067. A hash rule uses a hashing function, such as but not
limited to the SHA-1 hashing function, to calculate a unique
identifier of a process. The calculation may be performed on
the binary file of the process. In one example, the identifier is
a 20 byte ID, though any size identifier may be used. A hash
rule may enable targeting an application by a hash of its file.
The hash rule may be independent of the file location, but, in
Some embodiments, the hash rule may be updated (e.g., a new
hash is calculated) whenever a new image of the file is
deployed. A hash rule may be applied to only one executable
file at the time. In other embodiments, a hash rule may be
applied to any number of executable files at a time.
0068 A path rule allows the user to identify one or more
processes by means of a file name and/or path. The file name
and/or path may include wildcards, keywords, and/or Subdi
rectories. A path rule may apply to a number of processes that
are subject to frequent changes and/or processes that execute
code stored in a location under the control of the user. In one
example, processes may execute code stored in a network
share. A path rule may enable targeting an application by a
program file hash.
0069. A folder rule may enable targeting of applications in
a folder. An MSI Path rule may enable targeting installations
by MSI path. An MSI Folder rule may enable targeting instal
lations by MSI file folder. An ActiveX rule may enable tar
geting an IE ActiveX control installation. A certificate rule
may enable targeting an application by its certificate. A shell
rule may enable targeting an application started from
Explorer. A CD/DVD rule may enable targeting a CD-ROM
or DVD.

0070. In various embodiments, by default, each process a
user launches inherits the user's access token. This policy
may be used to increase or reduce the permissions and/or
privileges held by the target process token, but may not oth
erwise affect the user. If a program is launched that meets
selected criteria, the process token may be altered as directed
by the permissions, privileges, and/or integrity tabs.
0071. After the rule type is chosen, the processes that the
rule will apply to are chosen. One or more processes may be
chosen, as shown in the graphical user interfaces of FIGS. 4A
and 4B. FIGS. 4A and 4B are respective graphical user inter
faces for selecting processes to which a rule applies, accord
ing to type of rule chosen in some embodiments. For the path
rule, it is possible to have the rule apply recursively by select
ing the "Apply rule to all processes launched by the targeted
application' option.
0072. As an option, the user may wish to restrict the execu
tion of certain processes so that they may be launched only if
a specific command line argument is used, as shown in FIG.
5. FIG. 5 is a graphical user interface for optionally limiting a
rule to apply only if a particular command line of a process is
used in some embodiments. For example, in a Windows
based OS, all Control Panel applets are either.cpl extensions
executed by rundll32 or shortcuts to administrative Microsoft

US 2011/00300.45 A1

Management Console Snap-ins executed by mmc.exe. As it is
potentially unsafe to grant end users unrestricted access to
those applications, the execution of Such processes may be
limited to occur only when invoked with particular command
line arguments. After being selected, particular command
lines may be added, deleted, or edited.
0073. The administrator or other user may subsequently
select what change or changes the rule will make to the token
of each identified process. A change may be one or more of
adding a group or groups to the token, removing a group or
groups from the token, adding a privilege, privileges, or per
mission to, or changing the integrity level of the token, and
removing a privilege, privileges, or permission from, or
changing the integrity level of the token.
0074 FIG. 6 is a graphical user interface for adding one or
more groups to the rule in some embodiments. FIG. 7 is a
graphical user interface for removing one or more groups
from the rule in some embodiments. FIG. 8 is a graphical user
interface for adding and/or removing one or more privileges
from the rule or changing the integrity level of the token in
Some embodiments.
0075. The administrator or other user may optionally iden

tify a particular user or users in the rule, for example by
indicating a particular group as shown in the graphical user
interface of FIG. 9. FIG. 9 is a graphical user interface for
optionally limiting application of the rule to specified users in
Some embodiments. This option may restrict application of
the rule to those identified users. Alternatively, in some
embodiments, restricting application of the rule may be done
through filters or through the OU level, and not as a part of the
individual rule configuration. As is explained further herein,
this option may serve as a filter criterion at the policy level, or
as a filter criterion each time a process is executed on a digital
device. By default, this option may be turned on and identify
all users through, for example but not limited to, an Everyone
Group.
0076. Additionally, a rule may also include an option to
block or allow inheritance by a child process of the token of
the corresponding parent process. The parent process may
have been modified from the original access token. If the
option to block or allow inheritance is set to “allow, a child
process may inherit the potentially modified token of its par
ent process. If the inheritance option is set to “block, and the
parent process is itself a child of another process, the child
process receives the token of its grandparent. Otherwise, the
child process may receive the original, unmodified access
token created when the user initially logged on to the digital
device.

0077. In some embodiments, rules may be created within
a group policy object. It is possible for an administrator or
other user to include a user-defined criteria as a filtering
scheme that may be added to any policy. The user-defined
criteria may be added after the policy corresponding to a rule
has been added to the policy object. In some embodiments, a
point-and-click filter graphical user interface, as shown in
FIG. 10, shows options available for adding administrator
defined filter criteria to a policy or policy object in some
embodiments.
0078. The graphical user interface depicted in FIG. 10
may include one or more options, including, but not limited
to, options to facilitate a drag and drop of user-defined filter
criteria within a single user-defined filter control, a drag and
drop of user-defined filter elements between filter controls
from other policies, a standardized per filter naming and

Feb. 3, 2011

documentation capability, a generalized automatic genera
tion of environment variable with filter results, standardized
tracing, event logging and reporting, standardized Boolean
operators (and/or/not) applied to filters, indefinite level of
nesting to graphically represent logical parenthetic expres
sions, integration with Windows environment variables (read/
write), an ability to generate environment variables for use in
follow-on filters or configurations, and a hidden filter capa
bility that allows configuration items to transparently lever
age the filter system without presenting those generated filters
to administrators.

0079. In some embodiments, the filtergraphical user inter
face of FIG. 10 may facilitate the selection of filter criteria in
a manner that allows a system administrator or other user to
perform actions such as drag-and-drop to add/remove filter
criteria from the policy. Some filter criteria may include, but
are not limited to, Battery Present, Computer Name, CPU
Speed, Dial-Up Connection, Disk Space, Domain, Environ
ment Variable, File match, Filter Group, IP Address Range,
Language, LDAP Query, MAC Address Range, Message
Box, MSI Query, Operating System, Organizational Unit,
PCMCIA Present, Portable Computer, Processing Mode,
RAM, Recur Every, Registry Match, Security Group, Site,
Terminal Session, Time Range, User, and WMI Query. A
filter criterion may have various settings depending on the
filter criterion type. These filter settings may be modified by
the administrator or other user. The user-defined filter criteria
may be associated with logic to allow for a determination of
whether the policy should be applied to a given digital device
on the network.

0080. As described herein, policy objects may be associ
ated with one or more directory containers. These directory
containers, which may be domains, sites, or organizational
units, may be are arranged hierarchically. In some embodi
ments, a domain may include within it a plurality of sites,
each of which in turn may include a plurality of organiza
tional units. For example, within a company, a domain may
encompass each digital device that belongs to the company, a
site may encompass all of the digital device located on a
particular floor of the company's building, and an organiza
tional unit may encompass the digital devices of a particular
group within the company, Such as the Engineering Depart
ment. A policy object that is associated with each of those
containers may have its policies applied to those digital
devices when the policy objects are deployed by the policy
management System.
I0081. The policy management system may include
options to order the policy objects within a container and/or
across containers. This may allow an administrator to address
the order in which policies from different policy objects are
applied, and to address how conflicts between policy objects
may be resolved. Each directory container may include
options, which may be set by the administrator, to enforce the
policy objects associated with the container on the digital
devices associated with the container, and to block the policy
objects associated with containers that are lower in the hier
archy.
I0082 Before a policy is applied to a digital device associ
ated with a directory container, any user-defined filter criteria
contained in the policy may be run to determine if the digital
device satisfies the criteria. Policies may also be applied
according to users in a directory container (OU). If the digital
device satisfies the filter criteria, the policy management sys
tem may be able to apply the policy to the digital device. In

US 2011/00300.45 A1

Some embodiments, application of a policy that corresponds
to a rule may cause the digital device to apply the rule to any
relevant process(es), as described herein.
0083. Additionally, if a rule includes a user identifier and
the system is configured to use the user identifier as a per
policy filter criterion, the SID of the current user logged on to
a digital device, or any SID identifying the groups to which
that user belongs, may be matched to the user identifier in
order for the policy to be applied to that digital device. As
discussed herein, the system may be configured to use a user
identifier as a filter that is applied whenever a process is
executed on the digital device.
0084. In various embodiments, to cause the operating sys
tem of a local digital device to apply the rule or rules it
receives, a driver may be installed on the local digital device.
During installation, the driver may register with the OS, such
that, when a process is being executed on the local digital
device, the OS may inform the driver of this action.
0085. When a local user subsequently performs an action
that causes the OS to execute a process, the routines described
in the flowchart of FIGS. 11A-11D may be executed. FIGS.
11A-11D are exemplary flowcharts showing how a local digi
tal device may applies the rule(s) it receives as policies to
processes as they execute on the local digital device in some
embodiments.

I0086. When the OS calls a first application programming
interface (API) (e.g., in Windows, ZwcreateSection system
call) to map the file into memory in step 1002, the driver
hooks the first API and retrieves attributes of the process to be
executed in step 1004. If the file being mapped into memory
is an executable, as identified from the first API, the driver
may check whether the process is Subject to any rule(s)
received as policies. To make this determination, the driver
may look at a number of attributes, including, but not limited
to, the full path of the file (including its name and location),
the session information of the user, the file SHA-1 message
digest (which is a unique 20 bytes identifier of the file), and/or
the owner of the file. These attributes may be compared with
the identifier(s) of each process in the rules applied to the
local digital device in step 1006.
I0087. If the retrieved attributes match the identifier of any
process indicated in a rule, that rule may be then applied to the
process. After the OS loads the file image in memory, the OS
may call a second API to initialize process context in step
1008. The second API may be, for example, ZwCreatePro
cess in WINDOWS 2000 or ZwCreateProcessEx in WIN
DOWS XP. 2003, VISTA 2008, or Windows 7. The driver
may hook this second API in order to map the process to the
driver's section of memory step 1010, where any rules that
apply have been stored.
I0088. In step 1012 of FIG. 11B, the driver may detect if
there is a relationship between the process and a parent pro
cess and, if there is a relationship, the driver may store the
relationship for later use. Once the process context has been
created, the OS may try to start the process by calling a third
API to resume the process in step 1014. In one example, the
third API may be ZwResumeThread. In step 1016, the driver
may hook the third API to retrieve a process command line, if
one exists. In step 1018, if the rule contains a command line
argument, the argument may be compared against the com
mand line used to start the process. The rule may apply if there
is a match. In step 1020, if only one rule applies to the process,
the driver may modify the token of the process as described

Feb. 3, 2011

herein. In step 1022, if the process being resumed is subject to
more than one rule, the driver may determine which rule(s) to
apply.
I0089. In some embodiments, the driver applies all appli
cable rules to the process. Alternatively, a rule may be chosen
to be applied according to a priority Scheme. One possible
priority Scheme is that user policies have precedence over
machine policies, and for any given rule type, the rule with the
highest GPO ID and Order applies. Subsequently, the driver
may modify the process token as described below.
0090. In FIG. 11C, if the process being resumed does not
match any rule, the driver may check to see if the process is a
child process in step 1028. In step 1032, if the process is a
child process, the driver checks to see if the process token of
a parent process, if any, has been modified. If the process
token of the parent process has been modified, and a deter
mination of the inheritance option indicates that the inherit
ance option is set to “block” in step 1034, then the driver may
reset the token of the child process to equal the original
unmodified access token of the logged-on user. If the parent
process is itself a child process, the driver may reset the token
of the child process to equal the token of its grandparent,
which may contain changes. Otherwise, in step 1038, the
child process may receive a copy of the process token of the
parent process, which may contain changes.
0091. While the embodiment as described above uses sys
tems called hooking, it is also possible to use callback func
tions provided by the OS to achieve the same results.
Examples of such callback functions include, but are not
limited to, PsSetCreateProcessNotifyRoutine, PsSetCre
ateThreadNotifyRoutine, and PsSetLoadlmageNotifyRou
tine for a Windows-based OS. Those skilled in the art will
appreciate that there may be many ways to achieve the same
results.
0092. In FIG. 11D, to modify, or replace, a process token,
the driver may first obtain the current process token through a
call to a fourth API to obtain the previous process token in step
1030. The fourth API may be, for example, ZwopenProcess
Token in a Windows-based OS. In step 1040, the driver may
call a fifth API to retrieve token attributes. The fifth API may
be but not limited to ZwOueryInformationToken in a Win
dows-based OS.
0093 Token attributes may include, but are not limited to,
TOKEN GROUPS, TOKEN STATISTICS, TOKEN
USER, TOKEN PRIVILEGES, TOKEN OWNER,
TOKEN PRIMARY GROUP TOKEN DEFAULT
DACL, TOKEN SOURCE, TOKEN TYPE, and TOKEN
CONTROL data structures.
(0094. The TOKEN USER structure may identify the user
associated with the process token and may be used when the
policy to be applied is a user policy. For a user policy, the
driver may compare the policy's user SID, as determined at
logon, with the content of the TOKEN USER structure. If
there is no match, the driver may stop processing the rule. In
Some embodiments, this comparison may be required when
ever the process has not been started by the currently logged
on user, such as system services.
(0095. In step 1050, a rule or rules are applied to the token
to change token attributes in accordance with rules. For
example, the driver may then apply the rule, which may add
one or more SIDs to TOKEN GROUPS list, remove any one
or more of the SIDs present in the TOKEN GROUPS list, add
one or more privileges to the TOKEN PRIVILEGES list,
and/or remove any one or more privileges from the TOKEN

US 2011/00300.45 A1

PRIVILEGES list. Each time a token is modified, regardless
of the modification(s) made, the driver also may add a group
to keep track of the modification(s) made.
0096. After the TOKEN XXX data structures are set, the
modified process token may be created through a driver call to
a sixth API in step 1060. The driver may spawn a system
thread and calls a sixth API to create the token; the sixth API
may be ZwcreateToken, for example. The system thread may
execute under the LocalSystem context. After the token has
been created, the modified process token through an OS call
to a seventh API in step 1070. The seventh API, may include,
such is but not limited to, ZwSetInformationProcess.
0097. When the process then executes, the local user may
be able to access objects within the process, and/or use privi
leges, according to the modified process token. When the
process terminates, the associated process token may be
deleted. The next time a process is created, a new token may
be created for that process, according to the method described
herein, again starting with the access token that was created
when the local user first logged on.
0098. An example of adding a group and two privileges to
a process token is shown in FIGS. 12 and 13. FIG. 12 shows
an exemplary unmodified process token containing a user's
SID and the SIDs of the group that user is a member of. The
process token in FIG. 12 identifies the current user, the groups
that user belongs to, and the privileges of that user. In one
example, if this user desired to run an application, Such as
Debug View, the user may not have sufficient group member
ship and privileges since Debug View requires the user to be a
member of the Administrators Group and to have both the
Debug Programs (SeldebugPrivilege) and Load and Unload
Device Drivers (SeloadDriverPrivilege) privileges. Thus, in
Some embodiments, to allow the user to run the application, a
rule may be created that indicates that the Administrators
Group, and the requisite privileges, should be or are added to
the process token for the process DebugView. This rule may
then be sent to the local digital device via a group policy
object and applied by the driver, both as described herein.
0099. The resultant modified process token is shown in
FIG. 13. FIG. 13 shows the process token of FIG. 12 modified
to include a new group and its corresponding SID in some
embodiments. The modified process token may now contain
the Administrators Group, and the Debug Programs (Selde
bugPrivilege) and Load and Unload Device Drivers (Seload
DriverPrivilege) privileges.
0100. In some embodiments, a user may be allowed to
run/install MSI/executables that may traditionally require
administrative privileges, such as installing software, chang
ing settings on the desktop, and the like. In addition, installing
the privilege manager may help to address the problem of
malware (e.g., spyware) since the user may not have admin
istrative privileges.
0101. In some embodiments, the privilege manager may
enable users to perform administrator functions as needed. In
Some embodiments, the administrator may configure or gen
erate a policy for each individual user or groups of users
(OU's). These configurations may be done remotely through
active directory and group directories. The active directory
applications may contain all of the information which may
help in identifying each user. The user may be provided with
a token by which he/she may be authorized to do certain tasks.
The token for each individual user may be controlled and
modified by the administrator. When a user launches a pro
cess, the process may inherit the user's access token. This

Feb. 3, 2011

policy of inheriting the user's access token may be used to
increase or reduce the permissions and/or privileges held by
the target process token, but may not otherwise affect the user.
If a program is launched for which one or more rules apply,
the process token may be altered as directed by the rule,
including altering the permission, the privilege, and/or the
integrity level.
0102 FIG. 14 shows the properties of a privilege manager
in accordance with various embodiments of the present inven
tion. As shown in the graphical interface of FIG. 14, the
privilege manager may support different integrity levels. In
Some embodiments, the privilege manager may support
changing the integrity level of a process. Examples of the
different levels may include, but may not be limited to, un
trusted level, low integrity level, medium integrity level, high
integrity level, System integrity level, and the like. By clicking
on the “integrity level” tab 1402, the user may specify
changes to the integrity level of the targeted application's
token. The integrity level of a process may dictate the inter
action of one process with another process. In some embodi
ments, the different processes having different integrity levels
may not interact with each other. For example, when a process
is elevated to a high integrity level, the process may not be
injected with a code from a lower level integrity process
and/or may not inject code to other higher level processes
with higher integrity level settings. In some embodiments, all
resources on a digital device when run by the user may have
medium integrity level by default.
(0103) In some embodiments, the administrator may
specify the integrity level for an indicated process. For
example, a standard user may need to install software or a file
on the user's desktop in order to carry out a work function.
The administrator may elevate the indicated MSI or execut
able to run under an administrative token. The indicated pro
cesses, MSI or executable, and not all the processes, may be
elevated. For example, the administrative privileges may not
be granted for the entire digital device, but may be granted for
just the indicated process, which may protect the digital
device and allow the user to install the software or file.
0104. In some embodiments, a shell rule may enable users
to elevate applications on demand. The shell rule may allow
the user to execute any application. The privilege manager
may elevate that application's execution when the user
requests elevation, such as by selecting a right-click option to
elevate.

0105 For example, as shown in the graphical interface of
FIG. 15A and FIG. 15B, the shell rule may enable the user to
elevate any application or MSI by right-clicking on an execut
able and selecting “PM-Run Elevated” or “PM-Install
Elevated.” FIG. 15A shows the application of the shell rule in
the graphical user interface in accordance with various
embodiments. FIG. 15B shows a right click option to elevate
applications on demand in the graphical user interface in
accordance with various embodiments. The right-click option
text, as shown in FIG. 15B, may be customizable via a setting
in a predefined template. The user may elevate an application
or install a program file by selecting this option. This option
may also enable the user to log a record of the elevated
execution in the event log.
0106. In some embodiments, to elevate any application,
the administrator may require verification of the user's iden
tity by asking for an identifier, such as a password, a biometric
Scan, and the like. In some embodiments, the administrator
may also ask for a reason or justification. By using the logs,

US 2011/00300.45 A1

the administrator may track what users are doing with their
elevated privileges. In addition, by asking for a password or
other identifier and/or verification, the administrator may
ensure that malware is not elevating the process maliciously.
The shell rule may also be used to increase or reduce the
permission and/or privileges of different applications. In
Some embodiments, there may be only one shell rule.
0107 FIG. 16 shows a certificate rule to elevate applica
tions on demand in the graphical user interface in accordance
with various embodiments. A certificate rule may enable the
user to elevate an application based on the company name in
the certificate used to sign the executable. For example, as
shown in FIG. 16, the certificate rule of the exemplary cor
poration XXX may enable the user to elevate the application.
In some embodiments, any executable file that has been
signed with the selected certificate may be targeted by using
this rule.

0108. In some embodiments, the certificate rule may be
applied in different circumstances. For example, this rule may
be applied when the user authenticates his identity by provid
ing credentials such as a user name, password, and the like. In
another example, this rule may be applied when programs
may be owned by the administrators. This rule may increase
or reduce the permissions and/or privileges held by the target
process token but may not otherwise affect the user.
0109 FIG.17A and FIG. 17B show user authentication to
create a rule in the graphical user interface in accordance with
various embodiments. A rule may be applied if the user
authenticates his credentials as shown in FIG. 17A and FIG.
17B. For example, as illustrated in the exemplary graphical
interface of FIG. 17B, the privilege manager client authenti
cation dialog may prompt the user for credentials when the
targeted executable file is executed. The credentials may
include, but may not be limited to the username, password,
and the like. The password may be a numeric password, an
alphanumeric password, a bio-metric password, and the like.
0110 FIG. 18 shows a CD/DVD rule enabling the user to
elevate all applications on a certain CD or DVD in the graphi
cal user interface in accordance with various embodiments. In
some embodiments, as illustrated in FIG. 18, the privilege
manager may provide a CD/DVD rule. This rule may enable
the user to elevate all applications on a certain CD or DVD.
The browse button may launch the file browser, which may
detect the serial number of the selected CD or DVD and may
write the value to the field. Those skilled in the art may
appreciate that the present embodiment may be applicable to
any of the storage devices. Examples of these storage devices
(i.e., computer readable mediums) may include, but may not
be limited to, blue ray disk, a pen drive, an external hard disk,
a floppy drive, and a tape drive.
0111 FIG. 19A and FIG. 19B show the graphical user
interface to enterajustification for the application elevation in
accordance with various embodiments. The user may need to
enter a justification for the application elevation, which may
be logged to the system event log. The privilege manager
client authentication dialog may prompt for credentials and
justification when the executable is executed. In an exemplary
scenario and as illustrated in FIG. 19B, the user may be
required to provide justification. The justification along with
the other details may be logged to the client machine's system
event log. FIG. 19C shows an exemplary event log in a client
machine in accordance with various embodiments.
0112. In order to enable UAC prompt-free security and
have users still run as administrators. Such as on an OS. Such

Feb. 3, 2011

as VISTA with UAC enabled when the user has administrative
privileges (i.e., when the user may be a member of Network
Configuration Operators Group) the administrator may not
require authentication and/or justification.
0113 FIG. 20A, 20B, 20O, and 20D depict flowcharts
explaining the various process steps in the application of
different policies on the local digital device in accordance
with various embodiments. In step 2002, a new process
request may be received (e.g., an initiation of a process is
detected). In some embodiments, the new process request
may be initiated at the local digital device. The new process
request may be running an application, running a dynamic
link library (DLL) file, a java executable code, and the like. In
Some embodiments, the new process request may be initiated
remotely. The new process request may spawn child pro
cesses that may require additional memory and other system
resources. The allocation of memory for the new process
request may be managed by the operating system. At step
2004, the process may be mapped to the memory. At step
2008, the filter driver may hook into the process and retrieves
attributes of the process being executed. In some embodi
ments, the process may include multiple parameters, which
may include, but may not be limited to, process priority,
program size, and the starting address for memory location.
In an exemplary scenario, the filter driver may use the starting
address as a pointer. The filter driver may retrieve the
attributes of the process being executed. At step 2010, a check
may be performed. The check may correspond to matching
the attributes with executable entity identifications contained
in any rule or rules. If the attributes match the executable
entity identification, a process context may be initialized at
step 2012. If the attributes do not match the executable entity
identification, the control may be returned to the OS as shown
in step 2058 in FIG. 20D.
0114. In some embodiments, after the initialization of the
process context at step 2012, the filter driver may hook to map
the process to its section of memory at step 2014. For
example, if the check was performed at line 5 of any process
and was found to be valid, the filter driver may hook the
process from line 6 of the program and may resume from line
6 onwards. At step 2018, the filter driver may check for the
relationship between the process and parent process. For
example, the filter driver may perform a validation test for
confirming parent execution identifications before resuming
the process.
(0.115. At step 2020 in FIG. 20B, the process may be
resumed. At step 2022, the driver may hook again to process
CMD line if any CMD line exists. At step 2024, a check may
be performed. This check may correspond to the matching of
the CMD line of the process and the rule. If the process and
the rule have a CMD line and they do not match, the control
may be returned from the OS as shown in step 2058 in FIG.
2OD.

0116. If the process and the rule have a CMD line and they
match, another check may be performed at step 2028. This
step may check whether the single rule is applied to the
process. In some embodiments, if the single rule may be
applied to the process, the filter driver may obtain the previ
ous token attributes as shown in step 2044 in FIG. 20D. In
case the single rule does not applied to the process, a check to
ascertain the application of multiple rules to the process is
performed at step 2030. If multiple rules are applied to the
process, the process may flow to step 2042 in FIG. 20D
described herein. If multiple rules do not apply to the process,

US 2011/00300.45 A1

a check to determine whether the process is a child process
may be performed at step 2032 in FIG.20C. If the process is
not a child process, then the control may be returned to the OS
as shown in the step 2058 in FIG. 20D.
0117. In some embodiments, if the process is child pro
cess, a check to determine whether the token of the parent
process has been modified is performed at step 2034 in FIG.
20C. If the token of the parent process is not modified, the
control may be returned to the OS at step 2058 of FIG. 20D.
In another scenario, if the token of the present process is
modified, then a check to ascertain whether the inheritance
portion is set to “block” may be performed at step 2038. If the
inheritance portion is not set to “block, then the modified
token of the parent process to child token may be copied at
step 2040. Once the modified token is copied, the control may
be returned to the OS as shown in the step 2058 of FIG. 20D.
If the inheritance portion is set to “block, the control may be
returned to the OS as shown in the step 2058 of FIG. 20D.
0118. At step 2030 in FIG.20Band step 2042 in FIG.20D,
a check may be performed to determine whether single or
multiple rules are applicable to the process. Following step
2042, the filter driver may obtain the previous token attributes
at step 2044 in FIG. 20D. At step 2048, the filter driver may
retrieve token attributes. At step 2050, a rule or rules may be
applied to the token to change its attributes. At step 2052, the
modified process token may be created by the filter driver. At
step 2054, the modified process token may be copied and the
control may be returned to the OS as shown in step 2058.
0119 This application hereby incorporates by reference
U.S. Nonprovisional application Ser. No. 1 1/206,376,
entitled “Methods and Systems for Network-Based Manage
ment of Application Security.” filed Aug. 18, 2005.
0120. The methods and systems described herein are not
limited to a particular hardware or software configuration,
and may find applicability in many computing or processing
environments. The methods and systems may be imple
mented in hardware or software, or a combination of hard
ware and Software. The methods and systems may be imple
mented in one or more computer programs, where a computer
program may be understood to include one or more processor
executable instructions. The computer program(s) may
execute on one or more programmable processors, and may
be stored on one or more storage medium (i.e., computer
readable medium) readable by the processor (including Vola
tile and non-volatile memory and/or storage elements), one or
more input devices, and/or one or more output devices. The
processor thus may access one or more input devices to obtain
input data, and may access one or more output devices to
communicate output data. The input and/or output devices
may include one or more of the following: Random Access
Memory (RAM), Redundant Array of Independent Disks
(RAID), floppy drive, CD, DVD, magnetic disk, internal hard
drive, external hard drive, memory stick, or other storage
device capable of being accessed by a processor as provided
herein, where Such aforementioned examples are not exhaus
tive, and are for illustration and not limitation. Those skilled
in the art will appreciate that the RAM, RAID, floppy disks,
optical medium (e.g., CD and DVD disks), magnetic disks,
internal hard drive, external hard drive, memory stick or other
storage device may also be computer readable mediums.
0121 The computer program(s) may be implemented
using one or more high level procedural or object-oriented
programming languages to communicate with a computer

Feb. 3, 2011

system; however, the program(s) may be implemented in
assembly or machine language, if desired. The language may
be compiled or interpreted.
I0122. As provided herein, the processor(s) may thus be
embedded in one or more devices that may be operated inde
pendently or together in a networked environment, where the
network may include, for example, a Local Area Network
(LAN), wide area network (WAN), an intranet, the Internet,
and/or another network. The network(s) may be wired or
wireless or a combination thereof and may use one or more
communications protocols to facilitate communications
between the different processors. The processors may be
configured for distributed processing and may utilize, in some
embodiments, a client-server model as needed. Accordingly,
the methods and systems may utilize multiple processors
and/or processor devices, and the processor instructions may
be divided amongst such single or multiple processor/de
W1CS

I0123. The device(s) (e.g., computers) that integrate with
the processor(s) may include, for example, a personal com
puter(s), workstation (e.g., Sun, HP), personal digital assis
tant (PDA), handheld device such as cellular telephone, lap
top, handheld, or another device capable of being integrated
with a processor(s) that may operate as provided herein.
Accordingly, the devices provided herein are not exhaustive
and are provided for illustration and not limitation. Similarly,
as used herein a system may be a single digital device (e.g., a
computer) or comprise multiple digital devices.
0.124 References to “a microprocessor,” “a processor.”
“the microprocessor and “the processor.” may be under
stood to include one or more microprocessors that may com
municate in a stand-alone and/or a distributed environment
(S), and may thus may be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor may be configured to
operate on one or more processor-controlled devices that may
be similar or different devices. Use of such “microprocessor
or “processor terminology or the like may thus also be
understood to include a central processing unit, an arithmetic
logic unit, an application-specific integrated circuit (IC), and/
or a task engine, with Such examples provided for illustration
and not limitation.

0.125 Furthermore, references to memory, unless other
wise specified, may include one or more processor-readable
and accessible memory elements and/or components that
may be internal to the processor-controlled device, external to
the processor-controlled device, and/or may be accessed via a
wired or wireless network using a variety of communications
protocols, and unless otherwise specified, may be arranged to
include a combination of external and internal memory
devices, where such memory may be contiguous and/or par
titioned based on the application. Accordingly, references to
a database may be understood to include one or more memory
associations, where such references may include commer
cially available database products (e.g., SQL, Informix,
Oracle) and also proprietary databases, and may also include
other structures for associating memory Such as links, queues,
graphs, trees, with Such structures provided for illustration
and not limitation.

0.126 References to a network, unless provided otherwise,
may include one or more intranets and/or the Internet. Refer
ences herein to microprocessor instructions or microproces
sor-executable instructions, in accordance with the above,
may be understood to include programmable hardware.

US 2011/00300.45 A1

0127. Unless otherwise stated, use of the word “substan
tially may be construed to include a precise relationship,
condition, arrangement, orientation, and/or other character
istic, and deviations thereofas understood by one of ordinary
skill in the art, to the extent that such deviations do not
materially affect the disclosed methods and systems.
0128. Throughout the entirety of the present disclosure,
use of the articles “a” or “an to modify a noun may be
understood to be used for convenience and to include one, or
more than one of the modified noun, unless otherwise spe
cifically stated.
0129. Elements, components, modules, and/or parts
thereofthat are described and/or otherwise portrayed through
the figures to communicate with, be associated with, and/or
be based on, something else, may be understood to so com
municate, be associated with, and or be based on in a direct
and/or indirect manner, unless otherwise stipulated herein.
0130. Although the methods and systems have been
described relative to a specific embodiment thereof, they are
not so limited. Obviously many modifications and variations
may become apparent in light of the above teachings. Many
additional changes in the details, materials, and arrangement
of parts, herein described and illustrated, may be made by
those skilled in the art. Accordingly, it will be understood that
the disclosed methods and systems are not to be limited to the
embodiments disclosed herein, may include practices other
wise than specifically described, and are to be interpreted as
broadly as allowed under the law.
0131 The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer Software, program codes, and/or instructions on a
processor. The processor may be part of a server, client,
network infrastructure, mobile computing platform, station
ary computing platform, or other computing platform. A pro
cessor may be any kind of computational or processing device
capable of executing program instructions, codes, binary
instructions and the like. The processor may be or include a
signal processor, digital processor, embedded processor,
microprocessor or any variant such as a co-processor (math
co-processor, graphic co-processor, communication co-pro
cessor and the like) and the like that may directly or indirectly
facilitate execution of program code or program instructions
stored thereon. In addition, the processor may enable execu
tion of multiple programs, threads, and codes. The threads
may be executed simultaneously to enhance the performance
of the processor and to facilitate simultaneous operations of
the application. By way of implementation, methods, pro
gram codes, program instructions and the like described
herein may be implemented in one or more thread. The thread
may spawn other threads that may have assigned priorities
associated with them; the processor may execute these
threads based on priority or any other order based on instruc
tions provided in the program code. The processor may
include memory that stores methods, codes, instructions and
programs as described herein and elsewhere. The processor
may access a storage medium through an interface that may
store methods, codes, and instructions as described herein
and elsewhere. The storage medium associated with the pro
cessor for storing methods, programs, codes, program
instructions or other type of instructions capable of being
executed by the computing or processing device may include
but may not be limited to one or more of a CD-ROM, DVD,
memory, hard disk, flash drive, RAM, ROM, cache and the
like.

Feb. 3, 2011

I0132 A processor may include one or more cores that may
enhance speed and performance of a multiprocessor. In some
embodiments, the process may be a dual core processor, quad
core processors, other chip-level multiprocessor and the like
that combine two or more independent cores (called a die).
I0133. The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer software on a server, client, firewall, gateway, hub,
router, or other Such computer and/or networking hardware.
The Software program may be associated with a server that
may include a file server, print server, domain server, internet
server, intranet server and other variants such as secondary
server, host server, distributed server and the like. The server
may include one or more of memories, processors, computer
readable media, Storage media, ports (physical and virtual),
communication devices, and interfaces capable of accessing
other servers, clients, machines, and devices through a wired
or a wireless medium, and the like. The methods, programs or
codes as described herein and elsewhere may be executed by
the server. In addition, in Some embodiments, other devices
may be required for execution of methods as described in this
application may be considered as a part of the infrastructure
associated with the server.

I0134. The software program may be associated with a
client that may include a file client, print client, domain client,
internet client, intranet client and other variants such as sec
ondary client, host client, distributed client and the like. The
client may include one or more of memories, processors,
computer readable media, storage media, ports (physical and
virtual), communication devices, and interfaces capable of
accessing other clients, servers, machines, and devices
through a wired or a wireless medium, and the like. The
methods, programs or codes as described herein and else
where may be executed by the client. In addition, in some
embodiments, other devices may be required for execution of
methods as described in this application may be considered as
a part of the infrastructure associated with the client.
0.135 The client may provide an interface to other devices
including, without limitation, servers, other clients, printers,
database servers, print servers, file servers, communication
servers, distributed servers and the like. Additionally, this
coupling and/or connection may facilitate remote execution
of program across the network. The networking of some orall
of these devices may facilitate parallel processing of a pro
gram or method at one or more location without deviating
from the scope of the embodiments discussed herein. In addi
tion, any of the devices attached to the client through an
interface may include at least one storage medium capable of
storing methods, programs, applications, code and/or instruc
tions. A central repository may provide program instructions
to be executed on different devices. In this implementation,
the remote repository may act as a storage medium for pro
gram code, instructions, and programs.
0.136 The methods and systems described herein may be
deployed in part or in whole through network infrastructures.
The network infrastructure may include elements such as
computing devices, servers, routers, hubs, firewalls, clients,
personal computers, communication devices, routing devices
and other active and passive devices, modules and/or compo
nents as known in the art. The computing and/or non-com
puting device(s) associated with the network infrastructure
may include, apart from other components, a storage medium
such as flash memory, buffer, stack, RAM, ROM and the like.
The processes, methods, program codes, instructions

US 2011/00300.45 A1

described herein and elsewhere may be executed by one or
more of the network infrastructural elements.
0.137 The methods, program codes, and instructions
described herein and elsewhere may be implemented on a
cellular network having multiple cells. The cellular network
may either be frequency division multiple access (FDMA)
network or code division multiple access (CDMA) network.
The cellular network may include mobile devices, cell sites,
base stations, repeaters, antennas, towers, and the like. The
cell network may be a GSM, GPRS, 3G, EVDO, mesh, or
other networks types.
0.138. The methods, programs codes, and instructions
described herein and elsewhere may be implemented on or
through mobile devices. The mobile devices may include
navigation devices, cellphones, mobile phones, mobile per
Sonal digital assistants, laptops, palmtops, netbooks, pagers,
electronic books readers, music players and the like. These
devices may include, apart from other components, a storage
medium such as a flash memory, buffer, RAM, ROM and one
or more computing devices. The computing devices associ
ated with mobile devices may be enabled to execute program
codes, methods, and instructions stored thereon. Alterna
tively, the mobile devices may be configured to execute
instructions in collaboration with other devices. The mobile
devices may communicate with base stations interfaced with
servers and configured to execute program codes. The mobile
devices may communicate on a peer to peer network, mesh
network, or other communications network. The program
code may be stored on the storage medium associated with the
server and executed by a computing device embedded within
the server. The base station may include a computing device
and a storage medium. The storage device may store program
codes and instructions executed by the computing devices
associated with the base station.
0.139. The computer software, program codes, and/or
instructions may be stored and/or accessed on machine read
able media that may include: computer components, devices,
and recording media that retain digital data used for comput
ing for Some interval of time; semiconductor storage known
as random access memory (RAM); mass storage typically for
more permanent storage, such as optical discs, forms of mag
netic storage like hard disks, tapes, drums, cards and other
types; processor registers, cache memory, Volatile memory,
non-volatile memory; optical storage such as CD, DVD:
removable media such as flash memory (e.g. USB sticks or
keys), floppy disks, magnetic tape, paper tape, punch cards,
standalone RAM disks, Zip drives, removable mass storage,
off-line, and the like; other computer memory Such as
dynamic memory, static memory, read/write storage, mutable
storage, read only, random access, sequential access, location
addressable, file addressable, content addressable, network
attached storage, storage area network, bar codes, magnetic
ink, and the like.
0140. The methods and systems described herein may
transform physical and/or or intangible items from one state
to another. The methods and systems described herein may
also transform data representing physical and/or intangible
items from one state to another.

0141. The elements described and depicted herein, includ
ing in flow charts and block diagrams throughout the figures,
imply logical boundaries between the elements. However,
according to software or hardware engineering practices, the
depicted elements and the functions thereof may be imple
mented on machines through computer executable media

Feb. 3, 2011

having a processor capable of executing program instructions
stored thereon as a monolithic Software structure, as standa
lone software modules, or as modules that employ external
routines, code, services, and so forth, or any combination of
these, and all Such implementations may be within the scope
of the present disclosure. Examples of Such machines may
include, but may not be limited to, personal digital assistants,
laptops, personal computers, mobile phones, other handheld
computing devices, medical equipment, wired or wireless
communication devices, transducers, chips, calculators, sat
ellites, tablet PCs, electronic books, gadgets, electronic
devices, devices having artificial intelligence, computing
devices, networking equipments, servers, routers and the like.
Furthermore, the elements depicted in the flow chart and
block diagrams or any other logical component may be imple
mented on a machine capable of executing program instruc
tions. Thus, while the foregoing drawings and descriptions set
forth functional aspects of the disclosed systems, no particu
lar arrangement of Software for implementing these func
tional aspects should be inferred from these descriptions
unless explicitly stated or otherwise clear from the context.
Similarly, it will be appreciated that the various steps identi
fied and described above may be varied, and that the order of
steps may be adapted to particular applications of the tech
niques disclosed herein. All Such variations and modifications
are intended to fall within the scope of this disclosure. As
Such, the depiction and/or description of an order for various
steps should not be understood to require a particular order of
execution for those steps, unless required by a particular
application, or explicitly stated or otherwise clear from the
COInteXt.

0142. The methods and/or processes described above, and
steps thereof, may be realized in hardware, software or any
combination of hardware and software suitable for a particu
lar application. The hardware may include a general purpose
computer and/or dedicated computing device or specific
computing device or particular aspect or component of a
specific computing device. The processes may be realized in
one or more microprocessors, microcontrollers, embedded
microcontrollers, programmable digital signal processors or
other programmable device, along with internal and/or exter
nal memory. The processes may also, or instead, be embodied
in an application specific integrated circuit, a programmable
gate array, programmable array logic, or any other device or
combination of devices that may be configured to process
electronic signals. It will further be appreciated that one or
more of the processes may be realized as a computer execut
able code capable of being executed on a machine readable
medium.

0143. The computer executable code may be created using
a structured programming language such as C, an object
oriented programming language Such as C++, or any other
high-level or low-level programming language (including
assembly languages, hardware description languages, and
database programming languages and technologies) that may
be stored, compiled or interpreted to run on one of the above
devices, as well as heterogeneous combinations of proces
sors, processor architectures, or combinations of different
hardware and Software, or any other machine capable of
executing program instructions.
0144. Thus, in one aspect, each method described above
and combinations thereof may be embodied in computer
executable code that, when executing on one or more com
puting devices, performs the steps thereof. In another aspect,

US 2011/00300.45 A1

the methods may be embodied in systems that perform the
steps thereof, and may be distributed across devices in a
number of ways, or all of the functionality may be integrated
into a dedicated, standalone device or other hardware. In
another aspect, the means for performing the steps associated
with the processes described above may include any of the
hardware and/or software described above. All such permu
tations and combinations are intended to fall within the scope
of the present disclosure.
0145 While various embodiments have been disclosed
and described in detail, various modifications and improve
ments thereon will become readily apparent to those skilled in
the art. Accordingly, the spirit and scope of the present
description is not to be limited by the foregoing examples, but
is to be understood in the broadest sense allowable by law.
0146 All documents referenced herein are hereby incor
porated by reference.

1. A method comprising:
detecting an initiation of a process;
determining if one or more rules apply to the process;
configuring a token for the process, wherein the token

relates to a level of access of the process in accordance
with the one or more applicable rules; and

before executing the process, accessing the token of the
process to determine at least one of a permission, a
privilege, and an integrity level with which to execute
the process; and

allowing a user to access the process based, at least in part,
on the determination.

2. The method of claim 1, wherein the rule is at least one of
ahash rule, a path rule, a folder rule, an MSI Path rule, an MSI
folder rule, an ActiveX rule, a certificate rule, a shell rule, and
a CD/DVD rule.

3. The method of claim 1, wherein the method further
comprises authenticating the user and wherein the configu
ration of the token only occurs if the user is authenticated.

4. The method of claim 1, wherein the configuration of the
token only occurs if the process is owned by an Administra
tors Group.

5. The method of claim 1, wherein the configuration of the
token occurs to all processes launched by a specified appli
cation.

6. The method of claim 1, wherein the method further
comprises applying the rule to all programs in all subfolders
of a specified folder.

7. The method of claim 1, wherein the configuration of the
token only occurs if the user to enter a justification.

8. A computer readable medium comprises executable
instructions, the instructions being executable by a processor
to perform a method, the method comprising:

detecting an initiation of a process;
determining if one or more rules apply to the process;
configuring a token for the process, wherein the token

relates to a level of access of the process in accordance
with the one or more applicable rules; and

before executing the process, accessing the token of the
process to determine at least one of a permission, a
privilege, and an integrity level with which to execute
the process; and

allowing a user to access the process based, at least in part,
on the determination.

Feb. 3, 2011

9. The computer readable medium of claim 8, wherein the
rule is at least one of a hash rule, a path rule, a folder rule, an
MSI Path rule, an MSI folder rule, an ActiveX rule, a certifi
cate rule, a shell rule, and a CD/DVD rule.

10. The computer readable medium of claim8, wherein the
method further comprises authenticating the user and
wherein the configuration of the token only occurs if the user
is authenticated.

11. The computer readable medium of claim8, wherein the
configuration of the token only occurs if the process is owned
by an Administrators Group.

12. The computer readable medium of claim8, wherein the
configuration of the token occurs to all processes launched by
a specified application.

13. The computer readable medium of claim8, wherein the
method further comprises applying the rule to all programs in
all subfolders of a specified folder.

14. The computer readable medium of claim8, wherein the
configuration of the token only occurs if the user to enter a
justification.

15. A method comprising:
setting an integrity level for an indicated process, wherein

setting the integrity level of the process does not modify
the integrity level of any other non-indicated process;

before execution of the indicated process, accessing the
integrity level indication to determine under what integ
rity level to execute the indicated process; and

allowing interaction between the indicated process and
another non-indicated process based on the determina
tion.

16. The method of claim 15, further comprising, prior to
setting the integrity level, Verifying an identity of a user
requesting that the integrity level be set.

17. The method of claim 15, further comprising, prior to
setting the integrity level, requesting a justification from a
user requesting that the integrity level be set.

18. The method of claim 15, wherein setting the integrity
level is done in accordance with at least one rule.

19. The method of claim 18, wherein the at least one rule is
a shell rule, wherein the integrity level is set for the process
upon an on-demand request.

20. The method of claim 18, wherein the at least one rule is
a certificate rule, wherein the integrity level is set if at least
one criteria of a process certificate is met.

21. The method of claim 18, wherein the at least one rule is
an administrator-defined rule and wherein the integrity level
is set upon providing a user credential.

22. A computer readable medium comprises executable
instructions, the instructions being executable by a processor
to perform a method, the method comprising:

setting an integrity level for an indicated process, wherein
setting the integrity level of the process does not modify
the integrity level of any other non-indicated process;

before execution of the indicated process, accessing the
integrity level indication to determine under what integ
rity level to execute the indicated process; and

allowing interaction between the indicated process and
another non-indicated process based on the
determination.

