This invention relates to wrist watch straps, and more particularly to straps which provide adjustable means for securing a watch thereto.

According to the prior art it has been found that wrist watches vary in length and thus require a multitude of strap sizes to cover all of the various lengths of watches which it may be desirable to mount thereon. Therefore, it has been recognized as desirable to have the watch-attaching means of a strap adjustable to different lengths so that one watch strap will be useful with any length watch. Heretofore one type of adjustment has been accomplished by threading a strip of material through the holding means at the ends of the watch and along the back of the watch and then attaching the strip by some suitable means to the strap. Another method which has been used suggests mounting tongues on the strap which pass through the ends of the watch and then are interwoven or laced through slots which have been provided on the main body of the strap, thus securing the watch to the strap. Experience has shown that these methods are not satisfactory because the use of a threading strip tends to make the fastening top-sided when the tension is taken up on one end of the strip to secure the watch to the strap; and the use of tongues interwoven between slots makes a bulky, cumbersome fastening which exposes several surfaces to wear.

Object of the present invention are to provide watch-fastening means which are at all times adjustable without the necessity of threading or lacing, which may be identical in construction, which allow for quick, ready attachment to any length watch, which guarantee constant holding of the watch without the possibility of the holding means slipping out from the ends of the watch, which prevent a watch from being dropped or lost if the holding means on one end becomes detached, which are easier and cheaper to manufacture since they do not require a manufacturer to keep on hand numerous dies of various widths, and which permit a retailer to maintain smaller stocks since straps made according to the present invention will readily fit any length watch.

Further objects will be apparent from a consideration of the following disclosure.

According to the present invention the strips which hold the watch to the strap are made of resilient or elastic material which is firmly secured at one end to the strap itself and attached by suitable fastening means at the other to one end of the watch. In this way the resilient strip can be stretched to join the end of any length of watch and it will serve its purpose after attachment regardless of whether it returns to a position of ease, as when attached to a long watch, or is maintained under some amount of tension, as when attached to a short watch. When both strips are made of resilient material the mounted watch is at all times maintained in the center of the space provided for it on the watch strap, the pull being the same on each side. Since the watch strap or band used is a continuous one extending entirely around the wrist of the wearer, this invention provides a safety factor. For example, if the holding means on one end of the watch becomes defective and allows that end of the watch to become detached, the resilient strip attached to the other terminal fastener of the watch will take upon the slack in tension and securely hold the watch in a dangling position until the wearer becomes conscious of the condition. Due to the present style in watch straps, it is desirable to make the strips which are attached to the watch of a material similar to the material used in the main body of the strap, attaching the strips to the strap by resilient means secured inside the strap between the inner and outer layers thereof. Of course, the entire strip could be made wholly or in part of any resilient material and mounted on the outer surface of the strap, or could constitute the watch-holding end portions of a two-piece watch strap.

In the accompanying drawings which show what is now considered a preferred embodiment of the invention:

Fig. 1 is a top-plan view of a wrist watch strap;
Fig. 2 is an enlarged view of Fig. 1 with a portion of the top layer of the strap cut away to show the underlying structure; and
Fig. 3 is an enlarged section on the line 3—3 of Fig. 2.

The embodiment of the invention herein shown comprises a wrist watch bracelet or strap 1, made of a single length of strap which passes between the watch and the wearer's wrist, thus insulating the watch from the wrist, and formed by stitching outer layer 2 to inner layer 3 substantially along the peripheral edges thereof as indicated at 4. Outer layer 2 is provided with pocket-defining slots or mouths 5 and 6 through which project holding means here shown as a pair of strips 7 having their ends bent at 8 to form loops (Fig. 3) through which the end pins or pinnies of a watch may be passed in order to secure the watch to the strips 7.

The ends of strips 7 are firmly attached at 8, by suitable means such as stitching, to resilient means such as a pair of elastic tapes 10 having
their ends securely attached at 11, by stitching or other suitable means, to the strap 1. The fastening 11 in the present disclosure passes through outer layer 2, elastic tapes 10, and inner layer 3. The elastic tapes 10 may be of a length at all times long enough to allow the loop 8 of strip 1 to project through a slot 5 or 6. Slots 5 and 6 are spaced sufficiently to provide for the mounting of any standard length wrist watch. The elastic tapes 10 normally maintain their respective holding loop in retracted position, as shown by the full lines of Fig. 2, and are sufficiently elastic to permit the loop to be stretched to extended position, shown by the dot and dash lines (Fig. 2), so as not only to accommodate watches of different sizes, but also to hold the watch firmly in place.

It should be understood that the present disclosure is for the purpose of illustration only and that this invention includes all modifications and equivalents which fall within the scope of the appended claims.

I claim:

1. A watch attaching bracelet comprising an elongated band for surrounding the wrist of a wearer, said band adapted to support a watch at an intermediate position thereon, a pair of pockets in said band having spaced mouths facing said position, a watch holding strip slidably disposed in each pocket and having a terminal loop engageable with an adjacent pintle on the watch, and a resilient element disposed in each pocket and having one end thereof secured to the said band and the other end to the respective strip, whereby the resilient elements under stress hold the watch pintle engaging loops in retracted position.

2. A watch attaching bracelet comprising an elongated band for surrounding the wrist of a wearer, said band adapted to support a watch at an intermediate position thereon, a pair of pockets in said band having spaced mouths facing said position, a watch holding strip slidably disposed in each pocket and having a fastener engageable with an adjacent corresponding terminal fastener on the watch, and a resilient element disposed in each pocket and having one end thereof secured to the said band and the other end to the respective strip, whereby the resilient elements under stress hold said fasteners in retracted position.

CHARLES BERKELEY.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>506,375</td>
<td>Ross</td>
<td>Oct. 10, 1893</td>
</tr>
<tr>
<td>2,180,275</td>
<td>Boler</td>
<td>Nov. 14, 1899</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,397</td>
<td>Norway</td>
<td>Jan. 30, 1939</td>
</tr>
<tr>
<td>361,985</td>
<td>Germany</td>
<td>Oct. 20, 1922</td>
</tr>
</tbody>
</table>