(54) Title: PROCESS FOR THE RECOVERY OF SULFUR FROM SULFUR CONTAINING GASES WITH A HIGH EFFICIENCY

(57) Abstract:
The invention is directed to a process for the recovery of sulfur from sulfur containing gases with a high sulfur recovery efficiency of at least 99.8%. According to the process of the invention a tail gas of a Claus-type installation with a sulfur recovery efficiency of at least 97% and having a free oxygen concentration of 0.1-0.7 vol.% is hydrogenated, and subsequently H2S is removed from the resulting gas stream, e.g. by selectively oxidizing it at a temperature between the water dewpoint temperature and 280 °C, and cooling it to a temperature of 80-115 °C. The process of the invention enables total sulfur recovery efficiencies of at least 99.8%.
Title: PROCESS FOR THE RECOVERY OF SULFUR FROM SULFUR CONTAINING GASES

Abstract: The invention is directed to a process for the recovery of sulfur from sulfur containing gases with a high sulfur recovery efficiency of at least 99.8 %. According to the process of the invention a tail gas of a Claus-type installation with a sulfur recovery efficiency of at least 97 % and having a free oxygen concentration of 0.1-0.7 vol.% is hydrogenated, and subsequently H₂S is removed from the resulting gas stream, e.g. by selectively oxidizing it at a temperature between the water dewpoint temperature and 280 °C, and cooling it to a temperature of 80-115 °C. The process of the invention enables total sulfur recovery efficiencies of at least 99.8 %.
Title: Process for the recovery of sulfur from sulfur containing gases with a high efficiency

The invention is directed to a process for the recovery of sulfur from sulfur containing gases with a high sulfur recovery efficiency of at least 99.8 %.

A well-known process for the recovery of sulfur from sulfur containing gases is the so-called Claus process or SRU (Sulfur Recovery Unit).

In this process, the acid gas feed containing hydrogen sulfide (H₂S) is burned with combustion air. Approximately one-third (mol/mol) of the H₂S is oxidized to sulfur dioxide (SO₂) in the so-called thermal stage, according to:

\[
2 \text{H}_2\text{S} + 3 \text{O}_2 \rightarrow 2 \text{SO}_2 + 2 \text{H}_2\text{O}
\] (1)

The remaining H₂S reacts further with the formed SO₂ to sulfur vapor, according to the Claus reaction:

\[
4 \text{H}_2\text{S} + 2 \text{SO}_2 \rightleftharpoons 3 \text{S}_2 + 4 \text{H}_2\text{O}
\] (2)

The formed sulfur vapor S₂ is condensed as liquid sulfur, and separated from the process gas, in a sulfur condenser.

In the thermal stage, approximately 50-75 % of the H₂S in the acid gas feed is recovered as elemental sulfur and 50-25 % is charged to the catalytic Claus stages. The thermal stage is typically followed by two or three catalytic Claus stages, in order to increase the Sulfur Recovery Efficiency (SRE).

Each catalytic stage typically comprises a process gas re heater, a catalytic Claus converter and a sulfur condenser. H₂S and SO₂ react in the Claus converter to sulfur vapor, according to the reaction:

\[
2\text{H}_2\text{S} + \text{SO}_2 \rightleftharpoons \frac{3}{2} \text{S}_n + 2\text{H}_2\text{O}
\] (3)
wherein \(n = 2-8 \). The formed elemental sulfur is separated from the product gas in the sulfur condenser.

Typically, the SRE is 90-96% for a so-called two-stage Claus plant, \(i.e. \) a plant with two catalytic stages, and typically 95-98% for a three-stage Claus plant. A SRE close to 100% cannot be reached due to thermodynamic limitations of the Claus reaction.

Nowadays, for most countries a SRE of 98% is insufficient. For plant capacities of more than 50 tons per day of sulfur production, the German TA-Luft requires a SRE of at least 99.8%. Other regions in the world, such as Japan, Taiwan and the USA, require SREs close to 100%, \(i.e. \geq 99.95\% \).

Present technologies for SRE enhancement rely almost exclusively on either of three basic principles: Claus operation under thermodynamically more favorable conditions, selective oxidation of \(\text{H}_2\text{S} \) in a downstream catalytic converter and Claus tail gas clean up.

SREs up to 99.5% can be reached by lowering the operating temperature of one or more catalytic Claus stages. Bringing the temperature down shifts the thermodynamic equilibrium of Claus reaction (3) to the sulfur side of the equation and increases the SRE. The so-called sub-dewpoint processes are based on this principle. Sub-dewpoint processes, such as MCRC, CBA and Sulffreen, are known to those skilled in the art.

A disadvantage of the sub-dewpoint processes is that they are discontinuous, because the formed liquid sulfur is retained in the catalyst. The sub-dewpoint converter has to be regenerated with hot gas in order to remove the collected sulfur from the catalyst. This requires expensive multiple converter systems and switching valves. The sub-dewpoint processes are also prone to corrosion problems because of the frequent high-low temperature cycles.

The SUPERCLAUS® and EUROCLAUS® processes are based on SRE enhancement by selectively oxidizing the \(\text{H}_2\text{S} \) coming from the last catalytic Claus stage to sulfur.
The SUPERCLAUS® and EUROCLAUS® processes cover a SRE range of typically 98.8-99.6%. The present technology cannot exceed this range, for a number of reasons. Four to twelve percent of the H₂S going to the selective oxidation stage is converted to SO₂ instead of elemental sulfur. This SO₂ formation represents a loss of SRE. Another aspect is that the tail gas from the sulfur condenser downstream from the selective oxidation converter is kept at a temperature of 125 °C. Such a temperature guarantees a removal of the considerable quantities of sulfur that come from the oxidation stage without sulfur plugging problems, but the sulfur vapor pressure in the off gas is still relatively high, resulting in a SRE loss of 0.13-0.25%. Finally, there is some SRE loss due to COS and CS₂ coming from the Claus unit.

Commercial Tail Gas Clean-Up (TGCU) processes can meet the stringent recovery efficiencies mentioned above. An overview of the commercial TGCU processes can be found in Gas Purification, Kohl and Nielsen, 5th Edition, Chapter 8, pages 698-724, and also in Sulphur No. 227, July-August 1993, pages 39-44.

Claus type tail gases, e.g. Claus, SUPERCLAUS® and EUROCLAUS® tail gas, or tail gas from sub-dewpoint processes, contain H₂S, SO₂, COS, CS₂, sulfur vapor and sulfur mist. There is presently no technology that allows for direct and simultaneous conversion of each of these components into, for instance, elemental sulfur with a high SRE. A feasible approach is therefore to convert the sulfur compounds first to H₂S, by hydrogenation and hydrolysis, and then to process the H₂S.

In US-A-3 752 877 of D.K. Beavon, assigned to Parsons, filed in 1969, a process is described for the treatment of Claus tail gas. In a hydrogenation/hydrolysis converter, all sulfur components are converted to H₂S. After this step, the majority of the water is removed by condensation. The water removal step is followed by any H₂S removal process, such as the BSR-Stretford process.
In NL-A-0 171 144 (corresponding to GB-A-1 356 289), filed in 1970 and assigned to Shell, a process is described for the treatment of Claus tail gas. In a hydrogenation/hydrolysis converter, all sulfur components are converted to H_2S. In a next step, the majority of the water is removed by condensation. The process gas is then treated in an amine absorber where the H_2S is absorbed in the amine solvent. The amine solvent is regenerated in an amine regenerator, and the stripped H_2S is recycled back to the Claus plant.

NL-A-0 171 144 is the basis for the Shell Claus Off-gas Treating (SCOT) process, with a SRE of typically 99.8-99.95 %, and later developments, the Low Sulfur SCOT (LS-SCOT, GB-A-1 547 590) and the Super SCOT (CA-A-1 339 974) with a SRE of typically 99.5-99.98 %.

In the SCOT process, the sulfur components in the Claus tail gas other than H_2S, are hydrogenated or hydrolyzed to H_2S, according to:

\[
\begin{align*}
\text{SO}_2 + 3 \text{H}_2 & \rightarrow \text{H}_2\text{S} + 2 \text{H}_2\text{O} \quad (4) \\
\text{S}_8\text{(vapor)} + 8 \text{H}_2 & \rightarrow 8 \text{H}_2\text{S} \quad (5) \\
\text{COS} + \text{H}_2\text{O} & \rightarrow \text{CO}_2 + \text{H}_2\text{S} \quad (6) \\
\text{CS}_2 + 2 \text{H}_2\text{O} & \rightarrow \text{CO}_2 + 2 \text{H}_2\text{S} \quad (7)
\end{align*}
\]

Typical catalysts for the hydrogenation and hydrolysis comprise sulfided CoMo (CoSMoS$_2$) on an alumina support.

The next step in the SCOT process is to cool the process gas in a heat exchanger and a quench column, where the majority of the water vapor is condensed and removed. The water vapor content of the Claus tail gas is typically 30-35 vol.%, the water vapor content of the quench column product gas is typically around 5 vol.%. This cooling step requires not only equipment, but also energy to remove the large heat of condensation of the water vapor by means of power for the air fan motors of the air coolers. Another disadvantage
is that sour water is produced, i.e. condensate containing dissolved H₂S, which has to be treated in an additional Sour Water Stripper.

The next step in the SCOT process is to separate the H₂S from the other components, which are mainly nitrogen (N₂), water vapor (H₂O) and carbon dioxide (CO₂). This H₂S removal step is performed in an amine treating unit, applying a selective amine such as DIPA (diisopropanolamine) or MDEA (methyl-diethanolamine). Usually, a complete amine unit, consisting of an amine absorber, amine regenerator and the required solvent pumps, vessels, filters, and heat exchangers, is installed. This makes, together with the quench step, the SCOT process expensive.

The next step in the SCOT process is to recycle the amine regenerator off-gas, containing the concentrated H₂S and also the co-absorbed CO₂, back to the Claus unit, where the H₂S is converted into elemental sulfur. This recycle stream will increase the required size of the Claus unit with some 5-10%.

The SCOT process and its look-alikes are generally reliable processes, but are expensive. The additional investment costs amount to 60-120% of the investment costs of a two-stage Claus plant, and also the utility (energy) costs are quite high. A major operational disadvantage of the SCOT process is its sensitivity towards an increased SO₂ slippage of typically more than 5 ppmv SO₂ from the hydrogenation/hydrolysis reactor. Free SO₂ dissolves in the circulating quench water, forming sulfurous acid, which is very acidic and corrosive for carbon steel. A further SO₂-slippage from the quench column may even destroy the amine solvent in the amine absorber. The process of the present invention, based on hydrogenation/hydrolysis without requiring a water quench step, and including a selective oxidation step, is not sensitive for SO₂ breakthrough.

In the SCOT process, the H₂S is separated from the other components by means of absorption in a selective amine solvent. An alternative is the BSR-Stretford process, according to which the H₂S is
separated from the other components by means of a liquid oxidation step of the H₂S into solid sulfur, at ambient temperatures. Such a liquid oxidation step brings additional problems, such as the contamination of the product (solid sulfur) with oxidation chemicals (for the Stretford process, this is the heavy metal vanadium), a high chemical consumption, batch-wise operation, in particular separation of the solid sulfur from the process liquid by filtration, foaming of the applied solvent, bacterial growth, plugging problems with solid sulfur, difficult separation of the solid sulfur, etc. For these reasons, this type of process is not the preferred technical solution for a high SRE process.

In general, the process configuration for the SCOT and BSR-Stretford units comprise a Claus SRU with two catalytic Claus stages and a SRE of around 96 % upstream from the tail gas unit. Therefore, a common SCOT or BSR-Stretford unit must handle almost 4 % of the H₂S in the acid gas feed to reach 99.9 % SRE. Such quantities add considerably to, in particular the operational costs of the tail gas processes.

A SUPERCLAUS® unit, instead of a Claus unit, with a SRE of, for instance, 99.2 %, comprising a selective oxidation step and two catalytic Claus stages upfront, would considerably reduce the load of a SCOT or BSR-Stretford unit from 4 % to 0.7-0.8 % of the H₂S in the Claus feed gas. This would bring a significant relief to the operational costs, but hardly to the investment costs and the reliability problems of processes like Stretford.
The above problems with SCOT and Stretford are avoided with the process according to Example VI in US-A-4 988 494. In this Example a process configuration of a Claus unit with two catalytic stages, a selective oxidation stage, a hydrogenation stage such as in SCOT and a second selective oxidation stage is described. An overall SRE of 99.8 % is obtained. A potential problem arises from the fact that the gas leaving the selective oxidation converter for hydrogenation and hydrolysis is significantly different from a gas from a Claus converter. Firstly, the gas is expected to contain free oxygen that has not reacted in the oxidation stage. This is due to the fact that excess free oxygen is required in the oxidation stage of a SUPERCLAUS® or EUROCLAUS® unit for stable operation and compensation of feed gas fluctuations. Usually in the SUPERCLAUS® or EUROCLAUS® process the oxygen control set point is such that 0.5-1 % oxygen is coming out of the selective oxidation converter. Secondly, the H₂S/SO₂ ratio in the gas to be hydrogenated is much lower than 1, while in a common SCOT process the ratio is ≥ 2. H₂S is in the order of 100 ppmv, while SO₂ is as high as 800-1600 ppmv. Also SO₂ has oxidizing properties, although not so strong as free oxygen. As a result, the gas going to the hydrogenation and hydrolysis catalyst is much more oxidative than the usual SCOT or BSR-Stretford feed gas.

As the hydrogenation and hydrolysis catalyst is a sulfide of, for instance, cobalt-molybdenum, the increased oxidative properties may destroy the sulfide structure and the catalytic activity.

Also US-A-4 243 647 describes that oxygen quantities in the Claus tail gases of greater than about 1000 ppmv cause a permanent poisoning of the hydrogenation catalyst. It is therefore not a logical step to put a selective oxidation stage upstream from a SCOT type of hydrogenation.

The potential danger of the catalyst deactivation by oxygen is apparently recognized by Example VI in US-A-4 988 494. The gas which is supplied to the first selective oxidation stage in this Example contains 3.29
kmol/h of H₂S and 1.97 kmol/h of O₂. In the first selective oxidation stage, 90% of the H₂S is converted into elemental sulfur according to

\[\text{H}_2\text{S} + \frac{1}{2} \text{O}_2 \rightarrow \text{S} + \text{H}_2\text{O} \]

whereby \((\frac{1}{2} \cdot 3.29 \cdot 0.9) = 1.48\) kmol/h O₂ is consumed and 10% of the H₂S is converted into SO₂ according to:

\[\text{H}_2\text{S} + \frac{3}{2} \text{O}_2 \rightarrow \text{SO}_2 + \text{H}_2\text{O} \]

whereby \((\frac{3}{2} \cdot 3.29 \cdot 0.1) = 0.49\) kmol/h O₂ is consumed. The total amount of oxygen consumed in the first selective oxidation step is thus 1.48 + 0.49 = 1.97. This equals the amount of oxygen in the gas that is supplied to the first selective oxidation stage. Thus, the concentration of free oxygen in the feed gas of the subsequent hydrogenation step is zero. Absence of free oxygen in the hydrogenation step reduces the risk of catalyst deactivation.

The practical application of this Example becomes very difficult. An imperfect control of the oxygen supply to the first selective oxidation stage with periods of O₂ shortage will cause slip of H₂S leading to performance below the goal of a very high SRE. Also, a shortage of free oxygen will cause the iron on the catalyst for selective oxidation to react with H₂S to iron sulfide, which catalyst is not selective for sulfur production.

Compared to the other Examples in US-A-4 988 494 with more O₂ excess, Example VI teaches that oxygen to the hydrogenation step must be avoided at the risk of H₂S slip through the first stage selective oxidation catalyst bed, which makes the process of Example VI unsuitable for a very high continuous sulfur recovery efficiency. Further, this process still suffers from sulfur vapor losses amounting up to 0.13% or more.
Objectives of the present invention are to provide a process for conversion of H_2S, as in typical Claus feed gases, to elemental sulfur, which process is capable of 99.8+ % SRE and which process can be operated preferably on a continuous basis, with low investment, energy consumption, and operational costs. By applying the process of the invention expensive features such as a water removal step, a recycle stream to the Claus feed gas which leads to increasing investment costs for the Claus unit and an expensive H_2S removal step become redundant.

The invention relates to a process for the recovery of sulfur from sulfur containing gases with a high sulfur recovery efficiency of at least 99.8 %, comprising:

- treating of acid gas feed in a Claus-type installation, to produce a tail gas in which the total concentration of sulfur compounds is less than 0.8 vol.%, expressed as S_1 and the concentration of free oxygen is 0.1-0.7 vol.%;

- subjecting the sulfur compounds in the tail gas from said Claus-type installation to a hydrogenation/hydrolysis step to produce a product gas comprising H_2S; and

- removing H_2S from the product gas.

In accordance with the present invention the Claus-type installation typically comprises at least two catalytic Claus stages and a final selective oxidation step.

The removal of H_2S from the product gas is preferably carried out by carrying out the following steps:

- selectively oxidizing H_2S in said product gas with an appropriate catalyst to elemental sulfur in a selective oxidation converter at a temperature between the water dewpoint temperature and 280 °C; and

- cooling the gas leaving the selective oxidation step to a temperature of 80-115 °C.
It is also possible to carry out the H₂S removal by first removing the water from the gas stream and then subject it to an H₂S removal step in a SCOT or a BSR-Stretford process.

In the process according to the invention H₂S in an acid gas feed is converted to elemental sulfur in a Claus type process to produce a gas containing sulfur compounds with a concentration of less than 0.8 vol.% total sulfur, expressed as S₁. The gas contains free oxygen in a concentration of 0.1-0.7 vol.%, preferably 0.2-0.5 vol.%. Subsequently, the sulfur compounds are completely hydrogenated or hydrolyzed to H₂S. Thereafter, the H₂S may for instance be selectively oxidized to elemental sulfur, after which the elemental sulfur is separated from the process gas in a sulfur condenser, at a temperature below the sulfur solidification temperature.

For a typical Claus acid gas feed with 90 vol.% H₂S, the requirement of less than 0.8 vol.% total sulfur compounds in the Claus tail gas corresponds to a SRE requirement of at least 97 %. Technically, all types of Claus related technologies are suitable. For reasons mentioned earlier, a conventional Claus process, a SUPERCLAUS® or EUROCLAUS® process are preferred over a sub-dewpoint process. The important factor in this first step of the invention is to reduce the total sulfur content of the process gas, after sulfur condensation, in such a way that a value is obtained of less than 0.8 vol.% total sulfur expressed as S₁, preferably less than 0.5 vol.%, more preferably less than 0.3 vol.%. In general, a lower total sulfur content reduces the amount of SO₂ production in the second selective oxidation stage, resulting in an increased SRE. Therefore, the process gas for the hydrogenation step is preferably produced in a SUPERCLAUS® or EUROCLAUS® unit.

As mentioned above, Claus type tail gases contain several sulfur components. According to the present invention, substantially all sulfur components are converted into H₂S by hydrogenation or hydrolysis, before handling the process gas further. Conversion of elemental sulfur vapor is not required, but usually deep conversion of SO₂ and COS/CS₂ is accompanied by
conversion of sulfur vapor. In case the last Claus-type converter stage is a
selective oxidation stage such as in a SUPERCLAUS® or EUROCLAUS® unit,
the process gas leaving this stage typically contains: free oxygen in the range
of 0.15-0.5 vol.%, an amount of H₂S in the range of 100-200 ppmv, a larger
amount of SO₂ in the range of 800-1600 ppmv and sulfur vapor, as well as COS
and CS₂.

Active catalysts for hydrogenation and hydrolysis of the above sulfur
components into H₂S are metal sulfides on a support. The metals can be
chosen from e.g. Co, Mo, Ni, W, and Cr. As an example, CoMoS₂ on alumina is
a suitable catalyst for this application. The hydrogenation/hydrolysis step is
typically carried out at a temperature that is somewhere in the range of about
140 °C and 350 °C. The operating temperature depends on the type of catalyst
used, and is usually selected above the sulfur dewpoint of the gas.

The catalysts for the hydrogenation and hydrolysis may have a high
hydrogenation capacity at low temperatures, such as an inlet temperature of
220 °C, preferably 210 °C. Thus, the hydrogenation/hydrolysis step is
preferably carried out in the presence of a low temperature (200-250 °C)
hydrogenation catalyst, such as Axens TG-107. If a hydrogenation/hydrolysis
catalyst is available that is able to operate at lower temperatures, i.e. down to
140 °C, such catalyst can also be used.

Alternatively, a high temperature (280-330 °C) hydrogena-
tion/hydrolysis catalyst may be used.

If a hydrogenation/hydrolysis catalyst is available that is able to
operate at temperatures between 250 °C and 280 °C, such catalyst can also be
used.

Surprisingly, it has now been found that complete and stable
hydrogenation and hydrolysis to H₂S is possible even with a relatively high
content of oxidizing components and in the presence of 0.1-0.7 vol.% free
oxygen. Detailed laboratory testing has been performed to find the process
conditions and suitable catalyst types for an acceptable hydrogenation performance for a longer period of time.

The hydrogen + CO to oxygen ratio of the inlet gas is preferably between 5 and 10, more preferably between 6 and 8.

The space velocity can be from 500 to 5000 per hour, preferably from 1000 to 2000 per hour, more preferably from 1200 to 1700 per hour.

After the hydrogenation and hydrolysis step, the product gas, containing H₂S as the single sulfur compound in low a concentration (typically less than 0.5 vol.%, preferably less than 0.4 vol.%), is mixed with a gas containing free oxygen, for instance air. After mixing, the H₂S is catalytically oxidized to elemental sulfur in a selective oxidation step (herein also referred to as "selective oxidation converter"). The selective oxidation step is preferably carried out in a dry bed.

In the dissertation of R.J.A.M. Terörde, “Selectivity of the oxidation of hydrogen sulphide to sulphur”, University of Utrecht, 1996, page 149, the reaction order for the sulphur oxidation was found to be very low, near 0, with respect to sulphur. This nearly constant sulphur oxidation rate suggests that the sulphur yield of the H₂S oxidation would decrease at lower H₂S in inlet concentrations. Surprisingly a high yield was found for H₂S in inlet concentrations around 0.3 vol% in the second oxidation stage (selective oxidation converter).

For the process according to the invention to achieve an overall SRE of at least 99.8 %, preferably more than 99.9 %, selective oxidation of H₂S, after hydrogenation and hydrolysis, should take place with a high yield to sulfur, preferably in the order of 91-96 % (although 99.8% SRE may still be achieved with 85% yield).

A further object of the invention is to maximize the sulfur yield in the selective oxidation step (selective oxidation converter), while maintaining the advantage of a continuous process, without the necessity of water vapor removal.
Selective oxidation of H$_2$S at ambient temperatures (30-50 °C) as an option would result in virtually 100 % sulfur yield and an extremely high overall SRE, but such a process requires the removal/condensation of the water vapor in the process gas, which step is expensive and produces a waste stream of sour water. Moreover, solid sulfur would accumulate in the catalyst and would have to be removed by vaporization sooner or later in a high temperature sulfur removal step.

Alternatively, one can use a sub-dewpoint oxidation catalyst in order to oxidize the H$_2$S after hydrogenation/hydrolysis at temperatures between the water dewpoint temperature and 180 °C. It is known that selective oxidation at such temperatures can lead to a high yield to sulfur. As an example, reference is made to patent applications US-A-6 024 933 and US-A-5 607 657. Patent application US-A-6 024 933 discloses a catalyst and a process for the selective oxidation of H$_2$S to elemental sulfur with a high yield, applying a catalyst containing CuO.

US-A-5 607 657 describes a process for the selective oxidation of H$_2$S to sulfur, with a catalyst for selective oxidation of H$_2$S, at a temperature between the water dewpoint and 180 °C. In the patents cited virtually all of the formed sulfur is said to be retained in the catalyst and one has to evaporate the sulfur from the catalyst at elevated temperatures at regular intervals. Such a discontinuous process is not the preferred option.

Furthermore, at converter temperatures up to 180 °C the sulfur recovery losses due to sulfur vapor can amount to more than 2 %. The example in US-A-5 607 657 mentions a converter outlet temperature of 110 °C, which corresponds to approximately 0.04 % sulfur recovery loss, not negligible for a process with a SRE of 99.9 %.

In the process according to the invention, a SRE of 99.8+ % can be achieved by cooling the process gas to 80-115 °C downstream a selective oxidation step which is operated at temperatures between the water dewpoint temperature and 280 °C. To that end above sub-dewpoint selective oxidation
catalysts can be applied, although preferably SUPERCLAUS® type selective oxidation catalysts are used. These catalysts, described inter alia in US-A-4 818 740, US-A-5 286 697, US-A-5 814 293, US-A-6 919 296, operate at temperatures between 180 and 280 °C and are capable of converting H₂S with a yield of maximum 95 %. The catalysts allow for a stoichiometric excess of free oxygen in the selective oxidation feed, while maintaining a high yield. The amount of added free oxygen is controlled to give 0.15-5 vol.% oxygen in the product gas, preferably 0.15-0.3 vol.%.

In the process according to the invention the amount of H₂S in the feed gas going to the selective oxidation stage (selective oxidation converter) is controlled at such a value that, after 100 % conversion to sulfur, the sulfur dewpoint temperature is less than 180 °C. It can be shown that such conditions correspond to a maximum H₂S feed concentration of 0.8 vol.%, at pressures slightly above atmospheric. This means that at 180 °C or more the sulfur remains in the vapor phase, enabling continuous selective oxidation at relatively low temperatures with a very high yield.

For a process according to the invention it is required to remove as much sulfur as possible in the final step of the process by cooling the product gas to a temperature below the sulfur melting point, i.e. at 80-115 °C, preferably to 80-90 °C. To that end a sulfur condenser as described in US-A-5 897 850 can be used, without interference with the continuity of the process. Sub melting point removal of sulfur vapor from the process gas is considerably more effective than the conventional sulfur condensation that apply outlet temperatures around 125 °C. The reduction of sulfur vapor losses achieved in this way enhances the overall SRE by 0.13-0.25 %. The formation of solid or liquid sulfur on a catalytic bed, however, has technical disadvantages. The normal procedure to remove this solid or liquid sulfur from the catalyst bed, is a batch-wise vaporization at a temperature level of typically 300-350 °C. This means batch-wise operation, stress corrosion of piping and converter shell, catalyst deterioration and dust formation,
expensive switching valves and energy consumption to raise the temperature of converter, piping and catalyst to elevated temperatures.

For these reasons, a strongly preferred embodiment of the invention is directed to a continuous catalytic process, which avoids the formation of solid or liquid sulfur on the catalyst bed.

In order to keep the catalytic part of the sulfur recovery process continuous, the catalytic selective oxidation converter should be operated above its flat sulfur dewpoint to prevent liquid sulfur from accumulating in the catalyst pores. More preferred is a slightly higher operating temperature in the order of a margin of 5-15 °C above the flat sulfur dewpoint. These conditions will prevent that the majority of the catalyst pores will be filled with liquid sulfur as a result of capillary condensation. As a result, only pores with a pore diameter of typically 50-150 Å will contain liquid sulfur. In this way, the catalyst activity is maintained.

As mentioned above, the tail gas of the Claus-type installation, i.e. the Claus section upstream of the hydrogenation stage, should have a total concentration of sulfur compounds of less than 0.8 vol.%, expressed as S1. This implies a high SRE of the Claus-type installation, typically at least 97 %, more preferably at least 98 % and most preferably at least 98.5 %, the latter corresponding to installations with selective oxidation as last catalytic step, in order to reach an overall SRE of at least 99.8 %. As an example, with a Claus section SRE of 98 % and a sulfur yield in the final selective oxidation stage of 95 %, the losses of H2S and SO2 are 5 % of 2 %, being 0.10 %. With some sulfur vapor losses, the SRE will be well above 99.8 %.

The process conditions for a continuous catalytic process will now be illustrated in the following embodiment with some quantitative data.

Process gas with an H2S content of 0.30 vol.% and a pressure of 0.1 barg, and assuming that the H2S will be oxidized completely to elemental sulfur and water vapor, according to equation (8), exhibits a flat sulfur dewpoint of 160 °C.
Consequently, the catalyst bed bottom temperature of the selective oxidation converter should be 165-175 °C, applying a margin of 5-15 °C above the flat sulfur dewpoint. In this way, the produced sulfur vapor is contained within the process gas and accumulation in the catalyst pores is prevented, thereby making a continuous process possible.

As the converter temperature rise is approximately 20 °C as a result of the exothermic oxidation of H₂S, the converter inlet temperature of the selective oxidation in this illustrative embodiment should be 145-155 °C. This represents the minimum inlet temperature for a continuous process. A minimum converter temperature level of 145-155 °C inlet and 165-175 °C outlet is advantageous to keep the concentration of sulfur radicals on the catalyst surface as low as possible. Sulfur radicals are easily converted to SO₂, and will consequently reduce the yield to sulfur of the selective oxidation.

The produced sulfur vapor in the selective oxidation converter represents some 0.8-3.0 % recovery efficiency and this sulfur loss should be recovered by condensation and/or solidification. Preferably, these losses are first reduced to approximately 0.2 % by a conventional last sulfur condenser operating at 125 °C which is just above the sulfur solidification temperature. A convenient apparatus for subsequent recovery of sulfur below 125 °C is described in US-A-5 897 850. This heat exchanger is cooled with ambient air, allowing an outlet temperature of the process gas of 80-115 °C. The process gas should not be cooled below its water vapor dewpoint, which is normally in the range of 69-77 °C for Claus tail gas, containing 30-35 vol.% water vapor and at a pressure of 0-0.2 barg. Solid sulfur is formed in the upper part of the tubes as solid monoclinic sulfur needles. Periodic regeneration is required to maintain a process gas outlet temperature of 80-115 °C. However, regeneration is simply achieved by raising the temperature, e.g. by pressurizing the air side of the exchanger with low pressure steam, to above 115 °C, which is the melting temperature of monoclinic sulfur. The sulfur needles will melt quickly and will
flow down along the tube walls. A fully continuous process is obtained by installing a second heat exchanger in parallel.

In a further aspect, the present invention is directed to the processing of minor streams containing H₂S, sulfur vapor and free oxygen such as vent air from a sulfur pit, sulfur tank or sulfur degassing vessel. Vent air from another origin within the plant (or optionally from another plant) having a comparable composition may be used as well. Such a vent air stream usually contains less than 1000 ppmv H₂S, typically in the order of 300-800 ppmv, sulfur vapor in the order of 200-600 ppmv (e.g. about 400 ppmv) S, and free oxygen in the order of 10-20 vol.%. The sulfur recovery loss contained in this vent air is in the order of 0.03 % for the design capacity of the sulfur plant, but will increase for sulfur plant turndown (0.15 % losses for 20 % plant turndown). This vent air stream is usually directed by means of a steam ejector with a discharge pressure of less than 0.1 barg to an incinerator for oxidation of the sulfur components to SO₂. This may give a problem exceeding the SO₂ level in the stack gas for sulfur plants with a recovery efficiency requirement close to 100 %.

Alternatively, this stream may be directed to the Claus main burner, but technically this is difficult because of the required much higher pressure – vent air is usually emitted from the vented vessels at atmospheric pressure, and its pressure has to be increased to the burner pressure, typically 0.5-0.7 barg – and the presence of sulfur vapor which may condense or solidify.

Also, the presence of free oxygen prohibits that the vent air stream is directed to a catalytic Claus converter, because free oxygen will deactivate the alumina Claus catalyst by sulfation.

In an embodiment of the present invention, when the removal of H₂S from the product gas of the hydrogenation/hydrolysis step is carried out by a step comprising a selective oxidation stage, to the selective oxidation stage a vent stream (or other stream comprising H₂S, sulfur vapor and free oxygen) is fed, e.g. by mixing it first with the stream coming from the
hydrogenation/hydrolysis step. The pressure in the selective oxidation stage is low, typically 0.1 barg, the H₂S will be oxidized to sulfur vapor, the free oxygen does not form a problem and is actually required for the oxidation, and the sulfur vapor will be removed in the final cooling step. The vent air can, at least partly, replace the oxidation air that is normally supplied by an air blower to the selective oxidation stage.

As mentioned, it is also possible to feed the vent stream (or other stream comprising H₂S, sulfur vapor and free oxygen) to process steps upstream of this selective oxidation stage (e.g. to the entry of the hydrogenation/hydrolysis step or to the entry of the last Claus-unit oxidation stage), but this is generally less preferred, because the pressure will be higher in these process steps.

WO-A-94/11105 describes a modified SUPERCLAUS® unit in which all H₂S in the Claus tail gas is converted into SO₂, followed by hydrogenation of SO₂ to elemental sulfur, and a regular SCOT process including full hydrogenation to H₂S. Also described is a regular SUPERCLAUS® unit in which H₂S in the Claus tail gas is selectively oxidized to elemental sulfur, followed by a required extra reduction step for converting SO₂ into H₂S, and a regular SCOT process including full hydrogenation to H₂S. WO-A-94/11105 does not suggest to selectively oxidize a Claus tail gas and directly subject this oxidized product to a regular SCOT process including full hydrogenation to H₂S and separation of the H₂S in said product gas from the other components.

The present invention will now be elucidated by means of Figure 1.

In Figure 1 an acid gas feed, containing H₂S, is supplied to sulfur recovery unit 3 through line 1. The corresponding combustion air is supplied through line 2, the generated steam is discharged through line 4 and the produced liquid sulfur is discharged through line 5. The sulfur recovery efficiency of unit 3 is at least 97%. The tail gas from unit 3 is routed to re heater 7 through line 6, where the tail gas is heated to the required temperature by means of fuel gas (line 8) and combustion air (line 9). The
heated tail gas is routed to the hydrogenation converter 11 through line 10. In the hydrogenation converter 11 the sulfur components are hydrogenated and hydrolyzed to H₂S with a suitable catalyst, such as a cobalt-molybdenum catalyst. The hot process gas is routed to heat exchanger 13 through line 12.

Boiler feed water is supplied through line 14, the generated steam is discharged through line 15. Bypass 16 is used to charge hot process gas to converter 20, the flow of the hot bypass gas being controlled by temperature control valve 17. In this way the required inlet temperature of converter 20 is maintained.

To the process gas flowing through line 18, selective oxidation air is supplied through line 19. In converter 20 the selective oxidation of H₂S to sulfur takes place.

The hot process gas is cooled in two steps in heat exchangers 21 and 22. The cooling medium is supplied through lines 23 and 24 and discharged through lines 25 and 26. The sulfur condensed in exchanger 21 is discharged through line 27 at some 125 °C.

The process gas is further cooled (90 °C) in exchanger 22 with air. Solid sulfur inside exchanger 22 is periodically removed by increasing the temperature to above the sulfur melting temperature, and discharged through line 28.

EXAMPLE 1

A sulfur recovery unit is fed with an acid gas feed containing 100 kmol/h of H₂S.

In the thermal Claus stage, applying free flame technology, 60 kmol/h (1920 kg/h) of sulfur is recovered from the process gas, resulting in a SRE of 60 %.

After the first catalytic Claus stage, another 30 kmol/h (960 kg/h) of sulfur is recovered, bringing the cumulative SRE to 90 %. After the second
catalytic Claus stage, with another 5.0 kmol/h (160 kg/h) of sulfur production, the cumulative SRE is 95 %. Applying SUPERCLAUS® technology, with another 134 kg/h of sulfur production, the cumulative SRE is 99.2 %. The liquid sulfur contains 0.03 wt.% of H₂S and is degassed by blowing air through the sulfur, as in US-A-6 149 887.

5 The SUPERCLAUS® tail gas is charged to a hydrogenation converter stage. After heating in an indirect reheater to 220 °C, the sulfur components are hydrogenated/hydrolyzed to H₂S applying a CoMo type of catalyst. Also the small amount of excess oxygen of 0.2 vol.%, present in the tail gas of the SUPERCLAUS® converter stage, is hydrogenated to water vapor with the excess of hydrogen, present in the process gas. The process gas leaves the hydrogenation converter at a temperature of 261 °C, the H₂S content in the process gas being 0.3 vol.%.

10 The product gas from the hydrogenation converter is cooled in a heat exchanger to 220 °C.

To the cooled process gas, with a flow of 300 kmol/h, 6.5 kmol/h of air is added, applying an O₂:H₂S molar ratio of 1.5:1. The air is vent air from the sulfur degassing unit, containing 0.03 kmol/h of H₂S and 0.004 kmol/h of sulfur vapor as S₁.

15 This gas mixture is directed to the selective oxidation converter, containing an appropriate oxidation catalyst, wherein the H₂S is oxidized to elemental sulfur vapor with a yield of 95 % to sulfur. The process gas leaves the selective oxidation converter at 240 °C.

20 Sulfur vapor is removed from the process gas as liquid sulfur in a sulfur condenser and as solid sulfur in a heat exchanger 1, which is cooled with air. In case the process gas outlet temperature increases to above 90 °C, a parallel heat exchanger 2 is put into operation and heat exchanger 1 is regenerated by increasing the shell and tube temperature to above the sulfur melting temperature. The collected solid sulfur is removed as liquid sulfur and
directed to the dedicated sulfur lock. A typical SRE loss of sulfur vapor in a process gas of 90 °C amounts to 0.01%.

Taking into account some sulfur vapor losses, the cumulative overall SRE is 99.95 %.

EXAMPLE 2

A selective oxidation converter (the SUPERCLAUS® converter downstream of the second Claus converter) receives tail gas from the preceding Claus converter. The H₂S content in the process gas feed amounts to 1.0 vol.%, the SO₂ content is 0.08 vol.%, the water vapor content is 30 vol.%, the oxygen content is 0.7 vol.%, and the balance is nitrogen. In the selective oxidation converter the incoming H₂S is oxidized to sulfur vapor. The free oxygen content in the product gas is 0.2 vol.%, which is significantly lower than the normally applied 0.5-1.0 vol.%. Despite of this low oxygen content, the conversion to sulfur is 94.5 %.

EXAMPLE 3

A hydrogenation converter receives tail gas from the preceding selective oxidation converter. The H₂S-content in the process gas feed amounts to 0.02 vol.%, the SO₂ content is 0.12 vol.%, the water vapor content is 30 vol.%, the hydrogen content is 3.0 vol.%, the CO content is 0.5 vol.%, the oxygen content is 0.2 vol.%, and the balance is nitrogen. At a converter inlet temperature of 220 °C, no SO₂ is detected in the product gas.

EXAMPLE 4

A selective oxidation converter receives tail gas from the preceding hydrogenation converter. The H₂S-content in the process gas feed amounts to
0.3 vol.%. An amount of air is added in such a way that the oxygen concentration in the process gas feed is 0.5 %. Despite the low H₂S content of 0.3 vol.%, the conversion to sulfur is 92.5 %.
Claim

1. Process for the recovery of sulfur from sulfur containing gases with a high sulfur recovery efficiency of at least 99.8 %, comprising:
 - treating of acid gas feed in a Claus-type installation, to produce a tail gas in which the total concentration of sulfur compounds is less than 0.8 vol.%, expressed as S_i and the concentration of free oxygen is 0.1-0.7 vol.%;
 - subjecting the sulfur compounds in the tail gas from said Claus-type installation to a hydrogenation/hydrolysis step to produce a product gas comprising H_2S; and
 - removing H_2S from said product gas.

2. Process according to claim 1, wherein said step of removing H_2S from said product gas comprises:
 - selectively oxidizing H_2S in said product gas with an appropriate catalyst to elemental sulfur in a selective oxidation converter at a temperature between the water dewpoint temperature and 280 °C; and
 - cooling the gas leaving the selective oxidation step to a temperature of 80-115 °C.

3. Process according to any one of the preceding claims, wherein the tail gas from the Claus-type installation has a free oxygen concentration of 0.2-0.5 vol.%.

4. Process according to any one of the preceding claims, wherein the last catalytic step of the Claus-type installation is selective oxidation of H_2S.

5. Process according to any one of the preceding claims, wherein a water removal after the hydrogenation/hydrolysis step is absent.

6. Process according to any one of the preceding claims, wherein the H_2S/SO_2 ratio in the gas leaving the Claus-type installation is lower than 1.
7. Process according to claim 2-6, wherein the selective oxidation converter is operated above the flat sulfur dewpoint.

8. Process according to claim 2-7, wherein the selective oxidation converter is operated at least 5-15 °C above the flat sulfur dewpoint.

9. Process according to any one of the preceding claims, wherein the concentration of sulfur compounds in the tail gas from the Claus-type installation, expressed as S₁, is less than 0.5 vol.%, preferably less than 0.3 vol.%.

10. Process according to any one of the preceding claims, wherein the selective oxidation step is carried out in a dry bed converter.

11. Process according to any one of the preceding claims, wherein the hydrogenation/hydrolysis step is carried out in the presence of a low temperature (200-250 °C) hydrogenation/hydrolysis catalyst.

12. Process according to any one of claims 1-10, wherein the hydrogenation/hydrolysis step is carried out in the presence of a high temperature (280-330 °C) hydrogenation/hydrolysis catalyst.

13. Process according to claim 2-12, wherein the product gas from the selective oxidation converter is cooled in a heat exchanger.

14. Process according to claim 13, wherein the heat exchanger is periodically regenerated.

15. Process according claim 2-14, wherein the product gas from the selective oxidation converter is cooled to 80-90 °C.

16. Process according to claim 2-15, wherein at least one stream comprising H₂S, sulfur vapor and free oxygen is mixed with the product gas of the hydrogenation/hydrolysis step.

17. Process according to claim 16, wherein the stream comprising H₂S, sulfur vapor and free oxygen is a vent stream, such as a vent stream from a sulfur pit, sulfur tank or sulfur degassing vessel.
18. Process according to any one of the preceding claims, wherein the hydrogenating/hydrolysis step is carried out in the presence of a cobalt-molybdenum catalyst.

19. Process according to any one of the preceding claims, wherein the product gas of the hydrogenation step is cooled to a temperature of 180-210 °C.

20. Process according to claim 1, wherein said step of removing H₂S from said product gas is carried out in accordance with the H₂S removal step in a SCOT or a BSR-Stretford process, after a step of water removal.
Figure 1