特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局
(43) 国際公開日
2012 年 12 月 6 日 (06.12.2012)

WO 2012/165117 A1

特許公開番号

(12) 特許協力条約に基づいて公開された国際出願

(10) 国際公開番号
WO 2012/165117 A1

1.01) 150 °C以上 170 °C未満の温度に加熱して InP ナノ粒子を合成する合成工程を有する。粒子表面リガンドは、炭素数 18 以上の脂肪族アミンである。
明細書
発明の名称：InPナノ粒子の合成方法およびナノ粒子

技術分野
[0001] 本発明は、InPナノ粒子の合成方法、およびこの合成方法で合成されたナノ粒子に関し、特に、良好な溶液分散性と高いPL発光強度が両立したInPナノ粒子の合成方法、およびこの合成方法で合成されたナノ粒子に関する。

背景技術
[0002] 現在、ナノオーダの半導体微粒子について、種々の研究がなされている。このナノオーダの半導体微粒子は、発光ダイオード（LED）、エレクトロールミネッセンス素子、光電変換素子等に利用される。

InPナノ粒子の合成方法としては、不活性雰囲気中で原料と有機溶媒を反応容器中に密閉してヒーターなどで加熱し、高温高圧下で反応を行う、いわゆるソルボサーマル法がある。これに以外にInPナノ粒子の合成方法として、フラスコに不活性ガスを通気しながらオイルバスなどで加熱を行い、高温の反応溶液中にシリコンを用いて原料を注入して反応を行う、いわゆるホットソープ法がある。

特許文献1～8にはソルボサーマル法およびホットソープ法によるInPナノ粒子の合成方法（製造方法）が記載されている。

[0004] 特許文献1には、InP微粒子の合成方法として以下的方法が記載されている。

まず、In原料として、17.6 mg（60 μmol）のインジウムイソプロポキシド（In(OiPr)3）と、13.3 mg（60 μmol）の無水塩化インジウム（InCl3）を混合し、ルイス塩基性溶媒であるトリオク
チルホスフィン2 gに溶解させる。続いてこの溶液に、P原料として、2.6
. 3 µ. 1 (90 µmol) のトリス（トリメチルシリル）ホスフィン (P（
TMS）3) を加えて300 ℃に加熱する。このとき、黄色から濃茶色へと溶
液の色の変化が観察される。10分間の加熱によって、1nP微粒子を合成
した。その後反応溶液を室温まで自然冷却させて、TOP溶媒に分散した1
nP微粒子の分散液が得られる。

[0005] 特許文献2には、1nPナノ粒子の製造方法として以下の方法が記載され
ている。
まず、配位性有機溶媒であるトリオクチルホスフィンオキサイド (TOP
0) とトリオクチルホスフィン (TOP) とを、重量比TOP : TOP =
1 : 9にて混合し、10 mlを3つロフラスコに分取した。これに1n原料
である塩化インジウム0.6 gを導入し、一晩室温で攪拌することで透明溶
液を得る（ステップS1）。
この透明溶液を175 ℃に加熱し、加熱した透明溶液中にP原料であるト
リメチルシリルホスフィン0.5 mgをシリンジで用いて添加し、7分間保
持する。これにより、1nP ナノ粒子を合成する。また7分間の保持後には
、3つロフラスコから熱源を取り除く（ステップS2）。
以上までの全ての操作は、アルゴンで不活性化された雰囲気の中で行う。

[0006] 次に、合成した1nPナノ粒子をメタノールで凝集させ、遠心分離の後に
デカンテーションし（ステップS3）、ヘキサンに分散させることで溶液中
に含まれる不純物を除去する（ステップS4）。この工程を3回繰り返した
後、ロータリーエバポレーターを用いて1nPナノ粒子からヘキサンを除去
する（ステップS5）。
TOPとTOPとを重量比TOP : TOP = 1 : 9にて混合した反応
溶媒10ml中に、洗浄した1nPナノ粒子を分散させる（ステップS6）。
1nPナノ粒子を分散させた反応溶媒を3つロフラスコに移して175 ℃
に加熱した。そして、60分後に、3つロフラスコから加熱源を取り除いて
加熱を終了させる（ステップS7）。
特許文献3には、III—V型半導体で形成されたコアとSiO₂で形成されたシェルとを有し、コアの粒径が1～50nmの範囲であるIII—V型半導体/SiO₂型ナノ粒子が記載されている。

特許文献3には、III—V型半導体/SiO₂型ナノ粒子の製造方法として以下の方法が記載されている。

まず、三フタノール中にトリオクチルホスフィンオキサイド(TOPO)を0.5g、トリオクチルホスフィン(TOP)を4.5g入れ、290℃に昇温する。この中にInCl₃を0.8g、トリスメチルシリルホスフィンを0.75g、TOPOを0.5g、TOPを4.5gの混合液を急速に注入する。この後、温度を270℃で1日保持した後、室温まで降温する。この

状態で脱水メタノールを滴下し凝集沈殿させ、遠心分離で上澄み液を除去し、ナノ粒子を得る。この際、脱水メタノールの量をコントロールし、メタノール滴下→沈殿→遠心分離を繰り返すことで、ナノ粒子の沈殿凝集物を得、更にビリジンで洗浄して、TOP、TOPOを表面から除去し、5.1 nmのInPナノ粒子凝集物が得られる。

その後、3.7×10⁻³gのテトラエトキシシラン、0.5mol/LのHClを50mLのエタノールおよび10⁻⁶molのInPナノ粒子凝集物をビーカー中に入れ80℃に昇温し、1時間攪拌する。これにより、粒径5.1 nmのInP粒子表面に1.2 nmのSiO₂シエルリングを行った10⁻⁵Mナノ粒子分散液を得る。

特許文献4には、InPからなる半導体微粒子の合成方法が開示されている。

特許文献4のInPからなる半導体微粒子の合成方法においては、まず、乾燥窒素雰囲気のグローブボックス内で、有機化合物としてのトリオクチルホスフィン200mLと有機化合物としてのトリオクチルホスフィンオキシド17.3gを秤量し、トリオクチルホスフィンとトリオクチルホスフィンオキシドを混合して10分間攪拌する。この攪拌した後の溶液を混合溶媒Aとする。その後、III族金属元素原料としての三塩化インジウム9.
9 g と半導体微粒子の V 族元素原料であるトリスジメチルアミノホスフィン
7.3 g とを、グローブボックス内で秤量し、三塩化インジウムとトリスジメチルアミノホスフィンを、混合溶媒 A 中に混合する。混合した後、三塩化インジウムとトリスジメチルアミノホスフィンを含む混合溶媒 A を 20
℃で加熱しながら 10 分間攪拌する。この攪拌した後の混合溶液 A を原料溶液 B とする。

[001 0] 次に、原料溶液 B を真空雰囲気の超臨界合成用オートクレーブ装置の反応釜に入れ、攪拌しながら、1 時間をかけて 350 ℃にまで昇温した後、原料溶液 B の温度を 350 ℃に、6 時間維持することで、合成反応を行う。合成反応後の原料溶液 B を合成溶液 C とする。反応工程後に、合成溶液 C を自然放熱により冷却させ、合成溶液 C が室温まで冷却された後、乾燥窒素雰囲気中で合成溶液 C を回収する。

[001 1] 次に、合成溶液 C に有機溶媒としての脱水メタノールを滴下することにより、回収した合成溶液 C において、半導体微結晶が InP からなる半導体微粒子を軟凝集させ、沈殿させた。その後、合成溶液 C を 4000 rpm で 10
分間遠心分離して、合成溶液 C から該半導体微粒子を回収する。回収した半導体微粒子を、再分散溶媒としての脱水トルエンにて再溶解させ、脱水メタノールにより、脱水トルエンに再溶解した半導体微粒子を軟凝集させ、沈殿させ、脱水トルエンを 4000 rpm で 10 分間遠心分離して再び InP を
含む半導体微粒子を回収する。このような脱水トルエンと脱水メタノールを用いた上述のような工程を 3 回繰り返して、半導体微粒子の精製を行ない
、精製を行なった後の半導体微粒子を溶解した脱水トルエンを合成溶液 D とする。この合成溶液 D は、不必要な表面修飾剤の遊離物および InP 以外の合成副生成物などが除去された状態であり、このようにして InP からなる
半導体微粒子（以下、InP ナノ粒子という）が合成される。

[001 2] 特許文献 5 には、InP ナノ粒子の製造方法が記載されており、以下に示す工程 S1 ～工程 S12 に従って InP ナノ粒子が製造される。

まず、工程 S1 において、有機溶媒中のヘキサデシルアミン（HDA）濃
度が 5 w t % となるように、有機溶媒である T O P O (1 g) 、 T O P (8 . 5 g) 、ヘキサデシルアミン (H D A) (0 . 5 g) を 3 つロフラスコへ分取する。これに I n 原料である塩化インジウム (I n C l 3) (1 g) を導入し（工程 S 2) 、 2 3 0 ℃で 3 0 分間攪拌することで透明溶液を得る（工程 S 3) 。

加熱した透明溶液中に P 原料である トリメチルシリルホスフィン (0 . 5 m g) を、シリンジを用いて添加し（工程 S 4) 、ただちに 2 1 0 ℃に降温したのち、 1 0 分間保持した。以上のプロセスにより、 I n P ナノ粒子を合成する（工程 S 5) 。また所定時間の保持後には、 3 つロフラスコから熱源を取り除いた。以上の工程は、アルゴンで不活性化されたグローブボックス内で行う。

[0013] 次に、合成した I n P ナノ粒子をサンプル管に 3 0 μ L とり、これに、ヘキサン 1 m L とブタノール 1 m L を加えることで透明溶液を得る（工程 S 6) 。更に、この溶液にフッ酸エッチング溶液（フッ酸 5 % 、水 1 0 % 、 1 - ブタノール 8 5 % 混合溶液） 5 0 μ L を添加し（工程 S 7) 、これにキセノンランプ（5 0 0 W) 下で 1 時間放置することで、 I n P ナノ粒子の表面処理を行う（工程 S 8) 。以上の工程は大気中で行う。

[0014] 次に、表面処理を行ったサンプルを丸底フラスコに移した後、 1 3 0 ℃にセットしたホットプレート上で加熱しながら油圧回転式ポンプを用いて減圧することで溶媒を除去した（工程 S 9) 。 1 時間経過後、アルゴンガスで不活性化したグローブボックス内へ丸底フラスコを移動し、フラスコ内へアルゴンガスを注入した。更に、ヘキサン（乾燥溶媒） 1 m L とブタノール（乾燥溶媒） 1 m L を加えることで、 I n P ナノ粒子が分散した溶液を得る（工程 S 1 0) 。

サンプル瓶へ移し後完全に密閉して密閉容器とし（工程 S 1 1) 、サンプル瓶内の溶媒で満たされていない空間をアルゴンガスで満たされている状態とする。上記サンプル瓶に、キセノン（X e ）ランプ（5 0 0 W ）を光照射強度 0 . 3 W / c m 2 で 1 時間照射する（工程 S 1 2) 。

特許文献6には、ナノ結晶コアがInPから構成され、バッファ層がSeから構成され、シェル層がZnSから構成される3層構造のナノ結晶の製造方法が記載されている。

特許文献6には、3層構造のナノ結晶の製造方法として以下の方法が記載されている。

まず、酢酸インジウム0.07mmol、オレイン酸0.3mmolおよびオクタデセン10gを混合して120℃まで真空を維持しながら攪拌する。250℃でトリス（トリメチルシリル）ホスフィン0.05mmolとオクタデセン1mLを添加して20分反応させる。その後、0.1Mのセレン化トリオクチルホスフィン溶液0.02mLを添加して30分間維持した後、亜鉛、オレイン酸、およびオクタデセンを含む溶液を、亜鉛の添加量が0.2mmolとなるように添加して1時間攪拌しながら反応させる。その後、反応温度を300℃まで上げ、0.4Mの硫化トリオクチルホスフィン溶液1mLを添加して1時間反応させる。このようして、上述の3層構造のナノ結晶を製造する。

特許文献7の半導体ナノ粒子蛍光体は、単独では異なる量子効果を呈する2以上の発光領域と障壁領域を有する半導体ナノ粒子蛍光体であって、2以上の発光領域が障壁領域によって隔てられるような積層構造を有し、2以上の発光領域が障壁領域を介して同じ量子準位を有する。

特許文献7には、InP/InGaP/InPのコアシェル構造による半導体ナノ粒子蛍光体の製造方法として以下の方法が記載されている。

まず、InPコア（第1発光領域）を以下のようにして形成する。

市販の溶媒蒸留装置を用い、加熱槽でトリオクチルホスフィン（TOP）溶媒に塩化インジウムおよびトリオクチルホスフィンオキシド（TOPO）を反応させた第1溶液を合成した後、第1溶液の温度を285℃に上昇させる。

次に、TOP溶媒にトリメチルシリルホスフィンを溶解させてなる第2溶液を作製し、第2溶液を加熱槽中の第1溶液にシリンジで注入し、温度を2
85℃に保持した。冷却、精製および単離の操作を行ない、InPコア粒子を含むコロイド溶液を回収した。回収したコロイド溶液はフッ化水素酸（HF）エッチング溶液（重量比でHF:純水:n-ブタノール=1:2:17）中で攪拌し、失活要因となるInPコア粒子表面の欠陥および異物を取り除いた後に有機溶媒で洗浄する。

次に、InGaP第1シエル（障壁領域）を以下のようにして形成する。

InPコア粒子を含むコロイド溶液を再び加熱槽に入れ、塩化インジウムと塩化ガリウムの混合溶液（物質量比1:1）を加えて温度を285℃に上昇させた。前述の第2溶液を加熱槽にシリンジで注いで285℃に保持し、冷却、精製および単離の操作を行なって、InPコア表面にGalnPシエルを形成したコロイド溶液を回収する。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄する。

最後に、InP第2シエル（第2発光領域）を以下のようにして形成する。

InPコア、GaInPシエル粒子を含むコロイド溶液を三たび加熱槽に入れ、保持温度を300℃とした他はInPコア形成と同じ操作を行い、GalnPシエル表面にInPシエルを形成したコロイド溶液を回収した。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄する。以上の操作により、上述の半導体ナノ粒子蛍光体が得られる。

特許文献8のInPナノ粒子の製造方法においては、まず、グロープボックスでアルゴンガス雰囲気中、オートクレープに塩化インジウム（InCl3）0.4グラム、界面活性剤であるトリオクチルホスフィン（Trioctylphosphine、[CH3(CH2)7]3P、TOP）3ミリリットルとドデシルアミン（Dodecylamine、CH3(CH2)11NH2、DDA）2.5グラムを加え、さらに、溶媒としてトルエン（Toluene、C6H5CH3）5ミリリットルを加え、トリス（ジメチルアミノ）ホスフィン（Tris(dimethylamino)phosphine、P[N(CH3)2]3）0.5ミリリットルを入れる。
その後、オートクレープを電気炉に移して75℃で1時間保った後、更に
180℃に昇温し、24時間でナノ粒子を成長させ、ナノ粒子分散液を得る
。このナノ粒子分散液 にトルエン 10ミリリットル とメタノール 6 ミリリッ
トルを加え、十分に攪拌した後、10分間遠心分離を行い、遠心分離後、透
明な上澄み液を取り出すことによって、nPナノ粒子と反応後の副産物を
分離する。さらに、この副産物を取り除いたナノ粒子分散液を使用して、サ
イズ選択的沈降法により異なる粒径のナノ粒子を取り出し、nPナノ粒子
を得る。

なお、特許文献8には、紫外光照射を利用したnPナノ粒子上に硫化亜
鉛シエルが作製されているコア/シエル構造の半導体ナノ粒子の製造方法を
開示されている。

先行技術文献
特許文献

特許文献1:特開2006_265022号公報
特許文献2:特開2008_44827号公報
特許文献3:国際公開第07/138851号
特許文献4:特開2009_19067号公報
特許文献5:特開2009_40633号公報
特許文献6:特開2008_279591号公報
特許文献7:特開2010_106119号公報
特許文献8:特開2010_138367号公報

発明の開示
発明が解決しようとする課題

上述のように、nPナノ粒子の合成または製造を行う方法は、様々な方
法が提案されているものの、多くの場合、半導体微粒子の表面エネルギーが
極めて高いために凝集しやすく、そのため半導体微粒子本来の機能が発現さ
れないことが多い。また、粒子形成中に凝集した半導体微粒子は再分散させ
することは困難であった。

[0025] 特許文献1〜8にはInPナノ粒子の製造方法または合成方法が開示されているものの、これらの製造方法または合成方法では、製造時または合成時
の温度が170℃〜350℃と高く、InPナノ粒子形成中に粒子が凝集し
ていると推測され、得られたInPナノ粒子をトルエンまたはヘキサンに分
散させようとしても、経時変化でInPナノ粒子が沈降してしまい、InP
ナノ粒子の分散性が悪い。このことから、InPナノ粒子を用いた均一な光
電変換材料塗布膜を作製することが困難である。

また、特許文献1〜8に開示のInPのナノ粒子(半導体微粒子)の製造
(合成)方法で得られたInPのナノ粒子(半導体微粒子)では、PL(フ
オトルミネッセンス)発光強度が不十分である。

[0026] 本発明の目的は、前記従来技術に基づく問題点を解消し、良好な溶液分散
性と高いPL発光強度を両立したInPナノ粒子の合成方法およびこの合成
方法で合成されたナノ粒子を提供することにある。

課題を解決するための手段

[0027] 上記目的を達成するために、本発明の第1の態様はIn原料として三塩化
インジウム(無水)を用い、P原料としてトリスジメチルアミノホスフィン
を用いてInPナノ粒子を合成する方法であって、In原料、P原料、沸点
170℃以上の有機溶媒および粒子表面リガンドを混合して得られた混合液
を、150℃以上170℃未満の温度に加熱してInPナノ粒子を合成する
合成工程を有し、粒子表面リガンドは、炭素数18以上の脂肪族アミンであ
ることを特徴とするInPナノ粒子の合成方法を提供するものである。

[0028] 合成工程の後に、フッ酸またはパッファードフッ酸を含有する溶液を用い
て、InPナノ粒子を表面処理する溶液処理工程を有することが好ましく、
さらにその後、表面処理されたInPナノ粒子に紫外光を10分以上照射す
る照射工程とを有することが好ましい。

また、有機溶媒は、1〜オクタデセンを用いることが好ましい。

InPナノ粒子は、粒子表面リガンドが炭素数18以上の1級脂肪族アミ
であることが好ましく、加熱合成時間が30～360分であることが好ましい。

[0029] 本発明の第2の態様は、本発明の第1の態様のInPナノ粒子の合成方法で合成されたものであることを特徴とするナノ粒子を提供するものである。

さらに、本発明の第3の態様は、本発明の第1の態様のInPナノ粒子の合成方法で合成されたInPナノ粒子からなるコアと、コアを被覆するシェルとを有するコアシエル構造であることを特徴とするナノ粒子を提供するものである。

発明の効果

[0030] 本発明によれば、良好な溶液分散性と高いPL発光強度が両立したInPナノ粒子を、合成時の温度を従来に比して低くしても合成することができる。

さらには、合成されたInPナノ粒子は、PL発光強度が高く、光学デバイスの光電変換材料として利用可能であり、エレクトロルミネッセンス素子、光電変換素子（太陽電池）等に利用することができる。

また、合成されたInPナノ粒子は、溶液分散性が良好であるため、InPナノ粒子を用いて、均一な光電変換材料塗布膜を作製することができ、塗布方式のエレクトロルミネッセンス素子、および太陽電池に適用することができる。

発明を実施するための形態

[0031] 以下に、好適実施形態に基づいて、本発明のInPナノ粒子の合成方法およびナノ粒子を詳細に説明する。

[0032] 本実施形態のInPナノ粒子の合成する反応容器は、フォルソーマル法で用いられるような耐圧反応容器（オートクレープ）またはホットソープ法で用いられるようなガラス製フラスコのどちらを用いても良く、これらの容器中、不活性雰囲気、高温（最高温度が150℃以上170℃未満）で粒子合成反応を行う。

さらには、InPナノ粒子の製造は、水分と酸素を実質的に排除した雰囲
気でなされる。lnPナノ粒子の製造においては、後述する原料、有機溶媒、粒子表面リガント種を密閉容器に充填するときから粒子合成が終わって反応物を密閉容器から取り出すまで水分と酸素を実質的に排出した雰囲気でなされる。

【0033】本実施形態において、水分と酸素を実質的に排出した雰囲気とは、例えば、酸素濃度0.5ppm未満、水分濃度1ppm未満の窒素雰囲気のことである。

なお、水分と酸素を実質的に排出した雰囲気とすることが出来れば、その雰囲気を得るための装置等は、特に限定されるものではない。

【0034】本実施形態において、lnPナノ粒子の製造には、原料と有機溶媒が用いられる。この原料には、ln化合物およびP化合物が用いられる。

なお、lnPナノ粒子の製造には、原料と有機溶媒に、更に後述する粒子表面リガント種を添加する。この粒子表面リガント種の機能としては、粒子表面保護（酸化防止、凝集防止）と、粒子表面パッシベーション（ダングリングポンドの不活性化）である。粒子表面リガント種により、表面に粒子表面リガント（配位子）が形成されたlnPナノ粒子が製造される。

【0035】本実施形態のlnPナノ粒子の合成方法においては、ln化合物とP化合物と有機溶媒と粒子表面リガント（粒子表面リガント種）の混合液を、例えば、ベルトドライプ式攪拌機付きのオートクレーブ、またはマグネットスターラーとフラスコを用いて、攪拌を行いながら加熱を行うことで、lnPナノ粒子の合成がなされる。オートクレーブおよびフラスコ密閉容器内は、水分と酸素を実質的に排出した不活性雰囲気（窒素雰囲気またはアルゴン雰囲気）にされており、lnPナノ粒子の合成は、水分と酸素を実質的に排出した不活性雰囲気でなされる。

【0036】オートクレーブおよびフラスコは、不活性雰囲気内で密閉し、密閉状態で加熱を行うことが好ましいが、不活性ガスを通気しながら加熱を行っても良い。

但し、ガラス製のフラスコを用いて密閉状態で、有機溶媒の沸点以上に加
熱を行うことは避けるべきである。

このInPナノ粒子の合成は、温度150℃以上170℃未満の条件下でなされる。150℃以上170℃未満の温度で加熱を行う加熱合成時間は、30分〜360分が好ましい。なお、加熱合成時間とは、150℃以上170℃未満の温度に昇温した後に、その温度が保持される時間のことである。

この合成より得られた反応物をオートクレープから取り出し、例えば、遠心分離機を用いて、良溶媒にトルエンまたはオクタンなどを使い、貧溶媒である脱水エタノールを用いて遠心分離を繰り返し行って生成物を洗浄することで、未反応物と副生成物を廃棄し、InPナノ粒子を抽出し、オクタンなどの分散溶媒に分散させる。

その後、このナノ粒子を含むオクタン溶液を、例えば、ロータリーエッパレーターを用いて、減圧蒸留してエタノールを完全に除去する。これにより、合成したInPナノ粒子を含むオクタン分散液を得る。このようにして、InPナノ粒子を製造することができる。

本発明のInPナノ粒子は、上述のフッ酸またはバッファードフッ酸を用いた粒子表面処理によりPL発光強度が向上する。

さらに、本発明においては、InPナノ粒子を最終的に分散溶媒に分散した後に、例えば、波長が365nmの紫外光ランプ（UVランプ）を用いて
紫外光（UV光）を照射することが好ましい。すなわち、InPナノ粒子が分散するオクタン分散液に紫外光（UV光）を照射することが好ましい。紫外光（UV光）の照射時間は少なくとも10分、好ましくは30分以上、さらに好ましくは60分以上である。本発明のInPナノ粒子は、この紫外光（UV光）照射によりPL発光強度が向上する。

なお、InPナノ粒子の平均粒径は1~10nmが好ましく、さらに好ましくは3~10nmである。

上記平均粒径の求め方は、例えば、透過電子顕微鏡による直接観察、動的散乱法またはX線回折ピークの半価幅（デバイシエラーの式）などがある。しかしながら、InPナノ粒子の平均粒径は、透過電子顕微鏡で少なくとも200個、好ましくは少なくとも1000個の粒子を直接観察し、その算術平均を算出して求めることが好ましい。

原料のIn化合物（In供給源）としては、三塩化インジウム（無水）が用いられる。

原料のP化合物（P供給源）としては、トリスジメチルアミノホスフィンが用いられる。

有機溶媒としては、170℃以上の沸点を有する非極性溶媒が用いられる。非極性溶媒については、具体的には、n-テカン、n-ドテカン、n-ヘキサテカン、n-オクタテカンなどの脂肪族飽和炭化水素、1_ウンデセン、1_ドデセン、1_ヘキサテセン、1_オクタテセンなどの脂肪族不飽和炭化水素およびトリオクチルホスファインなどが、例として挙げられるが、炭素数12以上の脂肪族不飽和炭化水素が好ましく、1_オクタテセンがより好ましい。

なお、沸点が170℃以上の有機溶媒を用いることにより、粒子形成中に粒子が凝集しにくくなり、InPナノ粒子の溶液分散性がより良好なものとなる。

InPナノ粒子の表面リガンド（配位子）を形成するための粒子表面リガンド種（界面活性剤）としては、炭素数18以上の脂肪族アミンが用いられる。
炭素鎖については、飽和または不飽和結合を有していても良く、直鎖または分岐鎖でも良いが、長鎖の炭素鎖を有していることが好ましく、長鎖の脂肪族アミンが好ましく用いられる。さらに、炭素数18以上の1級脂肪族アミンが特に好ましく用いられる。

炭素数18以上の1級脂肪族アミンとしては、例えば、C₁₈H₃₇NH₂、C₁₉H₃₉N₂H₂、C₂₀H₄₁NH₂、C₂₁H₄₅NH₂、C₂₁H₄₇NH₂などが挙げられる。

本実施形態において、上記粒子表面リガンド種が、I₂Pナノ粒子の表面に配位する。

なお、粒子表面リガンド種をドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オレイルアミン、トリオクチルアミン、エイコシルアミンと変えると、PL発光強度が高くなる。特に、粒子表面リガンド種の炭素数を16以下から18のものにするとPL発光強度が顕著に高くなることを確認している。

本実施形態においては、I₂Pナノ粒子について説明したが、これに限定されるものではなく、I₂Pナノ粒子をコアとしたコアシェル構造のナノ粒子であってもよい。この場合、シェルは、例えば、ZnS、ZnO、InGaN等で構成されるが、ZnSが好ましく用いられる。

また、コアシェル構造のナノ粒子においても、上述のI₂Pナノ粒子と同様に、炭素数18以上の脂肪族アミン、または炭素数18以上の1級脂肪族アミンで構成されるナノ粒子表面リガンド（配位子）があってもよい。

なお、上記コアシェル構造のナノ粒子においても、平均粒径は1〜10nmが好ましく、さらに好ましくは3〜10nmである。その平均粒径の求め方は、上述のI₂Pナノ粒子と同じ方法を用いることができるため、その詳細な説明は省略する。このコアシェル構造のナノ粒子においても、上述のI₂Pナノ粒子と同じく、平均粒径は、透過電子顕微鏡で少なくとも20個、好ましくは少なくとも100個の粒子を直接観察し、その算術平均を算出し
て求めることが好ましい。

次に、コアシェル構造のナノ粒子の合成方法の具体例について説明する。

コアシェル構造のナノ粒子の合成方法は、原料と有機溶媒と粒子表面リガ
ンド（粒子表面リガンド種）の混合液を、攪拌する工程では、上述の In
Pナノ粒子の合成方法と同様である。このため、その詳細な説明は省略する
。

次に、この混合液の攪拌終了後、オートクレーブまたはフラスコを十分に
冷却する。そして、オートクレーブまたはフラスコを不活性ガス雑圧気のグ
ローブボックス内で開け、更に、例えば、オートクレーブまたはフラスコ内
に、無水酢酸亜鉛と 1→ ドデカンチオールを入れて混合し、オートクレーブ
またはフラスコを密閉した後、グローブボックスから取り出す。その後、所
定の温度で所定時間、例えば、180℃を1時間保持し、反応物を得る。

そして、反応物をオートクレーブまたはフラスコから取り出し、上述の In
Pナノ粒子の合成方法と同じく、例えば、遠心分離機を用いて、良溶媒に
トルエンまたはオクタンなどを用い、薄溶媒である脱水エタノールを用いて
遠心分離を繰り返し行って生成物を洗浄することで、未反応物と副生成物を
廃棄し、InPナノ粒子を抽出し、オクタンなどの分散溶媒に分散させる。

その後、この粒子を含むオクタン溶液を、例えば、ロータリーエバポレー	
ターを用いて、減圧蒸留してエタノールを完全に除去する。これにより、合
成したコアシェル構造のナノ粒子を含むオクタン分散液を得る。これにより
、コアシェル構造のナノ粒子が製造される。

本実施形態の InPナノ粒子およびコアシェル構造のナノ粒子は、良好な
溶液分散性と高いPL発光強度を両立しており、光学デバイスの光電変換材
料として利用可能である。InPナノ粒子およびコアシェル構造のナノ粒子
は、溶液分散性が良好であるため、InPナノ粒子を用いて、均一な光電変
換材料塗布膜を作製することができ、更にはPL発光強度が高く、高品質な
結晶であることから、塗布方式のエレクトロルミネッセンス素子、および太
陽電池に適用することができる。このため、InPナノ粒子およびコアシェ
ル構造のナノ粒子は、いずれも、例えば、エレクトロルミネッセンス素子の発光層、太陽電池の光吸収層（光電変換層）に用いることができる。これにより、エレクトロルミネッセンス素子であれば、発光強度を高くすることができる。太陽電池であれば、変換効率を高くすることができる。

なお、エレクトロルミネッセンス素子は、例えば、特開2003-257671号公報に開示の基板/透明電極/正孔輸送層/発光層/電子輸送層/背面電極の構成とすることができる。この場合、溶液分散性が良好であることから、エレクトロルミネッセンス素子を構成する全て層を塗布方式（湿式）で形成することができるため、大面積のものを高速かつ低コストで製造できるので好ましい。

太陽電池については、例えば、APPLIED PHYSICS LETTERS 92, 173307 (2008) および特開2009-59796号公報に開示の基板/透明電極/正極界面層（平滑性の確保）/光吸収層/背面電極の構成とすることができる。この場合においても、エレクトロルミネッセンス素子と同様に、太陽電池を構成する全て層を塗布方式（湿式）で形成することができるため、大面積のものを高速かつ低コストで製造できるので好ましい。

本発明は、基本的に以上のように構成されるものである。以上、本発明のInPナノ粒子の合成方法およびナノ粒子について詳細に説明したが、本発明は上記実施形状に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。

実施例1

以下、本発明のInPナノ粒子の合成方法についてより具体的に説明する。

本実施例においては、下記表1に示すナノ粒子のサンプル1～22を、それぞれ以下に示す方法を用いて合成し、各サンプル1～22について、溶液分散性およびPL発光強度について評価した。

以下、サンプル1のInPナノ粒子の合成方法について説明する。
サンプル1においては、A K I C O社製ベルトドライブ式攪拌機付きのオーバークレープを用いて、以下の方法により、InPナノ粒子を合成した。

まず、オーバークレープ内を窒素雰囲気（酸素濃度0.5ppm未満、水分濃度1ppm未満）とする。この窒素雰囲気中で、オーバークレープ内に、有機溶媒として1-Oクタデセン50mLし、In化合物として三塩化インジウム（無水）2.7mmol、P化合物としてトリスジメチルアミノホスフィン2.7mmol粒子表面リガント種としてオレイルアミン5.4mmolを、それぞれ入れて混合し、混合液を得る。次に、オーバークレープを密閉する。

次に、オーバークレープ内の混合液を攪拌機で攪拌しながら、オーバークレープ用電熱線ヒーターで混合液を加熱した。

オーバークレープ用電熱線ヒーターにより、混合液を室温から140℃（最高加熱温度）に昇温して180分間保持した後、降温した。この昇温して保持した時間（加熱合成時間）が下記表1の「保持時間」である。

十分に冷却したオーバークレープから反応物を取り出し、遠心分離機を用いて、良溶媒にトルエンまたはオクタンなどを用い、貧溶媒である脱水エタノールを用いて遠心分離を繰り返し行って生成物を洗浄することで、未反応物と副生成物を廃棄し、InPナノ粒子を抽出する。

最後にナノ粒子を抽出する前に、沈殿物にバッファードフッ酸溶液（HF22体積％）を0.1mL添加して1分間、ナノ粒子の表面処理を行った。このように、バッファードフッ酸による表面処理をしたものを下記表1の「バッファードフッ酸溶液処理」の欄で「あり」と記し、バッファードフッ酸による表面処理をしていないものを「なし」と記した。

最後に抽出した合成したナノ粒子は、沈殿物にオクタンを加えて超音波分散し、残留しているエタノールはロータリーエバポレーターを用いて減圧蒸留して除去し、オクタン分散液を得た。

さらに、この合成したナノ粒子を含むオクタン分散液にUVランプ（6W）で、波長が365nmのUV光（紫外光）を60分間照射した。このよう
に、u v 光 (紫外光) を照射したものを下記表 1 の「u v 光照射」の欄で「あり」と記し、u v 光 (紫外光) を照射していないものを「なし」と記した。

このようにして、合成したナノ粒子を含むオクタン分散液を得た。このオクタン分散液を希釈し、カーボンメッシュに滴下し、乾燥させた後に、HR-TEM（高分解能透過電子顕微鏡）で観察した結果、得られたナノ粒子の平均粒径は 5 nm であった。

また、合成したナノ粒子を含むオクタン分散液を乾燥して得られた粒子粉末をX 線回折で解析を行った結果、InP に相当するピークを検出した。

本実施例において、溶液分散性については、合成したナノ粒子を含むオクタン分散液を無撹拌状態で経時し、ナノ粒子が自然に沈降するまでの日数を計測することを評価した。その評価基準については、ナノ粒子が沈降して上澄み溶液と分離してしまうまでの経時時間が 1 日以内のものを「○」とし、7 日以内のものも「○」とし、30 日以内のものを「△」とし、30 日以上沈降しないものを「△」とした。

さらに、PL（フォトルミネッセンス）発光強度の半価幅は、室温において、励起波長 400 nm の光を用いて、合成したナノ粒子を含むオクタン分散液の蛍光スペクトルを測定して求めた。

次に、サンプル 2～2 の InP ナノ粒子の合成方法について説明する。

サンプル 2～2 の InP ナノ粒子は、粒子合成時の最高加熱温度、保持時間（加熱合成時間）、有機溶媒、粒子表面リガント種、バファーラードフッ酸処理の有無および UV 光照射の有無を下記表 1 に示す通りに変更した以外は、上述のサンプル 1 と同様の合成方法で製造したものである。このため、サンプル 2～2 の合成方法について、その詳細な説明は省略する。

また、サンプル 2～2 の各サンプルの溶液分散性および PL 発光強度の評価は、サンプル 1 と同様に行ったため、その詳細な説明は省略する。

次に、サンプル 2 2 の InP/ ZnS コアシェル粒子の合成方法について説明する。
まず、窒素雰囲気（酸素濃度 0.5 ppm未満、水分濃度 1 ppm未満）のオートクレーブ内に、有機溶媒として 1-オクタデセン 5 ㎖し In 化合物として三塩化インジウム（無水）2.7 mmol、P 化合物としてトリスジメチルアミノホスフィン 2.7 mmol 粒子表面リガント種としてオレイラミン 5.4 mmol を、それぞれ入れて混合し、混合液を得る。次に、オートクレーブを密閉する。

次に、オートクレーブ内の混合液を攪拌機で攪拌しながら、オートクレーブ用電熱線ヒーターで混合液を加熱した。

オートクレーブ用電熱線ヒーターにより、混合液を室温から 160 ℃（最高加熱温度）に昇温して 180 分間保持した後、降温した。

次に、十分に冷却したオートクレーブを開け、オートクレーブ内の混合液に、更に無水酢酸亜鉛 4.6 mmol と 1-ドデカンチオール 4.6 mmol を入れて混合し、第 2 の混合液を得、オートクレーブを密閉した。そして、第 2 の混合液を 180 ℃で 60 分間加熱し、反応物を得た。その後、サンプル 1 の InP ナノ粒子の合成方法と同様にして、上述のようにナノ粒子の抽出と分散を行い、サンプル 2 2 の In P/ZnS コアシェル粒子を得た。

サンプル 2 2 の In P/ZnS コアシェル粒子について、HR-TEM（高分解能透過電子顕微鏡）で観察した結果、得られたサンプル 2 2 の In P/ZnS コアシェル粒子の平均粒径は 6 nm であった。

なお、サンプル 2 2 における溶液分散性および PL 発光強度の評価は、サンプル 1 と同様に行ったため、その詳細な説明は省略する。
<table>
<thead>
<tr>
<th>サンプル名</th>
<th>最高加熱温度(℃)</th>
<th>保持時間(分)</th>
<th>有機溶媒</th>
<th>粒子表面リガンド種</th>
<th>バッファードブッ酸溶液処理</th>
<th>UV光照射</th>
<th>コアシェル化</th>
<th>溶液分散性</th>
<th>PL発光強度(半価幅nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>C</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>テトラデシルアミン(C<sub>8</sub>H<sub>17</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>D</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>ヘキサデシルアミン(C<sub>9</sub>H<sub>18</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>D</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オクタデシルアミン(C<sub>10</sub>H<sub>21</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>ジノニアルアミン((C<sub>8</sub>H<sub>17</sub>)<sub>2</sub>NH)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>B</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>トリヘキシルアミン((C<sub>8</sub>H<sub>17</sub>)<sub>3</sub>N)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>B</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>180</td>
<td>1-ヘキサデセン(沸点287℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>B</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点214℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>B</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>160</td>
<td>180</td>
<td>1-ウンデセン(沸点192℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>B</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>160</td>
<td>180</td>
<td>1-デセン(沸点169℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>C</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>160</td>
<td>180</td>
<td>キシレン(沸点約140℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>D</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>160</td>
<td>20</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>30</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>160</td>
<td>100</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>160</td>
<td>360</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>49</td>
</tr>
<tr>
<td>19</td>
<td>160</td>
<td>370</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>B</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>A</td>
<td>53</td>
</tr>
<tr>
<td>21</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>A</td>
<td>62</td>
</tr>
<tr>
<td>22</td>
<td>160</td>
<td>180</td>
<td>1-オクタデセン(沸点315℃)</td>
<td>オレイルアミン(C<sub>18</sub>H<sub>35</sub>NH<sub>2</sub>)</td>
<td>なし</td>
<td>なし</td>
<td>あり(ZnS殻)</td>
<td>A</td>
<td>39</td>
</tr>
</tbody>
</table>
[0066] 上記表1に示すように、本発明の範囲に入るサンプル2、3、サンプル7～12およびサンプル15～22は、溶液分散性が良好で、しかも高いPL発光強度が得られた。

保持時間、有機溶媒および粒子表面リガント種が同じであるサンプル2、3において、最高加熱温度が高い方が、PL発光強度が高い傾向にある。

最高加熱温度、保持時間および有機溶媒が同じであるサンプル7～9において、粒子表面リガント種として、3級脂肪族アミンよりも2級脂肪族アミンの方がPL発光強度が高く、1級脂肪族アミンの方が2級脂肪族アミンよりもPL発光強度が高い。また、サンプル7～9において、1級脂肪族アミンの方が溶液分散性が良い。

[0067] 最高加熱温度、保持時間および粒子表面リガント種が同じであるサンプル3、サンプル10～12において、有機溶媒の沸点が300℃を超えた方が溶液分散性が良い。

最高加熱温度、有機溶媒および粒子表面リガント種が同じであるサンプル15～19において、保持時間が好ましい範囲にある方が溶液分散性が良い。

[0068] 最高加熱温度および保持時間が同じであるサンプル3、サンプル20およびサンプル21において、パッファー・ドフッ酸処理およびUV光照射をすることにより、PL発光強度が高くなる傾向にある。サンプル21は、UV光照射をしていないため、サンプル3よりもPL発光強度が低い。パッファー・ドフッ酸処理およびUV光照射をしていたサンプル21は、サンプル20よりもPL発光強度が低い。

また、サンプル22のようにコアシェル構造とすることにより、サンプル1～22中でPL発光強度が最も高くなった。

[0069] 一方、最高加熱温度が本発明の下限値未満であるサンプル1は、PL発光強度が不十分であった。最高加熱温度が本発明の上限値を超えるサンプル4は、溶液分散性が悪い。

粒子表面リガント種が炭素数18以上の脂肪族アミンではないサンプル5
およびサンプル 6 は、溶液分散性が悪い。有機溶媒の沸点が本発明の下限値未満のサンプル 13 およびサンプル 14 は、溶液分散性が悪い。
請求の範囲

[請求項1] l n 原料として三塩化インジウム（無水）を用い、P 原料としてトリスジメチルアミノホスフィンを用いて l n P ナノ粒子を合成する方法であって、

前記 l n 原料、前記 P 原料、沸点 170 ℃以上の有機溶媒および粒子表面リガンドを混合して得られた混合液を、150 ℃以上 170 ℃未満の温度に加熱して前記 l n P ナノ粒子を合成する合成工程を有し、

前記粒子表面リガンドは、炭素数 18 以上の脂肪族アミンであることを特徴とする l n P ナノ粒子の合成方法。

[請求項2] 前記合成工程の後に、フッ酸またはバッファードフッ酸を含有する溶液を用いて、前記 l n P ナノ粒子を表面処理する溶液処理工程を有する請求項 1 に記載の l n P ナノ粒子の合成方法。

[請求項3] 前記合成工程の後に、フッ酸またはバッファードフッ酸を含有する溶液を用いて、前記 l n P ナノ粒子を表面処理する溶液処理工程と、

前記表面処理された l n P ナノ粒子に紫外光を 10 分以上照射する照射工程を有する請求項 1 に記載の l n P ナノ粒子の合成方法。

[請求項4] 前記有機溶媒は、1 → 2 クタデセンである請求項 1 ～ 3 のいずれか 1 項に記載の l n P ナノ粒子の合成方法。

[請求項5] 前記 l n P ナノ粒子は、粒子表面リガンドが炭素数 18 以上の 1 級脂肪族アミンである請求項 1 ～ 4 のいずれか 1 項に記載の l n P ナノ粒子の合成方法。

[請求項6] 前記合成工程における加熱合成時間は、30 分～360 分である請求項 1 ～ 5 のいずれか 1 項に記載の l n P ナノ粒子の合成方法。

[請求項7] 請求項 1 ～ 6 のいずれか 1 項に記載の l n P ナノ粒子の合成方法で製造されたものであることを特徴とするナノ粒子。

[請求項8] 請求項 1 ～ 6 のいずれか 1 項に記載の l n P ナノ粒子の合成方法で製造された l n P ナノ粒子からなるコアと、前記コアを被覆するシェ
ルとを有するコアシェル構造であることを特徴とするナノ粒子。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C01B25/08, B82Y20/00 (2011.01), B62Y4/00 (2011.01), C09K11/08 (2006.01), C09K11/70 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C01B25/08, B82Y20/00, B82Y40/00, C09K11/08, C09K11/70

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JST Plus (JDreaml), JST7580 (JDreaml)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C.Li et al., Facile Preparation of Highly Luminescent InP Nanocrystal s by a Solvotherm rmal Route, Chemistry Letter s, 2008, Vol.37 No.8, Page 856-857</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-138367 A (National Institute of Advanced Industrial Science and Technology), 24 June 2010 (24.06.2010), example 1 & US 2009/0315446 Al</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-009995 A (Seiko Epson Corp.), 14 January 2010 (14.01.2010), paragraph [0050] (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search 08 August 2012 (08.08.12)

Date of mailing of the international search report 21 August 2012 (21.08.12)

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2009-019067 A (Sharp Corp.), 29 January 2009 (29.01.2009), example 1 (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (continuation of second sheet) (July 2009)
国際調査報告

国際調査報告
国際出願番号 PCT/JP2012/062019

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C01B25/08 (2006.01i), B82Y20/00 (2011.01i), B82Y40/00 (2011.01i), C09K11/08 (2006.01i), C09K11/70 (2006.01i)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C01B25/08, B82Y20/00, B82Y40/00, C09K11/08, C09K11/70

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国 実用新案公報 1922-
日本国 開業実用新案公報 1971-2
日本国 実用新案登録公報 1996-
日本国 登録実用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
JSTPlus (JDreami I), JST7580 (JDreami I)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C. Li et al., Facile Preparation of Highly Luminescent InP Nanocrystals by a Solvothermal Route, Chemistry Letters, 2008, Vol. 37 No. 8, Pages856-857</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-138367 A (独立行政法人産業技術総合研究所) 2010.06.24, 実施例 1 & US 2009/0315446 A1</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-009995 A (セイコーポスア株式会社) 2010.01.14, 05050 (ファミリーなし)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

変更の続きに文献が列挙されている。

** 引用文献のカテゴリ**

IA 特に関連のある文献ではなく、一般的技術水準を示すもの
IE 国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの
IL 優先権主張に疑義を提起する文献または他の文献の発行 日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
IB 口頭による開示、使用、展示等に言及する文献
IP 国際出願 日前の、かつ優先権の主張の基礎となる出願

の日後の後に公表された文献
T 国際出願 日又は優先 日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
X 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
Y 特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
Z 同一パートナーファミリー文献

国際調査を完了した日
08.08.2012
国際調査報告の発送日
21.08.2012

国際調査機関の名称及びあて先
日本国 特許庁（ISA／JP）
郵便番号100-08915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
佐藤 哲
電話番号 03-3581-1101 内線 3416

様式 PCT/ISA/210（第2ページ）（2009年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2009-019067 A (シャープ株式会社) 2009.01.29, 実施例1 (ファミリーなし)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

国際出願番号 PCT／JP2012／062019